/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Rafał Miłecki * Alex Deucher */ #include #include "amdgpu.h" #include "amdgpu_drv.h" #include "amdgpu_pm.h" #include "amdgpu_dpm.h" #include "amdgpu_display.h" #include "amdgpu_smu.h" #include "atom.h" #include #include #include #include #include #include #include "hwmgr.h" #define WIDTH_4K 3840 static const struct cg_flag_name clocks[] = { {AMD_CG_SUPPORT_GFX_MGCG, "Graphics Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_MGLS, "Graphics Medium Grain memory Light Sleep"}, {AMD_CG_SUPPORT_GFX_CGCG, "Graphics Coarse Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_CGLS, "Graphics Coarse Grain memory Light Sleep"}, {AMD_CG_SUPPORT_GFX_CGTS, "Graphics Coarse Grain Tree Shader Clock Gating"}, {AMD_CG_SUPPORT_GFX_CGTS_LS, "Graphics Coarse Grain Tree Shader Light Sleep"}, {AMD_CG_SUPPORT_GFX_CP_LS, "Graphics Command Processor Light Sleep"}, {AMD_CG_SUPPORT_GFX_RLC_LS, "Graphics Run List Controller Light Sleep"}, {AMD_CG_SUPPORT_GFX_3D_CGCG, "Graphics 3D Coarse Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_3D_CGLS, "Graphics 3D Coarse Grain memory Light Sleep"}, {AMD_CG_SUPPORT_MC_LS, "Memory Controller Light Sleep"}, {AMD_CG_SUPPORT_MC_MGCG, "Memory Controller Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_SDMA_LS, "System Direct Memory Access Light Sleep"}, {AMD_CG_SUPPORT_SDMA_MGCG, "System Direct Memory Access Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_BIF_MGCG, "Bus Interface Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_BIF_LS, "Bus Interface Light Sleep"}, {AMD_CG_SUPPORT_UVD_MGCG, "Unified Video Decoder Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_VCE_MGCG, "Video Compression Engine Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_HDP_LS, "Host Data Path Light Sleep"}, {AMD_CG_SUPPORT_HDP_MGCG, "Host Data Path Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DRM_MGCG, "Digital Right Management Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DRM_LS, "Digital Right Management Light Sleep"}, {AMD_CG_SUPPORT_ROM_MGCG, "Rom Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DF_MGCG, "Data Fabric Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_ATHUB_MGCG, "Address Translation Hub Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_ATHUB_LS, "Address Translation Hub Light Sleep"}, {0, NULL}, }; static const struct hwmon_temp_label { enum PP_HWMON_TEMP channel; const char *label; } temp_label[] = { {PP_TEMP_EDGE, "edge"}, {PP_TEMP_JUNCTION, "junction"}, {PP_TEMP_MEM, "mem"}, }; void amdgpu_pm_acpi_event_handler(struct amdgpu_device *adev) { if (adev->pm.dpm_enabled) { mutex_lock(&adev->pm.mutex); if (power_supply_is_system_supplied() > 0) adev->pm.ac_power = true; else adev->pm.ac_power = false; if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->enable_bapm) amdgpu_dpm_enable_bapm(adev, adev->pm.ac_power); mutex_unlock(&adev->pm.mutex); if (is_support_sw_smu(adev)) smu_set_ac_dc(&adev->smu); } } int amdgpu_dpm_read_sensor(struct amdgpu_device *adev, enum amd_pp_sensors sensor, void *data, uint32_t *size) { int ret = 0; if (!data || !size) return -EINVAL; if (is_support_sw_smu(adev)) ret = smu_read_sensor(&adev->smu, sensor, data, size); else { if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->read_sensor) ret = adev->powerplay.pp_funcs->read_sensor((adev)->powerplay.pp_handle, sensor, data, size); else ret = -EINVAL; } return ret; } /** * DOC: power_dpm_state * * The power_dpm_state file is a legacy interface and is only provided for * backwards compatibility. The amdgpu driver provides a sysfs API for adjusting * certain power related parameters. The file power_dpm_state is used for this. * It accepts the following arguments: * * - battery * * - balanced * * - performance * * battery * * On older GPUs, the vbios provided a special power state for battery * operation. Selecting battery switched to this state. This is no * longer provided on newer GPUs so the option does nothing in that case. * * balanced * * On older GPUs, the vbios provided a special power state for balanced * operation. Selecting balanced switched to this state. This is no * longer provided on newer GPUs so the option does nothing in that case. * * performance * * On older GPUs, the vbios provided a special power state for performance * operation. Selecting performance switched to this state. This is no * longer provided on newer GPUs so the option does nothing in that case. * */ static ssize_t amdgpu_get_power_dpm_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; enum amd_pm_state_type pm; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) { if (adev->smu.ppt_funcs->get_current_power_state) pm = smu_get_current_power_state(&adev->smu); else pm = adev->pm.dpm.user_state; } else if (adev->powerplay.pp_funcs->get_current_power_state) { pm = amdgpu_dpm_get_current_power_state(adev); } else { pm = adev->pm.dpm.user_state; } up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return snprintf(buf, PAGE_SIZE, "%s\n", (pm == POWER_STATE_TYPE_BATTERY) ? "battery" : (pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance"); } static ssize_t amdgpu_set_power_dpm_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; enum amd_pm_state_type state; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (strncmp("battery", buf, strlen("battery")) == 0) state = POWER_STATE_TYPE_BATTERY; else if (strncmp("balanced", buf, strlen("balanced")) == 0) state = POWER_STATE_TYPE_BALANCED; else if (strncmp("performance", buf, strlen("performance")) == 0) state = POWER_STATE_TYPE_PERFORMANCE; else return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) { mutex_lock(&adev->pm.mutex); adev->pm.dpm.user_state = state; mutex_unlock(&adev->pm.mutex); } else if (adev->powerplay.pp_funcs->dispatch_tasks) { amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_ENABLE_USER_STATE, &state); } else { mutex_lock(&adev->pm.mutex); adev->pm.dpm.user_state = state; mutex_unlock(&adev->pm.mutex); amdgpu_pm_compute_clocks(adev); } up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } /** * DOC: power_dpm_force_performance_level * * The amdgpu driver provides a sysfs API for adjusting certain power * related parameters. The file power_dpm_force_performance_level is * used for this. It accepts the following arguments: * * - auto * * - low * * - high * * - manual * * - profile_standard * * - profile_min_sclk * * - profile_min_mclk * * - profile_peak * * auto * * When auto is selected, the driver will attempt to dynamically select * the optimal power profile for current conditions in the driver. * * low * * When low is selected, the clocks are forced to the lowest power state. * * high * * When high is selected, the clocks are forced to the highest power state. * * manual * * When manual is selected, the user can manually adjust which power states * are enabled for each clock domain via the sysfs pp_dpm_mclk, pp_dpm_sclk, * and pp_dpm_pcie files and adjust the power state transition heuristics * via the pp_power_profile_mode sysfs file. * * profile_standard * profile_min_sclk * profile_min_mclk * profile_peak * * When the profiling modes are selected, clock and power gating are * disabled and the clocks are set for different profiling cases. This * mode is recommended for profiling specific work loads where you do * not want clock or power gating for clock fluctuation to interfere * with your results. profile_standard sets the clocks to a fixed clock * level which varies from asic to asic. profile_min_sclk forces the sclk * to the lowest level. profile_min_mclk forces the mclk to the lowest level. * profile_peak sets all clocks (mclk, sclk, pcie) to the highest levels. * */ static ssize_t amdgpu_get_power_dpm_force_performance_level(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; enum amd_dpm_forced_level level = 0xff; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) level = smu_get_performance_level(&adev->smu); else if (adev->powerplay.pp_funcs->get_performance_level) level = amdgpu_dpm_get_performance_level(adev); else level = adev->pm.dpm.forced_level; up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return snprintf(buf, PAGE_SIZE, "%s\n", (level == AMD_DPM_FORCED_LEVEL_AUTO) ? "auto" : (level == AMD_DPM_FORCED_LEVEL_LOW) ? "low" : (level == AMD_DPM_FORCED_LEVEL_HIGH) ? "high" : (level == AMD_DPM_FORCED_LEVEL_MANUAL) ? "manual" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) ? "profile_standard" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) ? "profile_min_sclk" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) ? "profile_min_mclk" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) ? "profile_peak" : "unknown"); } static ssize_t amdgpu_set_power_dpm_force_performance_level(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; enum amd_dpm_forced_level level; enum amd_dpm_forced_level current_level = 0xff; int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (strncmp("low", buf, strlen("low")) == 0) { level = AMD_DPM_FORCED_LEVEL_LOW; } else if (strncmp("high", buf, strlen("high")) == 0) { level = AMD_DPM_FORCED_LEVEL_HIGH; } else if (strncmp("auto", buf, strlen("auto")) == 0) { level = AMD_DPM_FORCED_LEVEL_AUTO; } else if (strncmp("manual", buf, strlen("manual")) == 0) { level = AMD_DPM_FORCED_LEVEL_MANUAL; } else if (strncmp("profile_exit", buf, strlen("profile_exit")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_EXIT; } else if (strncmp("profile_standard", buf, strlen("profile_standard")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD; } else if (strncmp("profile_min_sclk", buf, strlen("profile_min_sclk")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK; } else if (strncmp("profile_min_mclk", buf, strlen("profile_min_mclk")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK; } else if (strncmp("profile_peak", buf, strlen("profile_peak")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; } else { return -EINVAL; } ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) current_level = smu_get_performance_level(&adev->smu); else if (adev->powerplay.pp_funcs->get_performance_level) current_level = amdgpu_dpm_get_performance_level(adev); if (current_level == level) { pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); ret = count; goto pro_end; } if (adev->asic_type == CHIP_RAVEN) { if (!(adev->apu_flags & AMD_APU_IS_RAVEN2)) { if (current_level != AMD_DPM_FORCED_LEVEL_MANUAL && level == AMD_DPM_FORCED_LEVEL_MANUAL) amdgpu_gfx_off_ctrl(adev, false); else if (current_level == AMD_DPM_FORCED_LEVEL_MANUAL && level != AMD_DPM_FORCED_LEVEL_MANUAL) amdgpu_gfx_off_ctrl(adev, true); } } /* profile_exit setting is valid only when current mode is in profile mode */ if (!(current_level & (AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK | AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)) && (level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)) { pr_err("Currently not in any profile mode!