/* * RSS and Classifier helpers for Marvell PPv2 Network Controller * * Copyright (C) 2014 Marvell * * Marcin Wojtas * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include "mvpp2.h" #include "mvpp2_cls.h" #include "mvpp2_prs.h" #define MVPP2_DEF_FLOW(_type, _id, _opts, _ri, _ri_mask) \ { \ .flow_type = _type, \ .flow_id = _id, \ .supported_hash_opts = _opts, \ .prs_ri = { \ .ri = _ri, \ .ri_mask = _ri_mask \ } \ } static struct mvpp2_cls_flow cls_flows[MVPP2_N_FLOWS] = { /* TCP over IPv4 flows, Not fragmented, no vlan tag */ MVPP2_DEF_FLOW(TCP_V4_FLOW, MVPP2_FL_IP4_TCP_NF_UNTAG, MVPP22_CLS_HEK_IP4_5T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), MVPP2_DEF_FLOW(TCP_V4_FLOW, MVPP2_FL_IP4_TCP_NF_UNTAG, MVPP22_CLS_HEK_IP4_5T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), MVPP2_DEF_FLOW(TCP_V4_FLOW, MVPP2_FL_IP4_TCP_NF_UNTAG, MVPP22_CLS_HEK_IP4_5T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), /* TCP over IPv4 flows, Not fragmented, with vlan tag */ MVPP2_DEF_FLOW(TCP_V4_FLOW, MVPP2_FL_IP4_TCP_NF_TAG, MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK), MVPP2_DEF_FLOW(TCP_V4_FLOW, MVPP2_FL_IP4_TCP_NF_TAG, MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK), MVPP2_DEF_FLOW(TCP_V4_FLOW, MVPP2_FL_IP4_TCP_NF_TAG, MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK), /* TCP over IPv4 flows, fragmented, no vlan tag */ MVPP2_DEF_FLOW(TCP_V4_FLOW, MVPP2_FL_IP4_TCP_FRAG_UNTAG, MVPP22_CLS_HEK_IP4_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), MVPP2_DEF_FLOW(TCP_V4_FLOW, MVPP2_FL_IP4_TCP_FRAG_UNTAG, MVPP22_CLS_HEK_IP4_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), MVPP2_DEF_FLOW(TCP_V4_FLOW, MVPP2_FL_IP4_TCP_FRAG_UNTAG, MVPP22_CLS_HEK_IP4_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), /* TCP over IPv4 flows, fragmented, with vlan tag */ MVPP2_DEF_FLOW(TCP_V4_FLOW, MVPP2_FL_IP4_TCP_FRAG_TAG, MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK), MVPP2_DEF_FLOW(TCP_V4_FLOW, MVPP2_FL_IP4_TCP_FRAG_TAG, MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK), MVPP2_DEF_FLOW(TCP_V4_FLOW, MVPP2_FL_IP4_TCP_FRAG_TAG, MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK), /* UDP over IPv4 flows, Not fragmented, no vlan tag */ MVPP2_DEF_FLOW(UDP_V4_FLOW, MVPP2_FL_IP4_UDP_NF_UNTAG, MVPP22_CLS_HEK_IP4_5T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), MVPP2_DEF_FLOW(UDP_V4_FLOW, MVPP2_FL_IP4_UDP_NF_UNTAG, MVPP22_CLS_HEK_IP4_5T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), MVPP2_DEF_FLOW(UDP_V4_FLOW, MVPP2_FL_IP4_UDP_NF_UNTAG, MVPP22_CLS_HEK_IP4_5T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), /* UDP over IPv4 flows, Not fragmented, with vlan tag */ MVPP2_DEF_FLOW(UDP_V4_FLOW, MVPP2_FL_IP4_UDP_NF_TAG, MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK), MVPP2_DEF_FLOW(UDP_V4_FLOW, MVPP2_FL_IP4_UDP_NF_TAG, MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK), MVPP2_DEF_FLOW(UDP_V4_FLOW, MVPP2_FL_IP4_UDP_NF_TAG, MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK), /* UDP over IPv4 flows, fragmented, no vlan tag */ MVPP2_DEF_FLOW(UDP_V4_FLOW, MVPP2_FL_IP4_UDP_FRAG_UNTAG, MVPP22_CLS_HEK_IP4_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), MVPP2_DEF_FLOW(UDP_V4_FLOW, MVPP2_FL_IP4_UDP_FRAG_UNTAG, MVPP22_CLS_HEK_IP4_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), MVPP2_DEF_FLOW(UDP_V4_FLOW, MVPP2_FL_IP4_UDP_FRAG_UNTAG, MVPP22_CLS_HEK_IP4_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), /* UDP