// SPDX-License-Identifier: GPL-2.0-or-later /* * Test for s390x KVM_S390_MEM_OP * * Copyright (C) 2019, Red Hat, Inc. */ #include #include #include #include #include #include "test_util.h" #include "kvm_util.h" #include "kselftest.h" enum mop_target { LOGICAL, SIDA, ABSOLUTE, INVALID, }; enum mop_access_mode { READ, WRITE, }; struct mop_desc { uintptr_t gaddr; uintptr_t gaddr_v; uint64_t set_flags; unsigned int f_check : 1; unsigned int f_inject : 1; unsigned int f_key : 1; unsigned int _gaddr_v : 1; unsigned int _set_flags : 1; unsigned int _sida_offset : 1; unsigned int _ar : 1; uint32_t size; enum mop_target target; enum mop_access_mode mode; void *buf; uint32_t sida_offset; uint8_t ar; uint8_t key; }; static struct kvm_s390_mem_op ksmo_from_desc(struct mop_desc desc) { struct kvm_s390_mem_op ksmo = { .gaddr = (uintptr_t)desc.gaddr, .size = desc.size, .buf = ((uintptr_t)desc.buf), .reserved = "ignored_ignored_ignored_ignored" }; switch (desc.target) { case LOGICAL: if (desc.mode == READ) ksmo.op = KVM_S390_MEMOP_LOGICAL_READ; if (desc.mode == WRITE) ksmo.op = KVM_S390_MEMOP_LOGICAL_WRITE; break; case SIDA: if (desc.mode == READ) ksmo.op = KVM_S390_MEMOP_SIDA_READ; if (desc.mode == WRITE) ksmo.op = KVM_S390_MEMOP_SIDA_WRITE; break; case ABSOLUTE: if (desc.mode == READ) ksmo.op = KVM_S390_MEMOP_ABSOLUTE_READ; if (desc.mode == WRITE) ksmo.op = KVM_S390_MEMOP_ABSOLUTE_WRITE; break; case INVALID: ksmo.op = -1; } if (desc.f_check) ksmo.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; if (desc.f_inject) ksmo.flags |= KVM_S390_MEMOP_F_INJECT_EXCEPTION; if (desc._set_flags) ksmo.flags = desc.set_flags; if (desc.f_key) { ksmo.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION; ksmo.key = desc.key; } if (desc._ar) ksmo.ar = desc.ar; else ksmo.ar = 0; if (desc._sida_offset) ksmo.sida_offset = desc.sida_offset; return ksmo; } /* vcpu dummy id signifying that vm instead of vcpu ioctl is to occur */ const uint32_t VM_VCPU_ID = (uint32_t)-1; struct test_vcpu { struct kvm_vm *vm; uint32_t id; }; #define PRINT_MEMOP false static void print_memop(uint32_t vcpu_id, const struct kvm_s390_mem_op *ksmo) { if (!PRINT_MEMOP) return; if (vcpu_id == VM_VCPU_ID) printf("vm memop("); else printf("vcpu memop("); switch (ksmo->op) { case KVM_S390_MEMOP_LOGICAL_READ: printf("LOGICAL, READ, "); break; case KVM_S390_MEMOP_LOGICAL_WRITE: printf("LOGICAL, WRITE, "); break; case KVM_S390_MEMOP_SIDA_READ: printf("SIDA, READ, "); break; case KVM_S390_MEMOP_SIDA_WRITE: printf("SIDA, WRITE, "); break; case KVM_S390_MEMOP_ABSOLUTE_READ: printf("ABSOLUTE, READ, "); break; case KVM_S390_MEMOP_ABSOLUTE_WRITE: printf("ABSOLUTE, WRITE, "); break; } printf("gaddr=%llu, size=%u, buf=%llu, ar=%u, key=%u", ksmo->gaddr, ksmo->size, ksmo->buf, ksmo->ar, ksmo->key); if (ksmo->flags & KVM_S390_MEMOP_F_CHECK_ONLY) printf(", CHECK_ONLY"); if (ksmo->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) printf(", INJECT_EXCEPTION"); if (ksmo->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) printf(", SKEY_PROTECTION"); puts(")"); } static void memop_ioctl(struct test_vcpu vcpu, struct kvm_s390_mem_op *ksmo) { if (vcpu.id == VM_VCPU_ID) vm_ioctl(vcpu.vm, KVM_S390_MEM_OP, ksmo); else vcpu_ioctl(vcpu.vm, vcpu.id, KVM_S390_MEM_OP, ksmo); } static int err_memop_ioctl(struct test_vcpu vcpu, struct kvm_s390_mem_op *ksmo) { if (vcpu.id == VM_VCPU_ID) return __vm_ioctl(vcpu.vm, KVM_S390_MEM_OP, ksmo); else return __vcpu_ioctl(vcpu.vm, vcpu.id, KVM_S390_MEM_OP, ksmo); } #define MEMOP(err, vcpu_p, mop_target_p, access_mode_p, buf_p, size_p, ...) \ ({ \ struct test_vcpu __vcpu = (vcpu_p); \ struct mop_desc __desc = { \ .target = (mop_target_p), \ .mode = (access_mode_p), \ .buf = (buf_p), \ .size = (size_p), \ __VA_ARGS__ \ }; \ struct kvm_s390_mem_op __ksmo; \ \ if (__desc._gaddr_v) { \ if (__desc.target == ABSOLUTE) \ __desc.gaddr = addr_gva2gpa(__vcpu.vm, __desc.gaddr_v); \ else \ __desc.gaddr = __desc.gaddr_v; \ } \ __ksmo = ksmo_from_desc(__desc); \ print_memop(__vcpu.id, &__ksmo); \ err##memop_ioctl(__vcpu, &__ksmo); \ }) #define MOP(...) MEMOP(, __VA_ARGS__) #define ERR_MOP(...) MEMOP(err_, __VA_ARGS__) #define GADDR(a) .gaddr = ((uintptr_t)a) #define GADDR_V(v) ._gaddr_v = 1, .gaddr_v = ((uintptr_t)v) #define CHECK_ONLY .f_check = 1 #define SET_FLAGS(f) ._set_flags = 1, .set_flags = (f) #define SIDA_OFFSET(o) ._sida_offset = 1, .sida_offset = (o) #define AR(a) ._ar = 1, .ar = (a) #define KEY(a) .f_key = 1, .key = (a) #define INJECT .f_inject = 1 #define CHECK_N_DO(f, ...) ({ f(__VA_ARGS__, CHECK_ONLY); f(__VA_ARGS__); }) #define VCPU_ID 1 #define PAGE_SHIFT 12 #define PAGE_SIZE (1ULL << PAGE_SHIFT) #define PAGE_MASK (~(PAGE_SIZE - 1)) #define CR0_FETCH_PROTECTION_OVERRIDE (1UL << (63 - 38)) #define CR0_STORAGE_PROTECTION_OVERRIDE (1UL << (63 - 39)) static uint8_t mem1[65536]; static uint8_t mem2[65536]; struct test_default { struct kvm_vm *kvm_vm; struct test_vcpu vm; struct test_vcpu vcpu; struct kvm_run *run; int size; }; static struct test_default test_default_init(void *guest_code) { struct test_default t; t.size = min((size_t)kvm_check_cap(KVM_CAP_S390_MEM_OP), sizeof(mem1)); t.kvm_vm = vm_create_default(VCPU_ID, 0, guest_code); t.vm = (struct test_vcpu) { t.kvm_vm, VM_VCPU_ID }; t.vcpu = (struct test_vcpu) { t.kvm_vm, VCPU_ID }; t.run = vcpu_state(t.kvm_vm, VCPU_ID); return t; } enum stage { /* Synced state set by host, e.g. DAT */ STAGE_INITED, /* Guest did nothing */ STAGE_IDLED, /* Guest set storage keys (specifics up to test case) */ STAGE_SKEYS_SET, /* Guest copied memory (locations up to test case) */ STAGE_COPIED, }; #define HOST_SYNC(vcpu_p, stage) \ ({ \ struct test_vcpu __vcpu = (vcpu_p); \ struct ucall uc; \ int __stage = (stage); \ \ vcpu_run(__vcpu.vm, __vcpu.id); \ get_ucall(__vcpu.vm, __vcpu.id, &uc); \ ASSERT_EQ(uc.cmd, UCALL_SYNC); \ ASSERT_EQ(uc.args[1], __stage); \ }) \ static void prepare_mem12(void) { int i; for (i = 0; i < sizeof(mem1); i++) mem1[i] = rand(); memset(mem2, 0xaa, sizeof(mem2)); } #define ASSERT_MEM_EQ(p1, p2, size) \ TEST_ASSERT(!memcmp(p1, p2, size), "Memory contents do not match!") #define DEFAULT_WRITE_READ(copy_cpu, mop_cpu, mop_target_p, size, ...) \ ({ \ struct test_vcpu __copy_cpu = (copy_cpu), __mop_cpu = (mop_cpu); \ enum mop_target __target = (mop_target_p); \ uint32_t __size = (size); \ \ prepare_mem12(); \ CHECK_N_DO(MOP, __mop_cpu, __target, WRITE, mem1, __size, \ GADDR_V(mem1), ##__VA_ARGS__); \ HOST_SYNC(__copy_cpu, STAGE_COPIED); \ CHECK_N_DO(MOP, __mop_cpu, __target, READ, mem2, __size, \ GADDR_V(mem2), ##__VA_ARGS__); \ ASSERT_MEM_EQ(mem1, mem2, __size); \ }) #define DEFAULT_READ(copy_cpu, mop_cpu, mop_target_p, size, ...) \ ({ \ struct test_vcpu __copy_cpu = (copy_cpu), __mop_cpu = (mop_cpu); \ enum mop_target __target = (mop_target_p); \ uint32_t __size = (size); \ \ prepare_mem12(); \ CHECK_N_DO(MOP, __mop_cpu, __target, WRITE, mem1, __size, \ GADDR_V(mem1)); \ HOST_SYNC(__copy_cpu, STAGE_COPIED); \ CHECK_N_DO(MOP, __mop_cpu, __target, READ, mem2, __size, ##__VA_ARGS__);\ ASSERT_MEM_EQ(mem1, mem2, __size); \ }) static void