/* * Driver for 802.11b cards using RAM-loadable Symbol firmware, such as * Symbol Wireless Networker LA4100, CompactFlash cards by Socket * Communications and Intel PRO/Wireless 2011B. * * The driver implements Symbol firmware download. The rest is handled * in hermes.c and orinoco.c. * * Utilities for downloading the Symbol firmware are available at * http://sourceforge.net/projects/orinoco/ * * Copyright (C) 2002-2005 Pavel Roskin * Portions based on orinoco_cs.c: * Copyright (C) David Gibson, Linuxcare Australia * Portions based on Spectrum24tDnld.c from original spectrum24 driver: * Copyright (C) Symbol Technologies. * * See copyright notice in file orinoco.c. */ #define DRIVER_NAME "spectrum_cs" #define PFX DRIVER_NAME ": " #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "orinoco.h" static unsigned char *primsym; static unsigned char *secsym; static const char primary_fw_name[] = "symbol_sp24t_prim_fw"; static const char secondary_fw_name[] = "symbol_sp24t_sec_fw"; /********************************************************************/ /* Module stuff */ /********************************************************************/ MODULE_AUTHOR("Pavel Roskin "); MODULE_DESCRIPTION("Driver for Symbol Spectrum24 Trilogy cards with firmware downloader"); MODULE_LICENSE("Dual MPL/GPL"); /* Module parameters */ /* Some D-Link cards have buggy CIS. They do work at 5v properly, but * don't have any CIS entry for it. This workaround it... */ static int ignore_cis_vcc; /* = 0 */ module_param(ignore_cis_vcc, int, 0); MODULE_PARM_DESC(ignore_cis_vcc, "Allow voltage mismatch between card and socket"); /********************************************************************/ /* Magic constants */ /********************************************************************/ /* * The dev_info variable is the "key" that is used to match up this * device driver with appropriate cards, through the card * configuration database. */ static dev_info_t dev_info = DRIVER_NAME; /********************************************************************/ /* Data structures */ /********************************************************************/ /* PCMCIA specific device information (goes in the card field of * struct orinoco_private */ struct orinoco_pccard { dev_link_t link; dev_node_t node; }; /* * A linked list of "instances" of the device. Each actual PCMCIA * card corresponds to one device instance, and is described by one * dev_link_t structure (defined in ds.h). */ static dev_link_t *dev_list; /* = NULL */ /********************************************************************/ /* Function prototypes */ /********************************************************************/ /* device methods */ static int spectrum_cs_hard_reset(struct orinoco_private *priv); /* PCMCIA gumpf */ static void spectrum_cs_config(dev_link_t * link); static void spectrum_cs_release(dev_link_t * link); static int spectrum_cs_event(event_t event, int priority, event_callback_args_t * args); static dev_link_t *spectrum_cs_attach(void); static void spectrum_cs_detach(dev_link_t *); /********************************************************************/ /* Firmware downloader */ /********************************************************************/ /* Position of PDA in the adapter memory */ #define EEPROM_ADDR 0x3000 #define EEPROM_LEN 0x200 #define PDA_OFFSET 0x100 #define PDA_ADDR (EEPROM_ADDR + PDA_OFFSET) #define PDA_WORDS ((EEPROM_LEN - PDA_OFFSET) / 2) /* Constants for the CISREG_CCSR register */ #define HCR_RUN 0x07 /* run