/* Keyring handling * * Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include "internal.h" #define rcu_dereference_locked_keyring(keyring) \ (rcu_dereference_protected( \ (keyring)->payload.subscriptions, \ rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem))) #define rcu_deref_link_locked(klist, index, keyring) \ (rcu_dereference_protected( \ (klist)->keys[index], \ rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem))) #define KEY_LINK_FIXQUOTA 1UL /* * When plumbing the depths of the key tree, this sets a hard limit * set on how deep we're willing to go. */ #define KEYRING_SEARCH_MAX_DEPTH 6 /* * We keep all named keyrings in a hash to speed looking them up. */ #define KEYRING_NAME_HASH_SIZE (1 << 5) static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; static DEFINE_RWLOCK(keyring_name_lock); static inline unsigned keyring_hash(const char *desc) { unsigned bucket = 0; for (; *desc; desc++) bucket += (unsigned char)*desc; return bucket & (KEYRING_NAME_HASH_SIZE - 1); } /* * The keyring key type definition. Keyrings are simply keys of this type and * can be treated as ordinary keys in addition to having their own special * operations. */ static int keyring_instantiate(struct key *keyring, const void *data, size_t datalen); static int keyring_match(const struct key *keyring, const void *criterion); static void keyring_revoke(struct key *keyring); static void keyring_destroy(struct key *keyring); static void keyring_describe(const struct key *keyring, struct seq_file *m); static long keyring_read(const struct key *keyring, char __user *buffer, size_t buflen); struct key_type key_type_keyring = { .name = "keyring", .def_datalen = sizeof(struct keyring_list), .instantiate = keyring_instantiate, .match = keyring_match, .revoke = keyring_revoke, .destroy = keyring_destroy, .describe = keyring_describe, .read = keyring_read, }; EXPORT_SYMBOL(key_type_keyring); /* * Semaphore to serialise link/link calls to prevent two link calls in parallel * introducing a cycle. */ static DECLARE_RWSEM(keyring_serialise_link_sem); /* * Publish the name of a keyring so that it can be found by name (if it has * one). */ static void keyring_publish_name(struct key *keyring) { int bucket; if (keyring->description) { bucket = keyring_hash(keyring->description); write_lock(&keyring_name_lock); if (!keyring_name_hash[bucket].next) INIT_LIST_HEAD(&keyring_name_hash[bucket]); list_add_tail(&keyring->type_data.link, &keyring_name_hash[bucket]); write_unlock(&keyring_name_lock); } } /* * Initialise a keyring. * * Returns 0 on success, -EINVAL if given any data. */ static int keyring_instantiate(struct key *keyring, const void *data, size_t datalen) { int ret; ret = -EINVAL; if (datalen == 0) { /* make the keyring available by name if it has one */ keyring_publish_name(keyring); ret = 0; } return ret; } /* * Match keyrings on their name */ static int keyring_match(const struct key *keyring, const void *description) { return keyring->description && strcmp(keyring->description, description) == 0; } /* * Clean up a keyring when it is destroyed. Unpublish its name if it had one * and dispose of its data. * * The garbage collector detects the final key_put(), removes the keyring from * the serial number tree and then does RCU synchronisation before coming here, * so we shouldn't need to worry about code poking around here with the RCU * readlock held by this time. */ static void keyring_destroy(struct key *keyring) { struct keyring_list *klist; int loop; if (keyring->description) { write_lock(&keyring_name_lock); if (keyring->type_data.link.next != NULL && !list_empty(&keyring->type_data.link)) list_del(&keyring->type_data.link); write_unlock(&keyring_name_lock); } klist = rcu_access_pointer(keyring->payload.subscriptions); if (klist) { for (loop = klist->nkeys - 1; loop >= 0; loop--) key_put(rcu_access_pointer(klist->keys[loop])); kfree(klist); } } /* * Describe a keyring for /proc. */ static void keyring_describe(const struct key *keyring, struct seq_file *m) { struct keyring_list *klist; if (keyring->description) seq_puts(m, keyring->description); else seq_puts(m, "[anon]"); if (key_is_instantiated(keyring)) { rcu_read_lock(); klist = rcu_dereference(keyring->payload.subscriptions); if (klist) seq_printf(m, ": %u/%u", klist->nkeys, klist->maxkeys); else seq_puts(m, ": empty"); rcu_read_unlock(); } } /* * Read a list of key IDs from the keyring's contents in binary form * * The keyring's semaphore is read-locked by the caller. */ static long keyring_read(const struct key *keyring, char __user *buffer, size_t buflen) { struct keyring_list *klist; struct key *key; size_t qty, tmp; int loop, ret; ret = 0; klist = rcu_dereference_locked_keyring(keyring); if (klist) { /* calculate how much data we could return */ qty = klist->nkeys * sizeof(key_serial_t); if (buffer && buflen > 0) { if (buflen > qty) buflen = qty; /* copy the IDs of the subscribed keys into the * buffer */ ret = -EFAULT; for (loop = 0; loop < klist->nkeys; loop++) { key = rcu_deref_link_locked(klist, loop, keyring); tmp = sizeof(key_serial_t); if (tmp > buflen) tmp = buflen; if (copy_to_user(buffer, &key->serial, tmp) != 0) goto error; buflen -= tmp; if (buflen == 0) break; buffer += tmp; } } ret = qty; } error: return ret; } /* * Allocate a keyring and link into the destination keyring. */ struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid, const struct cred *cred, unsigned long flags, struct key *dest) { struct key *keyring; int ret; keyring = key_alloc(&key_type_keyring, description, uid, gid, cred, (KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_ALL, flags); if (!IS_ERR(keyring)) { ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); if (ret < 0) { key_put(keyring); keyring = ERR_PTR(ret); } } return keyring; } /** * keyring_search_aux - Search a keyring tree for a key matching some criteria * @keyring_ref: A pointer to the keyring with possession indicator. * @cred: The credentials to use for permissions checks. * @type: The type of key to search for. * @description: Parameter for @match. * @match: Function to rule on whether or not a key is the one required. * @no_state_check: Don't check if a matching key is bad * * Search the supplied keyring tree for a key that matches the criteria given. * The root keyring and any linked keyrings must grant Search permission to the * caller to be searchable and keys can only be found if they too grant Search * to the caller. The possession flag on the root keyring pointer controls use * of the possessor bits in permissions checking of the entire tree. In * addition, the LSM gets to forbid keyring searches and key matches. * * The search is performed as a breadth-then-depth search up to the prescribed * limit (KEYRING_SEARCH_MAX_DEPTH). * * Keys are matched to the type provided and are then filtered by the match * function, which is given the description to use in any way it sees fit. The * match function may use any attributes of a key that it wishes to to * determine the match. Normally the match function from the key type would be * used. * * RCU is used to prevent the keyring key lists from disappearing without the * need to take lots of locks. * * Returns a pointer to the found key and increments the key usage count if * successful; -EAGAIN if no matching keys were found, or if expired or revoked * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the * specified keyring wasn't a keyring. * * In the case of a successful return, the possession attribute from * @keyring_ref is propagated to the returned key reference. */ key_ref_t keyring_search_aux(key_ref_t keyring_ref, const struct cred *cred, struct key_type *type, const void *description, key_match_func_t match, bool no_state_check) { struct { struct keyring_list *keylist; int kix; } stack[KEYRING_SEARCH_MAX_DEPTH]; struct keyring_list *keylist; struct timespec now; unsigned long possessed, kflags; struct key *keyring, *key; key_ref_t key_ref; long err; int sp, nkeys, kix; keyring = key_ref_to_ptr(keyring_ref); possessed = is_key_possessed(keyring_ref); key_check(keyring); /* top keyring must have search permission to begin the search */ err = key_task_permission(keyring_ref, cred, KEY_SEARCH); if (err < 0) { key_ref = ERR_PTR(err); goto error; } key_ref = ERR_PTR(-ENOTDIR); if (keyring->type != &key_type_keyring) goto