guest_copy(void) { GUEST_SYNC(STAGE_INITED); memcpy(&mem2, &mem1, sizeof(mem2)); GUEST_SYNC(STAGE_COPIED); } static void test_copy(void) { struct test_default t = test_default_init(guest_copy); HOST_SYNC(t.vcpu, STAGE_INITED); DEFAULT_WRITE_READ(t.vcpu, t.vcpu, LOGICAL, t.size); kvm_vm_free(t.kvm_vm); } static void set_storage_key_range(void *addr, size_t len, uint8_t key) { uintptr_t _addr, abs, i; int not_mapped = 0; _addr = (uintptr_t)addr; for (i = _addr & PAGE_MASK; i < _addr + len; i += PAGE_SIZE) { abs = i; asm volatile ( "lra %[abs], 0(0,%[abs])\n" " jz 0f\n" " llill %[not_mapped],1\n" " j 1f\n" "0: sske %[key], %[abs]\n" "1:" : [abs] "+&a" (abs), [not_mapped] "+r" (not_mapped) : [key] "r" (key) : "cc" ); GUEST_ASSERT_EQ(not_mapped, 0); } } static void guest_copy_key(void) { set_storage_key_range(mem1, sizeof(mem1), 0x90); set_storage_key_range(mem2, sizeof(mem2), 0x90); GUEST_SYNC(STAGE_SKEYS_SET); for (;;) { memcpy(&mem2, &mem1, sizeof(mem2)); GUEST_SYNC(STAGE_COPIED); } } static void test_copy_key(void) { struct test_default t = test_default_init(guest_copy_key); HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); /* vm, no key */ DEFAULT_WRITE_READ(t.vcpu, t.vm, ABSOLUTE, t.size); /* vm/vcpu, machting key or key 0 */ DEFAULT_WRITE_READ(t.vcpu, t.vcpu, LOGICAL, t.size, KEY(0)); DEFAULT_WRITE_READ(t.vcpu, t.vcpu, LOGICAL, t.size, KEY(9)); DEFAULT_WRITE_READ(t.vcpu, t.vm, ABSOLUTE, t.size, KEY(0)); DEFAULT_WRITE_READ(t.vcpu, t.vm, ABSOLUTE, t.size, KEY(9)); /* * There used to be different code paths for key handling depending on * if the region crossed a page boundary. * There currently are not, but the more tests the merrier. */ DEFAULT_WRITE_READ(t.vcpu, t.vcpu, LOGICAL, 1, KEY(0)); DEFAULT_WRITE_READ(t.vcpu, t.vcpu, LOGICAL, 1, KEY(9)); DEFAULT_WRITE_READ(t.vcpu, t.vm, ABSOLUTE, 1, KEY(0)); DEFAULT_WRITE_READ(t.vcpu, t.vm, ABSOLUTE, 1, KEY(9)); /* vm/vcpu, mismatching keys on read, but no fetch protection */ DEFAULT_READ(t.vcpu, t.vcpu, LOGICAL, t.size, GADDR_V(mem2), KEY(2)); DEFAULT_READ(t.vcpu, t.vm, ABSOLUTE, t.size, GADDR_V(mem1), KEY(2)); kvm_vm_free(t.kvm_vm); } static void guest_copy_key_fetch_prot(void) { /* * For some reason combining the first sync with override enablement * results in an exception when calling HOST_SYNC. */ GUEST_SYNC(STAGE_INITED); /* Storage protection override applies to both store and fetch. */ set_storage_key_range(mem1, sizeof(mem1), 0x98); set_storage_key_range(mem2, sizeof(mem2), 0x98); GUEST_SYNC(STAGE_SKEYS_SET); for (;;) { memcpy(&mem2, &mem1, sizeof(mem2)); GUEST_SYNC(STAGE_COPIED); } } static void test_copy_key_storage_prot_override(void) { struct test_default t = test_default_init(guest_copy_key_fetch_prot); HOST_SYNC(t.vcpu, STAGE_INITED); t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE; t.run->kvm_dirty_regs = KVM_SYNC_CRS; HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); /* vcpu, mismatching keys, storage protection override in effect */ DEFAULT_WRITE_READ(t.vcpu, t.vcpu, LOGICAL, t.size, KEY(2)); kvm_vm_free(t.kvm_vm); } static void test_copy_key_fetch_prot(void) { struct test_default t = test_default_init(guest_copy_key_fetch_prot); HOST_SYNC(t.vcpu, STAGE_INITED); HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); /* vm/vcpu, matching key, fetch protection in effect */ DEFAULT_READ(t.vcpu, t.vcpu, LOGICAL, t.size, GADDR_V(mem2), KEY(9)); DEFAULT_READ(t.vcpu, t.vm, ABSOLUTE, t.size, GADDR_V(mem2), KEY(9)); kvm_vm_free(t.kvm_vm); } #define ERR_PROT_MOP(...) \ ({ \ int rv; \ \ rv = ERR_MOP(__VA_ARGS__); \ TEST_ASSERT(rv == 