firmware after reset */ #define HCR_IDLE 0x0E /* don't run firmware after reset */ #define HCR_MEM16 0x10 /* memory width bit, should be preserved */ /* * AUX port access. To unlock the AUX port write the access keys to the * PARAM0-2 registers, then write HERMES_AUX_ENABLE to the HERMES_CONTROL * register. Then read it and make sure it's HERMES_AUX_ENABLED. */ #define HERMES_AUX_ENABLE 0x8000 /* Enable auxiliary port access */ #define HERMES_AUX_DISABLE 0x4000 /* Disable to auxiliary port access */ #define HERMES_AUX_ENABLED 0xC000 /* Auxiliary port is open */ #define HERMES_AUX_PW0 0xFE01 #define HERMES_AUX_PW1 0xDC23 #define HERMES_AUX_PW2 0xBA45 /* End markers */ #define PDI_END 0x00000000 /* End of PDA */ #define BLOCK_END 0xFFFFFFFF /* Last image block */ #define TEXT_END 0x1A /* End of text header */ /* * The following structures have little-endian fields denoted by * the leading underscore. Don't access them directly - use inline * functions defined below. */ /* * The binary image to be downloaded consists of series of data blocks. * Each block has the following structure. */ struct dblock { u32 _addr; /* adapter address where to write the block */ u16 _len; /* length of the data only, in bytes */ char data[0]; /* data to be written */ } __attribute__ ((packed)); /* * Plug Data References are located in in the image after the last data * block. They refer to areas in the adapter memory where the plug data * items with matching ID should be written. */ struct pdr { u32 _id; /* record ID */ u32 _addr; /* adapter address where to write the data */ u32 _len; /* expected length of the data, in bytes */ char next[0]; /* next PDR starts here */ } __attribute__ ((packed)); /* * Plug Data Items are located in the EEPROM read from the adapter by * primary firmware. They refer to the device-specific data that should * be plugged into the secondary firmware. */ struct pdi { u16 _len; /* length of ID and data, in words */ u16 _id; /* record ID */ char data[0]; /* plug data */ } __attribute__ ((packed));; /* Functions for access to little-endian data */ static inline u32 dblock_addr(const struct dblock *blk) { return le32_to_cpu(blk->_addr); } static inline u32 dblock_len(const struct dblock *blk) { return le16_to_cpu(blk->_len); } static inline u32 pdr_id(const struct pdr *pdr) { return le32_to_cpu(pdr->_id); } static inline u32 pdr_addr(const struct pdr *pdr) { return le32_to_cpu(pdr->_addr); } static inline u32 pdr_len(const struct pdr *pdr) { return le32_to_cpu(pdr->_len); } static inline u32 pdi_id(const struct pdi *pdi) { return le16_to_cpu(pdi->_id); } /* Return length of the data only, in bytes */ static inline u32 pdi_len(const struct pdi *pdi) { return 2 * (le16_to_cpu(pdi->_len) - 1); } /* Set address of the auxiliary port */ static inline void spectrum_aux_setaddr(hermes_t *hw, u32 addr) { hermes_write_reg(hw, HERMES_AUXPAGE, (u16) (addr >> 7)); hermes_write_reg(hw, HERMES_AUXOFFSET, (u16) (addr & 0x7F)); } /* Open access to the auxiliary port */ static int spectrum_aux_open(hermes_t *hw) { int i; /* Already open? */ if (hermes_read_reg(hw, HERMES_CONTROL) == HERMES_AUX_ENABLED) return 0; hermes_write_reg(hw, HERMES_PARAM0, HERMES_AUX_PW0); hermes_write_reg(hw, HERMES_PARAM1, HERMES_AUX_PW1); hermes_write_reg(hw, HERMES_PARAM2, HERMES_AUX_PW2); hermes_write_reg(hw, HERMES_CONTROL, HERMES_AUX_ENABLE); for (i = 0; i < 20; i++) { udelay(10); if (hermes_read_reg(hw, HERMES_CONTROL) == HERMES_AUX_ENABLED) return 0; } return -EBUSY; } #define CS_CHECK(fn, ret) \ do { last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; } while (0) /* * Reset the card using configuration registers COR and CCSR. * If IDLE is 1, stop the firmware, so that it can be safely rewritten. */ static int spectrum_reset(dev_link_t *link, int idle) { int last_ret, last_fn; conf_reg_t reg; u_int save_cor; /* Doing it if hardware is gone is guaranteed crash */ if (!