\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); ret = -EINVAL; goto pro_end; } if (is_support_sw_smu(adev)) { ret = smu_force_performance_level(&adev->smu, level); if (ret) { pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); ret = -EINVAL; goto pro_end; } } else if (adev->powerplay.pp_funcs->force_performance_level) { mutex_lock(&adev->pm.mutex); if (adev->pm.dpm.thermal_active) { mutex_unlock(&adev->pm.mutex); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); ret = -EINVAL; goto pro_end; } ret = amdgpu_dpm_force_performance_level(adev, level); if (ret) { mutex_unlock(&adev->pm.mutex); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); ret = -EINVAL; goto pro_end; } else { adev->pm.dpm.forced_level = level; } mutex_unlock(&adev->pm.mutex); } pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); pro_end: up_read(&adev->reset_sem); return ret; } static ssize_t amdgpu_get_pp_num_states(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; struct pp_states_info data; int i, buf_len, ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } if (is_support_sw_smu(adev)) { ret = smu_get_power_num_states(&adev->smu, &data); if (ret) return ret; } else if (adev->powerplay.pp_funcs->get_pp_num_states) { amdgpu_dpm_get_pp_num_states(adev, &data); } else { memset(&data, 0, sizeof(data)); } pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); buf_len = snprintf(buf, PAGE_SIZE, "states: %d\n", data.nums); for (i = 0; i < data.nums; i++) buf_len += snprintf(buf + buf_len, PAGE_SIZE, "%d %s\n", i, (data.states[i] == POWER_STATE_TYPE_INTERNAL_BOOT) ? "boot" : (data.states[i] == POWER_STATE_TYPE_BATTERY) ? "battery" : (data.states[i] == POWER_STATE_TYPE_BALANCED) ? "balanced" : (data.states[i] == POWER_STATE_TYPE_PERFORMANCE) ? "performance" : "default"); return buf_len; } static ssize_t amdgpu_get_pp_cur_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; struct pp_states_info data; struct smu_context *smu = &adev->smu; enum amd_pm_state_type pm = 0; int i = 0, ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } if (is_support_sw_smu(adev)) { pm = smu_get_current_power_state(smu); ret = smu_get_power_num_states(smu, &data); if (ret) return ret; } else if (adev->powerplay.pp_funcs->get_current_power_state && adev->powerplay.pp_funcs->get_pp_num_states) { pm = amdgpu_dpm_get_current_power_state(adev); amdgpu_dpm_get_pp_num_states(adev, &data); } pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); for (i = 0; i < data.nums; i++) { if (pm == data.states[i]) break; } if (i == data.nums) i = -EINVAL; return snprintf(buf, PAGE_SIZE, "%d\n", i); } static ssize_t amdgpu_get_pp_force_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->pp_force_state_enabled) return amdgpu_get_pp_cur_state(dev, attr, buf); else return snprintf(buf, PAGE_SIZE, "\n"); } static ssize_t amdgpu_set_pp_force_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; enum amd_pm_state_type state = 0; unsigned long idx; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (strlen(buf) == 1) adev->pp_force_state_enabled = false; else if (is_support_sw_smu(adev)) adev->pp_force_state_enabled = false; else if (adev->powerplay.pp_funcs->dispatch_tasks && adev->powerplay.pp_funcs->get_pp_num_states) { struct pp_states_info data; ret = kstrtoul(buf, 0, &idx); if (ret || idx >= ARRAY_SIZE(data.states)) return -EINVAL; idx = array_index_nospec(idx, ARRAY_SIZE(data.states)); amdgpu_dpm_get_pp_num_states(adev, &data); state = data.states[idx]; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); /* only set user selected power states */ if (state != POWER_STATE_TYPE_INTERNAL_BOOT && state != POWER_STATE_TYPE_DEFAULT) { amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_ENABLE_USER_STATE, &state); adev->pp_force_state_enabled = true; } up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); } return count; } /** * DOC: pp_table * * The amdgpu driver provides a sysfs API for uploading new powerplay * tables. The file pp_table is used for this. Reading the file * will dump the current power play table. Writing to the file * will attempt to upload a new powerplay table and re-initialize * powerplay using that new table. * */ static ssize_t amdgpu_get_pp_table(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; char *table = NULL; int size, ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } if (is_support_sw_smu(adev)) { size = smu_sys_get_pp_table(&adev->smu, (void **)&table); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (size < 0) return size; } else if (adev->powerplay.pp_funcs->get_pp_table) { size = amdgpu_dpm_get_pp_table(adev, &table); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (size < 0) return size; } else { pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return 0; } if (size >= PAGE_SIZE) size = PAGE_SIZE - 1; memcpy(buf, table, size); return size; } static ssize_t amdgpu_set_pp_table(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) { ret = smu_sys_set_pp_table(&adev->smu, (void *)buf, count); if (ret) { pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); up_read(&adev->reset_sem); return ret; } } else if (adev->powerplay.pp_funcs->set_pp_table) amdgpu_dpm_set_pp_table(adev, buf, count); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } /** * DOC: pp_od_clk_voltage * * The amdgpu driver provides a sysfs API for adjusting the clocks and voltages * in each power level within a power state. The pp_od_clk_voltage is used for * this. * * Note that the actual memory controller clock rate are exposed, not * the effective memory clock of the DRAMs. To translate it, use the * following formula: * * Clock conversion (Mhz): * * HBM: effective_memory_clock = memory_controller_clock * 1 * * G5: effective_memory_clock = memory_controller_clock * 1 * * G6: effective_memory_clock = memory_controller_clock * 2 * * DRAM data rate (MT/s): * * HBM: effective_memory_clock * 2 = data_rate * * G5: effective_memory_clock * 4 = data_rate * * G6: effective_memory_clock * 8 = data_rate * * Bandwidth (MB/s): * * data_rate * vram_bit_width / 8 = memory_bandwidth * * Some examples: * * G5 on RX460: * * memory_controller_clock = 1750 Mhz * * effective_memory_clock = 1750 Mhz * 1 = 1750 Mhz * * data rate = 1750 * 4 = 7000 MT/s * * memory_bandwidth = 7000 * 128 bits / 8 = 112000 MB/s * * G6 on RX5700: * * memory_controller_clock = 875 Mhz * * effective_memory_clock = 875 Mhz * 2 = 1750 Mhz * * data rate = 1750 * 8 = 14000 MT/s * * memory_bandwidth = 14000 * 256 bits / 8 = 448000 MB/s * * < For Vega10 and previous ASICs > * * Reading the file will display: * * - a list of engine clock levels and voltages labeled OD_SCLK * * - a list of memory clock levels and voltages labeled OD_MCLK * * - a list of valid ranges for sclk, mclk, and voltage labeled OD_RANGE * * To manually adjust these settings, first select manual using * power_dpm_force_performance_level. Enter a new value for each * level by writing a string that contains "s/m level clock voltage" to * the file. E.g., "s 1 500 820" will update sclk level 1 to be 500 MHz * at 820 mV; "m 0 350 810" will update mclk level 0 to be 350 MHz at * 810 mV. When you have edited all of the states as needed, write * "c" (commit) to the file to commit your changes. If you want to reset to the * default power levels, write "r" (reset) to the file to reset them. * * * < For Vega20 and newer ASICs > * * Reading the file will display: * * - minimum and maximum engine clock labeled OD_SCLK * * - maximum memory clock labeled OD_MCLK * * - three points labeled OD_VDDC_CURVE. * They can be used to calibrate the sclk voltage curve. * * - a list of valid ranges for sclk, mclk, and voltage curve points * labeled OD_RANGE * * To manually adjust these settings: * * - First select manual using power_dpm_force_performance_level * * - For clock frequency setting, enter a new value by writing a * string that contains "s/m index clock" to the file. The index * should be 0 if to set minimum clock. And 1 if to set maximum * clock. E.g., "s 0 500" will update minimum sclk to be 500 MHz. * "m 1 800" will update maximum mclk to be 800Mhz. * * For sclk voltage curve, enter the new values by writing a * string that contains "vc point clock voltage" to the file. The * points are indexed by 0, 1 and 2. E.g., "vc 0 300 600" will * update point1 with clock set as 300Mhz and voltage as * 600mV. "vc 2 1000 1000" will update point3 with clock set * as 1000Mhz and voltage 1000mV. * * - When you have edited all of the states as needed, write "c" (commit) * to the file to commit your changes * * - If you want to reset to the default power levels, write "r" (reset) * to the file to reset them * */ static ssize_t amdgpu_set_pp_od_clk_voltage(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; uint32_t parameter_size = 0; long parameter[64]; char buf_cpy[128]; char *tmp_str; char *sub_str; const char delimiter[3] = {' ', '\n', '\0'}; uint32_t type; if (amdgpu_in_reset(adev)) return -EPERM; if (count > 127) return -EINVAL; if (*buf == 's') type = PP_OD_EDIT_SCLK_VDDC_TABLE; else if (*buf == 'm') type = PP_OD_EDIT_MCLK_VDDC_TABLE; else if(*buf == 'r') type = PP_OD_RESTORE_DEFAULT_TABLE; else if (*buf == 'c') type = PP_OD_COMMIT_DPM_TABLE; else if (!strncmp(buf, "vc", 2)) type = PP_OD_EDIT_VDDC_CURVE; else return -EINVAL; memcpy(buf_cpy, buf, count+1); tmp_str = buf_cpy; if (type == PP_OD_EDIT_VDDC_CURVE) tmp_str++; while (isspace(*++tmp_str)); while (tmp_str[0]) { sub_str = strsep(&tmp_str, delimiter); ret = kstrtol(sub_str, 0, ¶meter[parameter_size]); if (ret) return -EINVAL; parameter_size++; while (isspace(*tmp_str)) tmp_str++; } ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = count; down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) { ret = smu_od_edit_dpm_table(&adev->smu, type, parameter, parameter_size); if (ret) { pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); ret = -EINVAL; goto pro_end; } } else { if (adev->powerplay.pp_funcs->odn_edit_dpm_table) { ret = amdgpu_dpm_odn_edit_dpm_table(adev, type, parameter, parameter_size); if (ret) { pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); ret = -EINVAL; goto pro_end; } } if (type == PP_OD_COMMIT_DPM_TABLE) { if (adev->powerplay.pp_funcs->dispatch_tasks) { amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); ret = count; goto pro_end; } else { pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); ret = -EINVAL; goto pro_end; } } } pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); pro_end: up_read(&adev->reset_sem); return ret; } static ssize_t amdgpu_get_pp_od_clk_voltage(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } if (is_support_sw_smu(adev)) { size = smu_print_clk_levels(&adev->smu, SMU_OD_SCLK, buf); size += smu_print_clk_levels(&adev->smu, SMU_OD_MCLK, buf+size); size += smu_print_clk_levels(&adev->smu, SMU_OD_VDDC_CURVE, buf+size); size += smu_print_clk_levels(&adev->smu, SMU_OD_RANGE, buf+size); } else if (adev->powerplay.pp_funcs->print_clock_levels) { size = amdgpu_dpm_print_clock_levels(adev, OD_SCLK, buf); size += amdgpu_dpm_print_clock_levels(adev, OD_MCLK, buf+size); size += amdgpu_dpm_print_clock_levels(adev, OD_VDDC_CURVE, buf+size); size += amdgpu_dpm_print_clock_levels(adev, OD_RANGE, buf+size); } else { size = snprintf(buf, PAGE_SIZE, "\n"); } pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } /** * DOC: pp_features * * The amdgpu driver provides a sysfs API for adjusting what powerplay * features to be enabled. The file pp_features is used for this. And * this is only available for Vega10 and later dGPUs. * * Reading back the file will show you the followings: * - Current ppfeature masks * - List of the all supported powerplay features with their naming, * bitmasks and enablement status('Y'/'N' means "enabled"/"disabled"). * * To manually enable or disable a specific feature, just set or clear * the corresponding bit from original ppfeature masks and input the * new ppfeature masks. */ static ssize_t amdgpu_set_pp_features(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; uint64_t featuremask; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = kstrtou64(buf, 0, &featuremask); if (ret) return -EINVAL; pr_debug("featuremask = 0x%llx\n", featuremask); ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) { ret = smu_sys_set_pp_feature_mask(&adev->smu, featuremask); if (ret) { pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); up_read(&adev->reset_sem); return -EINVAL; } } else if (adev->powerplay.pp_funcs->set_ppfeature_status) { ret = amdgpu_dpm_set_ppfeature_status(adev, featuremask); if (ret) { pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); up_read(&adev->reset_sem); return -EINVAL; } } up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } static ssize_t amdgpu_get_pp_features(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) size = smu_sys_get_pp_feature_mask(&adev->smu, buf); else if (adev->powerplay.pp_funcs->get_ppfeature_status) size = amdgpu_dpm_get_ppfeature_status(adev, buf); else size = snprintf(buf, PAGE_SIZE, "\n"); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } /** * DOC: pp_dpm_sclk pp_dpm_mclk pp_dpm_socclk pp_dpm_fclk pp_dpm_dcefclk pp_dpm_pcie * * The amdgpu driver provides a sysfs API for adjusting what power levels * are enabled for a given power state. The files pp_dpm_sclk, pp_dpm_mclk, * pp_dpm_socclk, pp_dpm_fclk, pp_dpm_dcefclk and pp_dpm_pcie are used for * this. * * pp_dpm_socclk and pp_dpm_dcefclk interfaces are only available for * Vega10 and later ASICs. * pp_dpm_fclk interface is only available for Vega20 and later ASICs. * * Reading back the files will show you the available power levels within * the power state and the clock information for those levels. * * To manually adjust these states, first select manual using * power_dpm_force_performance_level. * Secondly, enter a new value for each level by inputing a string that * contains " echo xx xx xx > pp_dpm_sclk/mclk/pcie" * E.g., * * .. code-block:: bash * * echo "4 5 6" > pp_dpm_sclk * * will enable sclk levels 4, 5, and 6. * * NOTE: change to the dcefclk max dpm level is not supported now */ static ssize_t amdgpu_get_pp_dpm_sclk(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) size = smu_print_clk_levels(&adev->smu, SMU_SCLK, buf); else if (adev->powerplay.pp_funcs->print_clock_levels) size = amdgpu_dpm_print_clock_levels(adev, PP_SCLK, buf); else size = snprintf(buf, PAGE_SIZE, "\n"); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } /* * Worst case: 32 bits individually specified, in octal at 12 characters * per line (+1 for \n). */ #define AMDGPU_MASK_BUF_MAX (32 * 13) static ssize_t amdgpu_read_mask(const char *buf, size_t count, uint32_t *mask) { int ret; long level; char *sub_str = NULL; char *tmp; char buf_cpy[AMDGPU_MASK_BUF_MAX + 1]; const char delimiter[3] = {' ', '\n', '\0'}; size_t bytes; *mask = 0; bytes = min(count, sizeof(buf_cpy) - 1); memcpy(buf_cpy, buf, bytes); buf_cpy[bytes] = '\0'; tmp = buf_cpy; while (tmp[0]) { sub_str = strsep(&tmp, delimiter); if (strlen(sub_str)) { ret = kstrtol(sub_str, 0, &level); if (ret) return -EINVAL; *mask |= 1 << level; } else break; } return 0; } static ssize_t amdgpu_set_pp_dpm_sclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; uint32_t mask = 0; if (amdgpu_in_reset(adev)) return -EPERM; ret = amdgpu_read_mask(buf, count, &mask); if (ret) return ret; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) ret = smu_force_clk_levels(&adev->smu, SMU_SCLK, mask); else if (adev->powerplay.pp_funcs->force_clock_level) ret = amdgpu_dpm_force_clock_level(adev, PP_SCLK, mask); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_get_pp_dpm_mclk(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) size = smu_print_clk_levels(&adev->smu, SMU_MCLK, buf); else if (adev->powerplay.pp_funcs->print_clock_levels) size = amdgpu_dpm_print_clock_levels(adev, PP_MCLK, buf); else size = snprintf(buf, PAGE_SIZE, "\n"); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static ssize_t amdgpu_set_pp_dpm_mclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; uint32_t mask = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = amdgpu_read_mask(buf, count, &mask); if (ret) return ret; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) ret = smu_force_clk_levels(&adev->smu, SMU_MCLK, mask); else if (adev->powerplay.pp_funcs->force_clock_level) ret = amdgpu_dpm_force_clock_level(adev, PP_MCLK, mask); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_get_pp_dpm_socclk(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) size = smu_print_clk_levels(&adev->smu, SMU_SOCCLK, buf); else if (adev->powerplay.pp_funcs->print_clock_levels) size = amdgpu_dpm_print_clock_levels(adev, PP_SOCCLK, buf); else size = snprintf(buf, PAGE_SIZE, "\n"); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static ssize_t amdgpu_set_pp_dpm_socclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; uint32_t mask = 0; if (amdgpu_in_reset(adev)) return -EPERM; ret = amdgpu_read_mask(buf, count, &mask); if (ret) return ret; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) ret = smu_force_clk_levels(&adev->smu, SMU_SOCCLK, mask); else if (adev->powerplay.pp_funcs->force_clock_level) ret = amdgpu_dpm_force_clock_level(adev, PP_SOCCLK, mask); else ret = 0; up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_get_pp_dpm_fclk(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) size = smu_print_clk_levels(&adev->smu, SMU_FCLK, buf); else if (adev->powerplay.pp_funcs->print_clock_levels) size = amdgpu_dpm_print_clock_levels(adev, PP_FCLK, buf); else size = snprintf(buf, PAGE_SIZE, "\n"); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static ssize_t amdgpu_set_pp_dpm_fclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; uint32_t mask = 0; if (amdgpu_in_reset(adev)) return -EPERM; ret = amdgpu_read_mask(buf, count, &mask); if (ret) return ret; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) ret = smu_force_clk_levels(&adev->smu, SMU_FCLK, mask); else if (adev->powerplay.pp_funcs->force_clock_level) ret = amdgpu_dpm_force_clock_level(adev, PP_FCLK, mask); else ret = 0; up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_get_pp_dpm_dcefclk(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) size = smu_print_clk_levels(&adev->smu, SMU_DCEFCLK, buf); else if (adev->powerplay.pp_funcs->print_clock_levels) size = amdgpu_dpm_print_clock_levels(adev, PP_DCEFCLK, buf); else size = snprintf(buf, PAGE_SIZE, "\n"); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static ssize_t amdgpu_set_pp_dpm_dcefclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; uint32_t mask = 0; if (amdgpu_in_reset(adev)) return -EPERM; ret = amdgpu_read_mask(buf, count, &mask); if (ret) return ret; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) ret = smu_force_clk_levels(&adev->smu, SMU_DCEFCLK, mask); else if (adev->powerplay.pp_funcs->force_clock_level) ret = amdgpu_dpm_force_clock_level(adev, PP_DCEFCLK, mask); else ret = 0; up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_get_pp_dpm_pcie(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) size = smu_print_clk_levels(&adev->smu, SMU_PCIE, buf); else if (adev->powerplay.pp_funcs->print_clock_levels) size = amdgpu_dpm_print_clock_levels(adev, PP_PCIE, buf); else size = snprintf(buf, PAGE_SIZE, "\n"); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static ssize_t amdgpu_set_pp_dpm_pcie(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; uint32_t mask = 0; if (amdgpu_in_reset(adev)) return -EPERM; ret = amdgpu_read_mask(buf, count, &mask); if (ret) return ret; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) ret = smu_force_clk_levels(&adev->smu, SMU_PCIE, mask); else if (adev->powerplay.pp_funcs->force_clock_level) ret = amdgpu_dpm_force_clock_level(adev, PP_PCIE, mask); else ret = 0; up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_get_pp_sclk_od(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; uint32_t value = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) value = smu_get_od_percentage(&(adev->smu), SMU_OD_SCLK); else if (adev->powerplay.pp_funcs->get_sclk_od) value = amdgpu_dpm_get_sclk_od(adev); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return snprintf(buf, PAGE_SIZE, "%d\n", value); } static ssize_t amdgpu_set_pp_sclk_od(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; long int value; if (amdgpu_in_reset(adev)) return -EPERM; ret = kstrtol(buf, 0, &value); if (ret) return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) { value = smu_set_od_percentage(&(adev->smu), SMU_OD_SCLK, (uint32_t)value); } else { if (adev->powerplay.pp_funcs->set_sclk_od) amdgpu_dpm_set_sclk_od(adev, (uint32_t)value); if (adev->powerplay.pp_funcs->dispatch_tasks) { amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL); } else { adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps; amdgpu_pm_compute_clocks(adev); } } up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } static ssize_t amdgpu_get_pp_mclk_od(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; uint32_t value = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) value = smu_get_od_percentage(&(adev->smu), SMU_OD_MCLK); else if (adev->powerplay.pp_funcs->get_mclk_od) value = amdgpu_dpm_get_mclk_od(adev); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return snprintf(buf, PAGE_SIZE, "%d\n", value); } static ssize_t amdgpu_set_pp_mclk_od(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; long int value; if (amdgpu_in_reset(adev)) return -EPERM; ret = kstrtol(buf, 0, &value); if (ret) return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) { value = smu_set_od_percentage(&(adev->smu), SMU_OD_MCLK, (uint32_t)value); } else { if (adev->powerplay.pp_funcs->set_mclk_od) amdgpu_dpm_set_mclk_od(adev, (uint32_t)value); if (adev->powerplay.pp_funcs->dispatch_tasks) { amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL); } else { adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps; amdgpu_pm_compute_clocks(adev); } } up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } /** * DOC: pp_power_profile_mode * * The amdgpu driver provides a sysfs API for adjusting the heuristics * related to switching between power levels in a power state. The file * pp_power_profile_mode is used for this. * * Reading