/* * linux/drivers/net/wireless/libertas/if_spi.c * * Driver for Marvell SPI WLAN cards. * * Copyright 2008 Analog Devices Inc. * * Authors: * Andrey Yurovsky * Colin McCabe * * Inspired by if_sdio.c, Copyright 2007-2008 Pierre Ossman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include "host.h" #include "decl.h" #include "defs.h" #include "dev.h" #include "if_spi.h" struct if_spi_card { struct spi_device *spi; struct lbs_private *priv; struct libertas_spi_platform_data *pdata; char helper_fw_name[IF_SPI_FW_NAME_MAX]; char main_fw_name[IF_SPI_FW_NAME_MAX]; /* The card ID and card revision, as reported by the hardware. */ u16 card_id; u8 card_rev; /* The last time that we initiated an SPU operation */ unsigned long prev_xfer_time; int use_dummy_writes; unsigned long spu_port_delay; unsigned long spu_reg_delay; /* Handles all SPI communication (except for FW load) */ struct task_struct *spi_thread; int run_thread; /* Used to wake up the spi_thread */ struct semaphore spi_ready; struct semaphore spi_thread_terminated; u8 cmd_buffer[IF_SPI_CMD_BUF_SIZE]; }; static void free_if_spi_card(struct if_spi_card *card) { spi_set_drvdata(card->spi, NULL); kfree(card); } static struct chip_ident chip_id_to_device_name[] = { { .chip_id = 0x04, .name = 8385 }, { .chip_id = 0x0b, .name = 8686 }, }; /* * SPI Interface Unit Routines * * The SPU sits between the host and the WLAN module. * All communication with the firmware is through SPU transactions. * * First we have to put a SPU register name on the bus. Then we can * either read from or write to that register. * */ static void spu_transaction_init(struct if_spi_card *card) { if (!time_after(jiffies, card->prev_xfer_time + 1)) { /* Unfortunately, the SPU requires a delay between successive * transactions. If our last transaction was more than a jiffy * ago, we have obviously already delayed enough. * If not, we have to busy-wait to be on the safe side. */ ndelay(400); } } static void spu_transaction_finish(struct if_spi_card *card) { card->prev_xfer_time = jiffies; } /* Write out a byte buffer to an SPI register, * using a series of 16-bit transfers. */ static int spu_write(struct if_spi_card *card, u16 reg, const u8 *buf, int len) { int err = 0; __le16 reg_out = cpu_to_le16(reg | IF_SPI_WRITE_OPERATION_MASK); struct spi_message m; struct spi_transfer reg_trans; struct spi_transfer data_trans; spi_message_init(&m); memset(®_trans, 0, sizeof(reg_trans)); memset(&data_trans, 0, sizeof(data_trans)); /* You must give an even number of bytes to the SPU, even if it * doesn't care about the last one. */ BUG_ON(len & 0x1); spu_transaction_init(card); /* write SPU register index */ reg_trans.tx_buf = ®_out; reg_trans.len = sizeof(reg_out); data_trans.tx_buf = buf; data_trans.len = len; spi_message_add_tail(®_trans, &m); spi_message_add_tail(&data_trans, &m); err = spi_sync(card->spi, &m); spu_transaction_finish(card); return err; } static inline int spu_write_u16(struct if_spi_card *card, u16 reg, u16 val) { __le16 buff; buff = cpu_to_le16(val); return spu_write(card, reg, (u8 *)&buff, sizeof(u16)); } static inline int spu_reg_is_port_reg(u16 reg) { switch (reg) { case IF_SPI_IO_RDWRPORT_REG: case IF_SPI_CMD_RDWRPORT_REG: case IF_SPI_DATA_RDWRPORT_REG: return 1; default: return 0; } } static int