/* * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. * Copyright (c) 2016-2017, Dave Watson . All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef _TLS_OFFLOAD_H #define _TLS_OFFLOAD_H #include #include #include #include #include #include #include #include #include #include #include #include /* Maximum data size carried in a TLS record */ #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) #define TLS_HEADER_SIZE 5 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) #define TLS_RECORD_TYPE_DATA 0x17 #define TLS_AAD_SPACE_SIZE 13 #define TLS_DEVICE_NAME_MAX 32 #define MAX_IV_SIZE 16 #define TLS_MAX_REC_SEQ_SIZE 8 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes. * * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] * * The field 'length' is encoded in field 'b0' as '(length width - 1)'. * Hence b0 contains (3 - 1) = 2. */ #define TLS_AES_CCM_IV_B0_BYTE 2 /* * This structure defines the routines for Inline TLS driver. * The following routines are optional and filled with a * null pointer if not defined. * * @name: Its the name of registered Inline tls device * @dev_list: Inline tls device list * int (*feature)(struct tls_device *device); * Called to return Inline TLS driver capability * * int (*hash)(struct tls_device *device, struct sock *sk); * This function sets Inline driver for listen and program * device specific functioanlity as required * * void (*unhash)(struct tls_device *device, struct sock *sk); * This function cleans listen state set by Inline TLS driver * * void (*release)(struct kref *kref); * Release the registered device and allocated resources * @kref: Number of reference to tls_device */ struct tls_device { char name[TLS_DEVICE_NAME_MAX]; struct list_head dev_list; int (*feature)(struct tls_device *device); int (*hash)(struct tls_device *device, struct sock *sk); void (*unhash)(struct tls_device *device, struct sock *sk); void (*release)(struct kref *kref); struct kref kref; }; enum { TLS_BASE, TLS_SW, TLS_HW, TLS_HW_RECORD, TLS_NUM_CONFIG, }; /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages * allocated or mapped for each TLS record. After encryption, the records are * stores in a linked list. */ struct tls_rec { struct list_head list; int tx_ready; int tx_flags; int inplace_crypto; struct sk_msg msg_plaintext; struct sk_msg msg_encrypted; /* AAD | msg_plaintext.sg.data | sg_tag */ struct scatterlist sg_aead_in[2]; /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ struct scatterlist sg_aead_out[2]; char content_type; struct scatterlist sg_content_type; char aad_space[TLS_AAD_SPACE_SIZE]; u8 iv_data[MAX_IV_SIZE]; struct aead_request aead_req; u8 aead_req_ctx[]; }; struct tls_msg { struct strp_msg rxm; u8 control; }; struct tx_work { struct delayed_work work; struct sock *sk; }; struct tls_sw_context_tx { struct crypto_aead *aead_send; struct crypto_wait async_wait; struct tx_work tx_work; struct tls_rec *open_rec; struct list_head tx_list; atomic_t encrypt_pending; int async_notify; int async_capable; #define BIT_TX_SCHEDULED 0 #define BIT_TX_CLOSING 1 unsigned long tx_bitmask; }; struct tls_sw_context_rx { struct crypto_aead *aead_recv; struct crypto_wait async_wait; struct strparser strp; struct sk_buff_head rx_list; /* list of decrypted 'data' records */ void (*saved_data_ready)(struct sock *sk); struct sk_buff *recv_pkt; u8 control; int async_capable; bool decrypted; atomic_t decrypt_pending; bool async_notify; }; struct tls_record_info { struct list_head list; u32 end_seq; int len; int num_frags; skb_frag_t frags[MAX_SKB_FRAGS]; }; struct tls_offload_context_tx { struct crypto_aead *aead_send; spinlock_t lock; /* protects records list */ struct list_head records_list; struct tls_record_info *open_record; struct tls_record_info *retransmit_hint; u64 hint_record_sn; u64 unacked_record_sn; struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; void (*sk_destruct)(struct sock *sk); u8 driver_state[] __aligned(8); /* The TLS layer reserves room for driver specific state * Currently the belief is that there is not enough * driver specific state to justify another layer of indirection */ #define TLS_DRIVER_STATE_SIZE_TX 16 }; #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) enum tls_context_flags { TLS_RX_SYNC_RUNNING = 0, /* Unlike RX where resync is driven entirely by the core in TX only * the driver knows when things went out of sync, so we need the flag * to be atomic. */ TLS_TX_SYNC_SCHED = 1, }; struct cipher_context { char *iv; char *rec_seq; }; union tls_crypto_context { struct tls_crypto_info info; union { struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; }; }; struct tls_prot_info { u16 version; u16 cipher_type; u16 prepend_size; u16 tag_size; u16 overhead_size; u16 iv_size; u16 salt_size; u16 rec_seq_size; u16 aad_size; u16 tail_size; }; struct tls_context { /* read-only cache line */ struct tls_prot_info prot_info; u8 tx_conf:3; u8 rx_conf:3; int (*push_pending_record)(struct sock *sk, int flags); void (*sk_write_space)(struct sock *sk); void *priv_ctx_tx; void *priv_ctx_rx; struct net_device *netdev; /* rw cache line */ struct cipher_context tx; struct cipher_context rx; struct scatterlist *partially_sent_record; u16 partially_sent_offset; bool in_tcp_sendpages; bool pending_open_record_frags; unsigned long flags; /* cache cold stuff */ struct proto *sk_proto; void (*sk_destruct)(struct sock *sk); void (*sk_proto_close)(struct sock *sk, long timeout); int (*setsockopt)(struct sock *sk, int level, int optname, char __user *optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); int (*hash)(struct sock *sk); void (*unhash)(struct sock *sk); union tls_crypto_context crypto_send; union tls_crypto_context crypto_recv; struct list_head list; refcount_t refcount; struct rcu_head rcu; }; enum tls_offload_ctx_dir { TLS_OFFLOAD_CTX_DIR_RX, TLS_OFFLOAD_CTX_DIR_TX, }; struct tlsdev_ops { int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, enum tls_offload_ctx_dir direction, struct tls_crypto_info *crypto_info, u32 start_offload_tcp_sn); void (*tls_dev_del)(struct net_device *netdev, struct tls_context *ctx, enum tls_offload_ctx_dir direction); int (*tls_dev_resync)(struct net_device *netdev, struct sock *sk, u32 seq, u8 *rcd_sn, enum tls_offload_ctx_dir direction); }; enum tls_offload_sync_type { TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, }; #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 struct tls_offload_context_rx { /* sw must be the first member of tls_offload_context_rx */ struct tls_sw_context_rx sw; enum tls_offload_sync_type resync_type; /* this member is set regardless of resync_type, to avoid branches */ u8 resync_nh_reset:1; /* CORE_NEXT_HINT-only member, but use the hole here */ u8 resync_nh_do_now:1; union { /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ struct { atomic64_t resync_req; }; /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ struct { u32 decrypted_failed; u32 decrypted_tgt; } resync_nh; }; u8 driver_state[] __aligned(8); /* The TLS layer reserves room for driver specific state * Currently the belief is that there is not enough * driver specific state to justify another layer of indirection */ #define TLS_DRIVER_STATE_SIZE_RX 8 }; #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) void tls_ctx_free(struct sock *sk, struct tls_context *ctx); int wait_on_pending_writer(struct sock *sk, long *timeo); int tls_sk_query(struct sock *sk, int optname, char __user *optval, int __user *optlen); int tls_sk_attach(struct sock *sk, int optname, char __user *optval, unsigned int optlen); int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); void tls_sw_strparser_done(struct tls_context *tls_ctx); int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); int tls_sw_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags); void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); void tls_sw_release_resources_tx(struct sock *sk); void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); void tls_sw_free_resources_rx(struct sock *sk); void tls_sw_release_resources_rx(struct sock *sk); void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len); bool tls_sw_stream_read(const struct sock *sk); ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); int tls_device_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags); void tls_device_free_resources_tx(struct sock *sk); void tls_device_init(void); void tls_device_cleanup(void); int tls_tx_records(struct sock *sk, int flags); struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, u32 seq, u64 *p_record_sn); static inline bool tls_record_is_start_marker(struct tls_record_info *rec) { return rec->len == 0; } static inline u32 tls_record_start_seq(struct tls_record_info *rec) { return rec->end_seq - rec->len; } int tls_push_sg(struct sock *sk, struct tls_context *ctx, struct scatterlist *sg, u16 first_offset, int flags); int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, int flags); bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx); static inline struct tls_msg *tls_msg(struct sk_buff *skb) { return (struct tls_msg *)strp_msg(skb); } static inline bool tls_is_partially_sent_record(struct tls_context *ctx) { return !!ctx->partially_sent_record; } static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) { return tls_ctx->pending_open_record_frags; } static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) { struct tls_rec *rec; rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); if (!rec) return false; return READ_ONCE(rec->tx_ready); } static inline u16 tls_user_config(struct tls_context *ctx, bool tx) { u16 config = tx ? ctx->tx_conf : ctx->rx_conf; switch (config) { case TLS_BASE: return TLS_CONF_BASE; case TLS_SW: return TLS_CONF_SW; case TLS_HW: return TLS_CONF_HW; case TLS_HW_RECORD: return TLS_CONF_HW_RECORD; } return 0; } struct sk_buff * tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, struct sk_buff *skb); static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) { #ifdef CONFIG_SOCK_VALIDATE_XMIT return sk_fullsock(sk) && (smp_load_acquire(&sk->sk_validate_xmit_skb) == &tls_validate_xmit_skb); #else return false; #endif } static inline void tls_err_abort(struct sock *sk, int