/* * builtin-test.c * * Builtin regression testing command: ever growing number of sanity tests */ #include "builtin.h" #include "util/cache.h" #include "util/debug.h" #include "util/debugfs.h" #include "util/evlist.h" #include "util/parse-options.h" #include "util/parse-events.h" #include "util/symbol.h" #include "util/thread_map.h" #include "util/pmu.h" #include "../../include/linux/hw_breakpoint.h" #include static int vmlinux_matches_kallsyms_filter(struct map *map __used, struct symbol *sym) { bool *visited = symbol__priv(sym); *visited = true; return 0; } static int test__vmlinux_matches_kallsyms(void) { int err = -1; struct rb_node *nd; struct symbol *sym; struct map *kallsyms_map, *vmlinux_map; struct machine kallsyms, vmlinux; enum map_type type = MAP__FUNCTION; long page_size = sysconf(_SC_PAGE_SIZE); struct ref_reloc_sym ref_reloc_sym = { .name = "_stext", }; /* * Step 1: * * Init the machines that will hold kernel, modules obtained from * both vmlinux + .ko files and from /proc/kallsyms split by modules. */ machine__init(&kallsyms, "", HOST_KERNEL_ID); machine__init(&vmlinux, "", HOST_KERNEL_ID); /* * Step 2: * * Create the kernel maps for kallsyms and the DSO where we will then * load /proc/kallsyms. Also create the modules maps from /proc/modules * and find the .ko files that match them in /lib/modules/`uname -r`/. */ if (machine__create_kernel_maps(&kallsyms) < 0) { pr_debug("machine__create_kernel_maps "); return -1; } /* * Step 3: * * Load and split /proc/kallsyms into multiple maps, one per module. */ if (machine__load_kallsyms(&kallsyms, "/proc/kallsyms", type, NULL) <= 0) { pr_debug("dso__load_kallsyms "); goto out; } /* * Step 4: * * kallsyms will be internally on demand sorted by name so that we can * find the reference relocation * symbol, i.e. the symbol we will use * to see if the running kernel was relocated by checking if it has the * same value in the vmlinux file we load. */ kallsyms_map = machine__kernel_map(&kallsyms, type); sym = map__find_symbol_by_name(kallsyms_map, ref_reloc_sym.name, NULL); if (sym == NULL) { pr_debug("dso__find_symbol_by_name "); goto out; } ref_reloc_sym.addr = sym->start; /* * Step 5: * * Now repeat step 2, this time for the vmlinux file we'll auto-locate. */ if (machine__create_kernel_maps(&vmlinux) < 0) { pr_debug("machine__create_kernel_maps "); goto out; } vmlinux_map = machine__kernel_map(&vmlinux, type); map__kmap(vmlinux_map)->ref_reloc_sym = &ref_reloc_sym; /* * Step 6: * * Locate a vmlinux file in the vmlinux path that has a buildid that * matches the one of the running kernel. * * While doing that look if we find the ref reloc symbol, if we find it * we'll have its ref_reloc_symbol.unrelocated_addr and then * maps__reloc_vmlinux will notice and set proper ->[un]map_ip routines * to fixup the symbols. */ if (machine__load_vmlinux_path(&vmlinux, type, vmlinux_matches_kallsyms_filter) <= 0) { pr_debug("machine__load_vmlinux_path "); goto out; } err = 0; /* * Step 7: * * Now look at the symbols in the vmlinux DSO and check if we find all of them * in the kallsyms dso. For the ones that are in both, check its names and * end addresses too. */ for (nd = rb_first(&vmlinux_map->dso->symbols[type]); nd; nd = rb_next(nd)) { struct symbol *pair, *first_pair; bool backwards = true; sym = rb_entry(nd, struct symbol, rb_node); if (sym->start == sym->end) continue; first_pair = machine__find_kernel_symbol(&kallsyms, type, sym->start, NULL, NULL); pair = first_pair; if (pair && pair->start == sym->start) { next_pair: if (strcmp(sym->name, pair->name) == 0) { /* * kallsyms don't have the symbol end, so we * set that by using the next symbol start - 1, * in some cases we get this up to a page * wrong, trace_kmalloc when I was developing * this code was one such example, 2106 bytes * off the real size. More than that and we * _really_ have a problem. */ s64 skew = sym->end - pair->end; if (llabs(skew) < page_size) continue; pr_debug("%#" PRIx64 ": diff end addr for %s v: %#" PRIx64 " k: %#" PRIx64 "\n", sym->start, sym->name, sym->end, pair->end); } else { struct rb_node *nnd; detour: nnd = backwards ? rb_prev(&pair->rb_node) : rb_next(&pair->rb_node); if (nnd) { struct symbol *next = rb_entry(nnd, struct symbol, rb_node); if (next->start == sym->start) { pair = next; goto next_pair; } } if (backwards) { backwards = false; pair = first_pair; goto detour; } pr_debug("%#" PRIx64 ": diff name v: %s k: %s\n", sym->start, sym->name, pair->name); } } else pr_debug("%#" PRIx64 ": %s not on kallsyms\n", sym->start, sym->name); err = -1; } if (!verbose) goto out; pr_info("Maps only in vmlinux:\n"); for (nd = rb_first(&vmlinux.kmaps.maps[type]); nd; nd = rb_next(nd)) { struct map *pos = rb_entry(nd, struct map, rb_node), *pair; /* * If it is the kernel, kallsyms is always "[kernel.kallsyms]", while * the kernel will have the path for the vmlinux file being used, * so use the short name, less descriptive but the same ("[kernel]" in * both cases. */ pair = map_groups__find_by_name(&kallsyms.kmaps, type, (pos->dso->kernel ? pos->dso->short_name : pos->dso->name)); if (pair) pair->priv = 1; else map__fprintf(pos, stderr); } pr_info("Maps in vmlinux with a different name in kallsyms:\n"); for (nd = rb_first(&vmlinux.kmaps.maps[type]); nd; nd = rb_next(nd)) { struct map *pos = rb_entry(nd, struct map, rb_node), *pair; pair = map_groups__find(&kallsyms.kmaps, type, pos->start); if (pair == NULL || pair->priv) continue; if (pair->start == pos->start) { pair->priv = 1; pr_info(" %" PRIx64 "-%" PRIx64 " %" PRIx64 " %s in kallsyms as", pos->start, pos->end, pos->pgoff, pos->dso->name); if (pos->pgoff != pair->pgoff || pos->end != pair->end) pr_info(": \n*%" PRIx64 "-%" PRIx64 " %" PRIx64 "", pair->start, pair->end, pair->pgoff); pr_info(" %s\n", pair->dso->name); pair->priv = 1; } } pr_info("Maps only in kallsyms:\n"); for (nd = rb_first(&kallsyms.kmaps.maps[type]); nd; nd = rb_next(nd)) { struct map *pos = rb_entry(nd, struct map, rb_node); if (!pos->priv) map__fprintf(pos, stderr); } out: return err; } #include "util/cpumap.h" #include "util/evsel.h" #include static int trace_event__id(const char *evname) { char *filename; int err = -1, fd; if (asprintf(&filename, "%s/syscalls/%s/id", tracing_events_path, evname) < 0) return -1; fd = open(filename, O_RDONLY); if (fd >= 0) { char id[16]; if (read(fd, id, sizeof(id)) > 0) err = atoi(id); close(fd); } free(filename); return err; } static int test__open_syscall_event(void) { int err = -1, fd; struct thread_map *threads; struct perf_evsel *evsel; struct perf_event_attr attr; unsigned int nr_open_calls = 111, i; int id = trace_event__id("sys_enter_open"); if (id < 0) { pr_debug("is debugfs mounted on /sys/kernel/debug?