spu_read(struct if_spi_card *card, u16 reg, u8 *buf, int len) { unsigned int delay; int err = 0; __le16 reg_out = cpu_to_le16(reg | IF_SPI_READ_OPERATION_MASK); struct spi_message m; struct spi_transfer reg_trans; struct spi_transfer dummy_trans; struct spi_transfer data_trans; /* You must take an even number of bytes from the SPU, even if you * don't care about the last one. */ BUG_ON(len & 0x1); spu_transaction_init(card); spi_message_init(&m); memset(®_trans, 0, sizeof(reg_trans)); memset(&dummy_trans, 0, sizeof(dummy_trans)); memset(&data_trans, 0, sizeof(data_trans)); /* write SPU register index */ reg_trans.tx_buf = ®_out; reg_trans.len = sizeof(reg_out); spi_message_add_tail(®_trans, &m); delay = spu_reg_is_port_reg(reg) ? card->spu_port_delay : card->spu_reg_delay; if (card->use_dummy_writes) { /* Clock in dummy cycles while the SPU fills the FIFO */ dummy_trans.len = delay / 8; spi_message_add_tail(&dummy_trans, &m); } else { /* Busy-wait while the SPU fills the FIFO */ reg_trans.delay_usecs = DIV_ROUND_UP((100 + (delay * 10)), 1000); } /* read in data */ data_trans.rx_buf = buf; data_trans.len = len; spi_message_add_tail(&data_trans, &m); err = spi_sync(card->spi, &m); spu_transaction_finish(card); return err; } /* Read 16 bits from an SPI register */ static inline int spu_read_u16(struct if_spi_card *card, u16 reg, u16 *val) { __le16 buf; int ret; ret = spu_read(card, reg, (u8 *)&buf, sizeof(buf)); if (ret == 0) *val = le16_to_cpup(&buf); return ret; } /* Read 32 bits from an SPI register. * The low 16 bits are read first. */ static int spu_read_u32(struct if_spi_card *card, u16 reg, u32 *val) { __le32 buf; int err; err = spu_read(card, reg, (u8 *)&buf, sizeof(buf)); if (!err) *val = le32_to_cpup(&buf); return err; } /* Keep reading 16 bits from an SPI register until you get the correct result. * * If mask = 0, the correct result is any non-zero number. * If mask != 0, the correct result is any number where * number & target_mask == target * * Returns -ETIMEDOUT if a second passes without the correct result. */ static int spu_wait_for_u16(struct if_spi_card *card, u16 reg, u16 target_mask, u16 target) { int err; unsigned long timeout = jiffies + 5*HZ; while (1) { u16 val; err = spu_read_u16(card, reg, &val); if (err) return err; if (target_mask) { if ((val & target_mask) == target) return 0; } else { if (val) return 0; } udelay(100); if (time_after(jiffies, timeout)) { lbs_pr_err("%s: timeout with val=%02x, " "target_mask=%02x, target=%02x\n", __func__, val, target_mask, target); return -ETIMEDOUT; } } } /* Read 16 bits from an SPI register until you receive a specific value. * Returns -ETIMEDOUT if a 4 tries pass without success. */ static int spu_wait_for_u32(struct if_spi_card *card, u32 reg, u32 target) { int err, try; for (try = 0; try < 4; ++try) { u32 val = 0; err = spu_read_u32(card, reg, &val); if (err) return err; if (val == target) return 0; mdelay(100); } return -ETIMEDOUT; } static int spu_set_interrupt_mode(struct if_spi_card *card, int suppress_host_int, int auto_int) { int err = 0; /* We can suppress a host interrupt by clearing the appropriate * bit in the "host interrupt status mask" register */ if (suppress_host_int) { err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG, 0); if (err) return err; } else { err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG, IF_SPI_HISM_TX_DOWNLOAD_RDY | IF_SPI_HISM_RX_UPLOAD_RDY | IF_SPI_HISM_CMD_DOWNLOAD_RDY | IF_SPI_HISM_CARDEVENT | IF_SPI_HISM_CMD_UPLOAD_RDY); if (err) return err; } /* If auto-interrupts are on, the completion of certain transactions * will trigger an interrupt automatically. If auto-interrupts * are off, we need to set the "Card Interrupt Cause" register to * trigger a card interrupt. */ if (auto_int) { err = spu_write_u16(card, IF_SPI_HOST_INT_CTRL_REG, IF_SPI_HICT_TX_DOWNLOAD_OVER_AUTO | IF_SPI_HICT_RX_UPLOAD_OVER_AUTO | IF_SPI_HICT_CMD_DOWNLOAD_OVER_AUTO | IF_SPI_HICT_CMD_UPLOAD_OVER_AUTO); if (err) return err; } else { err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG, 0); if (err) return err; } return err; } static int spu_get_chip_revision(struct if_spi_card *card, u16 *card_id, u8 *card_rev) { int err = 0; u32 dev_ctrl; err = spu_read_u32(card, IF_SPI_DEVICEID_CTRL_REG, &dev_ctrl); if (err) return err; *card_id = IF_SPI_DEVICEID_CTRL_REG_TO_CARD_ID(dev_ctrl); *card_rev = IF_SPI_DEVICEID_CTRL_REG_TO_CARD_REV(dev_ctrl); return err; } static int spu_set_bus_mode(struct if_spi_card *card, u16 mode) { int err = 0; u16 rval; /* set bus mode */ err = spu_write_u16(card, IF_SPI_SPU_BUS_MODE_REG, mode); if (err) return err; /* Check that we were able to read back what we just wrote. */ err = spu_read_u16(card, IF_SPI_SPU_BUS_MODE_REG, &rval); if (err) return err; if ((rval & 0xF) != mode) { lbs_pr_err("Can't read bus mode register.\n"); return -EIO; } return 0; } static int spu_init(struct if_spi_card *card, int use_dummy_writes) { int err = 0; u32 delay; /* We have to start up in timed delay mode so that we can safely * read the Delay Read Register. */ card->use_dummy_writes = 0; err = spu_set_bus_mode(card, IF_SPI_BUS_MODE_SPI_CLOCK_PHASE_RISING | IF_SPI_BUS_MODE_DELAY_METHOD_TIMED | IF_SPI_BUS_MODE_16_BIT_ADDRESS_16_BIT_DATA); if (err) return err; card->spu_port_delay = 1000; card->spu_reg_delay = 1000; err = spu_read_u32(card, IF_SPI_DELAY_READ_REG, &delay); if (err) return err; card->spu_port_delay = delay & 0x0000ffff; card->spu_reg_delay = (delay & 0xffff0000) >> 16; /* If dummy clock delay mode has been requested, switch to it now */ if (use_dummy_writes) { card->use_dummy_writes = 1; err = spu_set_bus_mode(card, IF_SPI_BUS_MODE_SPI_CLOCK_PHASE_RISING | IF_SPI_BUS_MODE_DELAY_METHOD_DUMMY_CLOCK | IF_SPI_BUS_MODE_16_BIT_ADDRESS_16_BIT_DATA); if (err) return err; } lbs_deb_spi("Initialized SPU unit. " "spu_port_delay=0x%04lx, spu_reg_delay=0x%04lx\n", card->spu_port_delay, card->spu_reg_delay); return err; } /* * Firmware Loading */ static int if_spi_prog_helper_firmware(struct if_spi_card *card) { int err = 0; const struct firmware *firmware = NULL; int bytes_remaining; const u8 *fw; u8 temp[HELPER_FW_LOAD_CHUNK_SZ]; struct spi_device *spi = card->spi; lbs_deb_enter(LBS_DEB_SPI); err = spu_set_interrupt_mode(card, 1, 0); if (err) goto out; /* Get helper firmware image */ err = request_firmware(&firmware, card->helper_fw_name, &spi->dev); if (err) { lbs_pr_err("request_firmware failed with err = %d\n", err); goto out; } bytes_remaining = firmware->size; fw = firmware->data; /* Load helper firmware image */ while (bytes_remaining > 0) { /* Scratch pad 1 should contain