/* * PowerPC64 port by Mike Corrigan and Dave Engebretsen * {mikejc|engebret}@us.ibm.com * * Copyright (c) 2000 Mike Corrigan * * SMP scalability work: * Copyright (C) 2001 Anton Blanchard , IBM * * Module name: htab.c * * Description: * PowerPC Hashed Page Table functions * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #undef DEBUG #undef DEBUG_LOW #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG #define DBG(fmt...) udbg_printf(fmt) #else #define DBG(fmt...) #endif #ifdef DEBUG_LOW #define DBG_LOW(fmt...) udbg_printf(fmt) #else #define DBG_LOW(fmt...) #endif #define KB (1024) #define MB (1024*KB) #define GB (1024L*MB) /* * Note: pte --> Linux PTE * HPTE --> PowerPC Hashed Page Table Entry * * Execution context: * htab_initialize is called with the MMU off (of course), but * the kernel has been copied down to zero so it can directly * reference global data. At this point it is very difficult * to print debug info. * */ #ifdef CONFIG_U3_DART extern unsigned long dart_tablebase; #endif /* CONFIG_U3_DART */ static unsigned long _SDR1; struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; EXPORT_SYMBOL_GPL(mmu_psize_defs); struct hash_pte *htab_address; unsigned long htab_size_bytes; unsigned long htab_hash_mask; EXPORT_SYMBOL_GPL(htab_hash_mask); int mmu_linear_psize = MMU_PAGE_4K; EXPORT_SYMBOL_GPL(mmu_linear_psize); int mmu_virtual_psize = MMU_PAGE_4K; int mmu_vmalloc_psize = MMU_PAGE_4K; #ifdef CONFIG_SPARSEMEM_VMEMMAP int mmu_vmemmap_psize = MMU_PAGE_4K; #endif int mmu_io_psize = MMU_PAGE_4K; int mmu_kernel_ssize = MMU_SEGSIZE_256M; EXPORT_SYMBOL_GPL(mmu_kernel_ssize); int mmu_highuser_ssize = MMU_SEGSIZE_256M; u16 mmu_slb_size = 64; EXPORT_SYMBOL_GPL(mmu_slb_size); #ifdef CONFIG_PPC_64K_PAGES int mmu_ci_restrictions; #endif #ifdef CONFIG_DEBUG_PAGEALLOC static u8 *linear_map_hash_slots; static unsigned long linear_map_hash_count; static DEFINE_SPINLOCK(linear_map_hash_lock); #endif /* CONFIG_DEBUG_PAGEALLOC */ /* There are definitions of page sizes arrays to be used when none * is provided by the firmware. */ /* Pre-POWER4 CPUs (4k pages only) */ static struct mmu_psize_def mmu_psize_defaults_old[] = { [MMU_PAGE_4K] = { .shift = 12, .sllp = 0, .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, .avpnm = 0, .tlbiel = 0, }, }; /* POWER4, GPUL, POWER5 * * Support for 16Mb large pages */ static struct mmu_psize_def mmu_psize_defaults_gp[] = { [MMU_PAGE_4K] = { .shift = 12, .sllp = 0, .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, .avpnm = 0, .tlbiel = 1, }, [MMU_PAGE_16M] = { .shift = 24, .sllp = SLB_VSID_L, .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0, [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 }, .avpnm = 0x1UL, .tlbiel = 0, }, }; unsigned long htab_convert_pte_flags(unsigned long pteflags) { unsigned long rflags = 0; /* _PAGE_EXEC -> NOEXEC */ if ((pteflags & _PAGE_EXEC) == 0) rflags |= HPTE_R_N; /* * PP bits: * Linux uses slb key 0 for kernel and 1 for user. * kernel areas are mapped with PP=00 * and there is no kernel RO (_PAGE_KERNEL_RO). * User area is mapped with PP=0x2 for read/write * or PP=0x3 for read-only (including writeable but clean pages). */ if (pteflags & _PAGE_USER) { rflags |= 0x2; if (!((pteflags & _PAGE_RW) && (pteflags & _PAGE_DIRTY))) rflags |= 0x1; } /* * Always add "C" bit for perf. Memory coherence is always enabled */ rflags |= HPTE_R_C | HPTE_R_M; /* * Add in WIG bits */ if (pteflags & _PAGE_WRITETHRU) rflags |= HPTE_R_W; if (pteflags & _PAGE_NO_CACHE) rflags |= HPTE_R_I; if (pteflags & _PAGE_GUARDED) rflags |= HPTE_R_G; return rflags; } int htab_bolt_mapping(unsigned long vstart, unsigned long vend, unsigned long pstart, unsigned long prot, int psize, int ssize) { unsigned long vaddr, paddr; unsigned int step, shift; int ret = 0; shift = mmu_psize_defs[psize].shift; step = 1 << shift; prot = htab_convert_pte_flags(prot); DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n", vstart, vend, pstart, prot, psize, ssize); for (vaddr = vstart, paddr = pstart; vaddr < vend; vaddr += step, paddr += step) { unsigned long hash, hpteg; unsigned long vsid = get_kernel_vsid(vaddr, ssize); unsigned long vpn = hpt_vpn(vaddr, vsid, ssize); unsigned long tprot = prot; /* * If we hit a bad address return error. */ if (!vsid) return -1; /* Make kernel text executable */ if (overlaps_kernel_text(vaddr, vaddr + step)) tprot &= ~HPTE_R_N; /* Make kvm guest trampolines executable */ if (overlaps_kvm_tmp(vaddr, vaddr + step)) tprot &= ~HPTE_R_N; /* * If relocatable, check if it overlaps interrupt vectors that * are copied down to real 0. For relocatable kernel * (e.g. kdump case) we copy interrupt vectors down to real * address 0. Mark that region as executable. This is * because on p8 system with relocation on exception feature * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence * in order to execute the interrupt handlers in virtual * mode the vector region need to be marked as executable. */ if ((PHYSICAL_START > MEMORY_START) && overlaps_interrupt_vector_text(vaddr, vaddr + step)) tprot &= ~HPTE_R_N; hash = hpt_hash(vpn, shift, ssize); hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); BUG_ON(!ppc_md.hpte_insert); ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot, HPTE_V_BOLTED, psize, psize, ssize); if (ret < 0) break; #ifdef CONFIG_DEBUG_PAGEALLOC if ((paddr >> PAGE_SHIFT) < linear_map_hash_count) linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80; #endif /* CONFIG_DEBUG_PAGEALLOC */ } return ret < 0 ? ret : 0; } #ifdef CONFIG_MEMORY_HOTPLUG int htab_remove_mapping(unsigned long vstart, unsigned long vend, int psize, int ssize) { unsigned long vaddr; unsigned int step, shift; int rc; int ret = 0; shift = mmu_psize_defs[psize].shift; step = 1 << shift; if (!ppc_md.hpte_removebolted) return -ENODEV; for (vaddr = vstart; vaddr < vend; vaddr += step) { rc = ppc_md.hpte_removebolted(vaddr, psize, ssize); if (rc == -ENOENT) { ret = -ENOENT; continue; } if (rc < 0) return rc; } return ret; } #endif /* CONFIG_MEMORY_HOTPLUG */ static int __init htab_dt_scan_seg_sizes(unsigned long node, const char *uname, int depth, void *data) { const char *type = of_get_flat_dt_prop(node, "device_type", NULL); const __be32 *prop; int size = 0; /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size); if (prop == NULL) return 0; for (; size >= 4; size -= 4, ++prop) { if (be32_to_cpu(prop[0]) == 40) { DBG("1T segment support detected\n"); cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT; return 1; } } cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; return 0; } static void __init htab_init_seg_sizes(void) { of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL); } static int __init get_idx_from_shift(unsigned int shift) { int idx = -1; switch (shift) { case 0xc: idx = MMU_PAGE_4K; break; case 0x10: idx = MMU_PAGE_64K; break; case 0x14: idx = MMU_PAGE_1M; break; case 0x18: idx = MMU_PAGE_16M; break; case 0x22: idx = MMU_PAGE_16G; break; } return idx; } static int __init htab_dt_scan_page_sizes(unsigned long node, const char *uname, int depth, void *data) { const char *type = of_get_flat_dt_prop(node, "device_type", NULL); const __be32 *prop; int size = 0; /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size); if (!prop) return 0; pr_info("Page sizes from device-tree:\n"); size /= 4; cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE); while(size > 0) { unsigned int base_shift = be32_to_cpu(prop[0]); unsigned int slbenc = be32_to_cpu(prop[1]); unsigned int lpnum = be32_to_cpu(prop[2]); struct mmu_psize_def *def; int idx, base_idx; size -= 3; prop += 3; base_idx = get_idx_from_shift(base_shift); if (base_idx < 0) { /* skip the pte encoding also */ prop += lpnum * 2; size -= lpnum * 2; continue; } def = &mmu_psize_defs[base_idx]; if (base_idx == MMU_PAGE_16M) cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE; def->shift = base_shift; if (base_shift <= 23) def->avpnm = 0; else def->avpnm = (1 << (base_shift - 23)) - 1; def->sllp = slbenc; /* * We don't know for sure what's up with tlbiel, so * for now we only set it for 4K and 64K pages */ if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K) def->tlbiel = 1; else def->tlbiel = 0; while (size > 0 && lpnum) { unsigned int shift = be32_to_cpu(prop[0]); int penc = be32_to_cpu(prop[1]); prop += 2; size -= 2; lpnum--; idx = get_idx_from_shift(shift); if (idx < 0) continue; if (penc == -1) pr_err("Invalid penc for base_shift=%d " "shift=%d\n", base_shift, shift); def->penc[idx] = penc; pr_info("base_shift=%d: shift=%d, sllp=0x%04lx," " avpnm=0x%08lx, tlbiel=%d, penc=%d\n", base_shift, shift, def->sllp, def->avpnm, def->tlbiel, def->penc[idx]); } } return 1; } #ifdef CONFIG_HUGETLB_PAGE /* Scan for 16G memory blocks that have been set aside for huge pages * and reserve those blocks for 16G huge pages. */ static int __init htab_dt_scan_hugepage_blocks(unsigned long node, const char *uname, int depth, void *data) { const char *type = of_get_flat_dt_prop(node, "device_type", NULL); const __be64 *addr_prop; const __be32 *page_count_prop; unsigned int expected_pages; long unsigned int phys_addr; long unsigned int block_size; /* We are scanning "memory" nodes only */ if (type == NULL || strcmp(type, "memory") != 0) return 0; /* This property is the log base 2 of the number of virtual pages that * will represent this memory block. */ page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL); if (page_count_prop == NULL) return 0; expected_pages = (1 << be32_to_cpu(page_count_prop[0])); addr_prop = of_get_flat_dt_prop(node, "reg", NULL); if (addr_prop == NULL) return 0; phys_addr = be64_to_cpu(addr_prop[0]); block_size = be64_to_cpu(addr_prop[1]); if (block_size != (16 * GB)) return 0; printk(KERN_INFO "Huge page(16GB) memory: " "addr = 0x%lX size = 0x%lX pages = %d\n", phys_addr, block_size, expected_pages); if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) { memblock_reserve(phys_addr, block_size * expected_pages); add_gpage(phys_addr, block_size, expected_pages); } return 0; } #endif /* CONFIG_HUGETLB_PAGE */ static void mmu_psize_set_default_penc(void) { int bpsize, apsize; for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++) mmu_psize_defs[bpsize].penc[apsize] = -1; } #ifdef CONFIG_PPC_64K_PAGES static bool might_have_hea(void) { /* * The HEA ethernet adapter requires awareness of the * GX bus. Without that awareness we can easily assume * we will never see an HEA ethernet device. */ #ifdef CONFIG_IBMEBUS return !cpu_has_feature(CPU_FTR_ARCH_207S); #else return false; #endif } #endif /* #ifdef CONFIG_PPC_64K_PAGES */ static void __init htab_init_page_sizes(void) { int rc; /* se the invalid penc to -1 */ mmu_psize_set_default_penc(); /* Default to 4K pages only */ memcpy(mmu_psize_defs, mmu_psize_defaults_old, sizeof(mmu_psize_defaults_old)); /* * Try to find the available page sizes in the device-tree */ rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL); if (rc != 0) /* Found */ goto found; /* * Not in the device-tree, let's fallback on known size * list for 16M capable GP & GR */ if (mmu_has_feature(MMU_FTR_16M_PAGE)) memcpy(mmu_psize_defs, mmu_psize_defaults_gp, sizeof(mmu_psize_defaults_gp)); found: #ifndef CONFIG_DEBUG_PAGEALLOC /* * Pick a size for the linear mapping. Currently, we only support * 16M, 1M and 4K which is the default */ if (mmu_psize_defs[MMU_PAGE_16M].shift) mmu_linear_psize = MMU_PAGE_16M; else if (mmu_psize_defs[MMU_PAGE_1M].shift) mmu_linear_psize = MMU_PAGE_1M; #endif /* CONFIG_DEBUG_PAGEALLOC */ #ifdef CONFIG_PPC_64K_PAGES /* * Pick a size for the ordinary pages. Default is 4K, we support * 64K for user mappings and vmalloc if supported by the processor. * We only use 64k for ioremap if the processor * (and firmware) support cache-inhibited large pages. * If not, we use 4k and set mmu_ci_restrictions so that * hash_page knows to switch processes that use cache-inhibited * mappings to 4k pages. */ if (mmu_psize_defs[MMU_PAGE_64K].shift) { mmu_virtual_psize = MMU_PAGE_64K; mmu_vmalloc_psize = MMU_PAGE_64K; if (mmu_linear_psize == MMU_PAGE_4K) mmu_linear_psize = MMU_PAGE_64K; if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) { /* * When running on pSeries using 64k pages for ioremap * would stop us accessing the HEA ethernet. So if we * have the chance of ever seeing one, stay at 4k. */ if (!might_have_hea() || !machine_is(pseries)) mmu_io_psize = MMU_PAGE_64K; } else mmu_ci_restrictions = 1; } #endif /* CONFIG_PPC_64K_PAGES */ #ifdef CONFIG_SPARSEMEM_VMEMMAP /* We try to use 16M pages for vmemmap if that is supported * and we have at least 1G of RAM at boot */ if (mmu_psize_defs[MMU_PAGE_16M].shift && memblock_phys_mem_size() >= 0x40000000) mmu_vmemmap_psize = MMU_PAGE_16M; else if (mmu_psize_defs[MMU_PAGE_64K].shift) mmu_vmemmap_psize = MMU_PAGE_64K; else mmu_vmemmap_psize = MMU_PAGE_4K; #endif /* CONFIG_SPARSEMEM_VMEMMAP */ printk(KERN_DEBUG "Page orders: linear mapping = %d, " "virtual = %d, io = %d" #ifdef CONFIG_SPARSEMEM_VMEMMAP ", vmemmap = %d" #endif "\n", mmu_psize_defs[mmu_linear_psize].shift, mmu_psize_defs[mmu_virtual_psize].shift, mmu_psize_defs[mmu_io_psize].shift #ifdef CONFIG_SPARSEMEM_VMEMMAP ,mmu_psize_defs[mmu_vmemmap_psize].shift #endif ); #ifdef CONFIG_HUGETLB_PAGE /* Reserve 16G huge page memory sections for huge pages */ of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL); #endif /* CONFIG_HUGETLB_PAGE */ } static int __init htab_dt_scan_pftsize(unsigned long node, const char *uname, int depth, void *data) { const char *type = of_get_flat_dt_prop(node, "device_type", NULL); const __be32 *prop; /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL); if (prop != NULL) { /* pft_size[0] is the NUMA CEC cookie */ ppc64_pft_size = be32_to_cpu(prop[1]); return 1; } return 0; } static unsigned long __init htab_get_table_size(void) { unsigned long mem_size, rnd_mem_size, pteg_count, psize; /* If hash size isn't already provided by the platform, we try to * retrieve it from the device-tree. If it's not there neither, we * calculate it now based on the total RAM size */ if (ppc64_pft_size == 0) of_scan_flat_dt(htab_dt_scan_pftsize, NULL); if (ppc64_pft_size) return 1UL << ppc64_pft_size; /* round mem_size up to next power of 2 */ mem_size = memblock_phys_mem_size(); rnd_mem_size = 1UL << __ilog2(mem_size); if (rnd_mem_size < mem_size) rnd_mem_size <<= 1; /* # pages / 2 */ psize = mmu_psize_defs[mmu_virtual_psize].shift; pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11); return pteg_count << 7; } #ifdef CONFIG_MEMORY_HOTPLUG int create_section_mapping(unsigned long start, unsigned long end) { return htab_bolt_mapping(start, end, __pa(start), pgprot_val(PAGE_KERNEL), mmu_linear_psize, mmu_kernel_ssize); } int remove_section_mapping(unsigned long start, unsigned long end) { int rc = htab_remove_mapping(start, end, mmu_linear_psize, mmu_kernel_ssize); WARN_ON(rc < 0); return rc; } #endif /* CONFIG_MEMORY_HOTPLUG */ static void __init htab_initialize(void) { unsigned long table; unsigned long pteg_count; unsigned long prot; unsigned long base = 0, size = 0, limit; struct memblock_region *reg; DBG(" -> htab_initialize()\n"); /* Initialize segment sizes */ htab_init_seg_sizes(); /* Initialize page sizes */ htab_init_page_sizes(); if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { mmu_kernel_ssize = MMU_SEGSIZE_1T; mmu_highuser_ssize = MMU_SEGSIZE_1T; printk(KERN_INFO "Using 1TB segments\n"); } /* * Calculate the required size of the htab. We want the number of * PTEGs to equal one half the number of real pages. */ htab_size_bytes = htab_get_table_size(); pteg_count = htab_size_bytes >> 7; htab_hash_mask = pteg_count - 1; if (firmware_has_feature(FW_FEATURE_LPAR)) { /* Using a hypervisor which owns the htab */ htab_address = NULL; _SDR1 = 0; #ifdef CONFIG_FA_DUMP /* * If firmware assisted dump is active firmware preserves * the contents of htab along with entire partition memory. * Clear the htab if firmware assisted dump is active so * that we dont end up using old mappings. */ if (is_fadump_active() && ppc_md.hpte_clear_all) ppc_md.hpte_clear_all(); #endif } else { /* Find storage for the HPT. Must be contiguous in * the absolute address space. On cell we want it to be * in the first 2 Gig so we can use it for IOMMU hacks. */ if (machine_is(cell)) limit = 0x80000000; else limit = MEMBLOCK_ALLOC_ANYWHERE; table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit); DBG("Hash table allocated at %lx, size: %lx\n", table, htab_size_bytes); htab_address = __va(table); /* htab absolute addr + encoded htabsize */ _SDR1 = table + __ilog2(pteg_count) - 11; /* Initialize the HPT with no entries */ memset((void *)table, 0, htab_size_bytes); /* Set SDR1 */ mtspr(SPRN_SDR1, _SDR1); } prot = pgprot_val(PAGE_KERNEL); #ifdef CONFIG_DEBUG_PAGEALLOC linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT; linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count, 1, ppc64_rma_size)); memset(linear_map_hash_slots, 0, linear_map_hash_count); #endif /* CONFIG_DEBUG_PAGEALLOC */ /* On U3 based machines, we need to reserve the DART area and * _NOT_ map it to avoid cache paradoxes as it's remapped non * cacheable later on */ /* create bolted the linear mapping in the hash table */ for_each_memblock(memory, reg) { base = (unsigned long)__va(reg->base); size = reg->size; DBG("creating mapping for region: %lx..%lx (prot: %lx)\n", base, size, prot); #ifdef CONFIG_U3_DART /* Do not map the DART space. Fortunately, it will be aligned * in such a way that it will not cross two memblock regions and * will fit within a single 16Mb page. * The DART space is assumed to be a full 16Mb region even if * we only use 2Mb of that space. We will use more of it later * for AGP GART. We have to use a full 16Mb large page. */ DBG("DART base: %lx\n", dart_tablebase); if (dart_tablebase != 0 && dart_tablebase >= base && dart_tablebase < (base + size)) { unsigned long dart_table_end = dart_tablebase + 16 * MB; if (base != dart_tablebase) BUG_ON(htab_bolt_mapping(base, dart_tablebase, __pa(base), prot, mmu_linear_psize, mmu_kernel_ssize)); if ((base + size) > dart_table_end) BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB, base + size, __pa(dart_table_end), prot, mmu_linear_psize, mmu_kernel_ssize)); continue; } #endif /* CONFIG_U3_DART */ BUG_ON(htab_bolt_mapping(base, base + size, __pa(base), prot, mmu_linear_psize, mmu_kernel_ssize)); } memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); /* * If we have a memory_limit and we've allocated TCEs then we need to * explicitly map the TCE area at the top of RAM. We also cope with the * case that the TCEs start below memory_limit. * tce_alloc_start/end are 16MB aligned so the mapping should work * for either 4K or 16MB pages. */ if (tce_alloc_start) { tce_alloc_start = (unsigned long)__va(tce_alloc_start); tce_alloc_end = (unsigned long)__va(tce_alloc_end); if (base + size >= tce_alloc_start) tce_alloc_start = base + size + 1; BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end, __pa(tce_alloc_start), prot, mmu_linear_psize, mmu_kernel_ssize)); } DBG(" <- htab_initialize()\n"); } #undef KB #undef MB void __init early_init_mmu(void) { /* Initialize the MMU Hash table and create the