// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_trans.h" #include "xfs_error.h" #include "xfs_alloc.h" #include "xfs_fsops.h" #include "xfs_trans_space.h" #include "xfs_log.h" #include "xfs_ag.h" #include "xfs_ag_resv.h" /* * growfs operations */ static int xfs_growfs_data_private( xfs_mount_t *mp, /* mount point for filesystem */ xfs_growfs_data_t *in) /* growfs data input struct */ { xfs_buf_t *bp; int error; xfs_agnumber_t nagcount; xfs_agnumber_t nagimax = 0; xfs_rfsblock_t nb, nb_mod; xfs_rfsblock_t new; xfs_agnumber_t oagcount; xfs_trans_t *tp; struct aghdr_init_data id = {}; nb = in->newblocks; if (nb < mp->m_sb.sb_dblocks) return -EINVAL; if ((error = xfs_sb_validate_fsb_count(&mp->m_sb, nb))) return error; error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_FSB_TO_BB(mp, nb) - XFS_FSS_TO_BB(mp, 1), XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); if (error) return error; xfs_buf_relse(bp); new = nb; /* use new as a temporary here */ nb_mod = do_div(new, mp->m_sb.sb_agblocks); nagcount = new + (nb_mod != 0); if (nb_mod && nb_mod < XFS_MIN_AG_BLOCKS) { nagcount--; nb = (xfs_rfsblock_t)nagcount * mp->m_sb.sb_agblocks; if (nb < mp->m_sb.sb_dblocks) return -EINVAL; } new = nb - mp->m_sb.sb_dblocks; oagcount = mp->m_sb.sb_agcount; /* allocate the new per-ag structures */ if (nagcount > oagcount) { error = xfs_initialize_perag(mp, nagcount, &nagimax); if (error) return error; } error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata, XFS_GROWFS_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp); if (error) return error; /* * Write new AG headers to disk. Non-transactional, but need to be * written and completed prior to the growfs transaction being logged. * To do this, we use a delayed write buffer list and wait for * submission and IO completion of the list as a whole. This allows the * IO subsystem to merge all the AG headers in a single AG into a single * IO and hide most of the latency of the IO from us. * * This also means that if we get an error whilst building the buffer * list to write, we can cancel the entire list without having written * anything. */ INIT_LIST_HEAD(&id.buffer_list); for (id.agno = nagcount - 1; id.agno >= oagcount; id.agno--, new -= id.agsize) { if (id.agno == nagcount - 1) id.agsize = nb - (id.agno * (xfs_rfsblock_t)mp->m_sb.sb_agblocks); else id.agsize = mp->m_sb.sb_agblocks; error = xfs_ag_init_headers(mp, &id); if (error) { xfs_buf_delwri_cancel(&id.buffer_list); goto out_trans_cancel; } } error = xfs_buf_delwri_submit(&id.buffer_list); if (error) goto out_trans_cancel; /* If there are new blocks in the old last AG, extend it. */ if (new) { error = xfs_ag_extend_space(mp, tp, &id, new); if (error) goto out_trans_cancel; } /* * Update changed superblock fields transactionally. These are not * seen by the rest of the world until the transaction commit applies * them atomically to the superblock. */ if (nagcount > oagcount) xfs_trans_mod_sb(tp, XFS_TRANS_SB_AGCOUNT, nagcount - oagcount); if (nb > mp->m_sb.sb_dblocks) xfs_trans_mod_sb(tp, XFS_TRANS_SB_DBLOCKS, nb - mp->m_sb.sb_dblocks); if (id.nfree) xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, id.nfree); xfs_trans_set_sync(tp); error = xfs_trans_commit(tp); if (error) return error; /* New allocation groups fully initialized, so update mount struct */ if (nagimax) mp->m_maxagi = nagimax; xfs_set_low_space_thresholds(mp); mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); /* * If we expanded the last AG, free the per-AG reservation * so we can reinitialize it with the new size. */ if (new) { struct xfs_perag *pag; pag = xfs_perag_get(mp, id.agno); error = xfs_ag_resv_free(pag); xfs_perag_put(pag); if (error) return error; } /* * Reserve AG metadata blocks. ENOSPC here does not mean there was a * growfs failure, just that there still isn't space for new user data * after the grow has been run. */ error = xfs_fs_reserve_ag_blocks(mp); if (error == -ENOSPC) error = 0; return error; out_trans_cancel: xfs_trans_cancel(tp); return error; } static int xfs_growfs_log_private( xfs_mount_t *mp, /* mount point for filesystem */ xfs_growfs_log_t *in) /* growfs log input struct */ { xfs_extlen_t nb; nb = in->newblocks; if (nb < XFS_MIN_LOG_BLOCKS || nb < XFS_B_TO_FSB(mp, XFS_MIN_LOG_BYTES)) return -EINVAL; if (nb == mp->m_sb.sb_logblocks && in->isint == (mp->m_sb.sb_logstart != 0)) return -EINVAL; /* * Moving the log is hard, need new interfaces to sync * the log first, hold off all activity while moving