/* * Copyright © 2006-2011 Intel Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * * Authors: * Eric Anholt */ #include #include #include "framebuffer.h" #include "psb_drv.h" #include "psb_intel_drv.h" #include "psb_intel_reg.h" #include "gma_display.h" #include "power.h" #include "cdv_device.h" static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, struct gma_clock_t *best_clock); #define CDV_LIMIT_SINGLE_LVDS_96 0 #define CDV_LIMIT_SINGLE_LVDS_100 1 #define CDV_LIMIT_DAC_HDMI_27 2 #define CDV_LIMIT_DAC_HDMI_96 3 #define CDV_LIMIT_DP_27 4 #define CDV_LIMIT_DP_100 5 static const struct gma_limit_t cdv_intel_limits[] = { { /* CDV_SINGLE_LVDS_96MHz */ .dot = {.min = 20000, .max = 115500}, .vco = {.min = 1800000, .max = 3600000}, .n = {.min = 2, .max = 6}, .m = {.min = 60, .max = 160}, .m1 = {.min = 0, .max = 0}, .m2 = {.min = 58, .max = 158}, .p = {.min = 28, .max = 140}, .p1 = {.min = 2, .max = 10}, .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14}, .find_pll = gma_find_best_pll, }, { /* CDV_SINGLE_LVDS_100MHz */ .dot = {.min = 20000, .max = 115500}, .vco = {.min = 1800000, .max = 3600000}, .n = {.min = 2, .max = 6}, .m = {.min = 60, .max = 160}, .m1 = {.min = 0, .max = 0}, .m2 = {.min = 58, .max = 158}, .p = {.min = 28, .max = 140}, .p1 = {.min = 2, .max = 10}, /* The single-channel range is 25-112Mhz, and dual-channel * is 80-224Mhz. Prefer single channel as much as possible. */ .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14}, .find_pll = gma_find_best_pll, }, { /* CDV_DAC_HDMI_27MHz */ .dot = {.min = 20000, .max = 400000}, .vco = {.min = 1809000, .max = 3564000}, .n = {.min = 1, .max = 1}, .m = {.min = 67, .max = 132}, .m1 = {.min = 0, .max = 0}, .m2 = {.min = 65, .max = 130}, .p = {.min = 5, .max = 90}, .p1 = {.min = 1, .max = 9}, .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, .find_pll = gma_find_best_pll, }, { /* CDV_DAC_HDMI_96MHz */ .dot = {.min = 20000, .max = 400000}, .vco = {.min = 1800000, .max = 3600000}, .n = {.min = 2, .max = 6}, .m = {.min = 60, .max = 160}, .m1 = {.min = 0, .max = 0}, .m2 = {.min = 58, .max = 158}, .p = {.min = 5, .max = 100}, .p1 = {.min = 1, .max = 10}, .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, .find_pll = gma_find_best_pll, }, { /* CDV_DP_27MHz */ .dot = {.min = 160000, .max = 272000}, .vco = {.min = 1809000, .max = 3564000}, .n = {.min = 1, .max = 1}, .m = {.min = 67, .max = 132}, .m1 = {.min = 0, .max = 0}, .m2 = {.min = 65, .max = 130}, .p = {.min = 5, .max = 90}, .p1 = {.min = 1, .max = 9}, .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10}, .find_pll = cdv_intel_find_dp_pll, }, { /* CDV_DP_100MHz */ .dot = {.min = 160000, .max = 272000}, .vco = {.min = 1800000, .max = 3600000}, .n = {.min = 2, .max = 6}, .m = {.min = 60, .max = 164}, .m1 = {.min = 0, .max = 0}, .m2 = {.min = 58, .max = 162}, .p = {.min = 5, .max = 100}, .p1 = {.min = 1, .max = 10}, .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10}, .find_pll = cdv_intel_find_dp_pll, } }; #define _wait_for(COND, MS, W) ({ \ unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \ int ret__ = 0; \ while (!(COND)) { \ if (time_after(jiffies, timeout__)) { \ ret__ = -ETIMEDOUT; \ break; \ } \ if (W && !in_dbg_master()) \ msleep(W); \ } \ ret__; \ }) #define wait_for(COND, MS) _wait_for(COND, MS, 1) int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val) { int ret; ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); if (ret) { DRM_ERROR("timeout waiting for SB to idle before read\n"); return ret; } REG_WRITE(SB_ADDR, reg); REG_WRITE(SB_PCKT, SET_FIELD(SB_OPCODE_READ, SB_OPCODE) | SET_FIELD(SB_DEST_DPLL, SB_DEST) | SET_FIELD(0xf, SB_BYTE_ENABLE)); ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); if (ret) { DRM_ERROR("timeout waiting for SB to idle after read\n"); return ret; } *val = REG_READ(SB_DATA); return 0; } int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val) { int ret; static bool dpio_debug = true; u32 temp; if (dpio_debug) { if (cdv_sb_read(dev, reg, &temp) == 0) DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp); DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val); } ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); if (ret) { DRM_ERROR("timeout waiting for SB to idle before write\n"); return ret; } REG_WRITE(SB_ADDR, reg); REG_WRITE(SB_DATA, val); REG_WRITE(SB_PCKT, SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) | SET_FIELD(SB_DEST_DPLL, SB_DEST) | SET_FIELD(0xf, SB_BYTE_ENABLE)); ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); if (ret) { DRM_ERROR("timeout waiting for SB to idle after write\n"); return ret; } if (dpio_debug) { if (cdv_sb_read(dev, reg, &temp) == 0) DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp); } return 0; } /* Reset the DPIO configuration register. The BIOS does this at every * mode set. */ void cdv_sb_reset(struct drm_device *dev) { REG_WRITE(DPIO_CFG, 0); REG_READ(DPIO_CFG); REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N); } /* Unlike most Intel display engines, on Cedarview the DPLL registers * are behind this sideband bus. They must be programmed while the * DPLL reference clock is on in the DPLL control register, but before * the DPLL is enabled in the DPLL control register. */ static int cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc, struct gma_clock_t *clock, bool is_lvds, u32 ddi_select) { struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; u32 m, n_vco, p; int ret = 0; int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB; u32 ref_value; u32 lane_reg, lane_value; cdv_sb_reset(dev); REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS); udelay(100); /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */ ref_value = 0x68A701; cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value); /* We don't know what the other fields of these regs are, so * leave them in place. */ /* * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk * for the pipe A/B. Display spec 1.06 has wrong definition. * Correct definition is like below: * * refclka mean use clock from same PLL * * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll * * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA * */ ret = cdv_sb_read(dev, ref_sfr, &ref_value); if (ret) return ret; ref_value &= ~(REF_CLK_MASK); /* use DPLL_A for pipeB on CRT/HDMI */ if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) { DRM_DEBUG_KMS("use DPLLA for pipe B\n"); ref_value |= REF_CLK_DPLLA; } else { DRM_DEBUG_KMS("use their DPLL for pipe A/B\n"); ref_value |= REF_CLK_DPLL; } ret = cdv_sb_write(dev, ref_sfr, ref_value); if (ret) return ret; ret = cdv_sb_read(dev, SB_M(pipe), &m); if (ret) return ret; m &= ~SB_M_DIVIDER_MASK; m |= ((clock->m2) << SB_M_DIVIDER_SHIFT); ret = cdv_sb_write(dev, SB_M(pipe), m); if (ret) return ret; ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco); if (ret) return ret; /* Follow the BIOS to program the N_DIVIDER REG */ n_vco &= 0xFFFF; n_vco |= 0x107; n_vco &= ~(SB_N_VCO_SEL_MASK | SB_N_DIVIDER_MASK | SB_N_CB_TUNE_MASK); n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT); if (clock->vco < 2250000) { n_vco |= (2 << SB_N_CB_TUNE_SHIFT); n_vco |= (0 << SB_N_VCO_SEL_SHIFT); } else if (clock->vco < 2750000) { n_vco |= (1 << SB_N_CB_TUNE_SHIFT); n_vco |= (1 << SB_N_VCO_SEL_SHIFT); } else if (clock->vco < 3300000) { n_vco |= (0 << SB_N_CB_TUNE_SHIFT); n_vco |= (2 << SB_N_VCO_SEL_SHIFT); } else { n_vco |= (0 << SB_N_CB_TUNE_SHIFT); n_vco |= (3 << SB_N_VCO_SEL_SHIFT); } ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco); if (ret) return ret; ret = cdv_sb_read(dev, SB_P(pipe), &p); if (ret) return ret; p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK); p |= SET_FIELD(clock->p1, SB_P1_DIVIDER); switch (clock->p2) { case 5: p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER); break; case 10: p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER); break; case 14: p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER); break; case 7: p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER); break; default: DRM_ERROR("Bad P2 clock: %d\n", clock->p2); return -EINVAL; } ret = cdv_sb_write(dev, SB_P(pipe), p); if (ret) return ret; if (ddi_select) { if ((ddi_select & DDI_MASK) == DDI0_SELECT) { lane_reg = PSB_LANE0; cdv_sb_read(dev, lane_reg, &lane_value); lane_value &= ~(LANE_PLL_MASK); lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); cdv_sb_write(dev, lane_reg, lane_value); lane_reg = PSB_LANE1; cdv_sb_read(dev, lane_reg, &lane_value); lane_value &= ~(LANE_PLL_MASK); lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); cdv_sb_write(dev, lane_reg, lane_value); } else { lane_reg = PSB_LANE2; cdv_sb_read(dev, lane_reg, &lane_value); lane_value &= ~(LANE_PLL_MASK); lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); cdv_sb_write(dev, lane_reg, lane_value); lane_reg = PSB_LANE3; cdv_sb_read(dev, lane_reg, &lane_value); lane_value &= ~(LANE_PLL_MASK); lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); cdv_sb_write(dev, lane_reg, lane_value); } } return 0; } static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc, int refclk) { const struct gma_limit_t *limit; if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { /* * Now only single-channel LVDS is supported on CDV. If it is * incorrect, please add the dual-channel LVDS. */ if (refclk == 96000) limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96]; else limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100]; } else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) { if (refclk == 27000) limit = &cdv_intel_limits[CDV_LIMIT_DP_27]; else limit = &cdv_intel_limits[CDV_LIMIT_DP_100]; } else { if (refclk == 27000) limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27]; else limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96]; } return limit; } /* m1 is reserved as 0 in CDV, n is a ring counter */ static void cdv_intel_clock(int refclk, struct gma_clock_t *clock) { clock->m = clock->m2 + 2; clock->p = clock->p1 * clock->p2; clock->vco = (refclk * clock->m) / clock->n; clock->dot = clock->vco / clock->p; } static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, struct gma_clock_t *best_clock) { struct gma_clock_t clock; if (refclk == 27000) { if (target < 200000) { clock.p1 = 2; clock.p2 = 10; clock.n = 1; clock.m1 = 0; clock.m2 = 118; } else { clock.p1 = 1; clock.p2 = 10; clock.n = 1; clock.m1 = 0; clock.m2 = 98; } } else if (refclk == 100000) { if (target < 200000) { clock.p1 = 2; clock.p2 = 10; clock.n = 5; clock.m1 = 0; clock.m2 = 160; } else { clock.p1 = 1; clock.p2 = 10; clock.n = 5; clock.m1 = 0; clock.m2 = 133; } } else return false; clock.m = clock.m2 + 2; clock.p = clock.p1 * clock.p2; clock.vco = (refclk * clock.m) / clock.n; clock.dot = clock.vco / clock.p; memcpy(best_clock, &clock, sizeof(struct gma_clock_t)); return true; } #define FIFO_PIPEA (1 << 0) #define FIFO_PIPEB (1 << 1) static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe) { struct drm_crtc *crtc; struct drm_psb_private *dev_priv = dev->dev_private; struct gma_crtc *gma_crtc = NULL; crtc = dev_priv->pipe_to_crtc_mapping[pipe]; gma_crtc = to_gma_crtc(crtc); if (crtc->fb == NULL || !gma_crtc->active) return false; return true; } static bool cdv_intel_single_pipe_active (struct drm_device *dev) { uint32_t pipe_enabled = 0; if (cdv_intel_pipe_enabled(dev, 0)) pipe_enabled |= FIFO_PIPEA; if (cdv_intel_pipe_enabled(dev, 1)) pipe_enabled |= FIFO_PIPEB; DRM_DEBUG_KMS("pipe enabled %x\n", pipe_enabled); if (pipe_enabled == FIFO_PIPEA || pipe_enabled == FIFO_PIPEB) return true; else return false; } static bool is_pipeb_lvds(struct drm_device *dev, struct drm_crtc *crtc) { struct gma_crtc *gma_crtc = to_gma_crtc(crtc); struct drm_mode_config *mode_config = &dev->mode_config; struct drm_connector *connector; if (gma_crtc->pipe != 1) return false; list_for_each_entry(connector, &mode_config->connector_list, head) { struct gma_encoder *gma_encoder = gma_attached_encoder(connector); if (!connector->encoder || connector->encoder->crtc != crtc) continue; if (gma_encoder->type == INTEL_OUTPUT_LVDS) return true; } return false; } void cdv_intel_disable_self_refresh(struct drm_device *dev) { if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) { /* Disable self-refresh before adjust WM */ REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN)); REG_READ(FW_BLC_SELF); gma_wait_for_vblank(dev); /* Cedarview workaround to write ovelay plane, which force to leave * MAX_FIFO state. */ REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/); REG_READ(OV_OVADD); gma_wait_for_vblank(dev); } } void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc) { if (cdv_intel_single_pipe_active(dev)) { u32 fw; fw = REG_READ(DSPFW1); fw &= ~DSP_FIFO_SR_WM_MASK; fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT); fw &= ~CURSOR_B_FIFO_WM_MASK; fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT); REG_WRITE(DSPFW1, fw); fw = REG_READ(DSPFW2); fw &= ~CURSOR_A_FIFO_WM_MASK; fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT); fw &= ~DSP_PLANE_C_FIFO_WM_MASK; fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT); REG_WRITE(DSPFW2, fw); REG_WRITE(DSPFW3, 0x36000000); /* ignore FW4 */ if (is_pipeb_lvds(dev, crtc)) { REG_WRITE(DSPFW5, 0x00040330); } else { fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) | (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) | (3 << CURSOR_B_FIFO_WM1_SHIFT) | (4 << CURSOR_FIFO_SR_WM1_SHIFT); REG_WRITE(DSPFW5, fw); } REG_WRITE(DSPFW6, 0x10); gma_wait_for_vblank(dev); /* enable self-refresh for single pipe active */ REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); REG_READ(FW_BLC_SELF); gma_wait_for_vblank(dev); } else { /* HW team suggested values... */ REG_WRITE(DSPFW1, 0x3f880808); REG_WRITE(DSPFW2, 0x0b020202); REG_WRITE(DSPFW3, 0x24000000); REG_WRITE(DSPFW4, 0x08030202); REG_WRITE(DSPFW5, 0x01010101); REG_WRITE(DSPFW6, 0x1d0); gma_wait_for_vblank(dev); cdv_intel_disable_self_refresh(dev); } } /** * Return the pipe currently connected to the panel fitter, * or -1 if the panel fitter is not present or not in use */ static int cdv_intel_panel_fitter_pipe(struct drm_device *dev) { u32 pfit_control; pfit_control = REG_READ(PFIT_CONTROL); /* See if the panel fitter is in use */ if ((pfit_control & PFIT_ENABLE) == 0) return -1; return (pfit_control >> 29) & 0x3; } static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = dev->dev_private; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; const struct psb_offset *map = &dev_priv->regmap[pipe]; int refclk; struct gma_clock_t clock; u32 dpll = 0, dspcntr, pipeconf; bool ok; bool is_crt = false, is_lvds = false, is_tv = false; bool is_hdmi = false, is_dp = false; struct drm_mode_config *mode_config = &dev->mode_config; struct drm_connector *connector; const struct gma_limit_t *limit; u32 ddi_select = 0; bool is_edp = false; list_for_each_entry(connector, &mode_config->connector_list, head) { struct gma_encoder *gma_encoder = gma_attached_encoder(connector); if (!connector->encoder || connector->encoder->crtc != crtc) continue; ddi_select = gma_encoder->ddi_select; switch (gma_encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; case INTEL_OUTPUT_TVOUT: is_tv = true; break; case INTEL_OUTPUT_ANALOG: is_crt = true; break; case INTEL_OUTPUT_HDMI: is_hdmi = true; break; case INTEL_OUTPUT_DISPLAYPORT: is_dp = true; break; case INTEL_OUTPUT_EDP: is_edp = true; break; default: DRM_ERROR("invalid output type.\n"); return 0; } } if (dev_priv->dplla_96mhz) /* low-end sku, 96/100 mhz */ refclk = 96000; else /* high-end sku, 27/100 mhz */ refclk = 27000; if (is_dp || is_edp) { /* * Based on the spec the low-end SKU has only CRT/LVDS. So it is * unnecessary to consider it for DP/eDP. * On the high-end SKU, it will use the 27/100M reference clk * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise * it will be 27MHz. From the VBIOS code it seems that the pipe A choose * 27MHz for DP/eDP while the Pipe B chooses the 100MHz. */ if (pipe == 0) refclk = 27000; else refclk = 100000; } if (is_lvds && dev_priv->lvds_use_ssc) { refclk = dev_priv->lvds_ssc_freq * 1000; DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq); } drm_mode_debug_printmodeline(adjusted_mode); limit = gma_crtc->clock_funcs->limit(crtc, refclk); ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock); if (!ok) { DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d", adjusted_mode->clock, clock.dot); return 0; } dpll = DPLL_VGA_MODE_DIS; if (is_tv) { /* XXX: just matching BIOS for now */ /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ dpll |= 3; } /* dpll |= PLL_REF_INPUT_DREFCLK; */ if (is_dp || is_edp) { cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode); } else { REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0); REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0); REG_WRITE(PIPE_DP_LINK_M(pipe), 0); REG_WRITE(PIPE_DP_LINK_N(pipe), 0); } dpll |= DPLL_SYNCLOCK_ENABLE; /* if (is_lvds) dpll |= DPLLB_MODE_LVDS; else dpll |= DPLLB_MODE_DAC_SERIAL; */ /* dpll |= (2 << 11); */ /* setup pipeconf */ pipeconf = REG_READ(map->conf); pipeconf &= ~(PIPE_BPC_MASK); if (is_edp) { switch (dev_priv->edp.bpp) { case 24: pipeconf |= PIPE_8BPC; break; case 18: pipeconf |= PIPE_6BPC; break; case 30: pipeconf |= PIPE_10BPC; break; default: pipeconf |= PIPE_8BPC; break; } } else if (is_lvds) { /* the BPC will be 6 if it is 18-bit LVDS panel */ if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP) pipeconf |= PIPE_8BPC; else pipeconf |= PIPE_6BPC; } else pipeconf |= PIPE_8BPC; /* Set up the display plane register */ dspcntr = DISPPLANE_GAMMA_ENABLE; if (pipe == 0) dspcntr |= DISPPLANE_SEL_PIPE_A; else dspcntr |= DISPPLANE_SEL_PIPE_B; dspcntr |= DISPLAY_PLANE_ENABLE; pipeconf |= PIPEACONF_ENABLE; REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE); REG_READ(map->dpll); cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select); udelay(150); /* The LVDS pin pair needs to be on before the DPLLs are enabled. * This is an exception to the general rule that mode_set doesn't turn * things on. */ if (is_lvds) { u32 lvds = REG_READ(LVDS); lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT; /* Set the B0-B3 data pairs corresponding to * whether we're going to * set the DPLLs for dual-channel mode or not. */ if (clock.p2 == 7) lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; else lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) * appropriately here, but we need to look more * thoroughly into how panels behave in the two modes. */ REG_WRITE(LVDS, lvds); REG_READ(LVDS); } dpll |= DPLL_VCO_ENABLE; /* Disable the panel fitter if it was on our pipe */ if (cdv_intel_panel_fitter_pipe(dev) == pipe) REG_WRITE(PFIT_CONTROL, 0); DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B'); drm_mode_debug_printmodeline(mode); REG_WRITE(map->dpll, (REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE); REG_READ(map->dpll); /* Wait for the clocks to stabilize. */ udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */ if (!(REG_READ(map->dpll) & DPLL_LOCK)) { dev_err(dev->dev, "Failed to get DPLL lock\n"); return -EBUSY; } { int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock; REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT)); } REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) | ((adjusted_mode->crtc_vtotal - 1) << 16)); REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) | ((adjusted_mode->crtc_vblank_end - 1) << 16)); REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); /* pipesrc and dspsize control the size that is scaled from, * which should always be the user's requested size. */ REG_WRITE(map->size, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); REG_WRITE(map->pos, 0); REG_WRITE(map->src, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); REG_WRITE(map->conf, pipeconf); REG_READ(map->conf); gma_wait_for_vblank(dev); REG_WRITE(map->cntr, dspcntr); /* Flush the plane changes */ { struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; crtc_funcs->mode_set_base(crtc, x, y, old_fb); } gma_wait_for_vblank(dev); return 