linear mapping * of memory. Has to be done before SLB initialization as this is * currently where the page size encoding is obtained. */ htab_initialize(); /* Initialize SLB management */ slb_initialize(); } #ifdef CONFIG_SMP void early_init_mmu_secondary(void) { /* Initialize hash table for that CPU */ if (!firmware_has_feature(FW_FEATURE_LPAR)) mtspr(SPRN_SDR1, _SDR1); /* Initialize SLB */ slb_initialize(); } #endif /* CONFIG_SMP */ /* * Called by asm hashtable.S for doing lazy icache flush */ unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap) { struct page *page; if (!pfn_valid(pte_pfn(pte))) return pp; page = pte_page(pte); /* page is dirty */ if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) { if (trap == 0x400) { flush_dcache_icache_page(page); set_bit(PG_arch_1, &page->flags); } else pp |= HPTE_R_N; } return pp; } #ifdef CONFIG_PPC_MM_SLICES static unsigned int get_paca_psize(unsigned long addr) { u64 lpsizes; unsigned char *hpsizes; unsigned long index, mask_index; if (addr < SLICE_LOW_TOP) { lpsizes = get_paca()->mm_ctx_low_slices_psize; index = GET_LOW_SLICE_INDEX(addr); return (lpsizes >> (index * 4)) & 0xF; } hpsizes = get_paca()->mm_ctx_high_slices_psize; index = GET_HIGH_SLICE_INDEX(addr); mask_index = index & 0x1; return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF; } #else unsigned int get_paca_psize(unsigned long addr) { return get_paca()->mm_ctx_user_psize; } #endif /* * Demote a segment to using 4k pages. * For now this makes the whole process use 4k pages. */ #ifdef CONFIG_PPC_64K_PAGES void demote_segment_4k(struct mm_struct *mm, unsigned long addr) { if (get_slice_psize(mm, addr) == MMU_PAGE_4K) return; slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K); copro_flush_all_slbs(mm); if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) { copy_mm_to_paca(&mm->context); slb_flush_and_rebolt(); } } #endif /* CONFIG_PPC_64K_PAGES */ #ifdef CONFIG_PPC_SUBPAGE_PROT /* * This looks up a 2-bit protection code for a 4k subpage of a 64k page. * Userspace sets the subpage permissions using the subpage_prot system call. * * Result is 0: full permissions, _PAGE_RW: read-only, * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access. */ static int subpage_protection(struct mm_struct *mm, unsigned long ea) { struct subpage_prot_table *spt = &mm->context.spt; u32 spp = 0; u32 **sbpm, *sbpp; if (ea >= spt->maxaddr) return 0; if (ea < 0x100000000UL) { /* addresses below 4GB use spt->low_prot */ sbpm = spt->low_prot; } else { sbpm = spt->protptrs[ea >> SBP_L3_SHIFT]; if (!sbpm) return 0; } sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)]; if (!sbpp) return 0; spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)]; /* extract 2-bit bitfield for this 4k subpage */ spp >>= 30 - 2 * ((ea >> 12) & 0xf); /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */ spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0); return spp; } #else /* CONFIG_PPC_SUBPAGE_PROT */ static inline int subpage_protection(struct mm_struct *mm, unsigned long ea) { return 0; } #endif void hash_failure_debug(unsigned long ea, unsigned long access, unsigned long vsid, unsigned long trap, int ssize, int psize, int lpsize, unsigned long pte) { if (!printk_ratelimit()) return; pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n", ea, access, current->comm); pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n", trap, vsid, ssize, psize, lpsize, pte); } static void check_paca_psize(unsigned long ea, struct mm_struct *mm, int psize, bool user_region) { if (user_region) { if (psize != get_paca_psize(ea)) { copy_mm_to_paca(&mm->context); slb_flush_and_rebolt(); } } else if (get_paca()->vmalloc_sllp != mmu_psize_defs[mmu_vmalloc_psize].sllp) { get_paca()->vmalloc_sllp = mmu_psize_defs[mmu_vmalloc_psize].sllp; slb_vmalloc_update(); } } /* Result code is: * 0 - handled * 1 - normal page fault * -1 - critical hash insertion error * -2 - access not permitted by subpage protection mechanism */ int hash_page_mm(struct mm_struct *mm, unsigned long ea, unsigned long access, unsigned long trap, unsigned long flags) { bool is_thp; enum ctx_state prev_state = exception_enter(); pgd_t *pgdir; unsigned long vsid; pte_t *ptep; unsigned hugeshift; const struct cpumask *tmp; int rc, user_region = 0; int psize, ssize; DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n", ea, access, trap); trace_hash_fault(ea, access, trap); /* Get region & vsid */ switch (REGION_ID(ea)) { case USER_REGION_ID: user_region = 1; if (! mm) { DBG_LOW(" user region with no mm !