// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2018 Intel Corporation. */ #include #include #include #include "i40e.h" #include "i40e_txrx_common.h" #include "i40e_xsk.h" /** * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev * @vsi: Current VSI * @umem: UMEM to DMA map * * Returns 0 on success, <0 on failure **/ static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem) { struct i40e_pf *pf = vsi->back; struct device *dev; unsigned int i, j; dma_addr_t dma; dev = &pf->pdev->dev; for (i = 0; i < umem->npgs; i++) { dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE, DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); if (dma_mapping_error(dev, dma)) goto out_unmap; umem->pages[i].dma = dma; } return 0; out_unmap: for (j = 0; j < i; j++) { dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE, DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); umem->pages[i].dma = 0; } return -1; } /** * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev * @vsi: Current VSI * @umem: UMEM to DMA map **/ static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem) { struct i40e_pf *pf = vsi->back; struct device *dev; unsigned int i; dev = &pf->pdev->dev; for (i = 0; i < umem->npgs; i++) { dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE, DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); umem->pages[i].dma = 0; } } /** * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid * @vsi: Current VSI * @umem: UMEM * @qid: Rx ring to associate UMEM to * * Returns 0 on success, <0 on failure **/ static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem, u16 qid) { struct net_device *netdev = vsi->netdev; struct xdp_umem_fq_reuse *reuseq; bool if_running; int err; if (vsi->type != I40E_VSI_MAIN) return -EINVAL; if (qid >= vsi->num_queue_pairs) return -EINVAL; if (qid >= netdev->real_num_rx_queues || qid >= netdev->real_num_tx_queues) return -EINVAL; reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count); if (!reuseq) return -ENOMEM; xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq)); err = i40e_xsk_umem_dma_map(vsi, umem); if (err) return err; set_bit(qid, vsi->af_xdp_zc_qps); if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); if (if_running) { err = i40e_queue_pair_disable(vsi, qid); if (err) return err; err = i40e_queue_pair_enable(vsi, qid); if (err) return err; /* Kick start the NAPI context so that receiving will start */ err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX); if (err) return err; } return 0; } /** * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid * @vsi: Current VSI * @qid: Rx ring to associate UMEM to * * Returns 0 on success, <0 on failure **/ static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid) { struct net_device *netdev = vsi->netdev; struct xdp_umem *umem; bool if_running; int err; umem = xdp_get_umem_from_qid(netdev, qid); if (!umem) return -EINVAL; if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); if (if_running) { err = i40e_queue_pair_disable(vsi, qid); if (err) return err; } clear_bit(qid, vsi->af_xdp_zc_qps); i40e_xsk_umem_dma_unmap(vsi, umem); if (if_running) { err = i40e_queue_pair_enable(vsi, qid); if (err) return err; } return 0; } /** * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid * @vsi: Current VSI * @umem: UMEM to enable/associate to a ring, or NULL to disable * @qid: Rx ring to (dis)associate UMEM (from)to * * This function enables or disables a UMEM to a certain ring. * * Returns 0 on success, <0 on failure **/ int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem, u16 qid) { return umem ? i40e_xsk_umem_enable(vsi, umem, qid) : i40e_xsk_umem_disable(vsi, qid); } /** * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff * @rx_ring: Rx ring * @xdp: xdp_buff used as input to the XDP program * * This function enables or disables a UMEM to a certain ring. * * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR} **/ static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp) { struct