4, "Should result in protection exception"); \ }) static void guest_error_key(void) { GUEST_SYNC(STAGE_INITED); set_storage_key_range(mem1, PAGE_SIZE, 0x18); set_storage_key_range(mem1 + PAGE_SIZE, sizeof(mem1) - PAGE_SIZE, 0x98); GUEST_SYNC(STAGE_SKEYS_SET); GUEST_SYNC(STAGE_IDLED); } static void test_errors_key(void) { struct test_default t = test_default_init(guest_error_key); HOST_SYNC(t.vcpu, STAGE_INITED); HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); /* vm/vcpu, mismatching keys, fetch protection in effect */ CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2)); CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, t.size, GADDR_V(mem2), KEY(2)); CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2)); CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem2), KEY(2)); kvm_vm_free(t.kvm_vm); } static void test_termination(void) { struct test_default t = test_default_init(guest_error_key); uint64_t prefix; uint64_t teid; uint64_t teid_mask = BIT(63 - 56) | BIT(63 - 60) | BIT(63 - 61); uint64_t psw[2]; HOST_SYNC(t.vcpu, STAGE_INITED); HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); /* vcpu, mismatching keys after first page */ ERR_PROT_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(1), INJECT); /* * The memop injected a program exception and the test needs to check the * Translation-Exception Identification (TEID). It is necessary to run * the guest in order to be able to read the TEID from guest memory. * Set the guest program new PSW, so the guest state is not clobbered. */ prefix = t.run->s.regs.prefix; psw[0] = t.run->psw_mask; psw[1] = t.run->psw_addr; MOP(t.vm, ABSOLUTE, WRITE, psw, sizeof(psw), GADDR(prefix + 464)); HOST_SYNC(t.vcpu, STAGE_IDLED); MOP(t.vm, ABSOLUTE, READ, &teid, sizeof(teid), GADDR(prefix + 168)); /* Bits 56, 60, 61 form a code, 0 being the only one allowing for termination */ ASSERT_EQ(teid & teid_mask, 0); kvm_vm_free(t.kvm_vm); } static void test_errors_key_storage_prot_override(void) { struct test_default t = test_default_init(guest_copy_key_fetch_prot); HOST_SYNC(t.vcpu, STAGE_INITED); t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE; t.run->kvm_dirty_regs = KVM_SYNC_CRS; HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); /* vm, mismatching keys, storage protection override not applicable to vm */ CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2)); CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem2), KEY(2)); kvm_vm_free(t.kvm_vm); } const uint64_t last_page_addr = -PAGE_SIZE; static void guest_copy_key_fetch_prot_override(void) { int i; char *page_0 = 0; GUEST_SYNC(STAGE_INITED); set_storage_key_range(0, PAGE_SIZE, 0x18); set_storage_key_range((void *)last_page_addr, PAGE_SIZE, 0x0); asm volatile ("sske %[key],%[addr]\n" :: [addr] "r"(0), [key] "r"(0x18) : "cc"); GUEST_SYNC(STAGE_SKEYS_SET); for (;;) { for (i = 0; i < PAGE_SIZE; i++) page_0[i] = mem1[i]; GUEST_SYNC(STAGE_COPIED); } } static void test_copy_key_fetch_prot_override(void) { struct test_default t = test_default_init(guest_copy_key_fetch_prot_override); vm_vaddr_t guest_0_page, guest_last_page; guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0); guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr); if (guest_0_page != 0 || guest_last_page != last_page_addr) { print_skip("did not allocate guest pages at required positions"); goto out; } HOST_SYNC(t.vcpu, STAGE_INITED); t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE; t.run->kvm_dirty_regs = KVM_SYNC_CRS; HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); /* vcpu, mismatching