this file outputs a list of all of the predefined power profiles * and the relevant heuristics settings for that profile. * * To select a profile or create a custom profile, first select manual using * power_dpm_force_performance_level. Writing the number of a predefined * profile to pp_power_profile_mode will enable those heuristics. To * create a custom set of heuristics, write a string of numbers to the file * starting with the number of the custom profile along with a setting * for each heuristic parameter. Due to differences across asic families * the heuristic parameters vary from family to family. * */ static ssize_t amdgpu_get_pp_power_profile_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) size = smu_get_power_profile_mode(&adev->smu, buf); else if (adev->powerplay.pp_funcs->get_power_profile_mode) size = amdgpu_dpm_get_power_profile_mode(adev, buf); else size = snprintf(buf, PAGE_SIZE, "\n"); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static ssize_t amdgpu_set_pp_power_profile_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; uint32_t parameter_size = 0; long parameter[64]; char *sub_str, buf_cpy[128]; char *tmp_str; uint32_t i = 0; char tmp[2]; long int profile_mode = 0; const char delimiter[3] = {' ', '\n', '\0'}; if (amdgpu_in_reset(adev)) return -EPERM; tmp[0] = *(buf); tmp[1] = '\0'; ret = kstrtol(tmp, 0, &profile_mode); if (ret) return -EINVAL; if (profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { if (count < 2 || count > 127) return -EINVAL; while (isspace(*++buf)) i++; memcpy(buf_cpy, buf, count-i); tmp_str = buf_cpy; while (tmp_str[0]) { sub_str = strsep(&tmp_str, delimiter); ret = kstrtol(sub_str, 0, ¶meter[parameter_size]); if (ret) return -EINVAL; parameter_size++; while (isspace(*tmp_str)) tmp_str++; } } parameter[parameter_size] = profile_mode; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) ret = smu_set_power_profile_mode(&adev->smu, parameter, parameter_size, true); else if (adev->powerplay.pp_funcs->set_power_profile_mode) ret = amdgpu_dpm_set_power_profile_mode(adev, parameter, parameter_size); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (!ret) return count; return -EINVAL; } /** * DOC: gpu_busy_percent * * The amdgpu driver provides a sysfs API for reading how busy the GPU * is as a percentage. The file gpu_busy_percent is used for this. * The SMU firmware computes a percentage of load based on the * aggregate activity level in the IP cores. */ static ssize_t amdgpu_get_gpu_busy_percent(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int r, value, size = sizeof(value); if (amdgpu_in_reset(adev)) return -EPERM; r = pm_runtime_get_sync(ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(ddev->dev); return r; } down_read(&adev->reset_sem); /* read the IP busy sensor */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD, (void *)&value, &size); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (r) return r; return snprintf(buf, PAGE_SIZE, "%d\n", value); } /** * DOC: mem_busy_percent * * The amdgpu driver provides a sysfs API for reading how busy the VRAM * is as a percentage. The file mem_busy_percent is used for this. * The SMU firmware computes a percentage of load based on the * aggregate activity level in the IP cores. */ static ssize_t amdgpu_get_mem_busy_percent(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int r, value, size = sizeof(value); if (amdgpu_in_reset(adev)) return -EPERM; r = pm_runtime_get_sync(ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(ddev->dev); return r; } down_read(&adev->reset_sem); /* read the IP busy sensor */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD, (void *)&value, &size); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (r) return r; return snprintf(buf, PAGE_SIZE, "%d\n", value); } /** * DOC: pcie_bw * * The amdgpu driver provides a sysfs API for estimating how much data * has been received and sent by the GPU in the last second through PCIe. * The file pcie_bw is used for this. * The Perf counters count the number of received and sent messages and return * those values, as well as the maximum payload size of a PCIe packet (mps). * Note that it is not possible to easily and quickly obtain the size of each * packet transmitted, so we output the max payload size (mps) to allow for * quick estimation of the PCIe bandwidth usage */ static ssize_t amdgpu_get_pcie_bw(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; uint64_t count0 = 0, count1 = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->flags & AMD_IS_APU) return -ENODATA; if (!adev->asic_funcs->get_pcie_usage) return -ENODATA; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } down_read(&adev->reset_sem); amdgpu_asic_get_pcie_usage(adev, &count0, &count1); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return snprintf(buf, PAGE_SIZE, "%llu %llu %i\n", count0, count1, pcie_get_mps(adev->pdev)); } /** * DOC: unique_id * * The amdgpu driver provides a sysfs API for providing a unique ID for the GPU * The file unique_id is used for this. * This will provide a Unique ID that will persist from machine to machine * * NOTE: This will only work for GFX9 and newer. This file will be absent * on unsupported ASICs (GFX8 and older) */ static ssize_t amdgpu_get_unique_id(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->unique_id) return snprintf(buf, PAGE_SIZE, "%016llx\n", adev->unique_id); return 0; } /** * DOC: thermal_throttling_logging * * Thermal throttling pulls down the clock frequency and thus the performance. * It's an useful mechanism to protect the chip from overheating. Since it * impacts performance, the user controls whether it is enabled and if so, * the log frequency. * * Reading back the file shows you the status(enabled or disabled) and * the interval(in seconds) between each thermal logging. * * Writing an integer to the file, sets a new logging interval, in seconds. * The value should be between 1 and 3600. If the value is less than 1, * thermal logging is disabled. Values greater than 3600 are ignored. */ static ssize_t amdgpu_get_thermal_throttling_logging(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; return snprintf(buf, PAGE_SIZE, "%s: thermal throttling logging %s, with interval %d seconds\n", adev->ddev->unique, atomic_read(&adev->throttling_logging_enabled) ? "enabled" : "disabled", adev->throttling_logging_rs.interval / HZ + 1); } static ssize_t amdgpu_set_thermal_throttling_logging(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; long throttling_logging_interval; unsigned long flags; int ret = 0; ret = kstrtol(buf, 0, &throttling_logging_interval); if (ret) return ret; if (throttling_logging_interval > 3600) return -EINVAL; if (throttling_logging_interval > 0) { raw_spin_lock_irqsave(&adev->throttling_logging_rs.lock, flags); /* * Reset the ratelimit timer internals. * This can effectively restart the timer. */ adev->throttling_logging_rs.interval = (throttling_logging_interval - 1) * HZ; adev->throttling_logging_rs.begin = 0; adev->throttling_logging_rs.printed = 0; adev->throttling_logging_rs.missed = 0; raw_spin_unlock_irqrestore(&adev->throttling_logging_rs.lock, flags); atomic_set(&adev->throttling_logging_enabled, 1); } else { atomic_set(&adev->throttling_logging_enabled, 0); } return count; } static struct amdgpu_device_attr amdgpu_device_attrs[] = { AMDGPU_DEVICE_ATTR_RW(power_dpm_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(power_dpm_force_performance_level, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RO(pp_num_states, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RO(pp_cur_state, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_force_state, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_table, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_dpm_sclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_mclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_socclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_fclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_dcefclk, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_dpm_pcie, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_sclk_od, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_mclk_od, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_power_profile_mode, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_od_clk_voltage, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RO(gpu_busy_percent, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RO(mem_busy_percent, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RO(pcie_bw, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_features, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RO(unique_id, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(thermal_throttling_logging, ATTR_FLAG_BASIC), }; static int default_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) { struct device_attribute *dev_attr = &attr->dev_attr; const char *attr_name = dev_attr->attr.name; struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle; enum amd_asic_type asic_type = adev->asic_type; if (!(attr->flags & mask)) { *states = ATTR_STATE_UNSUPPORTED; return 0; } #define DEVICE_ATTR_IS(_name) (!strcmp(attr_name, #_name)) if (DEVICE_ATTR_IS(pp_dpm_socclk)) { if (asic_type < CHIP_VEGA10) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_dcefclk)) { if (asic_type < CHIP_VEGA10 || asic_type == CHIP_ARCTURUS) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_fclk)) { if (asic_type < CHIP_VEGA20) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_pcie)) { if (asic_type == CHIP_ARCTURUS) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_od_clk_voltage)) { *states = ATTR_STATE_UNSUPPORTED; if ((is_support_sw_smu(adev) && adev->smu.od_enabled) || (!is_support_sw_smu(adev) && hwmgr->od_enabled)) *states = ATTR_STATE_SUPPORTED; } else if (DEVICE_ATTR_IS(mem_busy_percent)) { if (adev->flags & AMD_IS_APU || asic_type == CHIP_VEGA10) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pcie_bw)) { /* PCIe Perf counters won't work on APU nodes */ if (adev->flags & AMD_IS_APU) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(unique_id)) { if (asic_type != CHIP_VEGA10 && asic_type != CHIP_VEGA20 && asic_type != CHIP_ARCTURUS) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_features)) { if (adev->flags & AMD_IS_APU || asic_type < CHIP_VEGA10) *states = ATTR_STATE_UNSUPPORTED; } if (asic_type == CHIP_ARCTURUS) { /* Arcturus does not support standalone mclk/socclk/fclk level setting */ if (DEVICE_ATTR_IS(pp_dpm_mclk) || DEVICE_ATTR_IS(pp_dpm_socclk) || DEVICE_ATTR_IS(pp_dpm_fclk)) { dev_attr->attr.mode &= ~S_IWUGO; dev_attr->store = NULL; } } #undef DEVICE_ATTR_IS return 0; } static int amdgpu_device_attr_create(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, struct list_head *attr_list) { int ret = 0; struct device_attribute *dev_attr = &attr->dev_attr; const char *name = dev_attr->attr.name; enum amdgpu_device_attr_states attr_states = ATTR_STATE_SUPPORTED; struct amdgpu_device_attr_entry *attr_entry; int (*attr_update)(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) = default_attr_update; BUG_ON(!attr); attr_update = attr->attr_update ? attr_update : default_attr_update; ret = attr_update(adev, attr, mask, &attr_states); if (ret) { dev_err(adev->dev, "failed to update device file %s, ret = %d\n", name, ret); return ret; } if (attr_states == ATTR_STATE_UNSUPPORTED) return 0; ret = device_create_file(adev->dev, dev_attr); if (ret) { dev_err(adev->dev, "failed to create device file %s, ret = %d\n", name, ret); } attr_entry = kmalloc(sizeof(*attr_entry), GFP_KERNEL); if (!attr_entry) return -ENOMEM; attr_entry->attr = attr; INIT_LIST_HEAD(&attr_entry->entry); list_add_tail(&attr_entry->entry, attr_list); return ret; } static void amdgpu_device_attr_remove(struct amdgpu_device *adev, struct amdgpu_device_attr *attr) { struct device_attribute *dev_attr = &attr->dev_attr; device_remove_file(adev->dev, dev_attr); } static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev, struct list_head *attr_list); static int amdgpu_device_attr_create_groups(struct amdgpu_device *adev, struct amdgpu_device_attr *attrs, uint32_t counts, uint32_t mask, struct list_head *attr_list) { int ret = 0; uint32_t i = 0; for (i = 0; i < counts; i++) { ret = amdgpu_device_attr_create(adev, &attrs[i], mask, attr_list); if (ret) goto failed; } return 0; failed: amdgpu_device_attr_remove_groups(adev, attr_list); return ret; } static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev, struct list_head *attr_list) { struct amdgpu_device_attr_entry *entry, *entry_tmp; if (list_empty(attr_list)) return ; list_for_each_entry_safe(entry, entry_tmp, attr_list, entry) { amdgpu_device_attr_remove(adev, entry->attr); list_del(&entry->entry); kfree(entry); } } static ssize_t amdgpu_hwmon_show_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int channel = to_sensor_dev_attr(attr)->index; int r, temp = 0, size = sizeof(temp); if (amdgpu_in_reset(adev)) return -EPERM; if (channel >= PP_TEMP_MAX) return -EINVAL; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return r; } down_read(&adev->reset_sem); switch (channel) { case PP_TEMP_JUNCTION: /* get current junction temperature */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_HOTSPOT_TEMP, (void *)&temp, &size); break; case PP_TEMP_EDGE: /* get current edge temperature */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_EDGE_TEMP, (void *)&temp, &size); break; case PP_TEMP_MEM: /* get current memory temperature */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_TEMP, (void *)&temp, &size); break; default: r = -EINVAL; break; } up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (r) return r; return snprintf(buf, PAGE_SIZE, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_temp; else temp = adev->pm.dpm.thermal.max_temp; return snprintf(buf, PAGE_SIZE, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_hotspot_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_hotspot_temp; else temp = adev->pm.dpm.thermal.max_hotspot_crit_temp; return snprintf(buf, PAGE_SIZE, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_mem_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_mem_temp; else temp = adev->pm.dpm.thermal.max_mem_crit_temp; return snprintf(buf, PAGE_SIZE, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_temp_label(struct device *dev, struct device_attribute *attr, char *buf) { int channel = to_sensor_dev_attr(attr)->index; if (channel >= PP_TEMP_MAX) return -EINVAL; return snprintf(buf, PAGE_SIZE, "%s\n", temp_label[channel].label); } static ssize_t amdgpu_hwmon_show_temp_emergency(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int channel = to_sensor_dev_attr(attr)->index; int temp = 0; if (channel >= PP_TEMP_MAX) return -EINVAL; switch (channel) { case PP_TEMP_JUNCTION: temp = adev->pm.dpm.thermal.max_hotspot_emergency_temp; break; case PP_TEMP_EDGE: temp = adev->pm.dpm.thermal.max_edge_emergency_temp; break; case PP_TEMP_MEM: temp = adev->pm.dpm.thermal.max_mem_emergency_temp; break; } return snprintf(buf, PAGE_SIZE, "%d\n", temp); } static ssize_t amdgpu_hwmon_get_pwm1_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 pwm_mode = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(adev->ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) { pwm_mode = smu_get_fan_control_mode(&adev->smu); } else { if (!adev->powerplay.pp_funcs->get_fan_control_mode) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); up_read(&adev->reset_sem); return -EINVAL; } pwm_mode = amdgpu_dpm_get_fan_control_mode(adev); } up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); return sprintf(buf, "%i\n", pwm_mode); } static ssize_t amdgpu_hwmon_set_pwm1_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err, ret; int value; if (amdgpu_in_reset(adev)) return -EPERM; err = kstrtoint(buf, 10, &value); if (err) return err; ret = pm_runtime_get_sync(adev->ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) { smu_set_fan_control_mode(&adev->smu, value); } else { if (!adev->powerplay.pp_funcs->set_fan_control_mode) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); up_read(&adev->reset_sem); return -EINVAL; } amdgpu_dpm_set_fan_control_mode(adev, value); } up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); return count; } static ssize_t amdgpu_hwmon_get_pwm1_min(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%i\n", 0); } static ssize_t amdgpu_hwmon_get_pwm1_max(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%i\n", 255); } static ssize_t amdgpu_hwmon_set_pwm1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 value; u32 pwm_mode; if (amdgpu_in_reset(adev)) return -EPERM; err = pm_runtime_get_sync(adev->ddev->dev); if (err < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return err; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) pwm_mode = smu_get_fan_control_mode(&adev->smu); else pwm_mode = amdgpu_dpm_get_fan_control_mode(adev); up_read(&adev->reset_sem); if (pwm_mode != AMD_FAN_CTRL_MANUAL) { pr_info("manual fan speed control should be enabled first\n"); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); return -EINVAL; } err = kstrtou32(buf, 10, &value); if (err) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); return err; } value = (value * 100) / 255; if (is_support_sw_smu(adev)) err = smu_set_fan_speed_percent(&adev->smu, value); else if (adev->powerplay.pp_funcs->set_fan_speed_percent) err = amdgpu_dpm_set_fan_speed_percent(adev, value); else err = -EINVAL; pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (err) return err; return count; } static ssize_t amdgpu_hwmon_get_pwm1(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 speed = 0; if (amdgpu_in_reset(adev)) return -EPERM; err = pm_runtime_get_sync(adev->ddev->dev); if (err < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return err; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) err = smu_get_fan_speed_percent(&adev->smu, &speed); else if (adev->powerplay.pp_funcs->get_fan_speed_percent) err = amdgpu_dpm_get_fan_speed_percent(adev, &speed); else err = -EINVAL; up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (err) return err; speed = (speed * 255) / 100; return sprintf(buf, "%i\n", speed); } static ssize_t amdgpu_hwmon_get_fan1_input(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 speed = 0; if (amdgpu_in_reset(adev)) return -EPERM; err = pm_runtime_get_sync(adev->ddev->dev); if (err < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return err; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) err = smu_get_fan_speed_rpm(&adev->smu, &speed); else if (adev->powerplay.pp_funcs->get_fan_speed_rpm) err = amdgpu_dpm_get_fan_speed_rpm(adev, &speed); else err = -EINVAL; up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (err) return err; return sprintf(buf, "%i\n", speed); } static ssize_t amdgpu_hwmon_get_fan1_min(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 min_rpm = 0; u32 size = sizeof(min_rpm); int r; if (amdgpu_in_reset(adev)) return -EPERM; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return r; } down_read(&adev->reset_sem); r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MIN_FAN_RPM, (void *)&min_rpm, &size); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (r) return r; return snprintf(buf, PAGE_SIZE, "%d\n", min_rpm); } static ssize_t amdgpu_hwmon_get_fan1_max(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 max_rpm = 0; u32 size = sizeof(max_rpm); int r; if (amdgpu_in_reset(adev)) return -EPERM; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return r; } down_read(&adev->reset_sem); r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MAX_FAN_RPM, (void *)&max_rpm, &size); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (r) return r; return snprintf(buf, PAGE_SIZE, "%d\n", max_rpm); } static ssize_t amdgpu_hwmon_get_fan1_target(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 rpm = 0; if (amdgpu_in_reset(adev)) return -EPERM; err = pm_runtime_get_sync(adev->ddev->dev); if (err < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return err; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) err = smu_get_fan_speed_rpm(&adev->smu, &rpm); else if (adev->powerplay.pp_funcs->get_fan_speed_rpm) err = amdgpu_dpm_get_fan_speed_rpm(adev, &rpm); else err = -EINVAL; up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (err) return err; return sprintf(buf, "%i\n", rpm); } static ssize_t amdgpu_hwmon_set_fan1_target(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 value; u32 pwm_mode; if (amdgpu_in_reset(adev)) return -EPERM; err = pm_runtime_get_sync(adev->ddev->dev); if (err < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return err; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) pwm_mode = smu_get_fan_control_mode(&adev->smu); else pwm_mode = amdgpu_dpm_get_fan_control_mode(adev); up_read(&adev->reset_sem); if (pwm_mode != AMD_FAN_CTRL_MANUAL) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); return -ENODATA; } err = kstrtou32(buf, 10, &value); if (err) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); return err; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) err = smu_set_fan_speed_rpm(&adev->smu, value); else if (adev->powerplay.pp_funcs->set_fan_speed_rpm) err = amdgpu_dpm_set_fan_speed_rpm(adev, value); else err = -EINVAL; up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (err) return err; return count; } static ssize_t amdgpu_hwmon_get_fan1_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 pwm_mode = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; ret = pm_runtime_get_sync(adev->ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return ret; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) { pwm_mode = smu_get_fan_control_mode(&adev->smu); } else { if (!adev->powerplay.pp_funcs->get_fan_control_mode) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); up_read(&adev->reset_sem); return -EINVAL; } pwm_mode = amdgpu_dpm_get_fan_control_mode(adev); } up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); return sprintf(buf, "%i\n", pwm_mode == AMD_FAN_CTRL_AUTO ? 