xdp_umem *umem = rx_ring->xsk_umem; int err, result = I40E_XDP_PASS; struct i40e_ring *xdp_ring; struct bpf_prog *xdp_prog; u64 offset; u32 act; rcu_read_lock(); /* NB! xdp_prog will always be !NULL, due to the fact that * this path is enabled by setting an XDP program. */ xdp_prog = READ_ONCE(rx_ring->xdp_prog); act = bpf_prog_run_xdp(xdp_prog, xdp); offset = xdp->data - xdp->data_hard_start; xdp->handle = xsk_umem_adjust_offset(umem, xdp->handle, offset); switch (act) { case XDP_PASS: break; case XDP_TX: xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); break; case XDP_REDIRECT: err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED; break; default: bpf_warn_invalid_xdp_action(act); /* fall through */ case XDP_ABORTED: trace_xdp_exception(rx_ring->netdev, xdp_prog, act); /* fallthrough -- handle aborts by dropping packet */ case XDP_DROP: result = I40E_XDP_CONSUMED; break; } rcu_read_unlock(); return result; } /** * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer * @rx_ring: Rx ring * @bi: Rx buffer to populate * * This function allocates an Rx buffer. The buffer can come from fill * queue, or via the recycle queue (next_to_alloc). * * Returns true for a successful allocation, false otherwise **/ static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring, struct i40e_rx_buffer *bi) { struct xdp_umem *umem = rx_ring->xsk_umem; void *addr = bi->addr; u64 handle, hr; if (addr) { rx_ring->rx_stats.page_reuse_count++; return true; } if (!xsk_umem_peek_addr(umem, &handle)) { rx_ring->rx_stats.alloc_page_failed++; return false; } hr = umem->headroom + XDP_PACKET_HEADROOM; bi->dma = xdp_umem_get_dma(umem, handle); bi->dma += hr; bi->addr = xdp_umem_get_data(umem, handle); bi->addr += hr; bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom); xsk_umem_release_addr(umem); return true; } /** * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer * @rx_ring: Rx ring * @bi: Rx buffer to populate * * This function allocates an Rx buffer. The buffer can come from fill * queue, or via the reuse queue. * * Returns true for a successful allocation, false otherwise **/ static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring, struct i40e_rx_buffer *bi) { struct xdp_umem *umem = rx_ring->xsk_umem; u64 handle, hr; if (!xsk_umem_peek_addr_rq(umem, &handle)) { rx_ring->rx_stats.alloc_page_failed++; return false; } handle &= rx_ring->xsk_umem->chunk_mask; hr = umem->headroom + XDP_PACKET_HEADROOM; bi->dma = xdp_umem_get_dma(umem, handle); bi->dma += hr; bi->addr = xdp_umem_get_data(umem, handle); bi->addr += hr; bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom); xsk_umem_release_addr_rq(umem); return true; } static __always_inline bool __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count, bool alloc(struct i40e_ring *rx_ring, struct i40e_rx_buffer *bi)) { u16 ntu = rx_ring->next_to_use; union i40e_rx_desc *rx_desc; struct i40e_rx_buffer *bi; bool ok = true; rx_desc = I40E_RX_DESC(rx_ring, ntu); bi = &rx_ring->rx_bi[ntu]; do { if (!alloc(rx_ring, bi)) { ok = false; goto no_buffers; } dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0, rx_ring->rx_buf_len, DMA_BIDIRECTIONAL); rx_desc->read.pkt_addr = cpu_to_le64(bi->dma); rx_desc++; bi++; ntu++; if (unlikely(ntu == rx_ring->count)) { rx_desc = I40E_RX_DESC(rx_ring, 0); bi = rx_ring->rx_bi; ntu = 0; } rx_desc->wb.qword1.status_error_len = 0; count--; } while (count); no_buffers: if (rx_ring->next_to_use != ntu) i40e_release_rx_desc(rx_ring, ntu); return ok; } /** * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers * @rx_ring: Rx ring * @count: The number of buffers to allocate * * This function allocates a number of Rx buffers from the reuse queue * or fill ring and places them on the Rx ring. * * Returns true for a successful allocation, false otherwise **/ bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count) { return __i40e_alloc_rx_buffers_zc(rx_ring, count, i40e_alloc_buffer_slow_zc); } /** * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers * @rx_ring: Rx ring * @count: The number of buffers to allocate * * This function allocates a number of Rx buffers from the fill ring * or the internal recycle mechanism and places them on the Rx ring. * * Returns true for a successful allocation, false otherwise **/ static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count) { return __i40e_alloc_rx_buffers_zc(rx_ring, count, i40e_alloc_buffer_zc); } /** * i40e_get_rx_buffer_zc - Return the current Rx buffer * @rx_ring: Rx ring * @size: The size of the rx buffer (read from descriptor) * * This function returns the current, received Rx buffer, and also * does DMA synchronization. the Rx ring. * * Returns the received Rx buffer **/ static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring, const unsigned int size) { struct i40e_rx_buffer *bi; bi = &rx_ring->rx_bi[rx_ring->next_to_clean]; /* we are reusing so sync this buffer for CPU use */ dma_sync_single_range_for_cpu(rx_ring->dev, bi->dma, 0, size, DMA_BIDIRECTIONAL); return bi; } /** * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer * @rx_ring: Rx ring * @old_bi: The Rx buffer to recycle * * This function recycles a finished Rx buffer, and places it on the * recycle queue (next_to_alloc). **/ static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring, struct i40e_rx_buffer *old_bi) { struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc]; u16 nta = rx_ring->next_to_alloc; /* update, and store next to alloc */ nta++; rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; /* transfer page from old buffer to new buffer */ new_bi->dma = old_bi->dma; new_bi->addr = old_bi->addr; new_bi->handle = old_bi->handle; old_bi->addr = NULL; } /** * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations * @alloc: Zero-copy allocator * @handle: Buffer handle **/ void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle) { struct i40e_rx_buffer *bi; struct i40e_ring *rx_ring; u64 hr, mask; u16 nta; rx_ring = container_of(alloc, struct i40e_ring, zca); hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM; mask = rx_ring->xsk_umem->chunk_mask; nta = rx_ring->next_to_alloc; bi = &rx_ring->rx_bi[nta]; nta++; rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; handle &= mask; bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle); bi->dma += hr; bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle); bi->addr += hr; bi->handle = xsk_umem_adjust_offset(rx_ring->xsk_umem, (u64)handle, rx_ring->xsk_umem->headroom); } /** * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer * @rx_ring: Rx ring * @bi: Rx buffer * @xdp: xdp_buff * * This functions allocates a new skb from a zero-copy Rx buffer. * * Returns the skb, or NULL on failure. **/ static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring, struct i40e_rx_buffer *bi, struct xdp_buff *xdp) { unsigned int metasize = xdp->data - xdp->data_meta; unsigned int datasize = xdp->data_end - xdp->data; struct sk_buff *skb; /* allocate a skb to store the frags */ skb = __napi_alloc_skb(&rx_ring->q_vector->napi, xdp->data_end - xdp->data_hard_start, GFP_ATOMIC | __GFP_NOWARN); if (unlikely(!skb)) return NULL; skb_reserve(skb, xdp->data - xdp->data_hard_start); memcpy(__skb_put(skb, datasize), xdp->data, datasize); if (metasize) skb_metadata_set(skb, metasize); i40e_reuse_rx_buffer_zc(rx_ring, bi); return skb; } /** * i40e_inc_ntc: Advance the next_to_clean index * @rx_ring: Rx ring **/ static void i40e_inc_ntc(struct i40e_ring *rx_ring) { u32 ntc = rx_ring->next_to_clean + 1; ntc = (ntc < rx_ring->count) ? ntc : 0; rx_ring->next_to_clean = ntc; prefetch(I40E_RX_DESC(rx_ring, ntc)); } /** * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring * @rx_ring: Rx ring * @budget: NAPI budget * * Returns amount of work completed **/ int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget) { unsigned int total_rx_bytes = 0, total_rx_packets = 