over IPv4 flows, fragmented, with vlan tag */ MVPP2_DEF_FLOW(UDP_V4_FLOW, MVPP2_FL_IP4_UDP_FRAG_TAG, MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK), MVPP2_DEF_FLOW(UDP_V4_FLOW, MVPP2_FL_IP4_UDP_FRAG_TAG, MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK), MVPP2_DEF_FLOW(UDP_V4_FLOW, MVPP2_FL_IP4_UDP_FRAG_TAG, MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK), /* TCP over IPv6 flows, not fragmented, no vlan tag */ MVPP2_DEF_FLOW(TCP_V6_FLOW, MVPP2_FL_IP6_TCP_NF_UNTAG, MVPP22_CLS_HEK_IP6_5T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), MVPP2_DEF_FLOW(TCP_V6_FLOW, MVPP2_FL_IP6_TCP_NF_UNTAG, MVPP22_CLS_HEK_IP6_5T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), /* TCP over IPv6 flows, not fragmented, with vlan tag */ MVPP2_DEF_FLOW(TCP_V6_FLOW, MVPP2_FL_IP6_TCP_NF_TAG, MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK), MVPP2_DEF_FLOW(TCP_V6_FLOW, MVPP2_FL_IP6_TCP_NF_TAG, MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK), /* TCP over IPv6 flows, fragmented, no vlan tag */ MVPP2_DEF_FLOW(TCP_V6_FLOW, MVPP2_FL_IP6_TCP_FRAG_UNTAG, MVPP22_CLS_HEK_IP6_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), MVPP2_DEF_FLOW(TCP_V6_FLOW, MVPP2_FL_IP6_TCP_FRAG_UNTAG, MVPP22_CLS_HEK_IP6_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), /* TCP over IPv6 flows, fragmented, with vlan tag */ MVPP2_DEF_FLOW(TCP_V6_FLOW, MVPP2_FL_IP6_TCP_FRAG_TAG, MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK), MVPP2_DEF_FLOW(TCP_V6_FLOW, MVPP2_FL_IP6_TCP_FRAG_TAG, MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP, MVPP2_PRS_IP_MASK), /* UDP over IPv6 flows, not fragmented, no vlan tag */ MVPP2_DEF_FLOW(UDP_V6_FLOW, MVPP2_FL_IP6_UDP_NF_UNTAG, MVPP22_CLS_HEK_IP6_5T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), MVPP2_DEF_FLOW(UDP_V6_FLOW, MVPP2_FL_IP6_UDP_NF_UNTAG, MVPP22_CLS_HEK_IP6_5T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), /* UDP over IPv6 flows, not fragmented, with vlan tag */ MVPP2_DEF_FLOW(UDP_V6_FLOW, MVPP2_FL_IP6_UDP_NF_TAG, MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK), MVPP2_DEF_FLOW(UDP_V6_FLOW, MVPP2_FL_IP6_UDP_NF_TAG, MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK), /* UDP over IPv6 flows, fragmented, no vlan tag */ MVPP2_DEF_FLOW(UDP_V6_FLOW, MVPP2_FL_IP6_UDP_FRAG_UNTAG, MVPP22_CLS_HEK_IP6_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), MVPP2_DEF_FLOW(UDP_V6_FLOW, MVPP2_FL_IP6_UDP_FRAG_UNTAG, MVPP22_CLS_HEK_IP6_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), /* UDP over IPv6 flows, fragmented, with vlan tag */ MVPP2_DEF_FLOW(UDP_V6_FLOW, MVPP2_FL_IP6_UDP_FRAG_TAG, MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK), MVPP2_DEF_FLOW(UDP_V6_FLOW, MVPP2_FL_IP6_UDP_FRAG_TAG, MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP, MVPP2_PRS_IP_MASK), /* IPv4 flows, no vlan tag */ MVPP2_DEF_FLOW(IPV4_FLOW, MVPP2_FL_IP4_UNTAG, MVPP22_CLS_HEK_IP4_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4, MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), MVPP2_DEF_FLOW(IPV4_FLOW, MVPP2_FL_IP4_UNTAG, MVPP22_CLS_HEK_IP4_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT, MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), MVPP2_DEF_FLOW(IPV4_FLOW, MVPP2_FL_IP4_UNTAG, MVPP22_CLS_HEK_IP4_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER, MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), /* IPv4 