0 : 1); } static ssize_t amdgpu_hwmon_set_fan1_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; int value; u32 pwm_mode; if (amdgpu_in_reset(adev)) return -EPERM; err = kstrtoint(buf, 10, &value); if (err) return err; if (value == 0) pwm_mode = AMD_FAN_CTRL_AUTO; else if (value == 1) pwm_mode = AMD_FAN_CTRL_MANUAL; else return -EINVAL; err = pm_runtime_get_sync(adev->ddev->dev); if (err < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return err; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) { smu_set_fan_control_mode(&adev->smu, pwm_mode); } else { if (!adev->powerplay.pp_funcs->set_fan_control_mode) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); up_read(&adev->reset_sem); return -EINVAL; } amdgpu_dpm_set_fan_control_mode(adev, pwm_mode); } up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); return count; } static ssize_t amdgpu_hwmon_show_vddgfx(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 vddgfx; int r, size = sizeof(vddgfx); if (amdgpu_in_reset(adev)) return -EPERM; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return r; } down_read(&adev->reset_sem); /* get the voltage */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&vddgfx, &size); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (r) return r; return snprintf(buf, PAGE_SIZE, "%d\n", vddgfx); } static ssize_t amdgpu_hwmon_show_vddgfx_label(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "vddgfx\n"); } static ssize_t amdgpu_hwmon_show_vddnb(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 vddnb; int r, size = sizeof(vddnb); if (amdgpu_in_reset(adev)) return -EPERM; /* only APUs have vddnb */ if (!(adev->flags & AMD_IS_APU)) return -EINVAL; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return r; } down_read(&adev->reset_sem); /* get the voltage */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&vddnb, &size); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (r) return r; return snprintf(buf, PAGE_SIZE, "%d\n", vddnb); } static ssize_t amdgpu_hwmon_show_vddnb_label(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "vddnb\n"); } static ssize_t amdgpu_hwmon_show_power_avg(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 query = 0; int r, size = sizeof(u32); unsigned uw; if (amdgpu_in_reset(adev)) return -EPERM; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return r; } down_read(&adev->reset_sem); /* get the voltage */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_POWER, (void *)&query, &size); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (r) return r; /* convert to microwatts */ uw = (query >> 8) * 1000000 + (query & 0xff) * 1000; return snprintf(buf, PAGE_SIZE, "%u\n", uw); } static ssize_t amdgpu_hwmon_show_power_cap_min(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%i\n", 0); } static ssize_t amdgpu_hwmon_show_power_cap_max(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); uint32_t limit = 0; ssize_t size; int r; if (amdgpu_in_reset(adev)) return -EPERM; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return r; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) { smu_get_power_limit(&adev->smu, &limit, true); size = snprintf(buf, PAGE_SIZE, "%u\n", limit * 1000000); } else if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->get_power_limit) { adev->powerplay.pp_funcs->get_power_limit(adev->powerplay.pp_handle, &limit, true); size = snprintf(buf, PAGE_SIZE, "%u\n", limit * 1000000); } else { size = snprintf(buf, PAGE_SIZE, "\n"); } up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); return size; } static ssize_t amdgpu_hwmon_show_power_cap(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); uint32_t limit = 0; ssize_t size; int r; if (amdgpu_in_reset(adev)) return -EPERM; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return r; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) { smu_get_power_limit(&adev->smu, &limit, false); size = snprintf(buf, PAGE_SIZE, "%u\n", limit * 1000000); } else if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->get_power_limit) { adev->powerplay.pp_funcs->get_power_limit(adev->powerplay.pp_handle, &limit, false); size = snprintf(buf, PAGE_SIZE, "%u\n", limit * 1000000); } else { size = snprintf(buf, PAGE_SIZE, "\n"); } up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); return size; } static ssize_t amdgpu_hwmon_set_power_cap(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 value; if (amdgpu_in_reset(adev)) return -EPERM; if (amdgpu_sriov_vf(adev)) return -EINVAL; err = kstrtou32(buf, 10, &value); if (err) return err; value = value / 1000000; /* convert to Watt */ err = pm_runtime_get_sync(adev->ddev->dev); if (err < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return err; } down_read(&adev->reset_sem); if (is_support_sw_smu(adev)) err = smu_set_power_limit(&adev->smu, value); else if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->set_power_limit) err = adev->powerplay.pp_funcs->set_power_limit(adev->powerplay.pp_handle, value); else err = -EINVAL; up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (err) return err; return count; } static ssize_t amdgpu_hwmon_show_sclk(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); uint32_t sclk; int r, size = sizeof(sclk); if (amdgpu_in_reset(adev)) return -EPERM; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return r; } down_read(&adev->reset_sem); /* get the sclk */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&sclk, &size); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (r) return r; return snprintf(buf, PAGE_SIZE, "%u\n", sclk * 10 * 1000); } static ssize_t amdgpu_hwmon_show_sclk_label(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "sclk\n"); } static ssize_t amdgpu_hwmon_show_mclk(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); uint32_t mclk; int r, size = sizeof(mclk); if (amdgpu_in_reset(adev)) return -EPERM; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(adev->ddev->dev); return r; } down_read(&adev->reset_sem); /* get the sclk */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&mclk, &size); up_read(&adev->reset_sem); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (r) return r; return snprintf(buf, PAGE_SIZE, "%u\n", mclk * 10 * 1000); } static ssize_t amdgpu_hwmon_show_mclk_label(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "mclk\n"); } /** * DOC: hwmon * * The amdgpu driver exposes the following sensor interfaces: * * - GPU temperature (via the on-die sensor) * * - GPU voltage * * - Northbridge voltage (APUs only) * * - GPU power * * - GPU fan * * - GPU gfx/compute engine clock * * - GPU memory clock (dGPU only) * * hwmon interfaces for GPU temperature: * * - temp[1-3]_input: the on die GPU temperature in millidegrees Celsius * - temp2_input and temp3_input are supported on SOC15 dGPUs only * * - temp[1-3]_label: temperature channel label * - temp2_label and temp3_label are supported on SOC15 dGPUs only * * - temp[1-3]_crit: temperature critical max value in millidegrees Celsius * - temp2_crit and temp3_crit are supported on SOC15 dGPUs only * * - temp[1-3]_crit_hyst: temperature hysteresis for critical limit in millidegrees Celsius * - temp2_crit_hyst and temp3_crit_hyst are supported on SOC15 dGPUs only * * - temp[1-3]_emergency: temperature emergency max value(asic shutdown) in millidegrees Celsius * - these are supported on SOC15 dGPUs only * * hwmon interfaces for GPU voltage: * * - in0_input: the voltage on the GPU in millivolts * * - in1_input: the voltage on the Northbridge in millivolts * * hwmon interfaces for GPU power: * * - power1_average: average power used by the GPU in microWatts * * - power1_cap_min: minimum cap supported in microWatts * * - power1_cap_max: maximum cap supported in microWatts * * - power1_cap: selected power cap in microWatts * * hwmon interfaces for GPU fan: * * - pwm1: pulse width modulation fan level (0-255) * * - pwm1_enable: pulse width modulation fan control method (0: no fan speed control, 1: manual fan speed control using pwm interface, 2: automatic fan speed control) * * - pwm1_min: pulse width modulation fan control minimum level (0) * * - pwm1_max: pulse width modulation fan control maximum level (255) * * - fan1_min: an minimum value Unit: revolution/min (RPM) * * - fan1_max: an maxmum value Unit: revolution/max (RPM) * * - fan1_input: fan speed in RPM * * - fan[1-\*]_target: Desired fan speed Unit: revolution/min (RPM) * * - fan[1-\*]_enable: Enable or disable the sensors.1: Enable 0: Disable * * hwmon interfaces for GPU clocks: * * - freq1_input: the gfx/compute clock in hertz * * - freq2_input: the memory clock in hertz * * You can use hwmon tools like sensors to view this information on your system. * */ static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_EDGE); static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(temp1_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_EDGE); static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_JUNCTION); static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(temp2_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_JUNCTION); static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_MEM); static SENSOR_DEVICE_ATTR(temp3_crit, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(temp3_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_MEM); static SENSOR_DEVICE_ATTR(temp1_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_EDGE); static SENSOR_DEVICE_ATTR(temp2_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_JUNCTION); static SENSOR_DEVICE_ATTR(temp3_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_MEM); static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1, amdgpu_hwmon_set_pwm1, 0); static SENSOR_DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1_enable, amdgpu_hwmon_set_pwm1_enable, 0); static SENSOR_DEVICE_ATTR(pwm1_min, S_IRUGO, amdgpu_hwmon_get_pwm1_min, NULL, 0); static SENSOR_DEVICE_ATTR(pwm1_max, S_IRUGO, amdgpu_hwmon_get_pwm1_max, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, amdgpu_hwmon_get_fan1_input, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_min, S_IRUGO, amdgpu_hwmon_get_fan1_min, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_max, S_IRUGO, amdgpu_hwmon_get_fan1_max, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_target, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_target, amdgpu_hwmon_set_fan1_target, 0); static SENSOR_DEVICE_ATTR(fan1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_enable, amdgpu_hwmon_set_fan1_enable, 0); static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, amdgpu_hwmon_show_vddgfx, NULL, 0); static SENSOR_DEVICE_ATTR(in0_label, S_IRUGO, amdgpu_hwmon_show_vddgfx_label, NULL, 0); static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, amdgpu_hwmon_show_vddnb, NULL, 0); static SENSOR_DEVICE_ATTR(in1_label, S_IRUGO, amdgpu_hwmon_show_vddnb_label, NULL, 0); static SENSOR_DEVICE_ATTR(power1_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 0); static SENSOR_DEVICE_ATTR(power1_cap_max, S_IRUGO, amdgpu_hwmon_show_power_cap_max, NULL, 0); static SENSOR_DEVICE_ATTR(power1_cap_min, S_IRUGO, amdgpu_hwmon_show_power_cap_min, NULL, 0); static SENSOR_DEVICE_ATTR(power1_cap, S_IRUGO | S_IWUSR, amdgpu_hwmon_show_power_cap, amdgpu_hwmon_set_power_cap, 0); static SENSOR_DEVICE_ATTR(freq1_input, S_IRUGO, amdgpu_hwmon_show_sclk, NULL, 0); static SENSOR_DEVICE_ATTR(freq1_label, S_IRUGO, amdgpu_hwmon_show_sclk_label, NULL, 0); static SENSOR_DEVICE_ATTR(freq2_input, S_IRUGO, amdgpu_hwmon_show_mclk, NULL, 0); static SENSOR_DEVICE_ATTR(freq2_label, S_IRUGO, amdgpu_hwmon_show_mclk_label, NULL, 0); static struct attribute *hwmon_attributes[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp1_emergency.dev_attr.attr, &sensor_dev_attr_temp2_emergency.dev_attr.attr, &sensor_dev_attr_temp3_emergency.dev_attr.attr, &sensor_dev_attr_temp1_label.dev_attr.attr, &sensor_dev_attr_temp2_label.dev_attr.attr, &sensor_dev_attr_temp3_label.