(link->state & DEV_CONFIG)) return -ENODEV; /* Save original COR value */ reg.Function = 0; reg.Action = CS_READ; reg.Offset = CISREG_COR; CS_CHECK(AccessConfigurationRegister, pcmcia_access_configuration_register(link->handle, ®)); save_cor = reg.Value; /* Soft-Reset card */ reg.Action = CS_WRITE; reg.Offset = CISREG_COR; reg.Value = (save_cor | COR_SOFT_RESET); CS_CHECK(AccessConfigurationRegister, pcmcia_access_configuration_register(link->handle, ®)); udelay(1000); /* Read CCSR */ reg.Action = CS_READ; reg.Offset = CISREG_CCSR; CS_CHECK(AccessConfigurationRegister, pcmcia_access_configuration_register(link->handle, ®)); /* * Start or stop the firmware. Memory width bit should be * preserved from the value we've just read. */ reg.Action = CS_WRITE; reg.Offset = CISREG_CCSR; reg.Value = (idle ? HCR_IDLE : HCR_RUN) | (reg.Value & HCR_MEM16); CS_CHECK(AccessConfigurationRegister, pcmcia_access_configuration_register(link->handle, ®)); udelay(1000); /* Restore original COR configuration index */ reg.Action = CS_WRITE; reg.Offset = CISREG_COR; reg.Value = (save_cor & ~COR_SOFT_RESET); CS_CHECK(AccessConfigurationRegister, pcmcia_access_configuration_register(link->handle, ®)); udelay(1000); return 0; cs_failed: cs_error(link->handle, last_fn, last_ret); return -ENODEV; } /* * Scan PDR for the record with the specified RECORD_ID. * If it's not found, return NULL. */ static struct pdr * spectrum_find_pdr(struct pdr *first_pdr, u32 record_id) { struct pdr *pdr = first_pdr; while (pdr_id(pdr) != PDI_END) { /* * PDR area is currently not terminated by PDI_END. * It's followed by CRC records, which have the type * field where PDR has length. The type can be 0 or 1. */ if (pdr_len(pdr) < 2) return NULL; /* If the record ID matches, we are done */ if (pdr_id(pdr) == record_id) return pdr; pdr = (struct pdr *) pdr->next; } return NULL; } /* Process one Plug Data Item - find corresponding PDR and plug it */ static int spectrum_plug_pdi(hermes_t *hw, struct pdr *first_pdr, struct pdi *pdi) { struct pdr *pdr; /* Find the PDI corresponding to this PDR */ pdr = spectrum_find_pdr(first_pdr, pdi_id(pdi)); /* No match is found, safe to ignore */ if (!pdr) return 0; /* Lengths of the data in PDI and PDR must match */ if (pdi_len(pdi) != pdr_len(pdr)) return -EINVAL; /* do the actual plugging */ spectrum_aux_setaddr(hw, pdr_addr(pdr)); hermes_write_words(hw, HERMES_AUXDATA, pdi->data, pdi_len(pdi) / 2); return 0; } /* Read PDA from the adapter */ static int spectrum_read_pda(hermes_t *hw, u16 *pda, int pda_len) { int ret; int pda_size; /* Issue command to read EEPROM */ ret = hermes_docmd_wait(hw, HERMES_CMD_READMIF, 0, NULL); if (ret) return ret; /* Open auxiliary port */ ret = spectrum_aux_open(hw); if (ret) return ret; /* read PDA from EEPROM */ spectrum_aux_setaddr(hw, PDA_ADDR); hermes_read_words(hw, HERMES_AUXDATA, pda, pda_len / 2); /* Check PDA length */ pda_size = le16_to_cpu(pda[0]); if (pda_size > pda_len) return -EINVAL; return 0; } /* Parse PDA and write the records into the adapter */ static int spectrum_apply_pda(hermes_t *hw, const struct dblock *first_block, u16 *pda) { int ret; struct pdi *pdi; struct pdr *first_pdr; const struct dblock *blk = first_block; /* Skip all blocks to locate Plug Data References */ while (dblock_addr(blk) != BLOCK_END) blk = (struct dblock *) &blk->data[dblock_len(blk)]; first_pdr = (struct pdr *) blk; /* Go through every PDI and plug them into the adapter */ pdi = (struct pdi *) (pda + 2); while (pdi_id(pdi) != PDI_END) { ret = spectrum_plug_pdi(hw, first_pdr, pdi); if (ret) return ret; /* Increment to the next PDI */ pdi = (struct pdi *) &pdi->data[pdi_len(pdi)]; } return 0; } /* Load firmware blocks into the adapter */ static int spectrum_load_blocks(hermes_t *hw, const struct dblock *first_block) { const struct dblock *blk; u32 blkaddr; u32 blklen; blk = first_block; blkaddr = dblock_addr(blk); blklen = dblock_len(blk); while (dblock_addr(blk) != BLOCK_END) { spectrum_aux_setaddr(hw, blkaddr); hermes_write_words(hw, HERMES_AUXDATA, blk->data, blklen / 2); blk = (struct dblock *) &blk->data[blklen]; blkaddr = dblock_addr(blk); blklen = dblock_len(blk); } return 0; } /* * Process a firmware image - stop the card, load the firmware, reset * the card and make sure it responds. For the secondary firmware take * care of the PDA - read it and then write it on top of the firmware. */ static int spectrum_dl_image(hermes_t *hw, dev_link_t *link, const unsigned char *image) { int ret; const unsigned char *ptr; const struct dblock *first_block; /* Plug Data Area (PDA) */ u16 pda[PDA_WORDS]; /* Binary block begins after the 0x1A marker */ ptr = image; while (*ptr++ != TEXT_END); first_block = (const struct dblock *) ptr; /* Read the PDA */ if (image != primsym) { ret = spectrum_read_pda(hw, pda, sizeof(pda)); if (ret) return ret; } /* Stop the firmware, so that it can be safely rewritten */ ret = spectrum_reset(link, 1); if (ret) return ret; /* Program the adapter with new firmware */ ret = spectrum_load_blocks(hw, first_block); if (ret) return ret; /* Write the PDA to the adapter */ if (image != primsym) { ret = spectrum_apply_pda(hw, first_block, pda); if (ret) return ret; } /* Run the firmware */ ret = spectrum_reset(link, 0); if (ret) return ret; /* Reset hermes chip and make sure it responds */ ret = hermes_init(hw); /* hermes_reset() should return 0 with the secondary firmware */ if (image != primsym && ret != 0) return -ENODEV; /* And this should work with any firmware */ if (!hermes_present(hw)) return -ENODEV; return 0; } /* * Download the firmware into the card, this also does a PCMCIA soft * reset on the card, to make sure it's in a sane state. */ static int spectrum_dl_firmware(hermes_t *hw, dev_link_t *link) { int ret; client_handle_t handle = link->handle; const struct firmware *fw_entry; if (request_firmware(&fw_entry, primary_fw_name, &handle_to_dev(handle)) == 0) { primsym = fw_entry->data; } else { printk(KERN_ERR PFX "Cannot find firmware: %s\n", primary_fw_name); return -ENOENT; } if (request_firmware(&fw_entry, secondary_fw_name, &handle_to_dev(handle)) == 0) { secsym = fw_entry->data; } else { printk(KERN_ERR PFX "Cannot find firmware: %s\n", secondary_fw_name); return -ENOENT; } /* Load primary firmware */ ret = spectrum_dl_image(hw, link, primsym); if (ret) { printk(KERN_ERR PFX "Primary firmware download failed\n"); return ret; } /* Load secondary firmware */ ret = spectrum_dl_image(hw, link, secsym); if (ret) { printk(KERN_ERR PFX "Secondary firmware download failed\n"); } return ret; } /********************************************************************/ /* Device methods */ /********************************************************************/ static int spectrum_cs_hard_reset(struct orinoco_private *priv) { struct orinoco_pccard *card = priv->card; dev_link_t *link = &card->link; int err; if (!hermes_present(&priv->hw)) { /* The firmware needs to be reloaded */ if (spectrum_dl_firmware(&priv->hw, &card->link) != 0) { printk(KERN_ERR PFX "Firmware download failed\n"); err = -ENODEV; } } else { /* Soft reset using COR and HCR */ spectrum_reset(link, 0); } return 0; } /********************************************************************/ /* PCMCIA stuff */ /********************************************************************/ /* * This creates an "instance" of the driver, allocating local data * structures for one device. The device is registered with Card * Services. * * The dev_link structure is initialized, but we don't actually * configure the card at this point -- we wait until we receive a card * insertion event. */ static dev_link_t * spectrum_cs_attach(void) { struct net_device *dev; struct orinoco_private *priv; struct orinoco_pccard *card; dev_link_t *link; client_reg_t client_reg; int ret; dev = alloc_orinocodev(sizeof(*card), spectrum_cs_hard_reset); if (! dev) return NULL; priv = netdev_priv(dev); card = priv->card; /* Link both structures together */ link = &card->link; link->priv = dev; /* Interrupt setup */ link->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_HANDLE_PRESENT; link->irq.IRQInfo1 = IRQ_LEVEL_ID; link->irq.Handler = orinoco_interrupt; link->irq.Instance = dev; /* General socket configuration defaults can go here. In this * client, we assume very little, and rely on the CIS for * almost everything. In most clients, many details (i.e., * number, sizes, and attributes of IO windows) are fixed by * the nature of the device, and can be hard-wired here. */ link->conf.Attributes = 0; link->conf.IntType = INT_MEMORY_AND_IO; /* Register with Card Services */ /* FIXME: need a lock? */ link->next = dev_list; dev_list = link; client_reg.dev_info = &dev_info; client_reg.Version = 0x0210; /* FIXME: what does this mean? */ client_reg.event_callback_args.client_data = link; ret = pcmcia_register_client(&link->handle, &client_reg); if (ret != CS_SUCCESS) { cs_error(link->handle, RegisterClient, ret); spectrum_cs_detach(link); return NULL; } return link; } /* spectrum_cs_attach */ /* * This deletes a driver "instance". The device is de-registered with * Card Services. If it has been released, all local data structures * are freed. Otherwise, the structures will be freed when the device * is released. */ static void spectrum_cs_detach(dev_link_t *link) { dev_link_t **linkp; struct net_device *dev = link->priv; /* Locate device structure */ for (linkp = &dev_list; *linkp; linkp = &(*linkp)->next) if (*linkp == link) break; BUG_ON(*linkp == NULL); if (link->state & DEV_CONFIG) spectrum_cs_release(link); /* Break the link with Card Services */ if (link->handle) pcmcia_deregister_client(link->handle); /* Unlink device structure, and free it */ *linkp = link->next; DEBUG(0, PFX "detach: link=%p link->dev=%p\n", link, link->dev); if (link->dev) { DEBUG(0, PFX "About to unregister net device %p\n", dev); unregister_netdev(dev); } free_orinocodev(dev); } /* spectrum_cs_detach */ /* * spectrum_cs_config() is scheduled to run after a CARD_INSERTION * event is received, to configure the PCMCIA socket, and to make the * device available to the system. */ static void spectrum_cs_config(dev_link_t *link) { struct net_device *dev = link->priv; client_handle_t handle = link->handle; struct orinoco_private *priv = netdev_priv(dev); struct orinoco_pccard *card = priv->card; hermes_t *hw = &priv->hw; int last_fn, last_ret; u_char buf[64]; config_info_t conf; cisinfo_t info; tuple_t tuple; cisparse_t parse; void __iomem *mem; CS_CHECK(ValidateCIS, pcmcia_validate_cis(handle, &info)); /* * This reads the card's CONFIG tuple to find its * configuration registers. */ tuple.DesiredTuple = CISTPL_CONFIG; tuple.Attributes = 0; tuple.TupleData = buf; tuple.TupleDataMax = sizeof(buf); tuple.TupleOffset = 0; CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(handle, &tuple)); CS_CHECK(GetTupleData, pcmcia_get_tuple_data(handle, &tuple)); CS_CHECK(ParseTuple, pcmcia_parse_tuple(handle, &tuple, &parse)); link->conf.ConfigBase = parse.config.base; link->conf.Present = parse.config.rmask[0]; /* Configure card */ link->state |= DEV_CONFIG; /* Look up the current Vcc */ CS_CHECK(GetConfigurationInfo, pcmcia_get_configuration_info(handle, &conf)); link->conf.Vcc = conf.Vcc; /* * In this loop, we scan the CIS for configuration table * entries, each of which describes a valid card * configuration, including voltage, IO window, memory window, * and interrupt settings. * * We make no assumptions about the card to be configured: we * use just the information available in the CIS. In an ideal * world, this would work for any PCMCIA card, but it requires * a complete and accurate CIS. In practice, a driver usually * "knows" most of these things without consulting the CIS, * and most client drivers will only use the CIS to fill in * implementation-defined details. */ tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY; CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(handle, &tuple)); while (1) { cistpl_cftable_entry_t *cfg = &(parse.cftable_entry); cistpl_cftable_entry_t dflt = { .index = 0 }; if ( (pcmcia_get_tuple_data(handle, &tuple) != 0) || (pcmcia_parse_tuple(handle, &tuple, &parse) != 0)) goto next_entry; if (cfg->flags & CISTPL_CFTABLE_DEFAULT) dflt = *cfg; if (cfg->index == 0) goto next_entry; link->conf.ConfigIndex = cfg->index; /* Does this card need audio output? */ if (cfg->flags & CISTPL_CFTABLE_AUDIO) { link->conf.Attributes |= CONF_ENABLE_SPKR; link->conf.Status = CCSR_AUDIO_ENA; } /* Use power settings for Vcc and Vpp if present */ /* Note that the CIS values need to be rescaled */ if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) { if (conf.Vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000) { DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n", conf.Vcc, cfg->vcc.param[CISTPL_POWER_VNOM] / 10000); if (!ignore_cis_vcc) goto next_entry; } } else if (dflt.vcc.present & (1 << CISTPL_POWER_VNOM)) { if (conf.Vcc != dflt.vcc.param[CISTPL_POWER_VNOM] / 10000) { DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n", conf.Vcc, dflt.vcc.param[CISTPL_POWER_VNOM] / 10000); if(!ignore_cis_vcc) goto next_entry; } } if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM)) link->conf.Vpp1 = link->conf.Vpp2 = cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000; else if (dflt.vpp1.present & (1 << CISTPL_POWER_VNOM)) link->conf.Vpp1 = link->conf.Vpp2 = dflt.vpp1.param[CISTPL_POWER_VNOM] / 10000; /* Do we need to allocate an interrupt? */ link->conf.Attributes |= CONF_ENABLE_IRQ; /* IO window settings */ link->io.NumPorts1 = link->io.NumPorts2 = 0; if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) { cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt.io; link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO; if (!