\n"); return -1; } threads = thread_map__new(-1, getpid(), UINT_MAX); if (threads == NULL) { pr_debug("thread_map__new\n"); return -1; } memset(&attr, 0, sizeof(attr)); attr.type = PERF_TYPE_TRACEPOINT; attr.config = id; evsel = perf_evsel__new(&attr, 0); if (evsel == NULL) { pr_debug("perf_evsel__new\n"); goto out_thread_map_delete; } if (perf_evsel__open_per_thread(evsel, threads, false, NULL) < 0) { pr_debug("failed to open counter: %s, " "tweak /proc/sys/kernel/perf_event_paranoid?\n", strerror(errno)); goto out_evsel_delete; } for (i = 0; i < nr_open_calls; ++i) { fd = open("/etc/passwd", O_RDONLY); close(fd); } if (perf_evsel__read_on_cpu(evsel, 0, 0) < 0) { pr_debug("perf_evsel__read_on_cpu\n"); goto out_close_fd; } if (evsel->counts->cpu[0].val != nr_open_calls) { pr_debug("perf_evsel__read_on_cpu: expected to intercept %d calls, got %" PRIu64 "\n", nr_open_calls, evsel->counts->cpu[0].val); goto out_close_fd; } err = 0; out_close_fd: perf_evsel__close_fd(evsel, 1, threads->nr); out_evsel_delete: perf_evsel__delete(evsel); out_thread_map_delete: thread_map__delete(threads); return err; } #include static int test__open_syscall_event_on_all_cpus(void) { int err = -1, fd, cpu; struct thread_map *threads; struct cpu_map *cpus; struct perf_evsel *evsel; struct perf_event_attr attr; unsigned int nr_open_calls = 111, i; cpu_set_t cpu_set; int id = trace_event__id("sys_enter_open"); if (id < 0) { pr_debug("is debugfs mounted on /sys/kernel/debug?\n"); return -1; } threads = thread_map__new(-1, getpid(), UINT_MAX); if (threads == NULL) { pr_debug("thread_map__new\n"); return -1; } cpus = cpu_map__new(NULL); if (cpus == NULL) { pr_debug("cpu_map__new\n"); goto out_thread_map_delete; } CPU_ZERO(&cpu_set); memset(&attr, 0, sizeof(attr)); attr.type = PERF_TYPE_TRACEPOINT; attr.config = id; evsel = perf_evsel__new(&attr, 0); if (evsel == NULL) { pr_debug("perf_evsel__new\n"); goto out_thread_map_delete; } if (perf_evsel__open(evsel, cpus, threads, false, NULL) < 0) { pr_debug("failed to open counter: %s, " "tweak /proc/sys/kernel/perf_event_paranoid?\n", strerror(errno)); goto out_evsel_delete; } for (cpu = 0; cpu < cpus->nr; ++cpu) { unsigned int ncalls = nr_open_calls + cpu; /* * XXX eventually lift this restriction in a way that * keeps perf building on older glibc installations * without CPU_ALLOC. 1024 cpus in 2010 still seems * a reasonable upper limit tho :-) */ if (cpus->map[cpu] >= CPU_SETSIZE) { pr_debug("Ignoring CPU %d\n", cpus->map[cpu]); continue; } CPU_SET(cpus->map[cpu], &cpu_set); if (sched_setaffinity(0, sizeof(cpu_set), &cpu_set) < 0) { pr_debug("sched_setaffinity() failed on CPU %d: %s ", cpus->map[cpu], strerror(errno)); goto out_close_fd; } for (i = 0; i < ncalls; ++i) { fd = open("/etc/passwd", O_RDONLY); close(fd); } CPU_CLR(cpus->map[cpu], &cpu_set); } /* * Here we need to explicitely preallocate the counts, as if * we use the auto allocation it will allocate just for 1 cpu, * as we start by cpu 0. */ if (perf_evsel__alloc_counts(evsel, cpus->nr) < 0) { pr_debug("perf_evsel__alloc_counts(ncpus=%d)\n", cpus->nr); goto out_close_fd; } err = 0; for (cpu = 0; cpu < cpus->nr; ++cpu) { unsigned int