keys on fetch, fetch protection override applies */ prepare_mem12(); MOP(t.vcpu, LOGICAL, WRITE, mem1, PAGE_SIZE, GADDR_V(mem1)); HOST_SYNC(t.vcpu, STAGE_COPIED); CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2)); ASSERT_MEM_EQ(mem1, mem2, 2048); /* * vcpu, mismatching keys on fetch, fetch protection override applies, * wraparound */ prepare_mem12(); MOP(t.vcpu, LOGICAL, WRITE, mem1, 2 * PAGE_SIZE, GADDR_V(guest_last_page)); HOST_SYNC(t.vcpu, STAGE_COPIED); CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048, GADDR_V(guest_last_page), KEY(2)); ASSERT_MEM_EQ(mem1, mem2, 2048); out: kvm_vm_free(t.kvm_vm); } static void test_errors_key_fetch_prot_override_not_enabled(void) { struct test_default t = test_default_init(guest_copy_key_fetch_prot_override); vm_vaddr_t guest_0_page, guest_last_page; guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0); guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr); if (guest_0_page != 0 || guest_last_page != last_page_addr) { print_skip("did not allocate guest pages at required positions"); goto out; } HOST_SYNC(t.vcpu, STAGE_INITED); HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); /* vcpu, mismatching keys on fetch, fetch protection override not enabled */ CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(0), KEY(2)); out: kvm_vm_free(t.kvm_vm); } static void test_errors_key_fetch_prot_override_enabled(void) { struct test_default t = test_default_init(guest_copy_key_fetch_prot_override); vm_vaddr_t guest_0_page, guest_last_page; guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0); guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr); if (guest_0_page != 0 || guest_last_page != last_page_addr) { print_skip("did not allocate guest pages at required positions"); goto out; } HOST_SYNC(t.vcpu, STAGE_INITED); t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE; t.run->kvm_dirty_regs = KVM_SYNC_CRS; HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); /* * vcpu, mismatching keys on fetch, * fetch protection override does not apply because memory range acceeded */ CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048 + 1, GADDR_V(0), KEY(2)); CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048 + 1, GADDR_V(guest_last_page), KEY(2)); /* vm, fetch protected override does not apply */ CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR(0), KEY(2)); CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2)); out: kvm_vm_free(t.kvm_vm); } static void guest_idle(void) { GUEST_SYNC(STAGE_INITED); /* for consistency's sake */ for (;;) GUEST_SYNC(STAGE_IDLED); } static void _test_errors_common(struct test_vcpu vcpu, enum mop_target target, int size) { int rv; /* Bad size: */ rv = ERR_MOP(vcpu, target, WRITE, mem1, -1, GADDR_V(mem1)); TEST_ASSERT(rv == -1 && errno == E2BIG, "ioctl allows insane sizes"); /* Zero size: */ rv = ERR_MOP(vcpu, target, WRITE, mem1, 0, GADDR_V(mem1)); TEST_ASSERT(rv == -1 && (errno == EINVAL || errno == ENOMEM), "ioctl allows 0 as size"); /* Bad flags: */ rv = ERR_MOP(vcpu, target, WRITE, mem1, size, GADDR_V(mem1), SET_FLAGS(-1)); TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows all flags"); /* Bad guest address: */ rv = ERR_MOP(vcpu, target, WRITE, mem1, size, GADDR((void *)~0xfffUL), CHECK_ONLY); TEST_ASSERT(rv > 0, "ioctl does not report bad guest memory access"); /* Bad host address: */ rv = ERR_MOP(vcpu, target, WRITE, 0, size, GADDR_V(mem1)); TEST_ASSERT(rv == -1 && errno == EFAULT, "ioctl does not report bad host memory address"); /* Bad