err) { sk->sk_err = err; sk->sk_error_report(sk); } static inline bool tls_bigint_increment(unsigned char *seq, int len) { int i; for (i = len - 1; i >= 0; i--) { ++seq[i]; if (seq[i] != 0) break; } return (i == -1); } static inline struct tls_context *tls_get_ctx(const struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); /* Use RCU on icsk_ulp_data only for sock diag code, * TLS data path doesn't need rcu_dereference(). */ return (__force void *)icsk->icsk_ulp_data; } static inline void tls_advance_record_sn(struct sock *sk, struct tls_prot_info *prot, struct cipher_context *ctx) { if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) tls_err_abort(sk, EBADMSG); if (prot->version != TLS_1_3_VERSION) tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, prot->iv_size); } static inline void tls_fill_prepend(struct tls_context *ctx, char *buf, size_t plaintext_len, unsigned char record_type, int version) { struct tls_prot_info *prot = &ctx->prot_info; size_t pkt_len, iv_size = prot->iv_size; pkt_len = plaintext_len + prot->tag_size; if (version != TLS_1_3_VERSION) { pkt_len += iv_size; memcpy(buf + TLS_NONCE_OFFSET, ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); } /* we cover nonce explicit here as well, so buf should be of * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE */ buf[0] = version == TLS_1_3_VERSION ? TLS_RECORD_TYPE_DATA : record_type; /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ buf[1] = TLS_1_2_VERSION_MINOR; buf[2] = TLS_1_2_VERSION_MAJOR; /* we can use IV for nonce explicit according to spec */ buf[3] = pkt_len >> 8; buf[4] = pkt_len & 0xFF; } static inline void tls_make_aad(char *buf, size_t size, char *record_sequence, int record_sequence_size, unsigned char record_type, int version) { if (version != TLS_1_3_VERSION) { memcpy(buf, record_sequence, record_sequence_size); buf += 8; } else { size += TLS_CIPHER_AES_GCM_128_TAG_SIZE; } buf[0] = version == TLS_1_3_VERSION ? TLS_RECORD_TYPE_DATA : record_type; buf[1] = TLS_1_2_VERSION_MAJOR; buf[2] = TLS_1_2_VERSION_MINOR; buf[3] = size >> 8; buf[4] = size & 0xFF; } static inline void xor_iv_with_seq(int version, char *iv, char *seq) { int i; if (version == TLS_1_3_VERSION) { for (i = 0; i < 8; i++) iv[i + 4] ^= seq[i]; } } static inline struct tls_sw_context_rx *tls_sw_ctx_rx( const struct tls_context *tls_ctx) { return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; } static inline struct tls_sw_context_tx *tls_sw_ctx_tx( const struct tls_context *tls_ctx) { return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; } static inline struct tls_offload_context_tx * tls_offload_ctx_tx(const struct tls_context *tls_ctx) { return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; } static inline bool tls_sw_has_ctx_tx(const struct sock *sk) { struct tls_context *ctx = tls_get_ctx(sk); if (!ctx) return false; return !!tls_sw_ctx_tx(ctx); } void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); void tls_device_write_space(struct sock *sk, struct tls_context *ctx); static inline struct tls_offload_context_rx * tls_offload_ctx_rx(const struct tls_context *tls_ctx) { return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; } #if IS_ENABLED(CONFIG_TLS_DEVICE) static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, enum tls_offload_ctx_dir direction) { if (direction == TLS_OFFLOAD_CTX_DIR_TX) return tls_offload_ctx_tx(tls_ctx)->driver_state; else return tls_offload_ctx_rx(tls_ctx)->driver_state; } static inline void * tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) { return __tls_driver_ctx(tls_get_ctx(sk), direction); } #endif /* The TLS context is valid until sk_destruct is called */ static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1); } static inline void tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) { struct tls_context *tls_ctx = tls_get_ctx(sk); tls_offload_ctx_rx(tls_ctx)->resync_type = type; } static inline void tls_offload_tx_resync_request(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); } /* Driver's seq tracking has to be disabled until resync succeeded */ static inline bool tls_offload_tx_resync_pending(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); bool ret; ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); smp_mb__after_atomic(); return ret; } int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, unsigned char *record_type); void tls_register_device(struct tls_device *device); void tls_unregister_device(struct tls_device *device); int tls_device_decrypted(struct sock *sk, struct sk_buff *skb); int decrypt_skb(struct sock *sk, struct sk_buff *skb, struct scatterlist *sgout); struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); struct sk_buff *tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, struct sk_buff *skb); int tls_sw_fallback_init(struct sock *sk, struct tls_offload_context_tx *offload_ctx, struct tls_crypto_info *crypto_info); int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); void tls_device_offload_cleanup_rx(struct sock *sk); void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); #endif /* _TLS_OFFLOAD_H */