(io->flags & CISTPL_IO_8BIT)) link->io.Attributes1 = IO_DATA_PATH_WIDTH_16; if (!(io->flags & CISTPL_IO_16BIT)) link->io.Attributes1 = IO_DATA_PATH_WIDTH_8; link->io.IOAddrLines = io->flags & CISTPL_IO_LINES_MASK; link->io.BasePort1 = io->win[0].base; link->io.NumPorts1 = io->win[0].len; if (io->nwin > 1) { link->io.Attributes2 = link->io.Attributes1; link->io.BasePort2 = io->win[1].base; link->io.NumPorts2 = io->win[1].len; } /* This reserves IO space but doesn't actually enable it */ if (pcmcia_request_io(link->handle, &link->io) != 0) goto next_entry; } /* If we got this far, we're cool! */ break; next_entry: if (link->io.NumPorts1) pcmcia_release_io(link->handle, &link->io); last_ret = pcmcia_get_next_tuple(handle, &tuple); if (last_ret == CS_NO_MORE_ITEMS) { printk(KERN_ERR PFX "GetNextTuple(): No matching " "CIS configuration. Maybe you need the " "ignore_cis_vcc=1 parameter.\n"); goto cs_failed; } } /* * Allocate an interrupt line. Note that this does not assign * a handler to the interrupt, unless the 'Handler' member of * the irq structure is initialized. */ CS_CHECK(RequestIRQ, pcmcia_request_irq(link->handle, &link->irq)); /* We initialize the hermes structure before completing PCMCIA * configuration just in case the interrupt handler gets * called. */ mem = ioport_map(link->io.BasePort1, link->io.NumPorts1); if (!mem) goto cs_failed; hermes_struct_init(hw, mem, HERMES_16BIT_REGSPACING); /* * This actually configures the PCMCIA socket -- setting up * the I/O windows and the interrupt mapping, and putting the * card and host interface into "Memory and IO" mode. */ CS_CHECK(RequestConfiguration, pcmcia_request_configuration(link->handle, &link->conf)); /* Ok, we have the configuration, prepare to register the netdev */ dev->base_addr = link->io.BasePort1; dev->irq = link->irq.AssignedIRQ; SET_MODULE_OWNER(dev); card->node.major = card->node.minor = 0; /* Reset card and download firmware */ if (spectrum_cs_hard_reset(priv) != 0) { goto failed; } SET_NETDEV_DEV(dev, &handle_to_dev(handle)); /* Tell the stack we exist */ if (register_netdev(dev) != 0) { printk(KERN_ERR PFX "register_netdev() failed\n"); goto failed; } /* At this point, the dev_node_t structure(s) needs to be * initialized and arranged in a linked list at link->dev. */ strcpy(card->node.dev_name, dev->name); link->dev = &card->node; /* link->dev being non-NULL is also used to indicate that the net_device has been registered */ link->state &= ~DEV_CONFIG_PENDING; /* Finally, report what we've done */ printk(KERN_DEBUG "%s: index 0x%02x: Vcc %d.%d", dev->name, link->conf.ConfigIndex, link->conf.Vcc / 10, link->conf.Vcc % 10); if (link->conf.Vpp1) printk(", Vpp %d.%d", link->conf.Vpp1 / 10, link->conf.Vpp1 % 10); printk(", irq %d", link->irq.AssignedIRQ); if (link->io.NumPorts1) printk(", io 0x%04x-0x%04x", link->io.BasePort1, link->io.BasePort1 + link->io.NumPorts1 - 1); if (link->io.NumPorts2) printk(" & 0x%04x-0x%04x", link->io.BasePort2, link->io.BasePort2 + link->io.NumPorts2 - 1); printk("\n"); return; cs_failed: cs_error(link->handle, last_fn, last_ret); failed: spectrum_cs_release(link); } /* spectrum_cs_config */ /* * After a card is removed, spectrum_cs_release() will unregister the * device, and release the PCMCIA configuration. If the device is * still open, this will be postponed until it is closed. */ static void spectrum_cs_release(dev_link_t *link) { struct net_device *dev = link->priv; struct orinoco_private *priv = netdev_priv(dev); unsigned long flags; /* We're committed to taking the device away now, so mark