the number of bytes we * want to download to the firmware */ err = spu_write_u16(card, IF_SPI_SCRATCH_1_REG, HELPER_FW_LOAD_CHUNK_SZ); if (err) goto release_firmware; err = spu_wait_for_u16(card, IF_SPI_HOST_INT_STATUS_REG, IF_SPI_HIST_CMD_DOWNLOAD_RDY, IF_SPI_HIST_CMD_DOWNLOAD_RDY); if (err) goto release_firmware; /* Feed the data into the command read/write port reg * in chunks of 64 bytes */ memset(temp, 0, sizeof(temp)); memcpy(temp, fw, min(bytes_remaining, HELPER_FW_LOAD_CHUNK_SZ)); mdelay(10); err = spu_write(card, IF_SPI_CMD_RDWRPORT_REG, temp, HELPER_FW_LOAD_CHUNK_SZ); if (err) goto release_firmware; /* Interrupt the boot code */ err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0); if (err) goto release_firmware; err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG, IF_SPI_CIC_CMD_DOWNLOAD_OVER); if (err) goto release_firmware; bytes_remaining -= HELPER_FW_LOAD_CHUNK_SZ; fw += HELPER_FW_LOAD_CHUNK_SZ; } /* Once the helper / single stage firmware download is complete, * write 0 to scratch pad 1 and interrupt the * bootloader. This completes the helper download. */ err = spu_write_u16(card, IF_SPI_SCRATCH_1_REG, FIRMWARE_DNLD_OK); if (err) goto release_firmware; err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0); if (err) goto release_firmware; err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG, IF_SPI_CIC_CMD_DOWNLOAD_OVER); goto release_firmware; lbs_deb_spi("waiting for helper to boot...\n"); release_firmware: release_firmware(firmware); out: if (err) lbs_pr_err("failed to load helper firmware (err=%d)\n", err); lbs_deb_leave_args(LBS_DEB_SPI, "err %d", err); return err; } /* Returns the length of the next packet the firmware expects us to send * Sets crc_err if the previous transfer had a CRC error. */ static int if_spi_prog_main_firmware_check_len(struct if_spi_card *card, int *crc_err) { u16 len; int err = 0; /* wait until the host interrupt status register indicates * that we are ready to download */ err = spu_wait_for_u16(card, IF_SPI_HOST_INT_STATUS_REG, IF_SPI_HIST_CMD_DOWNLOAD_RDY, IF_SPI_HIST_CMD_DOWNLOAD_RDY); if (err) { lbs_pr_err("timed out waiting for host_int_status\n"); return err; } /* Ask the device how many bytes of firmware it wants. */ err = spu_read_u16(card, IF_SPI_SCRATCH_1_REG, &len); if (err) return err; if (len > IF_SPI_CMD_BUF_SIZE) { lbs_pr_err("firmware load device requested a larger " "tranfer than we are prepared to " "handle. (len = %d)\n", len); return -EIO; } if (len & 0x1) { lbs_deb_spi("%s: crc error\n", __func__); len &= ~0x1; *crc_err = 1; } else *crc_err = 0; return len; } static int if_spi_prog_main_firmware(struct if_spi_card *card) { int len, prev_len; int bytes, crc_err = 0, err = 0; const struct firmware *firmware = NULL; const u8 *fw; struct spi_device *spi = card->spi; u16 num_crc_errs; lbs_deb_enter(LBS_DEB_SPI); err = spu_set_interrupt_mode(card, 1, 0); if (err) goto out; /* Get firmware image */ err = request_firmware(&firmware, card->main_fw_name, &spi->dev); if (err) { lbs_pr_err("%s: can't get firmware '%s' from kernel. " "err = %d\n", __func__, card->main_fw_name, err); goto out; } err = spu_wait_for_u16(card, IF_SPI_SCRATCH_1_REG, 0, 0); if (err) { lbs_pr_err("%s: timed out waiting for initial " "scratch reg = 0\n", __func__); goto release_firmware; } num_crc_errs = 0; prev_len = 0; bytes = firmware->size; fw = firmware->data; while ((len = if_spi_prog_main_firmware_check_len(card, &crc_err))) { if (len < 0) { err = len; goto release_firmware; } if (bytes < 0) { /* If there are no more bytes left, we would normally * expect to have terminated with len = 0 */ lbs_pr_err("Firmware load wants more bytes " "than we have to offer.