error; rcu_read_lock(); now = current_kernel_time(); err = -EAGAIN; sp = 0; /* firstly we should check to see if this top-level keyring is what we * are looking for */ key_ref = ERR_PTR(-EAGAIN); kflags = keyring->flags; if (keyring->type == type && match(keyring, description)) { key = keyring; if (no_state_check) goto found; /* check it isn't negative and hasn't expired or been * revoked */ if (kflags & (1 << KEY_FLAG_REVOKED)) goto error_2; if (key->expiry && now.tv_sec >= key->expiry) goto error_2; key_ref = ERR_PTR(key->type_data.reject_error); if (kflags & (1 << KEY_FLAG_NEGATIVE)) goto error_2; goto found; } /* otherwise, the top keyring must not be revoked, expired, or * negatively instantiated if we are to search it */ key_ref = ERR_PTR(-EAGAIN); if (kflags & ((1 << KEY_FLAG_REVOKED) | (1 << KEY_FLAG_NEGATIVE)) || (keyring->expiry && now.tv_sec >= keyring->expiry)) goto error_2; /* start processing a new keyring */ descend: if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) goto not_this_keyring; keylist = rcu_dereference(keyring->payload.subscriptions); if (!keylist) goto not_this_keyring; /* iterate through the keys in this keyring first */ nkeys = keylist->nkeys; smp_rmb(); for (kix = 0; kix < nkeys; kix++) { key = rcu_dereference(keylist->keys[kix]); kflags = key->flags; /* ignore keys not of this type */ if (key->type != type) continue; /* skip revoked keys and expired keys */ if (!no_state_check) { if (kflags & (1 << KEY_FLAG_REVOKED)) continue; if (key->expiry && now.tv_sec >= key->expiry) continue; } /* keys that don't match */ if (!match(key, description)) continue; /* key must have search permissions */ if (key_task_permission(make_key_ref(key, possessed), cred, KEY_SEARCH) < 0) continue; if (no_state_check) goto found; /* we set a different error code if we pass a negative key */ if (kflags & (1 << KEY_FLAG_NEGATIVE)) { err = key->type_data.reject_error; continue; } goto found; } /* search through the keyrings nested in this one */ kix = 0; ascend: nkeys = keylist->nkeys; smp_rmb(); for (; kix < nkeys; kix++) { key = rcu_dereference(keylist->keys[kix]); if (key->type != &key_type_keyring) continue; /* recursively search nested keyrings * - only search keyrings for which we have search permission */ if (sp >= KEYRING_SEARCH_MAX_DEPTH) continue; if (key_task_permission(make_key_ref(key, possessed), cred, KEY_SEARCH) < 0) continue; /* stack the current position */ stack[sp].keylist = keylist; stack[sp].kix = kix; sp++; /* begin again with the new keyring */ keyring = key; goto descend; } /* the keyring we're looking at was disqualified or didn't contain a * matching key */ not_this_keyring: if (sp > 0) { /* resume the processing of a keyring higher up in the tree */ sp--; keylist = stack[sp].keylist; kix = stack[sp].kix + 1; goto ascend; } key_ref = ERR_PTR(err); goto error_2; /* we found a viable match */ found: atomic_inc(&key->usage); key_check(key); key_ref = make_key_ref(key, possessed); error_2: rcu_read_unlock(); error: return key_ref; } /** * keyring_search - Search the supplied keyring tree for a matching key * @keyring: The root of the keyring tree to be searched. * @type: The type of keyring we want to find. * @description: The name of the keyring we want to find. * * As keyring_search_aux() above, but using the current task's credentials and * type's default matching function. */ key_ref_t keyring_search(key_ref_t keyring, struct key_type *type, const char *description) { if (!type->match) return ERR_PTR(-ENOKEY); return keyring_search_aux(keyring, current->cred, type, description, type->match, false); } EXPORT_SYMBOL(keyring_search); /* * Search the given keyring only (no recursion). * * The caller must guarantee that the keyring is a keyring and that the * permission is granted to search the keyring as no check is made here. * * RCU is used to make it unnecessary to lock the keyring key list here. * * Returns a pointer to the found key with usage count incremented if * successful and returns -ENOKEY if not found. Revoked keys and keys not * providing the requested permission are skipped over. * * If successful, the possession indicator is propagated from the keyring ref * to the returned key reference. */ key_ref_t __keyring_search_one(key_ref_t keyring_ref, const struct key_type *ktype, const char *description, key_perm_t perm) { struct keyring_list *klist; unsigned long possessed; struct key *keyring, *key; int nkeys, loop; keyring = key_ref_to_ptr(keyring_ref); possessed = is_key_possessed(keyring_ref); rcu_read_lock(); klist = rcu_dereference(keyring->payload.subscriptions); if (klist) { nkeys = klist->nkeys; smp_rmb(); for (loop = 0; loop < nkeys ; loop++) { key = rcu_dereference(klist->keys[loop]); if (key->type == ktype && (!key->type->match || key->type->match(key, description)) && key_permission(make_key_ref(key, possessed), perm) == 0 && !test_bit(KEY_FLAG_REVOKED, &key->flags) ) goto found; } } rcu_read_unlock(); return ERR_PTR(-ENOKEY); found: atomic_inc(&key->usage); rcu_read_unlock(); return make_key_ref(key, possessed); } /* * Find a keyring with the specified name. * * All named keyrings in the current user namespace are searched, provided they * grant Search permission directly to the caller (unless this check is * skipped). Keyrings whose usage points have reached zero or who have been * revoked are skipped. * * Returns a pointer to the keyring with the keyring's refcount having being * incremented on success. -ENOKEY is returned if a key could not be found. */ struct key *find_keyring_by_name(const char *name, bool skip_perm_check) { struct key *keyring; int bucket; if (!name) return ERR_PTR(-EINVAL); bucket = keyring_hash(name); read_lock(&keyring_name_lock); if (keyring_name_hash[bucket].next) { /* search this hash bucket for a keyring with a matching name * that's readable and that hasn't been revoked */ list_for_each_entry(keyring, &keyring_name_hash[bucket], type_data.link ) { if (keyring->user->user_ns != current_user_ns()) continue; if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) continue; if (strcmp(keyring->description, name) != 0) continue; if (!skip_perm_check && key_permission(make_key_ref(keyring, 0), KEY_SEARCH) < 0) continue; /* we've got a match but we might end up racing with * key_cleanup() if the keyring is currently 'dead' * (ie. it has a zero usage count) */ if (!atomic_inc_not_zero(&keyring->usage)) continue; goto out; } } keyring = ERR_PTR(-ENOKEY); out: read_unlock(&keyring_name_lock); return keyring; } /* * See if a cycle will will be created by inserting acyclic tree B in acyclic * tree A at the topmost level (ie: as a direct child of A). * * Since we are adding B to A at the top level, checking for cycles should just * be a matter of seeing if node A is somewhere in tree B. */ static int keyring_detect_cycle(struct key *A, struct key *B) { struct { struct keyring_list *keylist; int kix; } stack[KEYRING_SEARCH_MAX_DEPTH]; struct keyring_list *keylist; struct key *subtree, *key; int sp, nkeys, kix, ret; rcu_read_lock(); ret = -EDEADLK; if (A == B) goto cycle_detected; subtree = B; sp = 0; /* start processing a new keyring */ descend: if (test_bit(KEY_FLAG_REVOKED, &subtree->flags)) goto not_this_keyring; keylist = rcu_dereference(subtree->payload.subscriptions); if (!keylist) goto not_this_keyring; kix = 0; ascend: /* iterate through the remaining keys in this keyring */ nkeys = keylist->nkeys; smp_rmb(); for (; kix < nkeys; kix++) { key = rcu_dereference(keylist->keys[kix]); if (key == A) goto cycle_detected; /* recursively check nested keyrings */ if (key->type == &key_type_keyring) { if (sp >= KEYRING_SEARCH_MAX_DEPTH) goto too_deep; /* stack the current position */ stack[sp].keylist = keylist; stack[sp].kix = kix; sp++; /* begin again with the new keyring */ subtree = key; goto descend; } } /* the keyring we're looking at was disqualified or didn't contain a * matching key */ not_this_keyring: if (sp > 0) { /* resume the checking of a keyring higher up in the tree */ sp--; keylist = stack[sp].keylist; kix = stack[sp].kix + 1; goto ascend; } ret = 0; /* no cycles detected */ error: rcu_read_unlock(); return ret; too_deep: ret = -ELOOP; goto error; cycle_detected: ret = -EDEADLK; goto error; } /* * Dispose of a keyring list after the RCU grace period, freeing the unlinked * key */ static void keyring_unlink_rcu_disposal(struct