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm1_min.dev_attr.attr, &sensor_dev_attr_pwm1_max.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_max.dev_attr.attr, &sensor_dev_attr_fan1_target.dev_attr.attr, &sensor_dev_attr_fan1_enable.dev_attr.attr, &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_label.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_label.dev_attr.attr, &sensor_dev_attr_power1_average.dev_attr.attr, &sensor_dev_attr_power1_cap_max.dev_attr.attr, &sensor_dev_attr_power1_cap_min.dev_attr.attr, &sensor_dev_attr_power1_cap.dev_attr.attr, &sensor_dev_attr_freq1_input.dev_attr.attr, &sensor_dev_attr_freq1_label.dev_attr.attr, &sensor_dev_attr_freq2_input.dev_attr.attr, &sensor_dev_attr_freq2_label.dev_attr.attr, NULL }; static umode_t hwmon_attributes_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = kobj_to_dev(kobj); struct amdgpu_device *adev = dev_get_drvdata(dev); umode_t effective_mode = attr->mode; /* under multi-vf mode, the hwmon attributes are all not supported */ if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) return 0; /* there is no fan under pp one vf mode */ if (amdgpu_sriov_is_pp_one_vf(adev) && (attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_input.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_target.dev_attr.attr || attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) return 0; /* Skip fan attributes if fan is not present */ if (adev->pm.no_fan && (attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_input.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_target.dev_attr.attr || attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) return 0; /* Skip fan attributes on APU */ if ((adev->flags & AMD_IS_APU) && (attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_input.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_target.dev_attr.attr || attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) return 0; /* Skip crit temp on APU */ if ((adev->flags & AMD_IS_APU) && (adev->family >= AMDGPU_FAMILY_CZ) && (attr == &sensor_dev_attr_temp1_crit.dev_attr.attr || attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr)) return 0; /* Skip limit attributes if DPM is not enabled */ if (!adev->pm.dpm_enabled && (attr == &sensor_dev_attr_temp1_crit.dev_attr.attr || attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr || attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_input.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_target.dev_attr.attr || attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) return 0; if (!is_support_sw_smu(adev)) { /* mask fan attributes if we have no bindings for this asic to expose */ if ((!adev->powerplay.pp_funcs->get_fan_speed_percent && attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't query fan */ (!adev->powerplay.pp_funcs->get_fan_control_mode && attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't query state */ effective_mode &= ~S_IRUGO; if ((!adev->powerplay.pp_funcs->set_fan_speed_percent && attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't manage fan */ (!adev->powerplay.pp_funcs->set_fan_control_mode && attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't manage state */ effective_mode &= ~S_IWUSR; } if (((adev->flags & AMD_IS_APU) || adev->family == AMDGPU_FAMILY_SI || /* not implemented yet */ adev->family == AMDGPU_FAMILY_KV) && /* not implemented yet */ (attr == &sensor_dev_attr_power1_average.dev_attr.attr || attr == &sensor_dev_attr_power1_cap_max.dev_attr.attr || attr == &sensor_dev_attr_power1_cap_min.dev_attr.attr|| attr == &sensor_dev_attr_power1_cap.dev_attr.attr)) return 0; if (!is_support_sw_smu(adev)) { /* hide max/min values if we can't both query and manage the fan */ if ((!adev->powerplay.pp_funcs->set_fan_speed_percent && !adev->powerplay.pp_funcs->get_fan_speed_percent) && (!adev->powerplay.pp_funcs->set_fan_speed_rpm && !adev->powerplay.pp_funcs->get_fan_speed_rpm) && (attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr)) return 0; if ((!adev->powerplay.pp_funcs->set_fan_speed_rpm && !adev->powerplay.pp_funcs->get_fan_speed_rpm) && (attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr)) return 0; } if ((adev->family == AMDGPU_FAMILY_SI || /* not implemented yet */ adev->family == AMDGPU_FAMILY_KV) && /* not implemented yet */ (attr == &sensor_dev_attr_in0_input.dev_attr.attr || attr == &sensor_dev_attr_in0_label.dev_attr.attr)) return 0; /* only APUs have vddnb */ if (!(adev->flags & AMD_IS_APU) && (attr == &sensor_dev_attr_in1_input.dev_attr.attr || attr == &sensor_dev_attr_in1_label.dev_attr.attr)) return 0; /* no mclk on APUs */ if ((adev->flags & AMD_IS_APU) && (attr == &sensor_dev_attr_freq2_input.dev_attr.attr || attr == &sensor_dev_attr_freq2_label.dev_attr.attr)) return 0; /* only SOC15 dGPUs support hotspot and mem temperatures */ if (((adev->flags & AMD_IS_APU) || adev->asic_type < CHIP_VEGA10) && (attr == &sensor_dev_attr_temp2_crit.dev_attr.attr || attr == &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr || attr == &sensor_dev_attr_temp3_crit.dev_attr.attr || attr == &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr || attr == &sensor_dev_attr_temp1_emergency.dev_attr.attr || attr == &sensor_dev_attr_temp2_emergency.dev_attr.attr || attr == &sensor_dev_attr_temp3_emergency.dev_attr.attr || attr == &sensor_dev_attr_temp2_input.dev_attr.attr || attr == &sensor_dev_attr_temp3_input.dev_attr.attr || attr == &sensor_dev_attr_temp2_label.dev_attr.attr || attr == &sensor_dev_attr_temp3_label.dev_attr.attr)) return 0; return effective_mode; } static const struct attribute_group hwmon_attrgroup = { .attrs = hwmon_attributes, .is_visible = hwmon_attributes_visible, }; static const struct attribute_group *hwmon_groups[] = { &hwmon_attrgroup, NULL }; void amdgpu_dpm_thermal_work_handler(struct work_struct *work) { struct amdgpu_device *adev = container_of(work, struct amdgpu_device, pm.dpm.thermal.work); /* switch to the thermal state */ enum amd_pm_state_type dpm_state = POWER_STATE_TYPE_INTERNAL_THERMAL; int temp, size = sizeof(temp); if (!adev->pm.dpm_enabled) return; if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_TEMP, (void *)&temp, &size)) { if (temp < adev->pm.dpm.thermal.min_temp) /* switch back the user state */ dpm_state = adev->pm.dpm.user_state; } else { if (adev->pm.dpm.thermal.high_to_low) /* switch back the user state */ dpm_state = adev->pm.dpm.user_state; } mutex_lock(&adev->pm.mutex); if (dpm_state == POWER_STATE_TYPE_INTERNAL_THERMAL) adev->pm.dpm.thermal_active = true; else adev->pm.dpm.thermal_active = false; adev->pm.dpm.state = dpm_state; mutex_unlock(&adev->pm.mutex); amdgpu_pm_compute_clocks(adev); } static struct amdgpu_ps *amdgpu_dpm_pick_power_state(struct amdgpu_device *adev, enum amd_pm_state_type dpm_state) { int i; struct amdgpu_ps *ps; u32 ui_class; bool single_display = (adev->pm.dpm.new_active_crtc_count < 2) ? true : false; /* check if the vblank period is too short to adjust the mclk */ if (single_display && adev->powerplay.pp_funcs->vblank_too_short) { if (amdgpu_dpm_vblank_too_short(adev)) single_display = false; } /* certain older asics have a separare 3D performance state, * so try that first if the user selected performance */ if (dpm_state == POWER_STATE_TYPE_PERFORMANCE) dpm_state = POWER_STATE_TYPE_INTERNAL_3DPERF; /* balanced states don't exist at the moment */ if (dpm_state == POWER_STATE_TYPE_BALANCED) dpm_state = POWER_STATE_TYPE_PERFORMANCE; restart_search: /* Pick the best power state based on current conditions */ for (i = 0; i < adev->pm.dpm.num_ps; i++) { ps = &adev->pm.dpm.ps[i]; ui_class = ps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK; switch (dpm_state) { /* user states */ case POWER_STATE_TYPE_BATTERY: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (single_display) return ps; } else return ps; } break; case POWER_STATE_TYPE_BALANCED: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BALANCED) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (single_display) return ps; } else return ps; } break; case POWER_STATE_TYPE_PERFORMANCE: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (single_display) return ps; } else return ps; } break; /* internal states */ case POWER_STATE_TYPE_INTERNAL_UVD: if (adev->pm.dpm.uvd_ps) return adev->pm.dpm.uvd_ps; else break; case POWER_STATE_TYPE_INTERNAL_UVD_SD: if (ps->class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_HD: if (ps->class & ATOM_PPLIB_CLASSIFICATION_HDSTATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_HD2: if (ps->class & ATOM_PPLIB_CLASSIFICATION_HD2STATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_MVC: if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_MVC) return ps; break; case POWER_STATE_TYPE_INTERNAL_BOOT: return adev->pm.dpm.boot_ps; case POWER_STATE_TYPE_INTERNAL_THERMAL: if (ps->class & ATOM_PPLIB_CLASSIFICATION_THERMAL) return ps; break; case POWER_STATE_TYPE_INTERNAL_ACPI: if (ps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) return ps; break; case POWER_STATE_TYPE_INTERNAL_ULV: if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) return ps; break; case POWER_STATE_TYPE_INTERNAL_3DPERF: if (ps->class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE) return ps; break; default: break; } } /* use a fallback state if we didn't match */ switch (dpm_state) { case POWER_STATE_TYPE_INTERNAL_UVD_SD: dpm_state = POWER_STATE_TYPE_INTERNAL_UVD_HD; goto restart_search; case POWER_STATE_TYPE_INTERNAL_UVD_HD: case POWER_STATE_TYPE_INTERNAL_UVD_HD2: case POWER_STATE_TYPE_INTERNAL_UVD_MVC: if (adev->pm.dpm.uvd_ps) { return adev->pm.dpm.uvd_ps; } else { dpm_state = POWER_STATE_TYPE_PERFORMANCE; goto restart_search; } case POWER_STATE_TYPE_INTERNAL_THERMAL: dpm_state = POWER_STATE_TYPE_INTERNAL_ACPI; goto restart_search; case POWER_STATE_TYPE_INTERNAL_ACPI: dpm_state = POWER_STATE_TYPE_BATTERY; goto restart_search; case POWER_STATE_TYPE_BATTERY: case POWER_STATE_TYPE_BALANCED: case POWER_STATE_TYPE_INTERNAL_3DPERF: dpm_state = POWER_STATE_TYPE_PERFORMANCE; goto restart_search; default: break; } return NULL; } static void amdgpu_dpm_change_power_state_locked(struct amdgpu_device *adev) { struct amdgpu_ps *ps; enum amd_pm_state_type dpm_state; int ret; bool