expected; if (cpus->map[cpu] >= CPU_SETSIZE) continue; if (perf_evsel__read_on_cpu(evsel, cpu, 0) < 0) { pr_debug("perf_evsel__read_on_cpu\n"); err = -1; break; } expected = nr_open_calls + cpu; if (evsel->counts->cpu[cpu].val != expected) { pr_debug("perf_evsel__read_on_cpu: expected to intercept %d calls on cpu %d, got %" PRIu64 "\n", expected, cpus->map[cpu], evsel->counts->cpu[cpu].val); err = -1; } } out_close_fd: perf_evsel__close_fd(evsel, 1, threads->nr); out_evsel_delete: perf_evsel__delete(evsel); out_thread_map_delete: thread_map__delete(threads); return err; } /* * This test will generate random numbers of calls to some getpid syscalls, * then establish an mmap for a group of events that are created to monitor * the syscalls. * * It will receive the events, using mmap, use its PERF_SAMPLE_ID generated * sample.id field to map back to its respective perf_evsel instance. * * Then it checks if the number of syscalls reported as perf events by * the kernel corresponds to the number of syscalls made. */ static int test__basic_mmap(void) { int err = -1; union perf_event *event; struct thread_map *threads; struct cpu_map *cpus; struct perf_evlist *evlist; struct perf_event_attr attr = { .type = PERF_TYPE_TRACEPOINT, .read_format = PERF_FORMAT_ID, .sample_type = PERF_SAMPLE_ID, .watermark = 0, }; cpu_set_t cpu_set; const char *syscall_names[] = { "getsid", "getppid", "getpgrp", "getpgid", }; pid_t (*syscalls[])(void) = { (void *)getsid, getppid, getpgrp, (void*)getpgid }; #define nsyscalls ARRAY_SIZE(syscall_names) int ids[nsyscalls]; unsigned int nr_events[nsyscalls], expected_nr_events[nsyscalls], i, j; struct perf_evsel *evsels[nsyscalls], *evsel; int sample_size = __perf_evsel__sample_size(attr.sample_type); for (i = 0; i < nsyscalls; ++i) { char name[64]; snprintf(name, sizeof(name), "sys_enter_%s", syscall_names[i]); ids[i] = trace_event__id(name); if (ids[i] < 0) { pr_debug("Is debugfs mounted on /sys/kernel/debug?\n"); return -1; } nr_events[i] = 0; expected_nr_events[i] = random() % 257; } threads = thread_map__new(-1, getpid(), UINT_MAX); if (threads == NULL) { pr_debug("thread_map__new\n"); return -1; } cpus = cpu_map__new(NULL); if (cpus == NULL) { pr_debug("cpu_map__new\n"); goto out_free_threads; } CPU_ZERO(&cpu_set); CPU_SET(cpus->map[0], &cpu_set); sched_setaffinity(0, sizeof(cpu_set), &cpu_set); if (sched_setaffinity(0, sizeof(cpu_set), &cpu_set) < 0) { pr_debug("sched_setaffinity() failed on CPU %d: %s ", cpus->map[0], strerror(errno)); goto out_free_cpus; } evlist = perf_evlist__new(cpus, threads); if (evlist == NULL) { pr_debug("perf_evlist__new\n"); goto out_free_cpus; } /* anonymous union fields, can't be initialized above */ attr.wakeup_events = 1; attr.sample_period = 1; for (i = 0; i < nsyscalls; ++i) { attr.config = ids[i]; evsels[i] = perf_evsel__new(&attr, i); if (evsels[i] == NULL) { pr_debug("perf_evsel__new\n"); goto out_free_evlist; } perf_evlist__add(evlist, evsels[i]); if (perf_evsel__open(evsels[i], cpus, threads, false, NULL) < 0) { pr_debug("failed to open counter: %s, " "tweak /proc/sys/kernel/perf_event_paranoid?