/* * Copyright 2013 Google Inc. * Author: Willem de Bruijn (willemb@google.com) * * A basic test of packet socket fanout behavior. * * Control: * - create fanout fails as expected with illegal flag combinations * - join fanout fails as expected with diverging types or flags * * Datapath: * Open a pair of packet sockets and a pair of INET sockets, send a known * number of packets across the two INET sockets and count the number of * packets enqueued onto the two packet sockets. * * The test currently runs for * - PACKET_FANOUT_HASH * - PACKET_FANOUT_HASH with PACKET_FANOUT_FLAG_ROLLOVER * - PACKET_FANOUT_LB * - PACKET_FANOUT_CPU * - PACKET_FANOUT_ROLLOVER * - PACKET_FANOUT_CBPF * - PACKET_FANOUT_EBPF * * Todo: * - functionality: PACKET_FANOUT_FLAG_DEFRAG * * License (GPLv2): * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ #define _GNU_SOURCE /* for sched_setaffinity */ #include #include #include #include /* for __NR_bpf */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "psock_lib.h" #define RING_NUM_FRAMES 20 /* Open a socket in a given fanout mode. * @return -1 if mode is bad, a valid socket otherwise */ static int sock_fanout_open(uint16_t typeflags, uint16_t group_id) { int fd, val; fd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_IP)); if (fd < 0) { perror("socket packet"); exit(1); } val = (((int) typeflags) << 16) | group_id; if (setsockopt(fd, SOL_PACKET, PACKET_FANOUT, &val, sizeof(val))) { if (close(fd)) { perror("close packet"); exit(1); } return -1; } pair_udp_setfilter(fd); return fd; } static void sock_fanout_set_cbpf(int fd) { struct sock_filter bpf_filter[] = { BPF_STMT(BPF_LD+BPF_B+BPF_ABS, 80), /* ldb [80] */ BPF_STMT(BPF_RET+BPF_A, 0), /* ret A */ }; struct sock_fprog bpf_prog; bpf_prog.filter = bpf_filter; bpf_prog.len = sizeof(bpf_filter) / sizeof(struct sock_filter); if (setsockopt(fd, SOL_PACKET, PACKET_FANOUT_DATA, &bpf_prog, sizeof(bpf_prog))) { perror("fanout data cbpf"); exit(1); } } static void sock_fanout_getopts(int fd, uint16_t *typeflags, uint16_t *group_id) { int sockopt; socklen_t sockopt_len = sizeof(sockopt); if (getsockopt(fd, SOL_PACKET, PACKET_FANOUT, &sockopt, &sockopt_len)) { perror("failed to getsockopt"); exit(1); } *typeflags = sockopt >> 16; *group_id = sockopt & 0xfffff; } static void sock_fanout_set_ebpf(int fd) { const int len_off = __builtin_offsetof(struct __sk_buff, len); struct bpf_insn prog[] = { { BPF_ALU64 | BPF_MOV | BPF_X, 6, 1, 0, 0 }, { BPF_LDX | BPF_W | BPF_MEM, 0, 6, len_off, 0 }, { BPF_JMP | BPF_JGE | BPF_K, 0, 0, 1, DATA_LEN }, { BPF_JMP | BPF_JA | BPF_K, 0, 0, 4, 0 }, { BPF_LD | BPF_B | BPF_ABS, 0, 0, 0, 0x50 }, { BPF_JMP | BPF_JEQ | BPF_K, 0, 0, 2, DATA_CHAR }, { BPF_JMP | BPF_JEQ | BPF_K, 0, 0, 1, DATA_CHAR_1 }, { BPF_ALU | BPF_MOV | BPF_K, 0, 0, 0, 0 }, { BPF_JMP | BPF_EXIT, 0, 0, 0, 0 } }; char log_buf[512]; union bpf_attr attr; int pfd; memset(&attr, 0, sizeof(attr)); attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; attr.insns = (unsigned long) prog; attr.insn_cnt = sizeof(prog) / sizeof(prog[0]); attr.license = (unsigned long) "GPL"; attr.log_buf = (unsigned long) log_buf, attr.log_size = sizeof(log_buf), attr.log_level = 1, pfd = syscall(__NR_bpf, BPF_PROG_LOAD, &attr, sizeof(attr)); if (pfd < 0) { perror("bpf"); fprintf(stderr, "bpf verifier:\n%s\n", log_buf); exit(1); } if (setsockopt(fd, SOL_PACKET, PACKET_FANOUT_DATA, &pfd, sizeof(pfd))) { perror("fanout data ebpf"); exit(1); } if (close(pfd)) { perror("close ebpf"); exit(1); } } static char *sock_fanout_open_ring(int fd) { struct tpacket_req req = { .tp_block_size = getpagesize(), .tp_frame_size = getpagesize(), .tp_block_nr = RING_NUM_FRAMES, .tp_frame_nr = RING_NUM_FRAMES, }; char *ring; int val = TPACKET_V2; if (setsockopt(fd, SOL_PACKET, PACKET_VERSION, (void *) &val, sizeof(val))) { perror("packetsock ring setsockopt version"); exit(1); } if (setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req))) { perror("packetsock ring setsockopt"); exit(1); } ring = mmap(0, req.tp_block_size * req.tp_block_nr, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (ring == MAP_FAILED) { perror("packetsock ring mmap"); exit(1); } return ring; } static int sock_fanout_read_ring(int fd, void *ring) { struct tpacket2_hdr *header = ring; int count = 0; while (count < RING_NUM_FRAMES && header->tp_status & TP_STATUS_USER) { count++; header = ring + (count * getpagesize()); } return count; } static int sock_fanout_read(int fds[], char *rings[], const int expect[]) { int ret[2]; ret[0] = sock_fanout_read_ring(fds[0], rings[0]); ret[1] = sock_fanout_read_ring(fds[1], rings[1]); fprintf(stderr, "info: count=%d,%d, expect=%d,%d\n", ret[0], ret[1], expect[0], expect[1]); if ((!(ret[0] == expect[0] && ret[1] == expect[1])) && (!(ret[0] == expect[1] && ret[1] == expect[0]))) { fprintf(stderr, "ERROR: incorrect queue lengths\n"); return 1; } return 0; } /* Test illegal mode + flag combination */ static void test_control_single(void) { fprintf(stderr, "test: control single socket\n"); if (sock_fanout_open(PACKET_FANOUT_ROLLOVER | PACKET_FANOUT_FLAG_ROLLOVER, 0) != -1) { fprintf(stderr, "ERROR: opened socket with dual rollover\n"); exit(1); } } /* Test illegal group with different modes or flags */ static void test_control_group(void) { int fds[2]; fprintf(stderr, "test: control multiple sockets\n"); fds[0] = sock_fanout_open(PACKET_FANOUT_HASH, 0); if (fds[0] == -1) { fprintf(stderr, "ERROR: failed to open HASH socket\n"); exit(1); } if (sock_fanout_open(PACKET_FANOUT_HASH | PACKET_FANOUT_FLAG_DEFRAG, 0) != -1) { fprintf(stderr, "ERROR: joined group with wrong flag defrag\n"); exit(1); } if (sock_fanout_open(PACKET_FANOUT_HASH | PACKET_FANOUT_FLAG_ROLLOVER, 0) != -1) { fprintf(stderr, "ERROR: joined group with wrong flag ro\n"); exit(1); } if (sock_fanout_open(PACKET_FANOUT_CPU, 0) != -1) { fprintf(stderr, "ERROR: joined group with wrong mode\n"); exit(1); } fds[1] = sock_fanout_open(PACKET_FANOUT_HASH, 0); if (fds[1] == -1) { fprintf(stderr, "ERROR: failed to join group\n"); exit(1); } if (close(fds[1]) || close(fds[0])) { fprintf(stderr, "ERROR: closing sockets\n"); exit(1); } } /* Test creating a unique fanout group ids */ static void test_unique_fanout_group_ids(void) { int fds[3]; uint16_t typeflags, first_group_id, second_group_id; fprintf(stderr, "test: unique ids\n"); fds[0] = sock_fanout_open(PACKET_FANOUT_HASH | PACKET_FANOUT_FLAG_UNIQUEID, 0); if (fds[0] == -1) { fprintf(stderr, "ERROR: failed to create a unique id group.\n"); exit(1); } sock_fanout_getopts(fds[0], &typeflags, &first_group_id); if (typeflags != PACKET_FANOUT_HASH) { fprintf(stderr, "ERROR: unexpected typeflags %x\n", typeflags); exit(1); } if (sock_fanout_open(PACKET_FANOUT_CPU, first_group_id)) { fprintf(stderr, "ERROR: joined group with wrong type.\n"); exit(1); } fds[1] = sock_fanout_open(PACKET_FANOUT_HASH, first_group_id); if (fds[1] == -1) { fprintf(stderr, "ERROR: failed to join previously created group.\n"); exit(1); } fds[2] = sock_fanout_open(PACKET_FANOUT_HASH | PACKET_FANOUT_FLAG_UNIQUEID, 0); if (fds[2] == -1) { fprintf(stderr, "ERROR: failed to create a second unique id group.