\n"); break; } if (crc_err) { /* Previous transfer failed. */ if (++num_crc_errs > MAX_MAIN_FW_LOAD_CRC_ERR) { lbs_pr_err("Too many CRC errors encountered " "in firmware load.\n"); err = -EIO; goto release_firmware; } } else { /* Previous transfer succeeded. Advance counters. */ bytes -= prev_len; fw += prev_len; } if (bytes < len) { memset(card->cmd_buffer, 0, len); memcpy(card->cmd_buffer, fw, bytes); } else memcpy(card->cmd_buffer, fw, len); err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0); if (err) goto release_firmware; err = spu_write(card, IF_SPI_CMD_RDWRPORT_REG, card->cmd_buffer, len); if (err) goto release_firmware; err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG , IF_SPI_CIC_CMD_DOWNLOAD_OVER); if (err) goto release_firmware; prev_len = len; } if (bytes > prev_len) { lbs_pr_err("firmware load wants fewer bytes than " "we have to offer.\n"); } /* Confirm firmware download */ err = spu_wait_for_u32(card, IF_SPI_SCRATCH_4_REG, SUCCESSFUL_FW_DOWNLOAD_MAGIC); if (err) { lbs_pr_err("failed to confirm the firmware download\n"); goto release_firmware; } release_firmware: release_firmware(firmware); out: if (err) lbs_pr_err("failed to load firmware (err=%d)\n", err); lbs_deb_leave_args(LBS_DEB_SPI, "err %d", err); return err; } /* * SPI Transfer Thread * * The SPI thread handles all SPI transfers, so there is no need for a lock. */ /* Move a command from the card to the host */ static int if_spi_c2h_cmd(struct if_spi_card *card) { struct lbs_private *priv = card->priv; unsigned long flags; int err = 0; u16 len; u8 i; /* We need a buffer big enough to handle whatever people send to * hw_host_to_card */ BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE < LBS_CMD_BUFFER_SIZE); BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE < LBS_UPLD_SIZE); /* It's just annoying if the buffer size isn't a multiple of 4, because * then we might have len < IF_SPI_CMD_BUF_SIZE but * ALIGN(len, 4) > IF_SPI_CMD_BUF_SIZE */ BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE % 4 != 0); lbs_deb_enter(LBS_DEB_SPI); /* How many bytes are there to read? */ err = spu_read_u16(card, IF_SPI_SCRATCH_2_REG, &len); if (err) goto out; if (!len) { lbs_pr_err("%s: error: card has no data for host\n", __func__); err = -EINVAL; goto out; } else if (len > IF_SPI_CMD_BUF_SIZE) { lbs_pr_err("%s: error: response packet too large: " "%d bytes, but maximum is %d\n", __func__, len, IF_SPI_CMD_BUF_SIZE); err = -EINVAL; goto out; } /* Read the data from the WLAN module into our command buffer */ err = spu_read(card, IF_SPI_CMD_RDWRPORT_REG, card->cmd_buffer, ALIGN(len, 4)); if (err) goto out; spin_lock_irqsave(&priv->driver_lock, flags); i = (priv->resp_idx == 0) ? 