flows, with vlan tag */ MVPP2_DEF_FLOW(IPV4_FLOW, MVPP2_FL_IP4_TAG, MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4, MVPP2_PRS_RI_L3_PROTO_MASK), MVPP2_DEF_FLOW(IPV4_FLOW, MVPP2_FL_IP4_TAG, MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4_OPT, MVPP2_PRS_RI_L3_PROTO_MASK), MVPP2_DEF_FLOW(IPV4_FLOW, MVPP2_FL_IP4_TAG, MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP4_OTHER, MVPP2_PRS_RI_L3_PROTO_MASK), /* IPv6 flows, no vlan tag */ MVPP2_DEF_FLOW(IPV6_FLOW, MVPP2_FL_IP6_UNTAG, MVPP22_CLS_HEK_IP6_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6, MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), MVPP2_DEF_FLOW(IPV6_FLOW, MVPP2_FL_IP6_UNTAG, MVPP22_CLS_HEK_IP6_2T, MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6, MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), /* IPv6 flows, with vlan tag */ MVPP2_DEF_FLOW(IPV6_FLOW, MVPP2_FL_IP6_TAG, MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP6, MVPP2_PRS_RI_L3_PROTO_MASK), MVPP2_DEF_FLOW(IPV6_FLOW, MVPP2_FL_IP6_TAG, MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_OPT_VLAN, MVPP2_PRS_RI_L3_IP6, MVPP2_PRS_RI_L3_PROTO_MASK), /* Non IP flow, no vlan tag */ MVPP2_DEF_FLOW(ETHER_FLOW, MVPP2_FL_NON_IP_UNTAG, 0, MVPP2_PRS_RI_VLAN_NONE, MVPP2_PRS_RI_VLAN_MASK), /* Non IP flow, with vlan tag */ MVPP2_DEF_FLOW(ETHER_FLOW, MVPP2_FL_NON_IP_TAG, MVPP22_CLS_HEK_OPT_VLAN, 0, 0), }; static void mvpp2_cls_flow_read(struct mvpp2 *priv, int index, struct mvpp2_cls_flow_entry *fe) { fe->index = index; mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, index); fe->data[0] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL0_REG); fe->data[1] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL1_REG); fe->data[2] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL2_REG); } /* Update classification flow table registers */ static void mvpp2_cls_flow_write(struct mvpp2 *priv, struct mvpp2_cls_flow_entry *fe) { mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index); mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]); mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]); mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]); } /* Update classification lookup table register */ static void mvpp2_cls_lookup_write(struct mvpp2 *priv, struct mvpp2_cls_lookup_entry *le) { u32 val; val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid; mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val); mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data); } /* Operations on flow entry */ static int mvpp2_cls_flow_hek_num_get(struct mvpp2_cls_flow_entry *fe) { return fe->data[1] & MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK; } static void mvpp2_cls_flow_hek_num_set(struct mvpp2_cls_flow_entry *fe, int num_of_fields) { fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK; fe->data[1] |= MVPP2_CLS_FLOW_TBL1_N_FIELDS(num_of_fields); } static int mvpp2_cls_flow_hek_get(struct mvpp2_cls_flow_entry *fe, int field_index) { return (fe->data[2] >> MVPP2_CLS_FLOW_TBL2_FLD_OFFS(field_index)) & MVPP2_CLS_FLOW_TBL2_FLD_MASK; } static void mvpp2_cls_flow_hek_set(struct mvpp2_cls_flow_entry *fe, int field_index, int field_id) { fe->data[2] &= ~MVPP2_CLS_FLOW_TBL2_FLD(field_index, MVPP2_CLS_FLOW_TBL2_FLD_MASK); fe->data[2] |= MVPP2_CLS_FLOW_TBL2_FLD(field_index, field_id); } static void mvpp2_cls_flow_eng_set(struct mvpp2_cls_flow_entry *fe, int