the * hardware as unavailable */ spin_lock_irqsave(&priv->lock, flags); priv->hw_unavailable++; spin_unlock_irqrestore(&priv->lock, flags); /* Don't bother checking to see if these succeed or not */ pcmcia_release_configuration(link->handle); if (link->io.NumPorts1) pcmcia_release_io(link->handle, &link->io); if (link->irq.AssignedIRQ) pcmcia_release_irq(link->handle, &link->irq); link->state &= ~DEV_CONFIG; if (priv->hw.iobase) ioport_unmap(priv->hw.iobase); } /* spectrum_cs_release */ /* * The card status event handler. Mostly, this schedules other stuff * to run after an event is received. */ static int spectrum_cs_event(event_t event, int priority, event_callback_args_t * args) { dev_link_t *link = args->client_data; struct net_device *dev = link->priv; struct orinoco_private *priv = netdev_priv(dev); int err = 0; unsigned long flags; switch (event) { case CS_EVENT_CARD_REMOVAL: link->state &= ~DEV_PRESENT; if (link->state & DEV_CONFIG) { unsigned long flags; spin_lock_irqsave(&priv->lock, flags); netif_device_detach(dev); priv->hw_unavailable++; spin_unlock_irqrestore(&priv->lock, flags); } break; case CS_EVENT_CARD_INSERTION: link->state |= DEV_PRESENT | DEV_CONFIG_PENDING; spectrum_cs_config(link); break; case CS_EVENT_PM_SUSPEND: link->state |= DEV_SUSPEND; /* Fall through... */ case CS_EVENT_RESET_PHYSICAL: /* Mark the device as stopped, to block IO until later */ if (link->state & DEV_CONFIG) { /* This is probably racy, but I can't think of a better way, short of rewriting the PCMCIA layer to not suck :-( */ spin_lock_irqsave(&priv->lock, flags); err = __orinoco_down(dev); if (err) printk(KERN_WARNING "%s: %s: Error %d downing interface\n", dev->name, event == CS_EVENT_PM_SUSPEND ? "SUSPEND" : "RESET_PHYSICAL", err); netif_device_detach(dev); priv->hw_unavailable++; spin_unlock_irqrestore(&priv->lock, flags); pcmcia_release_configuration(link->handle); } break; case CS_EVENT_PM_RESUME: link->state &= ~DEV_SUSPEND; /* Fall through... */ case CS_EVENT_CARD_RESET: if (link->state & DEV_CONFIG) { /* FIXME: should we double check that this is * the same card as we had before */ pcmcia_request_configuration(link->handle, &link->conf); netif_device_attach(dev); priv->hw_unavailable--; schedule_work(&priv->reset_work); } break; } return err; } /* spectrum_cs_event */ /********************************************************************/ /* Module initialization */ /********************************************************************/ /* Can't be declared "const" or the whole __initdata section will * become const */ static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION " (Pavel Roskin ," " David Gibson , et al)"; static struct pcmcia_device_id spectrum_cs_ids[] = { PCMCIA_DEVICE_MANF_CARD(0x026c, 0x0001), /* Symbol Spectrum24 LA4100 */ PCMCIA_DEVICE_MANF_CARD(0x0104, 0x0001), /* Socket Communications CF */ PCMCIA_DEVICE_MANF_CARD(0x0089, 0x0001), /* Intel PRO/Wireless 2011B */ PCMCIA_DEVICE_NULL, }; MODULE_DEVICE_TABLE(pcmcia, spectrum_cs_ids); static struct pcmcia_driver orinoco_driver = { .owner = THIS_MODULE, .drv = { .name = DRIVER_NAME, }, .attach = spectrum_cs_attach, .event = spectrum_cs_event, .detach = spectrum_cs_detach, .id_table = spectrum_cs_ids, }; static int __init init_spectrum_cs(void) { printk(KERN_DEBUG "%s\n", version); return pcmcia_register_driver(&orinoco_driver); } static void __exit exit_spectrum_cs(void) { pcmcia_unregister_driver(&orinoco_driver); BUG_ON(dev_list != NULL); } module_init(init_spectrum_cs); module_exit(exit_spectrum_cs);