1 : 0; BUG_ON(priv->resp_len[i]); priv->resp_len[i] = len; memcpy(priv->resp_buf[i], card->cmd_buffer, len); lbs_notify_command_response(priv, i); spin_unlock_irqrestore(&priv->driver_lock, flags); out: if (err) lbs_pr_err("%s: err=%d\n", __func__, err); lbs_deb_leave(LBS_DEB_SPI); return err; } /* Move data from the card to the host */ static int if_spi_c2h_data(struct if_spi_card *card) { struct sk_buff *skb; char *data; u16 len; int err = 0; lbs_deb_enter(LBS_DEB_SPI); /* How many bytes are there to read? */ err = spu_read_u16(card, IF_SPI_SCRATCH_1_REG, &len); if (err) goto out; if (!len) { lbs_pr_err("%s: error: card has no data for host\n", __func__); err = -EINVAL; goto out; } else if (len > MRVDRV_ETH_RX_PACKET_BUFFER_SIZE) { lbs_pr_err("%s: error: card has %d bytes of data, but " "our maximum skb size is %zu\n", __func__, len, MRVDRV_ETH_RX_PACKET_BUFFER_SIZE); err = -EINVAL; goto out; } /* TODO: should we allocate a smaller skb if we have less data? */ skb = dev_alloc_skb(MRVDRV_ETH_RX_PACKET_BUFFER_SIZE); if (!skb) { err = -ENOBUFS; goto out; } skb_reserve(skb, IPFIELD_ALIGN_OFFSET); data = skb_put(skb, len); /* Read the data from the WLAN module into our skb... */ err = spu_read(card, IF_SPI_DATA_RDWRPORT_REG, data, ALIGN(len, 4)); if (err) goto free_skb; /* pass the SKB to libertas */ err = lbs_process_rxed_packet(card->priv, skb); if (err) goto free_skb; /* success */ goto out; free_skb: dev_kfree_skb(skb); out: if (err) lbs_pr_err("%s: err=%d\n", __func__, err); lbs_deb_leave(LBS_DEB_SPI); return err; } /* Inform the host about a card event */ static void if_spi_e2h(struct if_spi_card *card) { int err = 0; u32 cause; struct lbs_private *priv = card->priv; err = spu_read_u32(card, IF_SPI_SCRATCH_3_REG, &cause); if (err) goto out; /* re-enable the card event interrupt */ spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, ~IF_SPI_HICU_CARD_EVENT); /* generate a card interrupt */ spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG, IF_SPI_CIC_HOST_EVENT); lbs_queue_event(priv, cause & 0xff); out: if (err) lbs_pr_err("%s: error %d\n", __func__, err); } static int lbs_spi_thread(void *data) { int err; struct if_spi_card *card = data; u16 hiStatus; while (1) { /* Wait to be woken up by one of two things. First, our ISR * could tell us that something happened on the WLAN. * Secondly, libertas could call hw_host_to_card with more * data, which we might be able to send. */ do { err = down_interruptible(&card->spi_ready); if (!card->run_thread) { up(&card->spi_thread_terminated); do_exit(0); } } while (err == EINTR); /* Read the host interrupt status register to see what we * can do. */ err = spu_read_u16(card, IF_SPI_HOST_INT_STATUS_REG, &hiStatus); if (err) { lbs_pr_err("I/O error\n"); goto err; } if (hiStatus & IF_SPI_HIST_CMD_UPLOAD_RDY) { err = if_spi_c2h_cmd(card); if (err) goto err; } if (hiStatus & IF_SPI_HIST_RX_UPLOAD_RDY) { err = if_spi_c2h_data(card); if (err) goto err; } /* workaround: in PS mode, the card does not set the Command * Download Ready bit, but it sets TX Download Ready. */ if (hiStatus & IF_SPI_HIST_CMD_DOWNLOAD_RDY || (card->priv->psstate != PS_STATE_FULL_POWER && (hiStatus & IF_SPI_HIST_TX_DOWNLOAD_RDY))) { lbs_host_to_card_done(card->priv); } if (hiStatus & IF_SPI_HIST_CARD_EVENT) if_spi_e2h(card); err: if (err) lbs_pr_err("%s: got error %d\n", __func__, err); } } /* Block until lbs_spi_thread thread has terminated */ static void if_spi_terminate_spi_thread(struct if_spi_card *card) { /* It