\n"); rc = 1; goto bail; } psize = get_slice_psize(mm, ea); ssize = user_segment_size(ea); vsid = get_vsid(mm->context.id, ea, ssize); break; case VMALLOC_REGION_ID: vsid = get_kernel_vsid(ea, mmu_kernel_ssize); if (ea < VMALLOC_END) psize = mmu_vmalloc_psize; else psize = mmu_io_psize; ssize = mmu_kernel_ssize; break; default: /* Not a valid range * Send the problem up to do_page_fault */ rc = 1; goto bail; } DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid); /* Bad address. */ if (!vsid) { DBG_LOW("Bad address!\n"); rc = 1; goto bail; } /* Get pgdir */ pgdir = mm->pgd; if (pgdir == NULL) { rc = 1; goto bail; } /* Check CPU locality */ tmp = cpumask_of(smp_processor_id()); if (user_region && cpumask_equal(mm_cpumask(mm), tmp)) flags |= HPTE_LOCAL_UPDATE; #ifndef CONFIG_PPC_64K_PAGES /* If we use 4K pages and our psize is not 4K, then we might * be hitting a special driver mapping, and need to align the * address before we fetch the PTE. * * It could also be a hugepage mapping, in which case this is * not necessary, but it's not harmful, either. */ if (psize != MMU_PAGE_4K) ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1); #endif /* CONFIG_PPC_64K_PAGES */ /* Get PTE and page size from page tables */ ptep = __find_linux_pte_or_hugepte(pgdir, ea, &is_thp, &hugeshift); if (ptep == NULL || !pte_present(*ptep)) { DBG_LOW(" no PTE !\n"); rc = 1; goto bail; } /* Add _PAGE_PRESENT to the required access perm */ access |= _PAGE_PRESENT; /* Pre-check access permissions (will be re-checked atomically * in __hash_page_XX but this pre-check is a fast path */ if (access & ~pte_val(*ptep)) { DBG_LOW(" no access !\n"); rc = 1; goto bail; } if (hugeshift) { if (is_thp) rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep, trap, flags, ssize, psize); #ifdef CONFIG_HUGETLB_PAGE else rc = __hash_page_huge(ea, access, vsid, ptep, trap, flags, ssize, hugeshift, psize); #else else { /* * if we have hugeshift, and is not transhuge with * hugetlb disabled, something is really wrong. */ rc = 1; WARN_ON(1); } #endif if (current->mm == mm) check_paca_psize(ea, mm, psize, user_region); goto bail; } #ifndef CONFIG_PPC_64K_PAGES DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep)); #else DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep), pte_val(*(ptep + PTRS_PER_PTE))); #endif /* Do actual hashing */ #ifdef CONFIG_PPC_64K_PAGES /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */ if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) { demote_segment_4k(mm, ea); psize = MMU_PAGE_4K; } /* If this PTE is non-cacheable and we have restrictions on * using non cacheable large pages, then we switch to 4k */ if (mmu_ci_restrictions && psize == MMU_PAGE_64K && (pte_val(*ptep) & _PAGE_NO_CACHE)) { if (user_region) { demote_segment_4k(mm, ea); psize = MMU_PAGE_4K; } else if (ea < VMALLOC_END) { /* * some driver did a non-cacheable mapping * in vmalloc space, so switch vmalloc * to 4k pages */ printk(KERN_ALERT "Reducing vmalloc segment " "to 4kB pages because of " "non-cacheable mapping\n"); psize = mmu_vmalloc_psize = MMU_PAGE_4K; copro_flush_all_slbs(mm); } } #endif /* CONFIG_PPC_64K_PAGES */ if (current->mm == mm) check_paca_psize(ea, mm, psize, user_region); #ifdef CONFIG_PPC_64K_PAGES if (psize == MMU_PAGE_64K) rc = __hash_page_64K(ea, access, vsid, ptep, trap, flags, ssize); else #endif /* CONFIG_PPC_64K_PAGES */ { int spp = subpage_protection(mm, ea); if (access & spp) rc = -2; else rc = __hash_page_4K(ea, access, vsid, ptep, trap, flags, ssize, spp); } /* Dump some info in case of hash insertion failure, they should * never happen so it is really useful to know if/when they do */ if (rc == -1) hash_failure_debug(ea, access, vsid, trap, ssize, psize, psize, pte_val(*ptep)); #ifndef CONFIG_PPC_64K_PAGES DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep)); #else DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep), pte_val(*(ptep + PTRS_PER_PTE))); #endif DBG_LOW(" -> rc=%d\n", rc); bail: exception_exit(prev_state); return rc; } EXPORT_SYMBOL_GPL(hash_page_mm); int hash_page(unsigned long ea, unsigned long access, unsigned long trap, unsigned long dsisr) { unsigned long flags = 0; struct mm_struct *mm = current->mm; if (REGION_ID(ea) == VMALLOC_REGION_ID) mm = &init_mm; if (dsisr & DSISR_NOHPTE) flags |= HPTE_NOHPTE_UPDATE; return hash_page_mm(mm, ea, access, trap, flags); } EXPORT_SYMBOL_GPL(hash_page); int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap, unsigned long dsisr) { unsigned long access = _PAGE_PRESENT; unsigned long flags = 0; struct mm_struct *mm = current->mm; if (REGION_ID(ea) == VMALLOC_REGION_ID) mm = &init_mm; if (dsisr & DSISR_NOHPTE) flags |= HPTE_NOHPTE_UPDATE; if (dsisr & DSISR_ISSTORE) access |= _PAGE_RW; /* * We need to set the _PAGE_USER bit if MSR_PR is set or if we are * accessing a userspace segment (even from the kernel). We assume * kernel addresses always have the high bit set. */ if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID)) access |= _PAGE_USER; if (trap == 0x400) access |= _PAGE_EXEC; return