0; u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); struct xdp_umem *umem = rx_ring->xsk_umem; unsigned int xdp_res, xdp_xmit = 0; bool failure = false; struct sk_buff *skb; struct xdp_buff xdp; xdp.rxq = &rx_ring->xdp_rxq; xdp.frame_sz = xsk_umem_xdp_frame_sz(umem); while (likely(total_rx_packets < (unsigned int)budget)) { struct i40e_rx_buffer *bi; union i40e_rx_desc *rx_desc; unsigned int size; u64 qword; if (cleaned_count >= I40E_RX_BUFFER_WRITE) { failure = failure || !i40e_alloc_rx_buffers_fast_zc(rx_ring, cleaned_count); cleaned_count = 0; } rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc until we have * verified the descriptor has been written back. */ dma_rmb(); bi = i40e_clean_programming_status(rx_ring, rx_desc, qword); if (unlikely(bi)) { i40e_reuse_rx_buffer_zc(rx_ring, bi); cleaned_count++; continue; } size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> I40E_RXD_QW1_LENGTH_PBUF_SHIFT; if (!size) break; bi = i40e_get_rx_buffer_zc(rx_ring, size); xdp.data = bi->addr; xdp.data_meta = xdp.data; xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; xdp.data_end = xdp.data + size; xdp.handle = bi->handle; xdp_res = i40e_run_xdp_zc(rx_ring, &xdp); if (xdp_res) { if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { xdp_xmit |= xdp_res; bi->addr = NULL; } else { i40e_reuse_rx_buffer_zc(rx_ring, bi); } total_rx_bytes += size; total_rx_packets++; cleaned_count++; i40e_inc_ntc(rx_ring); continue; } /* XDP_PASS path */ /* NB! We are not checking for errors using * i40e_test_staterr with * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that * SBP is *not* set in PRT_SBPVSI (default not set). */ skb = i40e_construct_skb_zc(rx_ring, bi, &xdp); if (!skb) { rx_ring->rx_stats.alloc_buff_failed++; break; } cleaned_count++; i40e_inc_ntc(rx_ring); if (eth_skb_pad(skb)) continue; total_rx_bytes += skb->len; total_rx_packets++; i40e_process_skb_fields(rx_ring, rx_desc, skb); napi_gro_receive(&rx_ring->q_vector->napi, skb); } i40e_finalize_xdp_rx(rx_ring, xdp_xmit); i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) { if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) xsk_set_rx_need_wakeup(rx_ring->xsk_umem); else xsk_clear_rx_need_wakeup(rx_ring->xsk_umem); return (int)total_rx_packets; } return failure ? budget : (int)total_rx_packets; } /** * i40e_xmit_zc - Performs zero-copy Tx AF_XDP * @xdp_ring: XDP Tx ring * @budget: NAPI budget * * Returns true if the work is finished. **/ static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget) { struct i40e_tx_desc *tx_desc = NULL; struct i40e_tx_buffer *tx_bi; bool work_done = true; struct xdp_desc desc; dma_addr_t dma; while (budget-- > 0) { if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { xdp_ring->tx_stats.tx_busy++; work_done = false; break; } if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc)) break; dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr); dma_sync_single_for_device(xdp_ring->dev, dma, desc.len, DMA_BIDIRECTIONAL); tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use]; tx_bi->bytecount = desc.len; tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use); tx_desc->buffer_addr = cpu_to_le64(dma); tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC | I40E_TX_DESC_CMD_EOP, 0, desc.len, 0); xdp_ring->next_to_use++; if (xdp_ring->next_to_use == xdp_ring->count) xdp_ring->next_to_use = 0; } if (tx_desc) { /* Request an interrupt for the last frame and bump tail ptr. */ tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS << I40E_TXD_QW1_CMD_SHIFT); i40e_xdp_ring_update_tail(xdp_ring); xsk_umem_consume_tx_done(xdp_ring->xsk_umem); } return !!budget && work_done; } /** * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry * @tx_ring: XDP Tx ring * @tx_bi: Tx buffer info to clean **/ static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring, struct i40e_tx_buffer *tx_bi) { xdp_return_frame(tx_bi->xdpf); dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_bi, dma), dma_unmap_len(tx_bi, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_bi, len, 