engine) { fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_ENG(MVPP2_CLS_FLOW_TBL0_ENG_MASK); fe->data[0] |= MVPP2_CLS_FLOW_TBL0_ENG(engine); } static void mvpp2_cls_flow_port_id_sel(struct mvpp2_cls_flow_entry *fe, bool from_packet) { if (from_packet) fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL; else fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL; } static void mvpp2_cls_flow_seq_set(struct mvpp2_cls_flow_entry *fe, u32 seq) { fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_SEQ(MVPP2_CLS_FLOW_TBL1_SEQ_MASK); fe->data[1] |= MVPP2_CLS_FLOW_TBL1_SEQ(seq); } static void mvpp2_cls_flow_last_set(struct mvpp2_cls_flow_entry *fe, bool is_last) { fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_LAST; fe->data[0] |= !!is_last; } static void mvpp2_cls_flow_pri_set(struct mvpp2_cls_flow_entry *fe, int prio) { fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_PRIO(MVPP2_CLS_FLOW_TBL1_PRIO_MASK); fe->data[1] |= MVPP2_CLS_FLOW_TBL1_PRIO(prio); } static void mvpp2_cls_flow_port_add(struct mvpp2_cls_flow_entry *fe, u32 port) { fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID(port); } /* Initialize the parser entry for the given flow */ static void mvpp2_cls_flow_prs_init(struct mvpp2 *priv, struct mvpp2_cls_flow *flow) { mvpp2_prs_add_flow(priv, flow->flow_id, flow->prs_ri.ri, flow->prs_ri.ri_mask); } /* Initialize the Lookup Id table entry for the given flow */ static void mvpp2_cls_flow_lkp_init(struct mvpp2 *priv, struct mvpp2_cls_flow *flow) { struct mvpp2_cls_lookup_entry le; le.way = 0; le.lkpid = flow->flow_id; /* The default RxQ for this port is set in the C2 lookup */ le.data = 0; /* We point on the first lookup in the sequence for the flow, that is * the C2 lookup. */ le.data |= MVPP2_CLS_LKP_FLOW_PTR(MVPP2_FLOW_C2_ENTRY(flow->flow_id)); /* CLS is always enabled, RSS is enabled/disabled in C2 lookup */ le.data |= MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK; mvpp2_cls_lookup_write(priv, &le); } /* Initialize the flow table entries for the given flow */ static void mvpp2_cls_flow_init(struct mvpp2 *priv, struct mvpp2_cls_flow *flow) { struct mvpp2_cls_flow_entry fe; int i; /* C2 lookup */ memset(&fe, 0, sizeof(fe)); fe.index = MVPP2_FLOW_C2_ENTRY(flow->flow_id); mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C2); mvpp2_cls_flow_port_id_sel(&fe, true); mvpp2_cls_flow_last_set(&fe, 0); mvpp2_cls_flow_pri_set(&fe, 0); mvpp2_cls_flow_seq_set(&fe, MVPP2_CLS_FLOW_SEQ_FIRST1); /* Add all ports */ for (i = 0; i < MVPP2_MAX_PORTS; i++) mvpp2_cls_flow_port_add(&fe, BIT(i)); mvpp2_cls_flow_write(priv, &fe); /* C3Hx lookups */ for (i = 0; i < MVPP2_MAX_PORTS; i++) { memset(&fe, 0, sizeof(fe)); fe.index = MVPP2_PORT_FLOW_HASH_ENTRY(i, flow->flow_id); mvpp2_cls_flow_port_id_sel(&fe, true); mvpp2_cls_flow_pri_set(&fe, i + 1); mvpp2_cls_flow_seq_set(&fe, MVPP2_CLS_FLOW_SEQ_MIDDLE); mvpp2_cls_flow_port_add(&fe, BIT(i)); mvpp2_cls_flow_write(priv, &fe); } /* Update the last entry */ mvpp2_cls_flow_last_set(&fe, 1); mvpp2_cls_flow_seq_set(&fe, MVPP2_CLS_FLOW_SEQ_LAST); mvpp2_cls_flow_write(priv, &fe); } /* Adds a field to the Header Extracted Key generation parameters*/ static int mvpp2_flow_add_hek_field(struct mvpp2_cls_flow_entry *fe, u32 field_id) { int nb_fields = mvpp2_cls_flow_hek_num_get(fe); if (nb_fields == MVPP2_FLOW_N_FIELDS) return -EINVAL; mvpp2_cls_flow_hek_set(fe, nb_fields, field_id); mvpp2_cls_flow_hek_num_set(fe, nb_fields + 1); return 0; } static int mvpp2_flow_set_hek_fields(struct mvpp2_cls_flow_entry *fe, unsigned long hash_opts) { u32 field_id; int i; /* Clear old fields */ mvpp2_cls_flow_hek_num_set(fe, 0); fe->data[2] = 0; for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) { switch (BIT(i)) { case MVPP22_CLS_HEK_OPT_VLAN: field_id = MVPP22_CLS_FIELD_VLAN; break; case MVPP22_CLS_HEK_OPT_IP4SA: field_id = MVPP22_CLS_FIELD_IP4SA; break; case MVPP22_CLS_HEK_OPT_IP4DA: field_id = MVPP22_CLS_FIELD_IP4DA; break; case MVPP22_CLS_HEK_OPT_IP6SA: field_id = MVPP22_CLS_FIELD_IP6SA; break; case MVPP22_CLS_HEK_OPT_IP6DA: field_id = MVPP22_CLS_FIELD_IP6DA; break; case MVPP22_CLS_HEK_OPT_L4SIP: field_id = MVPP22_CLS_FIELD_L4SIP; break; case MVPP22_CLS_HEK_OPT_L4DIP: field_id = MVPP22_CLS_FIELD_L4DIP; break; default: return -EINVAL; } if (mvpp2_flow_add_hek_field(fe, field_id)) return -EINVAL; } return 0; } struct mvpp2_cls_flow *mvpp2_cls_flow_get(int flow) { if (flow >= MVPP2_N_FLOWS) return NULL; return &cls_flows[flow]; } /* Set the hash generation options for the given traffic flow. * One traffic flow (in the ethtool sense) has multiple classification flows, * to handle specific cases such as fragmentation, or the presence of a * VLAN / DSA Tag. * * Each of these individual flows has different constraints, for example we * can't hash fragmented packets on L4 data (else we would risk having packet * re-ordering), so each classification flows masks the options with their * supported ones. * */ static int mvpp2_port_rss_hash_opts_set(struct mvpp2_port *port, int flow_type, u16 requested_opts) { struct mvpp2_cls_flow_entry fe; struct mvpp2_cls_flow *flow; int i, engine, flow_index; u16 hash_opts; for (i = 0; i < MVPP2_N_FLOWS; i++) { flow = mvpp2_cls_flow_get(i); if (!flow) return -EINVAL; if (flow->flow_type != flow_type) continue; flow_index = MVPP2_PORT_FLOW_HASH_ENTRY(port->id, flow->flow_id); mvpp2_cls_flow_read(port->priv, flow_index, &fe); hash_opts = flow->supported_hash_opts & requested_opts; /* Use C3HB engine to access L4 infos. This adds L4 infos to the * hash parameters */ if (hash_opts & MVPP22_CLS_HEK_L4_OPTS) engine = MVPP22_CLS_ENGINE_C3HB; else engine = MVPP22_CLS_ENGINE_C3HA; if (mvpp2_flow_set_hek_fields(&fe, hash_opts)) return -EINVAL; mvpp2_cls_flow_eng_set(&fe, engine); mvpp2_cls_flow_write(port->priv, &fe); } return 0; } u16 mvpp2_flow_get_hek_fields(struct mvpp2_cls_flow_entry *fe) { u16 hash_opts = 0; int n_fields, i, field; n_fields = mvpp2_cls_flow_hek_num_get(fe); for (i = 0; i < n_fields; i++) { field = mvpp2_cls_flow_hek_get(fe, i); switch (field) { case MVPP22_CLS_FIELD_MAC_DA: hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA; break; case MVPP22_CLS_FIELD_VLAN: hash_opts |= MVPP22_CLS_HEK_OPT_VLAN; break; case MVPP22_CLS_FIELD_L3_PROTO: hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO; break; case MVPP22_CLS_FIELD_IP4SA: hash_opts |= MVPP22_CLS_HEK_OPT_IP4SA; break; case MVPP22_CLS_FIELD_IP4DA: hash_opts |= MVPP22_CLS_HEK_OPT_IP4DA; break; case MVPP22_CLS_FIELD_IP6SA: hash_opts |= MVPP22_CLS_HEK_OPT_IP6SA; break; case MVPP22_CLS_FIELD_IP6DA: hash_opts |= MVPP22_CLS_HEK_OPT_IP6DA; break; case MVPP22_CLS_FIELD_L4SIP: hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP; break; case MVPP22_CLS_FIELD_L4DIP: hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP; break; default: break; } } return hash_opts; } /* Returns