equal = false; /* if dpm init failed */ if (!adev->pm.dpm_enabled) return; if (adev->pm.dpm.user_state != adev->pm.dpm.state) { /* add other state override checks here */ if ((!adev->pm.dpm.thermal_active) && (!adev->pm.dpm.uvd_active)) adev->pm.dpm.state = adev->pm.dpm.user_state; } dpm_state = adev->pm.dpm.state; ps = amdgpu_dpm_pick_power_state(adev, dpm_state); if (ps) adev->pm.dpm.requested_ps = ps; else return; if (amdgpu_dpm == 1 && adev->powerplay.pp_funcs->print_power_state) { printk("switching from power state:\n"); amdgpu_dpm_print_power_state(adev, adev->pm.dpm.current_ps); printk("switching to power state:\n"); amdgpu_dpm_print_power_state(adev, adev->pm.dpm.requested_ps); } /* update whether vce is active */ ps->vce_active = adev->pm.dpm.vce_active; if (adev->powerplay.pp_funcs->display_configuration_changed) amdgpu_dpm_display_configuration_changed(adev); ret = amdgpu_dpm_pre_set_power_state(adev); if (ret) return; if (adev->powerplay.pp_funcs->check_state_equal) { if (0 != amdgpu_dpm_check_state_equal(adev, adev->pm.dpm.current_ps, adev->pm.dpm.requested_ps, &equal)) equal = false; } if (equal) return; amdgpu_dpm_set_power_state(adev); amdgpu_dpm_post_set_power_state(adev); adev->pm.dpm.current_active_crtcs = adev->pm.dpm.new_active_crtcs; adev->pm.dpm.current_active_crtc_count = adev->pm.dpm.new_active_crtc_count; if (adev->powerplay.pp_funcs->force_performance_level) { if (adev->pm.dpm.thermal_active) { enum amd_dpm_forced_level level = adev->pm.dpm.forced_level; /* force low perf level for thermal */ amdgpu_dpm_force_performance_level(adev, AMD_DPM_FORCED_LEVEL_LOW); /* save the user's level */ adev->pm.dpm.forced_level = level; } else { /* otherwise, user selected level */ amdgpu_dpm_force_performance_level(adev, adev->pm.dpm.forced_level); } } } void amdgpu_dpm_enable_uvd(struct amdgpu_device *adev, bool enable) { int ret = 0; if (adev->family == AMDGPU_FAMILY_SI) { mutex_lock(&adev->pm.mutex); if (enable) { adev->pm.dpm.uvd_active = true; adev->pm.dpm.state = POWER_STATE_TYPE_INTERNAL_UVD; } else { adev->pm.dpm.uvd_active = false; } mutex_unlock(&adev->pm.mutex); amdgpu_pm_compute_clocks(adev); } else { ret = amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_UVD, !enable); if (ret) DRM_ERROR("Dpm %s uvd failed, ret = %d. \n", enable ? "enable" : "disable", ret); /* enable/disable Low Memory PState for UVD (4k videos) */ if (adev->asic_type == CHIP_STONEY && adev->uvd.decode_image_width >= WIDTH_4K) { struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle; if (hwmgr && hwmgr->hwmgr_func && hwmgr->hwmgr_func->update_nbdpm_pstate) hwmgr->hwmgr_func->update_nbdpm_pstate(hwmgr, !enable, true); } } } void amdgpu_dpm_enable_vce(struct amdgpu_device *adev, bool enable) { int ret = 0; if (adev->family == AMDGPU_FAMILY_SI) { mutex_lock(&adev->pm.mutex); if (enable) { adev->pm.dpm.vce_active = true; /* XXX select vce level based on ring/task */ adev->pm.dpm.vce_level = AMD_VCE_LEVEL_AC_ALL; } else { adev->pm.dpm.vce_active = false; } mutex_unlock(&adev->pm.mutex); amdgpu_pm_compute_clocks(adev); } else { ret = amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_VCE, !enable); if (ret) DRM_ERROR("Dpm %s vce failed, ret = %d. \n", enable ? "enable" : "disable", ret); } } void amdgpu_pm_print_power_states(struct amdgpu_device *adev) { int i; if (adev->powerplay.pp_funcs->print_power_state == NULL) return; for (i = 0; i < adev->pm.dpm.num_ps; i++) amdgpu_dpm_print_power_state(adev, &adev->pm.dpm.ps[i]); } void amdgpu_dpm_enable_jpeg(struct amdgpu_device *adev, bool enable) { int ret = 0; ret = amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_JPEG, !enable); if (ret) DRM_ERROR("Dpm %s jpeg failed, ret = %d. \n", enable ? "enable" : "disable", ret); } int amdgpu_pm_load_smu_firmware(struct amdgpu_device *adev, uint32_t *smu_version) { int r; if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->load_firmware) { r = adev->powerplay.pp_funcs->load_firmware(adev->powerplay.pp_handle); if (r) { pr_err("smu firmware loading failed\n"); return r; } *smu_version = adev->pm.fw_version; } return 0; } int amdgpu_pm_sysfs_init(struct amdgpu_device *adev) { int ret; uint32_t mask = 0; if (adev->pm.sysfs_initialized) return 0; if (adev->pm.dpm_enabled == 0) return 0; INIT_LIST_HEAD(&adev->pm.pm_attr_list); adev->pm.int_hwmon_dev = hwmon_device_register_with_groups(adev->dev, DRIVER_NAME, adev, hwmon_groups); if (IS_ERR(adev->pm.int_hwmon_dev)) { ret = PTR_ERR(adev->pm.int_hwmon_dev); dev_err(adev->dev, "Unable to register hwmon device: %d\n", ret); return ret; } switch (amdgpu_virt_get_sriov_vf_mode(adev)) { case SRIOV_VF_MODE_ONE_VF: mask = ATTR_FLAG_ONEVF; break; case SRIOV_VF_MODE_MULTI_VF: mask = 0; break; case SRIOV_VF_MODE_BARE_METAL: default: mask = ATTR_FLAG_MASK_ALL; break; } ret = amdgpu_device_attr_create_groups(adev, amdgpu_device_attrs, ARRAY_SIZE(amdgpu_device_attrs), mask, &adev->pm.pm_attr_list); if (ret) return ret; adev->pm.sysfs_initialized = true; return 0; } void amdgpu_pm_sysfs_fini(struct amdgpu_device *adev) { if (adev->pm.dpm_enabled == 0) return; if (adev->pm.int_hwmon_dev) hwmon_device_unregister(adev->pm.int_hwmon_dev); amdgpu_device_attr_remove_groups(adev, &adev->pm.pm_attr_list); } void amdgpu_pm_compute_clocks(struct amdgpu_device *adev) { int i = 0; if (!adev->pm.dpm_enabled) return; if (adev->mode_info.num_crtc) amdgpu_display_bandwidth_update(adev); for (i = 0; i < AMDGPU_MAX_RINGS; i++) { struct amdgpu_ring *ring = adev->rings[i]; if (ring && ring->sched.ready) amdgpu_fence_wait_empty(ring); } if (is_support_sw_smu(adev)) { struct smu_dpm_context *smu_dpm = &adev->smu.smu_dpm; smu_handle_task(&adev->smu, smu_dpm->dpm_level, AMD_PP_TASK_DISPLAY_CONFIG_CHANGE, true); } else { if (adev->powerplay.pp_funcs->dispatch_tasks) { if (!amdgpu_device_has_dc_support(adev)) { mutex_lock(&adev->pm.mutex); amdgpu_dpm_get_active_displays(adev); adev->pm.pm_display_cfg.num_display = adev->pm.dpm.new_active_crtc_count; adev->pm.pm_display_cfg.vrefresh = amdgpu_dpm_get_vrefresh(adev); adev->pm.pm_display_cfg.min_vblank_time = amdgpu_dpm_get_vblank_time(adev); /* we have issues with mclk switching with refresh rates over 120 hz on the non-DC code. */ if (adev->pm.pm_display_cfg.vrefresh > 120) adev->pm.pm_display_cfg.min_vblank_time = 0; if (adev->powerplay.pp_funcs->display_configuration_change) adev->powerplay.pp_funcs->display_configuration_change( adev->powerplay.pp_handle, &adev->pm.pm_display_cfg); mutex_unlock(&adev->pm.mutex); } amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_DISPLAY_CONFIG_CHANGE, NULL); } else { mutex_lock(&adev->pm.mutex); amdgpu_dpm_get_active_displays(adev); amdgpu_dpm_change_power_state_locked(adev); mutex_unlock(&adev->pm.mutex); } } } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static int amdgpu_debugfs_pm_info_pp(struct seq_file *m, struct amdgpu_device *adev) { uint32_t value; uint64_t value64; uint32_t query = 0; int size; /* GPU Clocks */ size = sizeof(value); seq_printf(m, "GFX Clocks and Power:\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (MCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (SCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (PSTATE_SCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (PSTATE_MCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&value, &size)) seq_printf(m, "\t%u mV (VDDGFX)\n", value); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&value, &size)) seq_printf(m, "\t%u mV (VDDNB)\n", value); size = sizeof(uint32_t); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_POWER, (void *)&query, &size)) seq_printf(m, "\t%u.%u W (average GPU)\n", query >> 8, query & 0xff); size = sizeof(value); seq_printf(m, "\n"); /* GPU Temp */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_TEMP, (void *)&value, &size)) seq_printf(m, "GPU Temperature: %u C\n", value/1000); /* GPU Load */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD, (void *)&value, &size)) seq_printf(m, "GPU Load: %u %%\n", value); /* MEM Load */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD, (void *)&value, &size)) seq_printf(m, "MEM Load: %u %%\n", value); seq_printf(m, "\n"); /* SMC feature mask */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK, (void *)&value64, &size)) seq_printf(m, "SMC Feature Mask: 0x%016llx\n", value64); if (adev->asic_type > CHIP_VEGA20) { /* VCN clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCN_POWER_STATE, (void *)&value, &size)) { if (!value) { seq_printf(m, "VCN: Disabled\n"); } else { seq_printf(m, "VCN: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (DCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (VCLK)\n", value/100); } } seq_printf(m, "\n"); } else { /* UVD clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_POWER, (void *)&value, &size)) { if (!value) { seq_printf(m, "UVD: Disabled\n"); } else { seq_printf(m, "UVD: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (DCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (VCLK)\n", value/100); } } seq_printf(m, "\n"); /* VCE clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_POWER, (void *)&value, &size)) { if (!value) { seq_printf(m, "VCE: Disabled\n"); } else { seq_printf(m, "VCE: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_ECCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (ECCLK)\n", value/100); } } } return 0; } static void amdgpu_parse_cg_state(struct seq_file *m, u32 flags) { int i; for (i = 0; clocks[i].flag; i++) seq_printf(m, "\t%s: %s\n", clocks[i].name, (flags & clocks[i].flag) ? "On" : "Off"); } static int amdgpu_debugfs_pm_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct amdgpu_device *adev = dev->dev_private; u32 flags = 0; int r; if (amdgpu_in_reset(adev)) return -EPERM; r = pm_runtime_get_sync(dev->dev); if (r < 0) { pm_runtime_put_autosuspend(dev->dev); return r; } if (!adev->pm.dpm_enabled) { seq_printf(m, "dpm not enabled\n"); pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return 0; } down_read(&adev->reset_sem); if (!is_support_sw_smu(adev) && adev->powerplay.pp_funcs->debugfs_print_current_performance_level) { mutex_lock(&adev->pm.mutex); if (adev->powerplay.pp_funcs->debugfs_print_current_performance_level) adev->powerplay.pp_funcs->debugfs_print_current_performance_level(adev, m); else seq_printf(m, "Debugfs support not implemented for this asic\n"); mutex_unlock(&adev->pm.mutex); r = 0; } else { r = amdgpu_debugfs_pm_info_pp(m, adev); } up_read(&adev->reset_sem); if (r) goto out; down_read(&adev->reset_sem); amdgpu_device_ip_get_clockgating_state(adev, &flags); up_read(&adev->reset_sem); seq_printf(m, "Clock Gating Flags Mask: 0x%x\n", flags); amdgpu_parse_cg_state(m, flags); seq_printf(m, "\n"); out: pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return r; } static const struct drm_info_list amdgpu_pm_info_list[] = { {"amdgpu_pm_info", amdgpu_debugfs_pm_info, 0, NULL}, }; #endif int amdgpu_debugfs_pm_init(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) return amdgpu_debugfs_add_files(adev, amdgpu_pm_info_list, ARRAY_SIZE(amdgpu_pm_info_list)); #else return 0; #endif }