0); } /** * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries * @tx_ring: XDP Tx ring * @tx_bi: Tx buffer info to clean * * Returns true if cleanup/tranmission is done. **/ bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi, struct i40e_ring *tx_ring, int napi_budget) { unsigned int ntc, total_bytes = 0, budget = vsi->work_limit; u32 i, completed_frames, frames_ready, xsk_frames = 0; struct xdp_umem *umem = tx_ring->xsk_umem; u32 head_idx = i40e_get_head(tx_ring); bool work_done = true, xmit_done; struct i40e_tx_buffer *tx_bi; if (head_idx < tx_ring->next_to_clean) head_idx += tx_ring->count; frames_ready = head_idx - tx_ring->next_to_clean; if (frames_ready == 0) { goto out_xmit; } else if (frames_ready > budget) { completed_frames = budget; work_done = false; } else { completed_frames = frames_ready; } ntc = tx_ring->next_to_clean; for (i = 0; i < completed_frames; i++) { tx_bi = &tx_ring->tx_bi[ntc]; if (tx_bi->xdpf) i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); else xsk_frames++; tx_bi->xdpf = NULL; total_bytes += tx_bi->bytecount; if (++ntc >= tx_ring->count) ntc = 0; } tx_ring->next_to_clean += completed_frames; if (unlikely(tx_ring->next_to_clean >= tx_ring->count)) tx_ring->next_to_clean -= tx_ring->count; if (xsk_frames) xsk_umem_complete_tx(umem, xsk_frames); i40e_arm_wb(tx_ring, vsi, budget); i40e_update_tx_stats(tx_ring, completed_frames, total_bytes); out_xmit: if (xsk_umem_uses_need_wakeup(tx_ring->xsk_umem)) xsk_set_tx_need_wakeup(tx_ring->xsk_umem); xmit_done = i40e_xmit_zc(tx_ring, budget); return work_done && xmit_done; } /** * i40e_xsk_wakeup - Implements the ndo_xsk_wakeup * @dev: the netdevice * @queue_id: queue id to wake up * @flags: ignored in our case since we have Rx and Tx in the same NAPI. * * Returns <0 for errors, 0 otherwise. **/ int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) { struct i40e_netdev_priv *np = netdev_priv(dev); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; struct i40e_ring *ring; if (test_bit(__I40E_CONFIG_BUSY, pf->state)) return -EAGAIN; if (test_bit(__I40E_VSI_DOWN, vsi->state)) return -ENETDOWN; if (!i40e_enabled_xdp_vsi(vsi)) return -ENXIO; if (queue_id >= vsi->num_queue_pairs) return -ENXIO; if (!vsi->xdp_rings[queue_id]->xsk_umem) return -ENXIO; ring = vsi->xdp_rings[queue_id]; /* The idea here is that if NAPI is running, mark a miss, so * it will run again. If not, trigger an interrupt and * schedule the NAPI from interrupt context. If NAPI would be * scheduled here, the interrupt affinity would not be * honored. */ if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi)) i40e_force_wb(vsi, ring->q_vector); return 0; } void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring) { u16 i; for (i = 0; i < rx_ring->count; i++) { struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; if (!rx_bi->addr) continue; xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle); rx_bi->addr = NULL; } } /** * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown * @xdp_ring: XDP Tx ring **/ void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring) { u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use; struct xdp_umem *umem = tx_ring->xsk_umem; struct i40e_tx_buffer *tx_bi; u32 xsk_frames = 0; while (ntc != ntu) { tx_bi = &tx_ring->tx_bi[ntc]; if (tx_bi->xdpf) i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); else xsk_frames++; tx_bi->xdpf = NULL; ntc++; if (ntc >= tx_ring->count) ntc = 0; } if (xsk_frames) xsk_umem_complete_tx(umem, xsk_frames); } /** * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached * @vsi: vsi * * Returns true if any of the Rx rings has an AF_XDP UMEM attached **/ bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi) { struct net_device *netdev = vsi->netdev; int i; for (i = 0; i < vsi->num_queue_pairs; i++) { if (xdp_get_umem_from_qid(netdev, i)) return true; } return false; }