it. * Can have shorter or longer log in the same space, * or transform internal to external log or vice versa. */ return -ENOSYS; } static int xfs_growfs_imaxpct( struct xfs_mount *mp, __u32 imaxpct) { struct xfs_trans *tp; int dpct; int error; if (imaxpct > 100) return -EINVAL; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata, XFS_GROWFS_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp); if (error) return error; dpct = imaxpct - mp->m_sb.sb_imax_pct; xfs_trans_mod_sb(tp, XFS_TRANS_SB_IMAXPCT, dpct); xfs_trans_set_sync(tp); return xfs_trans_commit(tp); } /* * protected versions of growfs function acquire and release locks on the mount * point - exported through ioctls: XFS_IOC_FSGROWFSDATA, XFS_IOC_FSGROWFSLOG, * XFS_IOC_FSGROWFSRT */ int xfs_growfs_data( struct xfs_mount *mp, struct xfs_growfs_data *in) { int error = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!mutex_trylock(&mp->m_growlock)) return -EWOULDBLOCK; /* update imaxpct separately to the physical grow of the filesystem */ if (in->imaxpct != mp->m_sb.sb_imax_pct) { error = xfs_growfs_imaxpct(mp, in->imaxpct); if (error) goto out_error; } if (in->newblocks != mp->m_sb.sb_dblocks) { error = xfs_growfs_data_private(mp, in); if (error) goto out_error; } /* Post growfs calculations needed to reflect new state in operations */ if (mp->m_sb.sb_imax_pct) { uint64_t icount = mp->m_sb.sb_dblocks * mp->m_sb.sb_imax_pct; do_div(icount, 100); M_IGEO(mp)->maxicount = XFS_FSB_TO_INO(mp, icount); } else M_IGEO(mp)->maxicount = 0; /* Update secondary superblocks now the physical grow has completed */ error = xfs_update_secondary_sbs(mp); out_error: /* * Increment the generation unconditionally, the error could be from * updating the secondary superblocks, in which case the new size * is live already. */ mp->m_generation++; mutex_unlock(&mp->m_growlock); return error; } int xfs_growfs_log( xfs_mount_t *mp, xfs_growfs_log_t *in) { int error; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!mutex_trylock(&mp->m_growlock)) return -EWOULDBLOCK; error = xfs_growfs_log_private(mp, in); mutex_unlock(&mp->m_growlock); return error; } /* * exported through ioctl XFS_IOC_FSCOUNTS */ void xfs_fs_counts( xfs_mount_t *mp, xfs_fsop_counts_t *cnt) { cnt->allocino = percpu_counter_read_positive(&mp->m_icount); cnt->freeino = percpu_counter_read_positive(&mp->m_ifree); cnt->freedata = percpu_counter_read_positive(&mp->m_fdblocks) - mp->m_alloc_set_aside; spin_lock(&mp->m_sb_lock); cnt->freertx = mp->m_sb.sb_frextents; spin_unlock(&mp->m_sb_lock); } /* * exported through ioctl XFS_IOC_SET_RESBLKS & XFS_IOC_GET_RESBLKS * * xfs_reserve_blocks is called to set m_resblks * in the in-core mount table. The number of unused reserved blocks * is kept in m_resblks_avail. * * Reserve the requested number of blocks if available. Otherwise return * as many as possible to satisfy the request. The actual number * reserved are returned in outval * * A null inval pointer indicates that only the current reserved blocks * available should be returned no settings are changed. */ int xfs_reserve_blocks( xfs_mount_t *mp, uint64_t *inval, xfs_fsop_resblks_t *outval) { int64_t lcounter, delta; int64_t fdblks_delta = 0; uint64_t request; int64_t free; int error = 0; /* If inval is null, report current values and return */ if (inval == (uint64_t *)NULL) { if (!outval) return -EINVAL; outval->resblks = mp->m_resblks; outval->resblks_avail = mp->m_resblks_avail; return 0; } request = *inval; /* * With per-cpu counters, this becomes an interesting problem. we need * to work out if we are freeing or allocation blocks first, then we can * do the modification as necessary. * * We do this under the m_sb_lock so that if we are near ENOSPC, we will * hold out any changes while we work out what to do. This means that * the amount of free space can change while we do this, so we need to * retry if we end up trying to reserve more space than is available. */ spin_lock(&mp->m_sb_lock); /* * If our previous reservation was larger than the current value, * then move any unused blocks back to the free pool. Modify the resblks * counters directly since we shouldn't have any problems unreserving * space. */ if (mp->m_resblks > request) { lcounter = mp->m_resblks_avail - request; if (lcounter > 0) { /* release unused blocks */ fdblks_delta = lcounter; mp->m_resblks_avail -= lcounter; } mp->m_resblks = request; if (fdblks_delta) { spin_unlock(&mp->m_sb_lock); error = xfs_mod_fdblocks(mp, fdblks_delta, 0); spin_lock(&mp->m_sb_lock); } goto