hash_page_mm(mm, ea, access, trap, flags); } void hash_preload(struct mm_struct *mm, unsigned long ea, unsigned long access, unsigned long trap) { int hugepage_shift; unsigned long vsid; pgd_t *pgdir; pte_t *ptep; unsigned long flags; int rc, ssize, update_flags = 0; BUG_ON(REGION_ID(ea) != USER_REGION_ID); #ifdef CONFIG_PPC_MM_SLICES /* We only prefault standard pages for now */ if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize)) return; #endif DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx," " trap=%lx\n", mm, mm->pgd, ea, access, trap); /* Get Linux PTE if available */ pgdir = mm->pgd; if (pgdir == NULL) return; /* Get VSID */ ssize = user_segment_size(ea); vsid = get_vsid(mm->context.id, ea, ssize); if (!vsid) return; /* * Hash doesn't like irqs. Walking linux page table with irq disabled * saves us from holding multiple locks. */ local_irq_save(flags); /* * THP pages use update_mmu_cache_pmd. We don't do * hash preload there. Hence can ignore THP here */ ptep = find_linux_pte_or_hugepte(pgdir, ea, NULL, &hugepage_shift); if (!ptep) goto out_exit; WARN_ON(hugepage_shift); #ifdef CONFIG_PPC_64K_PAGES /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on * a 64K kernel), then we don't preload, hash_page() will take * care of it once we actually try to access the page. * That way we don't have to duplicate all of the logic for segment * page size demotion here */ if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE)) goto out_exit; #endif /* CONFIG_PPC_64K_PAGES */ /* Is that local to this CPU ? */ if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id()))) update_flags |= HPTE_LOCAL_UPDATE; /* Hash it in */ #ifdef CONFIG_PPC_64K_PAGES if (mm->context.user_psize == MMU_PAGE_64K) rc = __hash_page_64K(ea, access, vsid, ptep, trap, update_flags, ssize); else #endif /* CONFIG_PPC_64K_PAGES */ rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags, ssize, subpage_protection(mm, ea)); /* Dump some info in case of hash insertion failure, they should * never happen so it is really useful to know if/when they do */ if (rc == -1) hash_failure_debug(ea, access, vsid, trap, ssize, mm->context.user_psize, mm->context.user_psize, pte_val(*ptep)); out_exit: local_irq_restore(flags); } /* WARNING: This is called from hash_low_64.S, if you change this prototype, * do not forget to update the assembly call site ! */ void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize, unsigned long flags) { unsigned long hash, index, shift, hidx, slot; int local = flags & HPTE_LOCAL_UPDATE; DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn); pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { hash = hpt_hash(vpn, shift, ssize); hidx = __rpte_to_hidx(pte, index); if (hidx & _PTEIDX_SECONDARY) hash = ~hash; slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; slot += hidx & _PTEIDX_GROUP_IX; DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx); /* * We use same base page size and actual psize, because we don't * use these functions for hugepage */ ppc_md.hpte_invalidate(slot, vpn, psize, psize, ssize, local); } pte_iterate_hashed_end(); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM /* Transactions are not aborted by tlbiel, only tlbie. * Without, syncing a page back to a block device w/ PIO could pick up * transactional data (bad!) so we force an abort here. Before the * sync the page will be made read-only, which will flush_hash_page. * BIG ISSUE here: if the kernel uses a page from userspace without * unmapping it first, it may see the speculated version. */ if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs && MSR_TM_ACTIVE(current->thread.regs->msr)) { tm_enable(); tm_abort(TM_CAUSE_TLBI); } #endif } #ifdef CONFIG_TRANSPARENT_HUGEPAGE void flush_hash_hugepage(unsigned long vsid, unsigned long addr, pmd_t *pmdp, unsigned int psize, int ssize, unsigned long flags) { int i, max_hpte_count, valid; unsigned long s_addr; unsigned char *hpte_slot_array; unsigned long hidx, shift, vpn, hash, slot; int local = flags & HPTE_LOCAL_UPDATE; s_addr = addr & HPAGE_PMD_MASK; hpte_slot_array = get_hpte_slot_array(pmdp); /* * IF we try to do a HUGE PTE update after a withdraw is done. * we will find the below NULL. This happens when we do * split_huge_page_pmd */ if (!hpte_slot_array) return; if (ppc_md.hugepage_invalidate) { ppc_md.hugepage_invalidate(vsid, s_addr, hpte_slot_array, psize, ssize, local); goto tm_abort; } /* * No bluk hpte removal support, invalidate each entry */ shift = mmu_psize_defs[psize].shift; max_hpte_count = HPAGE_PMD_SIZE >> shift; for (i = 0; i < max_hpte_count; i++) { /* * 8 bits per each hpte entries * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit] */ valid = hpte_valid(hpte_slot_array, i); if (!valid) continue; hidx = hpte_hash_index(hpte_slot_array, i); /* get