\n"); exit(1); } sock_fanout_getopts(fds[2], &typeflags, &second_group_id); if (sock_fanout_open(PACKET_FANOUT_HASH | PACKET_FANOUT_FLAG_UNIQUEID, second_group_id) != -1) { fprintf(stderr, "ERROR: specified a group id when requesting unique id\n"); exit(1); } if (close(fds[0]) || close(fds[1]) || close(fds[2])) { fprintf(stderr, "ERROR: closing sockets\n"); exit(1); } } static int test_datapath(uint16_t typeflags, int port_off, const int expect1[], const int expect2[]) { const int expect0[] = { 0, 0 }; char *rings[2]; uint8_t type = typeflags & 0xFF; int fds[2], fds_udp[2][2], ret; fprintf(stderr, "test: datapath 0x%hx\n", typeflags); fds[0] = sock_fanout_open(typeflags, 0); fds[1] = sock_fanout_open(typeflags, 0); if (fds[0] == -1 || fds[1] == -1) { fprintf(stderr, "ERROR: failed open\n"); exit(1); } if (type == PACKET_FANOUT_CBPF) sock_fanout_set_cbpf(fds[0]); else if (type == PACKET_FANOUT_EBPF) sock_fanout_set_ebpf(fds[0]); rings[0] = sock_fanout_open_ring(fds[0]); rings[1] = sock_fanout_open_ring(fds[1]); pair_udp_open(fds_udp[0], PORT_BASE); pair_udp_open(fds_udp[1], PORT_BASE + port_off); sock_fanout_read(fds, rings, expect0); /* Send data, but not enough to overflow a queue */ pair_udp_send(fds_udp[0], 15); pair_udp_send_char(fds_udp[1], 5, DATA_CHAR_1); ret = sock_fanout_read(fds, rings, expect1); /* Send more data, overflow the queue */ pair_udp_send_char(fds_udp[0], 15, DATA_CHAR_1); /* TODO: ensure consistent order between expect1 and expect2 */ ret |= sock_fanout_read(fds, rings, expect2); if (munmap(rings[1], RING_NUM_FRAMES * getpagesize()) || munmap(rings[0], RING_NUM_FRAMES * getpagesize())) { fprintf(stderr, "close rings\n"); exit(1); } if (close(fds_udp[1][1]) || close(fds_udp[1][0]) || close(fds_udp[0][1]) || close(fds_udp[0][0]) || close(fds[1]) || close(fds[0])) { fprintf(stderr, "close datapath\n"); exit(1); } return ret; } static int set_cpuaffinity(int cpuid) { cpu_set_t mask; CPU_ZERO(&mask); CPU_SET(cpuid, &mask); if (sched_setaffinity(0, sizeof(mask), &mask)) { if (errno != EINVAL) { fprintf(stderr, "setaffinity %d\n", cpuid); exit(1); } return 1; } return 0; } int main(int argc, char **argv) { const int expect_hash[2][2] = { { 15, 5 }, { 20, 5 } }; const int expect_hash_rb[2][2] = { { 15, 5 }, { 20, 15 } }; const int expect_lb[2][2] = { { 10, 10 }, { 18, 17 } }; const int expect_rb[2][2] = { { 15, 5 }, { 20, 15 } }; const int expect_cpu0[2][2] = { { 20, 0 }, { 20, 0 } }; const int expect_cpu1[2][2] = { { 0, 20 }, { 0, 20 } }; const int expect_bpf[2][2] = { { 15, 5 }, { 15, 20 } }; const int expect_uniqueid[2][2] = { { 20, 20}, { 20, 20 } }; int port_off = 2, tries = 5, ret; test_control_single(); test_control_group(); test_unique_fanout_group_ids(); /* find a set of ports that do not collide onto the same socket */ ret = test_datapath(PACKET_FANOUT_HASH, port_off, expect_hash[0], expect_hash[1]); while (ret && tries--) { fprintf(stderr, "info: trying alternate ports (%d)\n", tries); ret = test_datapath(PACKET_FANOUT_HASH, ++port_off, expect_hash[0], expect_hash[1]); } ret |= test_datapath(PACKET_FANOUT_HASH | PACKET_FANOUT_FLAG_ROLLOVER, port_off, expect_hash_rb[0], expect_hash_rb[1]); ret |= test_datapath(PACKET_FANOUT_LB, port_off, expect_lb[0], expect_lb[1]); ret |= test_datapath(PACKET_FANOUT_ROLLOVER, port_off, expect_rb[0], expect_rb[1]); ret |= test_datapath(PACKET_FANOUT_CBPF, port_off, expect_bpf[0], expect_bpf[1]); ret |= test_datapath(PACKET_FANOUT_EBPF, port_off, expect_bpf[0], expect_bpf[1]); set_cpuaffinity(0); ret |= test_datapath(PACKET_FANOUT_CPU, port_off, expect_cpu0[0], expect_cpu0[1]); if (!set_cpuaffinity(1)) /* TODO: test that choice alternates with previous */ ret |= test_datapath(PACKET_FANOUT_CPU, port_off, expect_cpu1[0], expect_cpu1[1]); ret |= test_datapath(PACKET_FANOUT_FLAG_UNIQUEID, port_off, expect_uniqueid[0], expect_uniqueid[1]); if (ret) return 1; printf("OK. All tests passed\n"); return 0; }