/* * Copyright (C) 2015 Broadcom * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /** * DOC: VC4 CRTC module * * In VC4, the Pixel Valve is what most closely corresponds to the * DRM's concept of a CRTC. The PV generates video timings from the * output's clock plus its configuration. It pulls scaled pixels from * the HVS at that timing, and feeds it to the encoder. * * However, the DRM CRTC also collects the configuration of all the * DRM planes attached to it. As a result, this file also manages * setup of the VC4 HVS's display elements on the CRTC. * * The 2835 has 3 different pixel valves. pv0 in the audio power * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the * image domain can feed either HDMI or the SDTV controller. The * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for * SDTV, etc.) according to which output type is chosen in the mux. * * For power management, the pixel valve's registers are all clocked * by the AXI clock, while the timings and FIFOs make use of the * output-specific clock. Since the encoders also directly consume * the CPRMAN clocks, and know what timings they need, they are the * ones that set the clock. */ #include "drm_atomic.h" #include "drm_atomic_helper.h" #include "drm_crtc_helper.h" #include "linux/clk.h" #include "drm_fb_cma_helper.h" #include "linux/component.h" #include "linux/of_device.h" #include "vc4_drv.h" #include "vc4_regs.h" struct vc4_crtc { struct drm_crtc base; const struct vc4_crtc_data *data; void __iomem *regs; /* Timestamp at start of vblank irq - unaffected by lock delays. */ ktime_t t_vblank; /* Which HVS channel we're using for our CRTC. */ int channel; u8 lut_r[256]; u8 lut_g[256]; u8 lut_b[256]; /* Size in pixels of the COB memory allocated to this CRTC. */ u32 cob_size; struct drm_pending_vblank_event *event; }; struct vc4_crtc_state { struct drm_crtc_state base; /* Dlist area for this CRTC configuration. */ struct drm_mm_node mm; }; static inline struct vc4_crtc * to_vc4_crtc(struct drm_crtc *crtc) { return (struct vc4_crtc *)crtc; } static inline struct vc4_crtc_state * to_vc4_crtc_state(struct drm_crtc_state *crtc_state) { return (struct vc4_crtc_state *)crtc_state; } struct vc4_crtc_data { /* Which channel of the HVS this pixelvalve sources from. */ int hvs_channel; enum vc4_encoder_type encoder0_type; enum vc4_encoder_type encoder1_type; }; #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) #define CRTC_REG(reg) { reg, #reg } static const struct { u32 reg; const char *name; } crtc_regs[] = { CRTC_REG(PV_CONTROL), CRTC_REG(PV_V_CONTROL), CRTC_REG(PV_VSYNCD_EVEN), CRTC_REG(PV_HORZA), CRTC_REG(PV_HORZB), CRTC_REG(PV_VERTA), CRTC_REG(PV_VERTB), CRTC_REG(PV_VERTA_EVEN), CRTC_REG(PV_VERTB_EVEN), CRTC_REG(PV_INTEN), CRTC_REG(PV_INTSTAT), CRTC_REG(PV_STAT), CRTC_REG(PV_HACT_ACT), }; static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) { int i; for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { DRM_INFO("0x%04x (%s): 0x%08x\n", crtc_regs[i].reg, crtc_regs[i].name, CRTC_READ(crtc_regs[i].reg)); } } #ifdef CONFIG_DEBUG_FS int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct drm_device *dev = node->minor->dev; int crtc_index = (uintptr_t)node->info_ent->data; struct drm_crtc *crtc; struct vc4_crtc *vc4_crtc; int i; i = 0; list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { if (i == crtc_index) break; i++; } if (!crtc) return 0; vc4_crtc = to_vc4_crtc(crtc); for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { seq_printf(m, "%s (0x%04x): 0x%08x\n", crtc_regs[i].name, crtc_regs[i].reg, CRTC_READ(crtc_regs[i].reg)); } return 0; } #endif int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, unsigned int flags, int *vpos, int *hpos, ktime_t *stime, ktime_t *etime, const struct drm_display_mode *mode) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; u32 val; int fifo_lines; int vblank_lines; int ret = 0; /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ /* Get optional system timestamp before query. */ if (stime) *stime = ktime_get(); /* * Read vertical scanline which is currently composed for our * pixelvalve by the HVS, and also the scaler status. */ val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); /* Get optional system timestamp after query. */ if (etime) *etime = ktime_get(); /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ /* Vertical position of hvs composed scanline. */ *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); *hpos = 0; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { *vpos /= 2; /* Use hpos to correct for field offset in interlaced mode. */ if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) *hpos += mode->crtc_htotal / 2; } /* This is the offset we need for translating hvs -> pv scanout pos. */ fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; if (fifo_lines > 0) ret |= DRM_SCANOUTPOS_VALID; /* HVS more than fifo_lines into frame for compositing? */ if (*vpos > fifo_lines) { /* * We are in active scanout and can get some meaningful results * from HVS. The actual PV scanout can not trail behind more * than fifo_lines as that is the fifo's capacity. Assume that * in active scanout the HVS and PV work in lockstep wrt. HVS * refilling the fifo and PV consuming from the fifo, ie. * whenever the PV consumes and frees up a scanline in the * fifo, the HVS will immediately refill it, therefore * incrementing vpos. Therefore we choose HVS read position - * fifo size in scanlines as a estimate of the real scanout * position of the PV. */ *vpos -= fifo_lines + 1; ret |= DRM_SCANOUTPOS_ACCURATE; return ret; } /* * Less: This happens when we are in vblank and the HVS, after getting * the VSTART restart signal from the PV, just started refilling its * fifo with new lines from the top-most lines of the new framebuffers. * The PV does not scan out in vblank, so does not remove lines from * the fifo, so the fifo will be full quickly and the HVS has to pause. * We can't get meaningful readings wrt. scanline position of the PV * and need to make things up in a approximative but consistent way. */ ret |= DRM_SCANOUTPOS_IN_VBLANK; vblank_lines = mode->vtotal - mode->vdisplay; if (flags & DRM_CALLED_FROM_VBLIRQ) { /* * Assume the irq handler got called close to first * line of vblank, so PV has about a full vblank * scanlines to go, and as a base timestamp use the * one taken at entry into vblank irq handler, so it * is not affected by random delays due to lock * contention on event_lock or vblank_time lock in * the core. */ *vpos = -vblank_lines; if (stime) *stime = vc4_crtc->t_vblank; if (etime) *etime = vc4_crtc->t_vblank; /* * If the HVS fifo is not yet full then we know for certain * we are at the very beginning of vblank, as the hvs just * started refilling, and the stime and etime timestamps * truly correspond to start of vblank. */ if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL) ret |= DRM_SCANOUTPOS_ACCURATE; } else { /* * No clue where we are inside vblank. Return a vpos of zero, * which will cause calling code to just return the etime * timestamp uncorrected. At least this is no worse than the * standard fallback. */ *vpos = 0; } return ret; } int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id, int *max_error, struct timeval *vblank_time, unsigned flags) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; struct drm_crtc *crtc = &vc4_crtc->base; struct drm_crtc_state *state = crtc->state; /* Helper routine in DRM core does all the work: */ return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error, vblank_time, flags, &state->adjusted_mode); } static void vc4_crtc_destroy(struct drm_crtc *crtc) { drm_crtc_cleanup(crtc); } static void vc4_crtc_lut_load(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); u32 i; /* The LUT memory is laid out with each HVS channel in order, * each of which takes 256 writes for R, 256 for G, then 256 * for B. */ HVS_WRITE(SCALER_GAMADDR, SCALER_GAMADDR_AUTOINC | (vc4_crtc->channel * 3 * crtc->gamma_size)); for (i = 0; i < crtc->gamma_size; i++) HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); for (i = 0; i < crtc->gamma_size; i++) HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); for (i = 0; i < crtc->gamma_size; i++) HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); } static int vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t size) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); u32 i; for (i = 0; i < size; i++) { vc4_crtc->lut_r[i] = r[i] >> 8; vc4_crtc->lut_g[i] = g[i] >> 8; vc4_crtc->lut_b[i] = b[i] >> 8; } vc4_crtc_lut_load(crtc); return 0; } static u32 vc4_get_fifo_full_level(u32 format) { static const u32 