the hash opts for this flow. There are several classifier flows * for one traffic flow, this returns an aggregation of all configurations. */ static u16 mvpp2_port_rss_hash_opts_get(struct mvpp2_port *port, int flow_type) { struct mvpp2_cls_flow_entry fe; struct mvpp2_cls_flow *flow; int i, flow_index; u16 hash_opts = 0; for (i = 0; i < MVPP2_N_FLOWS; i++) { flow = mvpp2_cls_flow_get(i); if (!flow) return 0; if (flow->flow_type != flow_type) continue; flow_index = MVPP2_PORT_FLOW_HASH_ENTRY(port->id, flow->flow_id); mvpp2_cls_flow_read(port->priv, flow_index, &fe); hash_opts |= mvpp2_flow_get_hek_fields(&fe); } return hash_opts; } static void mvpp2_cls_port_init_flows(struct mvpp2 *priv) { struct mvpp2_cls_flow *flow; int i; for (i = 0; i < MVPP2_N_FLOWS; i++) { flow = mvpp2_cls_flow_get(i); if (!flow) break; mvpp2_cls_flow_prs_init(priv, flow); mvpp2_cls_flow_lkp_init(priv, flow); mvpp2_cls_flow_init(priv, flow); } } static void mvpp2_cls_c2_write(struct mvpp2 *priv, struct mvpp2_cls_c2_entry *c2) { mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2->index); /* Write TCAM */ mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA0, c2->tcam[0]); mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA1, c2->tcam[1]); mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA2, c2->tcam[2]); mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA3, c2->tcam[3]); mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA4, c2->tcam[4]); mvpp2_write(priv, MVPP22_CLS_C2_ACT, c2->act); mvpp2_write(priv, MVPP22_CLS_C2_ATTR0, c2->attr[0]); mvpp2_write(priv, MVPP22_CLS_C2_ATTR1, c2->attr[1]); mvpp2_write(priv, MVPP22_CLS_C2_ATTR2, c2->attr[2]); mvpp2_write(priv, MVPP22_CLS_C2_ATTR3, c2->attr[3]); } static void mvpp2_cls_c2_read(struct mvpp2 *priv, int index, struct mvpp2_cls_c2_entry *c2) { mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, index); c2->index = index; c2->tcam[0] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA0); c2->tcam[1] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA1); c2->tcam[2] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA2); c2->tcam[3] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA3); c2->tcam[4] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA4); c2->act = mvpp2_read(priv, MVPP22_CLS_C2_ACT); c2->attr[0] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR0); c2->attr[1] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR1); c2->attr[2] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR2); c2->attr[3] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR3); } static void mvpp2_port_c2_cls_init(struct mvpp2_port *port) { struct mvpp2_cls_c2_entry c2; u8 qh, ql, pmap; memset(&c2, 0, sizeof(c2)); c2.index = MVPP22_CLS_C2_RSS_ENTRY(port->id); pmap = BIT(port->id); c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap); c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap)); /* Update RSS status after matching this entry */ c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK); /* Mark packet as "forwarded to software", needed for RSS */ c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK); /* Configure the default rx queue : Update Queue Low and Queue High, but * don't lock, since the rx queue selection might be overridden by RSS */ c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD) | MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD); qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK; ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK; c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) | MVPP22_CLS_C2_ATTR0_QLOW(ql); mvpp2_cls_c2_write(port->priv, &c2); } /* Classifier default initialization */ void mvpp2_cls_init(struct mvpp2 *priv) { struct mvpp2_cls_lookup_entry le; struct mvpp2_cls_flow_entry fe; int index; /* Enable classifier */ mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK); /* Clear classifier flow table */ memset(&fe.data, 0, sizeof(fe.data)); for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) { fe.index = index; mvpp2_cls_flow_write(priv, &fe); } /* Clear classifier lookup table */ le.data = 0; for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) { le.lkpid = index; le.way = 0; mvpp2_cls_lookup_write(priv, &le); le.way = 1; mvpp2_cls_lookup_write(priv, &le); } mvpp2_cls_port_init_flows(priv); } void mvpp2_cls_port_config(struct mvpp2_port *port) { struct mvpp2_cls_lookup_entry le; u32 val; /* Set way for the port */ val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG); val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id); mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val); /* Pick the entry to be accessed in lookup ID decoding table * according to the way and lkpid. */ le.lkpid = port->id; le.way = 0; le.data = 0; /* Set initial CPU queue for receiving packets */ le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK; le.data |= port->first_rxq; /* Disable classification engines */ le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK; /* Update lookup ID table entry */ mvpp2_cls_lookup_write(port->priv, &le); mvpp2_port_c2_cls_init(port); } static void mvpp2_rss_port_c2_enable(struct mvpp2_port *port) { struct mvpp2_cls_c2_entry c2; mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2); c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN; mvpp2_cls_c2_write(port->priv, &c2); } static void mvpp2_rss_port_c2_disable(struct mvpp2_port *port) { struct mvpp2_cls_c2_entry c2; mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2); c2.attr[2] &= ~MVPP22_CLS_C2_ATTR2_RSS_EN; mvpp2_cls_c2_write(port->priv, &c2); } void mvpp22_rss_enable(struct mvpp2_port *port) { mvpp2_rss_port_c2_enable(port); } void mvpp22_rss_disable(struct mvpp2_port *port) { mvpp2_rss_port_c2_disable(port); } /* Set CPU queue number for oversize packets */ void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port) { u32 val; mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id), port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK); mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id), (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS)); val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG); val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id); mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val); } static inline u32 mvpp22_rxfh_indir(struct mvpp2_port *port, u32 rxq) { int nrxqs, cpu, cpus = num_possible_cpus(); /* Number of RXQs per CPU */ nrxqs = port->nrxqs / cpus; /* CPU that will handle this rx queue */ cpu = rxq / nrxqs; if (!cpu_online(cpu)) return port->first_rxq; /* Indirection to better distribute the paquets on the CPUs when * configuring the RSS queues. */ return port->first_rxq + ((rxq * nrxqs + rxq / cpus) % port->nrxqs); } void mvpp22_rss_fill_table(struct mvpp2_port *port, u32 table) { struct mvpp2 *priv = port->priv; int