would be nice to use kthread_stop here, but that function * can't wake threads waiting for a semaphore. */ card->run_thread = 0; up(&card->spi_ready); down(&card->spi_thread_terminated); } /* * Host to Card * * Called from Libertas to transfer some data to the WLAN device * We can't sleep here. */ static int if_spi_host_to_card(struct lbs_private *priv, u8 type, u8 *buf, u16 nb) { int err = 0; struct if_spi_card *card = priv->card; lbs_deb_enter_args(LBS_DEB_SPI, "type %d, bytes %d", type, nb); nb = ALIGN(nb, 4); switch (type) { case MVMS_CMD: err = spu_write(card, IF_SPI_CMD_RDWRPORT_REG, buf, nb); break; case MVMS_DAT: err = spu_write(card, IF_SPI_DATA_RDWRPORT_REG, buf, nb); break; default: lbs_pr_err("can't transfer buffer of type %d", type); err = -EINVAL; break; } lbs_deb_leave_args(LBS_DEB_SPI, "err=%d", err); return err; } /* * Host Interrupts * * Service incoming interrupts from the WLAN device. We can't sleep here, so * don't try to talk on the SPI bus, just wake up the SPI thread. */ static irqreturn_t if_spi_host_interrupt(int irq, void *dev_id) { struct if_spi_card *card = dev_id; up(&card->spi_ready); return IRQ_HANDLED; } /* * SPI callbacks */ static int if_spi_calculate_fw_names(u16 card_id, char *helper_fw, char *main_fw) { int i; for (i = 0; i < ARRAY_SIZE(chip_id_to_device_name); ++i) { if (card_id == chip_id_to_device_name[i].chip_id) break; } if (i == ARRAY_SIZE(chip_id_to_device_name)) { lbs_pr_err("Unsupported chip_id: 0x%02x\n", card_id); return -EAFNOSUPPORT; } snprintf(helper_fw, IF_SPI_FW_NAME_MAX, "libertas/gspi%d_hlp.bin", chip_id_to_device_name[i].name); snprintf(main_fw, IF_SPI_FW_NAME_MAX, "libertas/gspi%d.bin", chip_id_to_device_name[i].name); return 0; } MODULE_FIRMWARE("libertas/gspi8385_hlp.bin"); MODULE_FIRMWARE("libertas/gspi8385.bin"); MODULE_FIRMWARE("libertas/gspi8686_hlp.bin"); MODULE_FIRMWARE("libertas/gspi8686.bin"); static int __devinit if_spi_probe(struct spi_device *spi) { struct if_spi_card *card; struct lbs_private *priv = NULL; struct libertas_spi_platform_data *pdata = spi->dev.platform_data; int err = 0; u32 scratch; struct sched_param param = { .sched_priority = 1 }; lbs_deb_enter(LBS_DEB_SPI); if (!pdata) { err = -EINVAL; goto out; } if (pdata->setup) { err = pdata->setup(spi); if (err) goto out; } /* Allocate card structure to represent this specific device */ card = kzalloc(sizeof(struct if_spi_card), GFP_KERNEL); if (!card) { err = -ENOMEM; goto out; } spi_set_drvdata(spi, card); card->pdata = pdata; card->spi = spi; card->prev_xfer_time = jiffies; sema_init(&card->spi_ready, 0); sema_init(&card->spi_thread_terminated, 0); /* Initialize the SPI Interface Unit */ err = spu_init(card, pdata->use_dummy_writes); if (err) goto free_card; err = spu_get_chip_revision(card, &card->card_id, &card->card_rev); if (err) goto free_card; /* Firmware load */ err = spu_read_u32(card, IF_SPI_SCRATCH_4_REG, &scratch); if (err) goto free_card; if (scratch == SUCCESSFUL_FW_DOWNLOAD_MAGIC) lbs_deb_spi("Firmware is already loaded for " "Marvell WLAN 802.11 adapter\n"); else { err = if_spi_calculate_fw_names(card->card_id, card->helper_fw_name, card->main_fw_name); if (err) goto free_card; lbs_deb_spi("Initializing FW for Marvell WLAN 802.11 adapter " "(chip_id = 0x%04x, chip_rev = 0x%02x) " "attached to