out; } /* * If the request is larger than the current reservation, reserve the * blocks before we update the reserve counters. Sample m_fdblocks and * perform a partial reservation if the request exceeds free space. * * The code below estimates how many blocks it can request from * fdblocks to stash in the reserve pool. This is a classic TOCTOU * race since fdblocks updates are not always coordinated via * m_sb_lock. Set the reserve size even if there's not enough free * space to fill it because mod_fdblocks will refill an undersized * reserve when it can. */ free = percpu_counter_sum(&mp->m_fdblocks) - xfs_fdblocks_unavailable(mp); delta = request - mp->m_resblks; mp->m_resblks = request; if (delta > 0 && free > 0) { /* * We'll either succeed in getting space from the free block * count or we'll get an ENOSPC. Don't set the reserved flag * here - we don't want to reserve the extra reserve blocks * from the reserve. * * The desired reserve size can change after we drop the lock. * Use mod_fdblocks to put the space into the reserve or into * fdblocks as appropriate. */ fdblks_delta = min(free, delta); spin_unlock(&mp->m_sb_lock); error = xfs_mod_fdblocks(mp, -fdblks_delta, 0); if (!error) xfs_mod_fdblocks(mp, fdblks_delta, 0); spin_lock(&mp->m_sb_lock); } out: if (outval) { outval->resblks = mp->m_resblks; outval->resblks_avail = mp->m_resblks_avail; } spin_unlock(&mp->m_sb_lock); return error; } int xfs_fs_goingdown( xfs_mount_t *mp, uint32_t inflags) { switch (inflags) { case XFS_FSOP_GOING_FLAGS_DEFAULT: { struct super_block *sb = freeze_bdev(mp->m_super->s_bdev); if (sb && !IS_ERR(sb)) { xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT); thaw_bdev(sb->s_bdev, sb); } break; } case XFS_FSOP_GOING_FLAGS_LOGFLUSH: xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT); break; case XFS_FSOP_GOING_FLAGS_NOLOGFLUSH: xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT | SHUTDOWN_LOG_IO_ERROR); break; default: return -EINVAL; } return 0; } /* * Force a shutdown of the filesystem instantly while keeping the filesystem * consistent. We don't do an unmount here; just shutdown the shop, make sure * that absolutely nothing persistent happens to this filesystem after this * point. * * The shutdown state change is atomic, resulting in the first and only the * first shutdown call processing the shutdown. This means we only shutdown the * log once as it requires, and we don't spam the logs when multiple concurrent * shutdowns race to set the shutdown flags. */ void xfs_do_force_shutdown( struct xfs_mount *mp, int flags, char *fname, int lnnum) { int tag; const char *why; spin_lock(&mp->m_sb_lock); if (XFS_FORCED_SHUTDOWN(mp)) { spin_unlock(&mp->m_sb_lock); return; } mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; if (mp->m_sb_bp) mp->m_sb_bp->b_flags |= XBF_DONE; spin_unlock(&mp->m_sb_lock); if (flags & SHUTDOWN_FORCE_UMOUNT) xfs_alert(mp, "User initiated shutdown received."); if (xlog_force_shutdown(mp->m_log, flags)) { tag = XFS_PTAG_SHUTDOWN_LOGERROR; why = "Log I/O Error"; } else if (flags & SHUTDOWN_CORRUPT_INCORE) { tag = XFS_PTAG_SHUTDOWN_CORRUPT; why = "Corruption of in-memory data"; } else { tag = XFS_PTAG_SHUTDOWN_IOERROR; why = "Metadata I/O Error"; } xfs_alert_tag(mp, tag, "%s (0x%x) detected at %pS (%s:%d). Shutting down filesystem.", why, flags, __return_address, fname, lnnum); xfs_alert(mp, "Please unmount the filesystem and rectify the problem(s)"); if (xfs_error_level >= XFS_ERRLEVEL_HIGH) xfs_stack_trace(); } /* * Reserve free space for per-AG metadata. */ int xfs_fs_reserve_ag_blocks( struct xfs_mount *mp) { xfs_agnumber_t agno; struct xfs_perag *pag; int error = 0; int err2; mp->m_finobt_nores = false; for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { pag = xfs_perag_get(mp, agno); err2 = xfs_ag_resv_init(pag, NULL); xfs_perag_put(pag); if (err2 && !error) error = err2; } if (error && error != -ENOSPC) { xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", error); xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); } return error; } /* * Free space reserved for per-AG metadata. */ int xfs_fs_unreserve_ag_blocks( struct xfs_mount *mp) { xfs_agnumber_t agno; struct xfs_perag *pag; int error = 0; int err2; for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { pag = xfs_perag_get(mp, agno); err2 = xfs_ag_resv_free(pag); xfs_perag_put(pag); if (err2 && !error) error = err2; } if (error) xfs_warn(mp, "Error %d freeing per-AG metadata reserve pool.", error); return error; }