0; } /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */ /* FIXME: why are we using this, should it be cdv_ in this tree ? */ static void i8xx_clock(int refclk, struct gma_clock_t *clock) { clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); clock->p = clock->p1 * clock->p2; clock->vco = refclk * clock->m / (clock->n + 2); clock->dot = clock->vco / clock->p; } /* Returns the clock of the currently programmed mode of the given pipe. */ static int cdv_intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc) { struct drm_psb_private *dev_priv = dev->dev_private; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; const struct psb_offset *map = &dev_priv->regmap[pipe]; u32 dpll; u32 fp; struct gma_clock_t clock; bool is_lvds; struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; if (gma_power_begin(dev, false)) { dpll = REG_READ(map->dpll); if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = REG_READ(map->fp0); else fp = REG_READ(map->fp1); is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); gma_power_end(dev); } else { dpll = p->dpll; if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = p->fp0; else fp = p->fp1; is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN); } clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; if (is_lvds) { clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> DPLL_FPA01_P1_POST_DIV_SHIFT); if (clock.p1 == 0) { clock.p1 = 4; dev_err(dev->dev, "PLL %d\n", dpll); } clock.p2 = 14; if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) { /* XXX: might not be 66MHz */ i8xx_clock(66000, &clock); } else i8xx_clock(48000, &clock); } else { if (dpll & PLL_P1_DIVIDE_BY_TWO) clock.p1 = 2; else { clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; } if (dpll & PLL_P2_DIVIDE_BY_4) clock.p2 = 4; else clock.p2 = 2; i8xx_clock(48000, &clock); } /* XXX: It would be nice to validate the clocks, but we can't reuse * i830PllIsValid() because it relies on the xf86_config connector * configuration being accurate, which it isn't necessarily. */ return clock.dot; } /** Returns the currently programmed mode of the given pipe. */ struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev, struct drm_crtc *crtc) { struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; struct drm_psb_private *dev_priv = dev->dev_private; struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; const struct psb_offset *map = &dev_priv->regmap[pipe]; struct drm_display_mode *mode; int htot; int hsync; int vtot; int vsync; if (gma_power_begin(dev, false)) { htot = REG_READ(map->htotal); hsync = REG_READ(map->hsync); vtot = REG_READ(map->vtotal); vsync = REG_READ(map->vsync); gma_power_end(dev); } else { htot = p->htotal; hsync = p->hsync; vtot = p->vtotal; vsync = p->vsync; } mode = kzalloc(sizeof(*mode), GFP_KERNEL); if (!mode) return NULL; mode->clock = cdv_intel_crtc_clock_get(dev, crtc); mode->hdisplay = (htot & 0xffff) + 1; mode->htotal = ((htot & 0xffff0000) >> 16) + 1; mode->hsync_start = (hsync & 0xffff) + 1; mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; mode->vdisplay = (vtot & 0xffff) + 1; mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; mode->vsync_start = (vsync & 0xffff) + 1; mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; drm_mode_set_name(mode); drm_mode_set_crtcinfo(mode, 0); return mode; } const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = { .dpms = gma_crtc_dpms, .mode_fixup = gma_crtc_mode_fixup, .mode_set = cdv_intel_crtc_mode_set, .mode_set_base = gma_pipe_set_base, .prepare = gma_crtc_prepare, .commit = gma_crtc_commit, .disable = gma_crtc_disable, }; const struct drm_crtc_funcs cdv_intel_crtc_funcs = { .save = gma_crtc_save, .restore = gma_crtc_restore, .cursor_set = gma_crtc_cursor_set, .cursor_move = gma_crtc_cursor_move, .gamma_set = gma_crtc_gamma_set, .set_config = gma_crtc_set_config, .destroy = gma_crtc_destroy, }; const struct gma_clock_funcs cdv_clock_funcs = { .clock = cdv_intel_clock, .limit = cdv_intel_limit, .pll_is_valid = gma_pll_is_valid, };