the vpn */ addr = s_addr + (i * (1ul << shift)); vpn = hpt_vpn(addr, vsid, ssize); hash = hpt_hash(vpn, shift, ssize); if (hidx & _PTEIDX_SECONDARY) hash = ~hash; slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; slot += hidx & _PTEIDX_GROUP_IX; ppc_md.hpte_invalidate(slot, vpn, psize, MMU_PAGE_16M, ssize, local); } tm_abort: #ifdef CONFIG_PPC_TRANSACTIONAL_MEM /* Transactions are not aborted by tlbiel, only tlbie. * Without, syncing a page back to a block device w/ PIO could pick up * transactional data (bad!) so we force an abort here. Before the * sync the page will be made read-only, which will flush_hash_page. * BIG ISSUE here: if the kernel uses a page from userspace without * unmapping it first, it may see the speculated version. */ if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs && MSR_TM_ACTIVE(current->thread.regs->msr)) { tm_enable(); tm_abort(TM_CAUSE_TLBI); } #endif return; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ void flush_hash_range(unsigned long number, int local) { if (ppc_md.flush_hash_range) ppc_md.flush_hash_range(number, local); else { int i; struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); for (i = 0; i < number; i++) flush_hash_page(batch->vpn[i], batch->pte[i], batch->psize, batch->ssize, local); } } /* * low_hash_fault is called when we the low level hash code failed * to instert a PTE due to an hypervisor error */ void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc) { enum ctx_state prev_state = exception_enter(); if (user_mode(regs)) { #ifdef CONFIG_PPC_SUBPAGE_PROT if (rc == -2) _exception(SIGSEGV, regs, SEGV_ACCERR, address); else #endif _exception(SIGBUS, regs, BUS_ADRERR, address); } else bad_page_fault(regs, address, SIGBUS); exception_exit(prev_state); } long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa, unsigned long rflags, unsigned long vflags, int psize, int ssize) { unsigned long hpte_group; long slot; repeat: hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL; /* Insert into the hash table, primary slot */ slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags, psize, psize, ssize); /* Primary is full, try the secondary */ if (unlikely(slot == -1)) { hpte_group = ((~hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL; slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags | HPTE_V_SECONDARY, psize, psize, ssize); if (slot == -1) { if (mftb() & 0x1) hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP)&~0x7UL; ppc_md.hpte_remove(hpte_group); goto repeat; } } return slot; } #ifdef CONFIG_DEBUG_PAGEALLOC static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi) { unsigned long hash; unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL)); long ret; hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); /* Don't create HPTE entries for bad address */ if (!vsid) return; ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode, HPTE_V_BOLTED, mmu_linear_psize, mmu_kernel_ssize); BUG_ON (ret < 0); spin_lock(&linear_map_hash_lock); BUG_ON(linear_map_hash_slots[lmi] & 0x80); linear_map_hash_slots[lmi] = ret | 0x80; spin_unlock(&linear_map_hash_lock); } static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi) { unsigned long hash, hidx, slot; unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); spin_lock(&linear_map_hash_lock); BUG_ON(!(linear_map_hash_slots[lmi] & 0x80)); hidx = linear_map_hash_slots[lmi] & 0x7f; linear_map_hash_slots[lmi] = 0; spin_unlock(&linear_map_hash_lock); if (hidx & _PTEIDX_SECONDARY) hash = ~hash; slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; slot += hidx & _PTEIDX_GROUP_IX; ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_linear_psize, mmu_kernel_ssize, 0); } void __kernel_map_pages(struct page *page, int numpages, int enable) { unsigned long flags, vaddr, lmi; int i; local_irq_save(flags); for (i = 0; i < numpages; i++, page++) { vaddr = (unsigned long)page_address(page); lmi = __pa(vaddr) >> PAGE_SHIFT; if (lmi >= linear_map_hash_count) continue; if (enable) kernel_map_linear_page(vaddr, lmi); else kernel_unmap_linear_page(vaddr, lmi); } local_irq_restore(flags); } #endif /* CONFIG_DEBUG_PAGEALLOC */ void setup_initial_memory_limit(phys_addr_t first_memblock_base, phys_addr_t first_memblock_size) { /* We don't currently support the first MEMBLOCK not mapping 0 * physical on those processors */ BUG_ON(first_memblock_base != 0); /* On LPAR systems, the first entry is our RMA region, * non-LPAR 64-bit hash MMU systems don't have a limitation * on real mode access, but using the first entry works well * enough. We also clamp it to 1G to avoid some funky things * such as RTAS bugs etc... */ ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000); /* Finally limit subsequent allocations */ memblock_set_current_limit(ppc64_rma_size); }