key: */ rv = ERR_MOP(vcpu, target, WRITE, mem1, size, GADDR_V(mem1), KEY(17)); TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows invalid key"); } static void test_errors(void) { struct test_default t = test_default_init(guest_idle); int rv; HOST_SYNC(t.vcpu, STAGE_INITED); _test_errors_common(t.vcpu, LOGICAL, t.size); _test_errors_common(t.vm, ABSOLUTE, t.size); /* Bad operation: */ rv = ERR_MOP(t.vcpu, INVALID, WRITE, mem1, t.size, GADDR_V(mem1)); TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations"); /* virtual addresses are not translated when passing INVALID */ rv = ERR_MOP(t.vm, INVALID, WRITE, mem1, PAGE_SIZE, GADDR(0)); TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations"); /* Bad access register: */ t.run->psw_mask &= ~(3UL << (63 - 17)); t.run->psw_mask |= 1UL << (63 - 17); /* Enable AR mode */ HOST_SYNC(t.vcpu, STAGE_IDLED); /* To sync new state to SIE block */ rv = ERR_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), AR(17)); TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows ARs > 15"); t.run->psw_mask &= ~(3UL << (63 - 17)); /* Disable AR mode */ HOST_SYNC(t.vcpu, STAGE_IDLED); /* Run to sync new state */ /* Check that the SIDA calls are rejected for non-protected guests */ rv = ERR_MOP(t.vcpu, SIDA, READ, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0)); TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl does not reject SIDA_READ in non-protected mode"); rv = ERR_MOP(t.vcpu, SIDA, WRITE, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0)); TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl does not reject SIDA_WRITE in non-protected mode"); kvm_vm_free(t.kvm_vm); } struct testdef { const char *name; void (*test)(void); int extension; } testlist[] = { { .name = "simple copy", .test = test_copy, }, { .name = "generic error checks", .test = test_errors, }, { .name = "copy with storage keys", .test = test_copy_key, .extension = 1, }, { .name = "copy with key storage protection override", .test = test_copy_key_storage_prot_override, .extension = 1, }, { .name = "copy with key fetch protection", .test = test_copy_key_fetch_prot, .extension = 1, }, { .name = "copy with key fetch protection override", .test = test_copy_key_fetch_prot_override, .extension = 1, }, { .name = "error checks with key", .test = test_errors_key, .extension = 1, }, { .name = "termination", .test = test_termination, .extension = 1, }, { .name = "error checks with key storage protection override", .test = test_errors_key_storage_prot_override, .extension = 1, }, { .name = "error checks without key fetch prot override", .test = test_errors_key_fetch_prot_override_not_enabled, .extension = 1, }, { .name = "error checks with key fetch prot override", .test = test_errors_key_fetch_prot_override_enabled, .extension = 1, }, }; int main(int argc, char *argv[]) { int memop_cap, extension_cap, idx; setbuf(stdout, NULL); /* Tell stdout not to buffer its content */ ksft_print_header(); memop_cap = kvm_check_cap(KVM_CAP_S390_MEM_OP); extension_cap = kvm_check_cap(KVM_CAP_S390_MEM_OP_EXTENSION); if (!memop_cap) { ksft_exit_skip("CAP_S390_MEM_OP not supported.\n"); } ksft_set_plan(ARRAY_SIZE(testlist)); for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) { if (testlist[idx].extension >= extension_cap) { testlist[idx].test(); ksft_test_result_pass("%s\n", testlist[idx].name); } else { ksft_test_result_skip("%s - extension level %d not supported\n", testlist[idx].name, testlist[idx].extension); } } ksft_finished(); /* Print results and exit() accordingly */ }