rcu_head *rcu) { struct keyring_list *klist = container_of(rcu, struct keyring_list, rcu); if (klist->delkey != USHRT_MAX) key_put(rcu_access_pointer(klist->keys[klist->delkey])); kfree(klist); } /* * Preallocate memory so that a key can be linked into to a keyring. */ int __key_link_begin(struct key *keyring, const struct key_type *type, const char *description, unsigned long *_prealloc) __acquires(&keyring->sem) { struct keyring_list *klist, *nklist; unsigned long prealloc; unsigned max; size_t size; int loop, ret; kenter("%d,%s,%s,", key_serial(keyring), type->name, description); if (keyring->type != &key_type_keyring) return -ENOTDIR; down_write(&keyring->sem); ret = -EKEYREVOKED; if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) goto error_krsem; /* serialise link/link calls to prevent parallel calls causing a cycle * when linking two keyring in opposite orders */ if (type == &key_type_keyring) down_write(&keyring_serialise_link_sem); klist = rcu_dereference_locked_keyring(keyring); /* see if there's a matching key we can displace */ if (klist && klist->nkeys > 0) { for (loop = klist->nkeys - 1; loop >= 0; loop--) { struct key *key = rcu_deref_link_locked(klist, loop, keyring); if (key->type == type && strcmp(key->description, description) == 0) { /* Found a match - we'll replace the link with * one to the new key. We record the slot * position. */ klist->delkey = loop; prealloc = 0; goto done; } } } /* check that we aren't going to overrun the user's quota */ ret = key_payload_reserve(keyring, keyring->datalen + KEYQUOTA_LINK_BYTES); if (ret < 0) goto error_sem; if (klist && klist->nkeys < klist->maxkeys) { /* there's sufficient slack space to append directly */ klist->delkey = klist->nkeys; prealloc = KEY_LINK_FIXQUOTA; } else { /* grow the key list */ max = 4; if (klist) max += klist->maxkeys; ret = -ENFILE; if (max > USHRT_MAX - 1) goto error_quota; size = sizeof(*klist) + sizeof(struct key *) * max; if (size > PAGE_SIZE) goto error_quota; ret = -ENOMEM; nklist = kmalloc(size, GFP_KERNEL); if (!nklist) goto error_quota; nklist->maxkeys = max; if (klist) { memcpy(nklist->keys, klist->keys, sizeof(struct key *) * klist->nkeys); nklist->delkey = klist->nkeys; nklist->nkeys = klist->nkeys + 1; klist->delkey = USHRT_MAX; } else { nklist->nkeys = 1; nklist->delkey = 0; } /* add the key into the new space */ RCU_INIT_POINTER(nklist->keys[nklist->delkey], NULL); prealloc = (unsigned long)nklist | KEY_LINK_FIXQUOTA; } done: *_prealloc = prealloc; kleave(" = 0"); return 0; error_quota: /* undo the quota changes */ key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); error_sem: if (type == &key_type_keyring) up_write(&keyring_serialise_link_sem); error_krsem: up_write(&keyring->sem); kleave(" = %d", ret); return ret; } /* * Check already instantiated keys aren't going to be a problem. * * The caller must have called __key_link_begin(). Don't need to call this for * keys that were created since __key_link_begin() was called. */ int __key_link_check_live_key(struct key *keyring, struct key *key) { if (key->type == &key_type_keyring) /* check that we aren't going to create a cycle by linking one * keyring to another */ return keyring_detect_cycle(keyring, key); return 0; } /* * Link a key into to a keyring. * * Must be called with __key_link_begin() having being called. Discards any * already extant link to matching key if there is one, so that each keyring * holds at most one link to any given key of a particular type+description * combination. */ void __key_link(struct key *keyring, struct key *key, unsigned long *_prealloc) { struct keyring_list *klist, *nklist; struct key *discard; nklist = (struct keyring_list *)(*_prealloc & ~KEY_LINK_FIXQUOTA); *_prealloc = 0; kenter("%d,%d,%p", keyring->serial, key->serial, nklist); klist = rcu_dereference_locked_keyring(keyring); atomic_inc(&key->usage); /* there's a matching key we can displace or an empty slot in a newly * allocated list we can fill */ if (nklist) { kdebug("reissue %hu/%hu/%hu", nklist->delkey, nklist->nkeys, nklist->maxkeys); RCU_INIT_POINTER(nklist->keys[nklist->delkey], key); rcu_assign_pointer(keyring->payload.subscriptions, nklist); /* dispose