fifo_len_bytes = 64; static const u32 hvs_latency_pix = 6; switch (format) { case PV_CONTROL_FORMAT_DSIV_16: case PV_CONTROL_FORMAT_DSIC_16: return fifo_len_bytes - 2 * hvs_latency_pix; case PV_CONTROL_FORMAT_DSIV_18: return fifo_len_bytes - 14; case PV_CONTROL_FORMAT_24: case PV_CONTROL_FORMAT_DSIV_24: default: return fifo_len_bytes - 3 * hvs_latency_pix; } } /* * Returns the clock select bit for the connector attached to the * CRTC. */ static int vc4_get_clock_select(struct drm_crtc *crtc) { struct drm_connector *connector; drm_for_each_connector(connector, crtc->dev) { if (connector->state->crtc == crtc) { struct drm_encoder *encoder = connector->encoder; struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); return vc4_encoder->clock_select; } } return -1; } static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_crtc_state *state = crtc->state; struct drm_display_mode *mode = &state->adjusted_mode; bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; u32 format = PV_CONTROL_FORMAT_24; bool debug_dump_regs = false; int clock_select = vc4_get_clock_select(crtc); if (debug_dump_regs) { DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); vc4_crtc_dump_regs(vc4_crtc); } /* Reset the PV fifo. */ CRTC_WRITE(PV_CONTROL, 0); CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); CRTC_WRITE(PV_CONTROL, 0); CRTC_WRITE(PV_HORZA, VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep, PV_HORZA_HBP) | VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep, PV_HORZA_HSYNC)); CRTC_WRITE(PV_HORZB, VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep, PV_HORZB_HFP) | VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); CRTC_WRITE(PV_VERTA, VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, PV_VERTA_VBP) | VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, PV_VERTA_VSYNC)); CRTC_WRITE(PV_VERTB, VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, PV_VERTB_VFP) | VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); if (interlace) { CRTC_WRITE(PV_VERTA_EVEN, VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end - 1, PV_VERTA_VBP) | VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, PV_VERTA_VSYNC)); CRTC_WRITE(PV_VERTB_EVEN, VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, PV_VERTB_VFP) | VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); /* We set up first field even mode for HDMI. VEC's * NTSC mode would want first field odd instead, once * we support it (to do so, set ODD_FIRST and put the * delay in VSYNCD_EVEN instead). */ CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS | PV_VCONTROL_INTERLACE | VC4_SET_FIELD(mode->htotal * pixel_rep / 2, PV_VCONTROL_ODD_DELAY)); CRTC_WRITE(PV_VSYNCD_EVEN, 0); } else { CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS); } CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); CRTC_WRITE(PV_CONTROL, VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | VC4_SET_FIELD(vc4_get_fifo_full_level(format), PV_CONTROL_FIFO_LEVEL) | VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | PV_CONTROL_CLR_AT_START | PV_CONTROL_TRIGGER_UNDERFLOW | PV_CONTROL_WAIT_HSTART | VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) | PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), SCALER_DISPBKGND_AUTOHS | SCALER_DISPBKGND_GAMMA | (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); /* Reload the LUT, since the SRAMs would have been disabled if * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. */ vc4_crtc_lut_load(crtc); if (debug_dump_regs) { DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); vc4_crtc_dump_regs(vc4_crtc); } } static void require_hvs_enabled(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != SCALER_DISPCTRL_ENABLE); } static void vc4_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); u32 chan = vc4_crtc->channel; int ret; require_hvs_enabled(dev); /* Disable vblank irq handling before crtc is disabled. */ drm_crtc_vblank_off(crtc); CRTC_WRITE(PV_V_CONTROL, CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE) { HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET); /* While the docs say that reset is self-clearing, it * seems it doesn't actually. */ HVS_WRITE(SCALER_DISPCTRLX(chan), 0); } /* Once we leave, the scaler should be disabled and its fifo empty. */ WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), SCALER_DISPSTATX_MODE) != SCALER_DISPSTATX_MODE_DISABLED); WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != SCALER_DISPSTATX_EMPTY); } static void vc4_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_crtc_state *state = crtc->state; struct drm_display_mode *mode = &state->adjusted_mode; require_hvs_enabled(dev); /* Turn on the scaler, which will wait for vstart to start * compositing. */ HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | SCALER_DISPCTRLX_ENABLE); /* Turn on the pixel valve, which will emit the vstart signal. */ CRTC_WRITE(PV_V_CONTROL, CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); /* Enable vblank irq handling after crtc is started. */ drm_crtc_vblank_on(crtc); } static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { /* Do not allow doublescan modes from user space */ if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) { DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", crtc->base.id); return false; } return true; } static int vc4_crtc_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_plane *plane; unsigned long flags; const struct drm_plane_state *plane_state; u32 dlist_count = 0; int ret; /* The pixelvalve can only feed one encoder (and encoders are * 1:1 with connectors.) */ if (hweight32(state->connector_mask) > 1) return -EINVAL; drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) dlist_count += vc4_plane_dlist_size(plane_state); dlist_count++; /* Account for SCALER_CTL0_END. */ spin_lock_irqsave(&vc4->hvs->mm_lock, flags); ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, dlist_count, 1, 0); spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); if (ret) return ret; return 0; } static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); struct drm_plane *plane; bool debug_dump_regs = false; u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; u32 __iomem *dlist_next = dlist_start; if (debug_dump_regs) { DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); vc4_hvs_dump_state(dev); } /* Copy all the active planes' dlist contents to the hardware dlist. */ drm_atomic_crtc_for_each_plane(plane, crtc) { dlist_next += vc4_plane_write_dlist(plane, dlist_next); } writel(SCALER_CTL0_END, dlist_next); dlist_next++; WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); if (crtc->state->event) { unsigned long flags; crtc->state->event->pipe = drm_crtc_index(crtc); WARN_ON(drm_crtc_vblank_get(crtc) != 0); spin_lock_irqsave(&dev->event_lock, flags); vc4_crtc->event = crtc->state->event; crtc->state->event = NULL; HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), vc4_state->mm.start); spin_unlock_irqrestore(&dev->event_lock, flags); } else { HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), vc4_state->mm.start); } if (debug_dump_regs) { DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); vc4_hvs_dump_state(dev); } } int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); return 0; } void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; CRTC_WRITE(PV_INTEN, 0); } /* Must be called with the event lock held */ bool vc4_event_pending(struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); return !!vc4_crtc->event; } static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) { struct drm_crtc *crtc = &vc4_crtc->base; struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); u32 chan = vc4_crtc->channel; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (vc4_crtc->event && (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) { drm_crtc_send_vblank_event(crtc, vc4_crtc->event); vc4_crtc->event = NULL; drm_crtc_vblank_put(crtc); } spin_unlock_irqrestore(&dev->event_lock, flags); } static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) { struct vc4_crtc *vc4_crtc = data; u32 stat = CRTC_READ(PV_INTSTAT); irqreturn_t ret = IRQ_NONE; if (stat & PV_INT_VFP_START) { vc4_crtc->t_vblank = ktime_get(); CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); drm_crtc_handle_vblank(&vc4_crtc->base); vc4_crtc_handle_page_flip(vc4_crtc); ret = IRQ_HANDLED; } return ret; } struct vc4_async_flip_state { struct drm_crtc *crtc; struct drm_framebuffer *fb; struct drm_pending_vblank_event *event; struct vc4_seqno_cb cb; }; /* Called when the V3D execution for the BO being flipped to is done, so that * we can