i; for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) { u32 sel = MVPP22_RSS_INDEX_TABLE(table) | MVPP22_RSS_INDEX_TABLE_ENTRY(i); mvpp2_write(priv, MVPP22_RSS_INDEX, sel); mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY, mvpp22_rxfh_indir(port, port->indir[i])); } } int mvpp2_ethtool_rxfh_set(struct mvpp2_port *port, struct ethtool_rxnfc *info) { u16 hash_opts = 0; switch (info->flow_type) { case TCP_V4_FLOW: case UDP_V4_FLOW: case TCP_V6_FLOW: case UDP_V6_FLOW: if (info->data & RXH_L4_B_0_1) hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP; if (info->data & RXH_L4_B_2_3) hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP; /* Fallthrough */ case IPV4_FLOW: case IPV6_FLOW: if (info->data & RXH_L2DA) hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA; if (info->data & RXH_VLAN) hash_opts |= MVPP22_CLS_HEK_OPT_VLAN; if (info->data & RXH_L3_PROTO) hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO; if (info->data & RXH_IP_SRC) hash_opts |= (MVPP22_CLS_HEK_OPT_IP4SA | MVPP22_CLS_HEK_OPT_IP6SA); if (info->data & RXH_IP_DST) hash_opts |= (MVPP22_CLS_HEK_OPT_IP4DA | MVPP22_CLS_HEK_OPT_IP6DA); break; default: return -EOPNOTSUPP; } return mvpp2_port_rss_hash_opts_set(port, info->flow_type, hash_opts); } int mvpp2_ethtool_rxfh_get(struct mvpp2_port *port, struct ethtool_rxnfc *info) { unsigned long hash_opts; int i; hash_opts = mvpp2_port_rss_hash_opts_get(port, info->flow_type); info->data = 0; for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) { switch (BIT(i)) { case MVPP22_CLS_HEK_OPT_MAC_DA: info->data |= RXH_L2DA; break; case MVPP22_CLS_HEK_OPT_VLAN: info->data |= RXH_VLAN; break; case MVPP22_CLS_HEK_OPT_L3_PROTO: info->data |= RXH_L3_PROTO; break; case MVPP22_CLS_HEK_OPT_IP4SA: case MVPP22_CLS_HEK_OPT_IP6SA: info->data |= RXH_IP_SRC; break; case MVPP22_CLS_HEK_OPT_IP4DA: case MVPP22_CLS_HEK_OPT_IP6DA: info->data |= RXH_IP_DST; break; case MVPP22_CLS_HEK_OPT_L4SIP: info->data |= RXH_L4_B_0_1; break; case MVPP22_CLS_HEK_OPT_L4DIP: info->data |= RXH_L4_B_2_3; break; default: return -EINVAL; } } return 0; } void mvpp22_rss_port_init(struct mvpp2_port *port) { struct mvpp2 *priv = port->priv; int i; /* Set the table width: replace the whole classifier Rx queue number * with the ones configured in RSS table entries. */ mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(port->id)); mvpp2_write(priv, MVPP22_RSS_WIDTH, 8); /* The default RxQ is used as a key to select the RSS table to use. * We use one RSS table per port. */ mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(port->first_rxq)); mvpp2_write(priv, MVPP22_RXQ2RSS_TABLE, MVPP22_RSS_TABLE_POINTER(port->id)); /* Configure the first table to evenly distribute the packets across * real Rx Queues. The table entries map a hash to a port Rx Queue. */ for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) port->indir[i] = ethtool_rxfh_indir_default(i, port->nrxqs); mvpp22_rss_fill_table(port, port->id); /* Configure default flows */ mvpp2_port_rss_hash_opts_set(port, IPV4_FLOW, MVPP22_CLS_HEK_IP4_2T); mvpp2_port_rss_hash_opts_set(port, IPV6_FLOW, MVPP22_CLS_HEK_IP6_2T); mvpp2_port_rss_hash_opts_set(port, TCP_V4_FLOW, MVPP22_CLS_HEK_IP4_5T); mvpp2_port_rss_hash_opts_set(port, TCP_V6_FLOW, MVPP22_CLS_HEK_IP6_5T); mvpp2_port_rss_hash_opts_set(port, UDP_V4_FLOW, MVPP22_CLS_HEK_IP4_5T); mvpp2_port_rss_hash_opts_set(port, UDP_V6_FLOW, MVPP22_CLS_HEK_IP6_5T); }