of the old keyring list and, if there was one, the * displaced key */ if (klist) { kdebug("dispose %hu/%hu/%hu", klist->delkey, klist->nkeys, klist->maxkeys); call_rcu(&klist->rcu, keyring_unlink_rcu_disposal); } } else if (klist->delkey < klist->nkeys) { kdebug("replace %hu/%hu/%hu", klist->delkey, klist->nkeys, klist->maxkeys); discard = rcu_dereference_protected( klist->keys[klist->delkey], rwsem_is_locked(&keyring->sem)); rcu_assign_pointer(klist->keys[klist->delkey], key); /* The garbage collector will take care of RCU * synchronisation */ key_put(discard); } else { /* there's sufficient slack space to append directly */ kdebug("append %hu/%hu/%hu", klist->delkey, klist->nkeys, klist->maxkeys); RCU_INIT_POINTER(klist->keys[klist->delkey], key); smp_wmb(); klist->nkeys++; } } /* * Finish linking a key into to a keyring. * * Must be called with __key_link_begin() having being called. */ void __key_link_end(struct key *keyring, struct key_type *type, unsigned long prealloc) __releases(&keyring->sem) { BUG_ON(type == NULL); BUG_ON(type->name == NULL); kenter("%d,%s,%lx", keyring->serial, type->name, prealloc); if (type == &key_type_keyring) up_write(&keyring_serialise_link_sem); if (prealloc) { if (prealloc & KEY_LINK_FIXQUOTA) key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); kfree((struct keyring_list *)(prealloc & ~KEY_LINK_FIXQUOTA)); } up_write(&keyring->sem); } /** * key_link - Link a key to a keyring * @keyring: The keyring to make the link in. * @key: The key to link to. * * Make a link in a keyring to a key, such that the keyring holds a reference * on that key and the key can potentially be found by searching that keyring. * * This function will write-lock the keyring's semaphore and will consume some * of the user's key data quota to hold the link. * * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is * full, -EDQUOT if there is insufficient key data quota remaining to add * another link or -ENOMEM if there's insufficient memory. * * It is assumed that the caller has checked that it is permitted for a link to * be made (the keyring should have Write permission and the key Link * permission). */ int key_link(struct key *keyring, struct key *key) { unsigned long prealloc; int ret; key_check(keyring); key_check(key); ret = __key_link_begin(keyring, key->type, key->description, &prealloc); if (ret == 0) { ret = __key_link_check_live_key(keyring, key); if (ret == 0) __key_link(keyring, key, &prealloc); __key_link_end(keyring, key->type, prealloc); } return ret; } EXPORT_SYMBOL(key_link); /** * key_unlink - Unlink the first link to a key from a keyring. * @keyring: The keyring to remove the link from. * @key: The key the link is to. * * Remove a link from a keyring to a key. * * This function will write-lock the keyring's semaphore. * * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if * the key isn't linked to by the keyring or -ENOMEM if there's insufficient * memory. * * It is assumed that the caller has checked that it is permitted for a link to * be removed (the keyring should have Write permission; no permissions are * required on the key). */ int key_unlink(struct key *keyring, struct key *key) { struct keyring_list *klist, *nklist; int loop, ret; key_check(keyring); key_check(key); ret = -ENOTDIR; if (keyring->type != &key_type_keyring) goto error; down_write(&keyring->sem); klist = rcu_dereference_locked_keyring(keyring); if (klist) { /* search the keyring for the key */ for (loop = 0; loop < klist->nkeys; loop++) if (rcu_access_pointer(klist->keys[loop]) == key) goto key_is_present; } up_write(&keyring->sem); ret = -ENOENT; goto error; key_is_present: /* we need to copy the key list for RCU purposes */ nklist = kmalloc(sizeof(*klist) + sizeof(struct key *) * klist->maxkeys, GFP_KERNEL); if (!nklist) goto nomem; nklist->maxkeys = klist->maxkeys; nklist->nkeys = klist->nkeys - 1; if (loop > 0) memcpy(&nklist->keys[0], &klist->keys[0], loop * sizeof(struct key *)); if (loop < nklist->nkeys) memcpy(&nklist->keys[loop], &klist->keys[loop + 1], (nklist->nkeys - loop) * sizeof(struct key *)); /* adjust the user's quota */ key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); rcu_assign_pointer(keyring->payload.subscriptions, nklist); up_write(&keyring->sem); /* schedule for later cleanup */ klist->delkey = loop; call_rcu(&klist->rcu, keyring_unlink_rcu_disposal); ret = 0; error: return ret; nomem: ret = -ENOMEM; up_write(&keyring->sem); goto error; } EXPORT_SYMBOL(key_unlink); /* * Dispose of a keyring list after the RCU grace period, releasing the keys it * links to. */ static void keyring_clear_rcu_disposal(struct rcu_head *rcu) { struct keyring_list *klist; int loop; klist = container_of(rcu, struct keyring_list, rcu); for (loop = klist->nkeys - 1; loop >= 0; loop--) key_put(rcu_access_pointer(klist->keys[loop])); kfree(klist); } /** * keyring_clear - Clear a keyring * @keyring: The keyring to clear. * * Clear the contents of the specified keyring. * * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. */ int keyring_clear(struct key *keyring) { struct keyring_list *klist; int ret; ret = -ENOTDIR; if (keyring->type == &key_type_keyring) { /* detach the pointer block with the locks held */ down_write(&keyring->sem); klist = rcu_dereference_locked_keyring(keyring); if (klist) { /* adjust the quota */ key_payload_reserve(keyring, sizeof(struct keyring_list)); rcu_assign_pointer(keyring->payload.subscriptions, NULL); } up_write(&keyring->sem); /* free the keys after the locks have been dropped */ if (klist) call_rcu(&klist->rcu, keyring_clear_rcu_disposal); ret = 0; } return ret; } EXPORT_SYMBOL(keyring_clear); /* * Dispose of the links from a revoked keyring. * * This is called with the key sem write-locked. */ static void keyring_revoke(struct key *keyring) { struct keyring_list *klist; klist = rcu_dereference_locked_keyring(keyring); /* adjust the quota */ key_payload_reserve(keyring, 0); if (klist) { rcu_assign_pointer(keyring->payload.subscriptions, NULL); call_rcu(&klist->rcu, keyring_clear_rcu_disposal); } } /* * Determine whether a key is dead. */ static bool key_is_dead(struct key *key, time_t limit) { return test_bit(KEY_FLAG_DEAD, &key->flags) || (key->expiry > 0 && key->expiry <= limit); } /* * Collect garbage from the contents of a keyring, replacing the old list with * a new one with the pointers all shuffled down. * * Dead keys are classed as oned that are flagged as being dead or are revoked, * expired or negative keys that were revoked or expired before the specified * limit. */ void keyring_gc(struct key *keyring, time_t limit) { struct keyring_list *klist, *new; struct key *key; int loop, keep, max; kenter("{%x,%s}", key_serial(keyring), keyring->description); down_write(&keyring->sem); klist = rcu_dereference_locked_keyring(keyring); if (!klist) goto no_klist; /* work out how many subscriptions we're keeping */ keep = 0; for (loop = klist->nkeys - 1; loop >= 0; loop--) if (!key_is_dead(rcu_deref_link_locked(klist, loop, keyring), limit)) keep++; if (keep == klist->nkeys) goto just_return; /* allocate a new keyring payload */ max = roundup(keep, 4); new = kmalloc(sizeof(struct keyring_list) + max * sizeof(struct key *), GFP_KERNEL); if (!new) goto nomem; new->maxkeys = max; new->nkeys = 0; new->delkey = 0; /* install the live keys * - must take care as expired keys may be updated back to life */ keep = 0; for (loop = klist->nkeys - 1; loop >= 0; loop--) { key = rcu_deref_link_locked(klist, loop, keyring); if (!key_is_dead(key, limit)) { if (keep >= max) goto discard_new; RCU_INIT_POINTER(new->keys[keep++], key_get(key)); } } new->nkeys = keep; /* adjust the quota */ key_payload_reserve(keyring, sizeof(struct keyring_list) + KEYQUOTA_LINK_BYTES * keep); if (keep == 0) { rcu_assign_pointer(keyring->payload.subscriptions, NULL); kfree(new); } else { rcu_assign_pointer(keyring->payload.subscriptions, new); } up_write(&keyring->sem); call_rcu(&klist->rcu, keyring_clear_rcu_disposal); kleave(" [yes]"); return; discard_new: new->nkeys = keep; keyring_clear_rcu_disposal(&new->rcu); up_write(&keyring->sem); kleave(" [discard]"); return; just_return: up_write(&keyring->sem); kleave(" [no dead]"); return; no_klist: up_write(&keyring->sem); kleave(" [no_klist]"); return; nomem: up_write(&keyring->sem); kleave(" [oom]"); }