actually update the plane's address to point to it. */ static void vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) { struct vc4_async_flip_state *flip_state = container_of(cb, struct vc4_async_flip_state, cb); struct drm_crtc *crtc = flip_state->crtc; struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_plane *plane = crtc->primary; vc4_plane_async_set_fb(plane, flip_state->fb); if (flip_state->event) { unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); drm_crtc_send_vblank_event(crtc, flip_state->event); spin_unlock_irqrestore(&dev->event_lock, flags); } drm_crtc_vblank_put(crtc); drm_framebuffer_unreference(flip_state->fb); kfree(flip_state); up(&vc4->async_modeset); } /* Implements async (non-vblank-synced) page flips. * * The page flip ioctl needs to return immediately, so we grab the * modeset semaphore on the pipe, and queue the address update for * when V3D is done with the BO being flipped to. */ static int vc4_async_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_plane *plane = crtc->primary; int ret = 0; struct vc4_async_flip_state *flip_state; struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); if (!flip_state) return -ENOMEM; drm_framebuffer_reference(fb); flip_state->fb = fb; flip_state->crtc = crtc; flip_state->event = event; /* Make sure all other async modesetes have landed. */ ret = down_interruptible(&vc4->async_modeset); if (ret) { drm_framebuffer_unreference(fb); kfree(flip_state); return ret; } WARN_ON(drm_crtc_vblank_get(crtc) != 0); /* Immediately update the plane's legacy fb pointer, so that later * modeset prep sees the state that will be present when the semaphore * is released. */ drm_atomic_set_fb_for_plane(plane->state, fb); plane->fb = fb; vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, vc4_async_page_flip_complete); /* Driver takes ownership of state on successful async commit. */ return 0; } static int vc4_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags) { if (flags & DRM_MODE_PAGE_FLIP_ASYNC) return vc4_async_page_flip(crtc, fb, event, flags); else return drm_atomic_helper_page_flip(crtc, fb, event, flags); } static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) { struct vc4_crtc_state *vc4_state; vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); if (!vc4_state) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); return &vc4_state->base; } static void vc4_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); if (vc4_state->mm.allocated) { unsigned long flags; spin_lock_irqsave(&vc4->hvs->mm_lock, flags); drm_mm_remove_node(&vc4_state->mm); spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); } __drm_atomic_helper_crtc_destroy_state(state); } static const struct drm_crtc_funcs vc4_crtc_funcs = { .set_config = drm_atomic_helper_set_config, .destroy = vc4_crtc_destroy, .page_flip = vc4_page_flip, .set_property = NULL, .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ .reset = drm_atomic_helper_crtc_reset, .atomic_duplicate_state = vc4_crtc_duplicate_state, .atomic_destroy_state = vc4_crtc_destroy_state, .gamma_set = vc4_crtc_gamma_set, }; static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { .mode_set_nofb = vc4_crtc_mode_set_nofb, .disable = vc4_crtc_disable, .enable = vc4_crtc_enable, .mode_fixup = vc4_crtc_mode_fixup, .atomic_check = vc4_crtc_atomic_check, .atomic_flush = vc4_crtc_atomic_flush, }; static const struct vc4_crtc_data pv0_data = { .hvs_channel = 0, .encoder0_type = VC4_ENCODER_TYPE_DSI0, .encoder1_type = VC4_ENCODER_TYPE_DPI, }; static const struct vc4_crtc_data pv1_data = { .hvs_channel = 2, .encoder0_type = VC4_ENCODER_TYPE_DSI1, .encoder1_type = VC4_ENCODER_TYPE_SMI, }; static const struct vc4_crtc_data pv2_data = { .hvs_channel = 1, .encoder0_type = VC4_ENCODER_TYPE_VEC, .encoder1_type = VC4_ENCODER_TYPE_HDMI, }; static const struct of_device_id vc4_crtc_dt_match[] = { { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, {} }; static void vc4_set_crtc_possible_masks(struct drm_device *drm, struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_encoder *encoder; drm_for_each_encoder(encoder, drm) { struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); if (vc4_encoder->type == vc4_crtc->data->encoder0_type) { vc4_encoder->clock_select = 0; encoder->possible_crtcs |= drm_crtc_mask(crtc); } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) { vc4_encoder->clock_select = 1; encoder->possible_crtcs |= drm_crtc_mask(crtc); } } } static void vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) { struct drm_device *drm = vc4_crtc->base.dev; struct vc4_dev *vc4 = to_vc4_dev(drm); u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); /* Top/base are supposed to be 4-pixel aligned, but the * Raspberry Pi firmware fills the low bits (which are * presumably ignored). */ u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; vc4_crtc->cob_size = top - base + 4; } static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = dev_get_drvdata(master); struct vc4_dev *vc4 = to_vc4_dev(drm); struct vc4_crtc *vc4_crtc; struct drm_crtc *crtc; struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; const struct of_device_id *match; int ret, i; vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); if (!vc4_crtc) return -ENOMEM; crtc = &vc4_crtc->base; match = of_match_device(vc4_crtc_dt_match, dev); if (!match) return -ENODEV; vc4_crtc->data = match->data; vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); if (IS_ERR(vc4_crtc->regs)) return PTR_ERR(vc4_crtc->regs); /* For now, we create just the primary and the legacy cursor * planes. We should be able to stack more planes on easily, * but to do that we would need to compute the bandwidth * requirement of the plane configuration, and reject ones * that will take too much. */ primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); if (IS_ERR(primary_plane)) { dev_err(dev, "failed to construct primary plane\n"); ret = PTR_ERR(primary_plane); goto err; } drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, &vc4_crtc_funcs, NULL); drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); primary_plane->crtc = crtc; vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc; vc4_crtc->channel = vc4_crtc->data->hvs_channel; drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); /* Set up some arbitrary number of planes. We're not limited * by a set number of physical registers, just the space in * the HVS (16k) and how small an plane can be (28 bytes). * However, each plane we set up takes up some memory, and * increases the cost of looping over planes, which atomic * modesetting does quite a bit. As a result, we pick a * modest number of planes to expose, that should hopefully * still cover any sane usecase. */ for (i = 0; i < 8; i++) { struct drm_plane *plane = vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); if (IS_ERR(plane)) continue; plane->possible_crtcs = 1 << drm_crtc_index(crtc); } /* Set up the legacy cursor after overlay initialization, * since we overlay planes on the CRTC in the order they were * initialized. */ cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); if (!IS_ERR(cursor_plane)) { cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc); cursor_plane->crtc = crtc; crtc->cursor = cursor_plane; } vc4_crtc_get_cob_allocation(vc4_crtc); CRTC_WRITE(PV_INTEN, 0); CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); ret = devm_request_irq(dev, platform_get_irq(pdev, 0), vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); if (ret) goto err_destroy_planes; vc4_set_crtc_possible_masks(drm, crtc); for (i = 0; i < crtc->gamma_size; i++) { vc4_crtc->lut_r[i] = i; vc4_crtc->lut_g[i] = i; vc4_crtc->lut_b[i] = i; } platform_set_drvdata(pdev, vc4_crtc); return 0; err_destroy_planes: list_for_each_entry_safe(destroy_plane, temp, &drm->mode_config.plane_list, head) { if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc)) destroy_plane->funcs->destroy(destroy_plane); } err: return ret; } static void vc4_crtc_unbind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); vc4_crtc_destroy(&vc4_crtc->base); CRTC_WRITE(PV_INTEN, 0); platform_set_drvdata(pdev, NULL); } static const struct component_ops vc4_crtc_ops = { .bind = vc4_crtc_bind, .unbind = vc4_crtc_unbind, }; static int vc4_crtc_dev_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &vc4_crtc_ops); } static int vc4_crtc_dev_remove(struct platform_device *pdev) { component_del(&pdev->dev, &vc4_crtc_ops); return 0; } struct platform_driver vc4_crtc_driver = { .probe = vc4_crtc_dev_probe, .remove = vc4_crtc_dev_remove, .driver = { .name = "vc4_crtc", .of_match_table = vc4_crtc_dt_match, }, };