SPI bus_num %d, chip_select %d. " "spi->max_speed_hz=%d\n", card->card_id, card->card_rev, spi->master->bus_num, spi->chip_select, spi->max_speed_hz); err = if_spi_prog_helper_firmware(card); if (err) goto free_card; err = if_spi_prog_main_firmware(card); if (err) goto free_card; lbs_deb_spi("loaded FW for Marvell WLAN 802.11 adapter\n"); } err = spu_set_interrupt_mode(card, 0, 1); if (err) goto free_card; /* Register our card with libertas. * This will call alloc_etherdev */ priv = lbs_add_card(card, &spi->dev); if (!priv) { err = -ENOMEM; goto free_card; } card->priv = priv; priv->card = card; priv->hw_host_to_card = if_spi_host_to_card; priv->enter_deep_sleep = NULL; priv->exit_deep_sleep = NULL; priv->reset_deep_sleep_wakeup = NULL; priv->fw_ready = 1; /* Initialize interrupt handling stuff. */ card->run_thread = 1; card->spi_thread = kthread_run(lbs_spi_thread, card, "lbs_spi_thread"); if (IS_ERR(card->spi_thread)) { card->run_thread = 0; err = PTR_ERR(card->spi_thread); lbs_pr_err("error creating SPI thread: err=%d\n", err); goto remove_card; } if (sched_setscheduler(card->spi_thread, SCHED_FIFO, ¶m)) lbs_pr_err("Error setting scheduler, using default.\n"); err = request_irq(spi->irq, if_spi_host_interrupt, IRQF_TRIGGER_FALLING, "libertas_spi", card); if (err) { lbs_pr_err("can't get host irq line-- request_irq failed\n"); goto terminate_thread; } /* poke the IRQ handler so that we don't miss the first interrupt */ up(&card->spi_ready); /* Start the card. * This will call register_netdev, and we'll start * getting interrupts... */ err = lbs_start_card(priv); if (err) goto release_irq; lbs_deb_spi("Finished initializing WLAN module.\n"); /* successful exit */ goto out; release_irq: free_irq(spi->irq, card); terminate_thread: if_spi_terminate_spi_thread(card); remove_card: lbs_remove_card(priv); /* will call free_netdev */ free_card: free_if_spi_card(card); out: lbs_deb_leave_args(LBS_DEB_SPI, "err %d\n", err); return err; } static int __devexit libertas_spi_remove(struct spi_device *spi) { struct if_spi_card *card = spi_get_drvdata(spi); struct lbs_private *priv = card->priv; lbs_deb_spi("libertas_spi_remove\n"); lbs_deb_enter(LBS_DEB_SPI); lbs_stop_card(priv); lbs_remove_card(priv); /* will call free_netdev */ priv->surpriseremoved = 1; free_irq(spi->irq, card); if_spi_terminate_spi_thread(card); if (card->pdata->teardown) card->pdata->teardown(spi); free_if_spi_card(card); lbs_deb_leave(LBS_DEB_SPI); return 0; } static struct spi_driver libertas_spi_driver = { .probe = if_spi_probe, .remove = __devexit_p(libertas_spi_remove), .driver = { .name = "libertas_spi", .bus = &spi_bus_type, .owner = THIS_MODULE, }, }; /* * Module functions */ static int __init if_spi_init_module(void) { int ret = 0; lbs_deb_enter(LBS_DEB_SPI); printk(KERN_INFO "libertas_spi: Libertas SPI driver\n"); ret = spi_register_driver(&libertas_spi_driver); lbs_deb_leave(LBS_DEB_SPI); return ret; } static void __exit if_spi_exit_module(void) { lbs_deb_enter(LBS_DEB_SPI); spi_unregister_driver(&libertas_spi_driver); lbs_deb_leave(LBS_DEB_SPI); } module_init(if_spi_init_module); module_exit(if_spi_exit_module); MODULE_DESCRIPTION("Libertas SPI WLAN Driver"); MODULE_AUTHOR("Andrey Yurovsky , " "Colin McCabe "); MODULE_LICENSE("GPL"); MODULE_ALIAS("spi:libertas_spi");