\n", strerror(errno)); goto out_close_fd; } } if (perf_evlist__mmap(evlist, 128, true) < 0) { pr_debug("failed to mmap events: %d (%s)\n", errno, strerror(errno)); goto out_close_fd; } for (i = 0; i < nsyscalls; ++i) for (j = 0; j < expected_nr_events[i]; ++j) { int foo = syscalls[i](); ++foo; } while ((event = perf_evlist__mmap_read(evlist, 0)) != NULL) { struct perf_sample sample; if (event->header.type != PERF_RECORD_SAMPLE) { pr_debug("unexpected %s event\n", perf_event__name(event->header.type)); goto out_munmap; } err = perf_event__parse_sample(event, attr.sample_type, sample_size, false, &sample, false); if (err) { pr_err("Can't parse sample, err = %d\n", err); goto out_munmap; } evsel = perf_evlist__id2evsel(evlist, sample.id); if (evsel == NULL) { pr_debug("event with id %" PRIu64 " doesn't map to an evsel\n", sample.id); goto out_munmap; } nr_events[evsel->idx]++; } list_for_each_entry(evsel, &evlist->entries, node) { if (nr_events[evsel->idx] != expected_nr_events[evsel->idx]) { pr_debug("expected %d %s events, got %d\n", expected_nr_events[evsel->idx], event_name(evsel), nr_events[evsel->idx]); goto out_munmap; } } err = 0; out_munmap: perf_evlist__munmap(evlist); out_close_fd: for (i = 0; i < nsyscalls; ++i) perf_evsel__close_fd(evsels[i], 1, threads->nr); out_free_evlist: perf_evlist__delete(evlist); out_free_cpus: cpu_map__delete(cpus); out_free_threads: thread_map__delete(threads); return err; #undef nsyscalls } #define TEST_ASSERT_VAL(text, cond) \ do { \ if (!(cond)) { \ pr_debug("FAILED %s:%d %s\n", __FILE__, __LINE__, text); \ return -1; \ } \ } while (0) static int test__checkevent_tracepoint(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong number of entries", 1 == evlist->nr_entries); TEST_ASSERT_VAL("wrong type", PERF_TYPE_TRACEPOINT == evsel->attr.type); TEST_ASSERT_VAL("wrong sample_type", (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | PERF_SAMPLE_CPU) == evsel->attr.sample_type); TEST_ASSERT_VAL("wrong sample_period", 1 == evsel->attr.sample_period); return 0; } static int test__checkevent_tracepoint_multi(struct perf_evlist *evlist) { struct perf_evsel *evsel; TEST_ASSERT_VAL("wrong number of entries", evlist->nr_entries > 1); list_for_each_entry(evsel, &evlist->entries, node) { TEST_ASSERT_VAL("wrong type", PERF_TYPE_TRACEPOINT == evsel->attr.type); TEST_ASSERT_VAL("wrong sample_type", (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | PERF_SAMPLE_CPU) == evsel->attr.sample_type); TEST_ASSERT_VAL("wrong sample_period", 1 == evsel->attr.sample_period); } return 0; } static int test__checkevent_raw(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong number of entries", 1 == evlist->nr_entries); TEST_ASSERT_VAL("wrong type", PERF_TYPE_RAW == evsel->attr.type); TEST_ASSERT_VAL("wrong config", 0x1a == evsel->attr.config); return 0; } static int test__checkevent_numeric(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong number of entries", 1 == evlist->nr_entries); TEST_ASSERT_VAL("wrong type", 1 == evsel->attr.type); TEST_ASSERT_VAL("wrong config", 1 == evsel->attr.config); return 0; } static int test__checkevent_symbolic_name(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong number of entries", 1 == evlist->nr_entries); TEST_ASSERT_VAL("wrong type", PERF_TYPE_HARDWARE == evsel->attr.type); TEST_ASSERT_VAL("wrong config", PERF_COUNT_HW_INSTRUCTIONS == evsel->attr.config); return 0; } static int test__checkevent_symbolic_name_config(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong number of entries", 1 == evlist->nr_entries); TEST_ASSERT_VAL("wrong type", PERF_TYPE_HARDWARE == evsel->attr.type); TEST_ASSERT_VAL("wrong config", PERF_COUNT_HW_CPU_CYCLES == evsel->attr.config); TEST_ASSERT_VAL("wrong period", 100000 == evsel->attr.sample_period); TEST_ASSERT_VAL("wrong config1", 0 == evsel->attr.config1); TEST_ASSERT_VAL("wrong config2", 1 == evsel->attr.config2); return 0; } static int test__checkevent_symbolic_alias(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong number of entries", 1 == evlist->nr_entries); TEST_ASSERT_VAL("wrong type", PERF_TYPE_SOFTWARE == evsel->attr.type); TEST_ASSERT_VAL("wrong config", PERF_COUNT_SW_PAGE_FAULTS == evsel->attr.config); return 0; } static int test__checkevent_genhw(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong number of entries", 1 == evlist->nr_entries); TEST_ASSERT_VAL("wrong type", PERF_TYPE_HW_CACHE == evsel->attr.type); TEST_ASSERT_VAL("wrong config", (1 << 16) == evsel->attr.config); return 0; } static int test__checkevent_breakpoint(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong number of entries", 1 == evlist->nr_entries); TEST_ASSERT_VAL("wrong type", PERF_TYPE_BREAKPOINT == evsel->attr.type); TEST_ASSERT_VAL("wrong config", 0 == evsel->attr.config); TEST_ASSERT_VAL("wrong bp_type", (HW_BREAKPOINT_R | HW_BREAKPOINT_W) == evsel->attr.bp_type); TEST_ASSERT_VAL("wrong bp_len", HW_BREAKPOINT_LEN_4 == evsel->attr.bp_len); return 0; } static int test__checkevent_breakpoint_x(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong number of entries", 1 == evlist->nr_entries); TEST_ASSERT_VAL("wrong type", PERF_TYPE_BREAKPOINT == evsel->attr.type); TEST_ASSERT_VAL("wrong config", 0 == evsel->attr.config); TEST_ASSERT_VAL("wrong bp_type", HW_BREAKPOINT_X == evsel->attr.bp_type); TEST_ASSERT_VAL("wrong bp_len", sizeof(long) == evsel->attr.bp_len); return 0; } static int test__checkevent_breakpoint_r(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong number of entries", 1 == evlist->nr_entries); TEST_ASSERT_VAL("wrong type", PERF_TYPE_BREAKPOINT == evsel->attr.type); TEST_ASSERT_VAL("wrong config", 0 == evsel->attr.config); TEST_ASSERT_VAL("wrong bp_type", HW_BREAKPOINT_R == evsel->attr.bp_type); TEST_ASSERT_VAL("wrong bp_len", HW_BREAKPOINT_LEN_4 == evsel->attr.bp_len); return 0; } static int test__checkevent_breakpoint_w(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong number of entries", 1 == evlist->nr_entries); TEST_ASSERT_VAL("wrong type", PERF_TYPE_BREAKPOINT == evsel->attr.type); TEST_ASSERT_VAL("wrong config", 0 == evsel->attr.config); TEST_ASSERT_VAL("wrong bp_type", HW_BREAKPOINT_W == evsel->attr.bp_type); TEST_ASSERT_VAL("wrong bp_len", HW_BREAKPOINT_LEN_4 == evsel->attr.bp_len); return 0; } static int test__checkevent_tracepoint_modifier(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong exclude_user", evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", !evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", !evsel->attr.precise_ip); return test__checkevent_tracepoint(evlist); } static int test__checkevent_tracepoint_multi_modifier(struct perf_evlist *evlist) { struct perf_evsel *evsel; TEST_ASSERT_VAL("wrong number of entries", evlist->nr_entries > 1); list_for_each_entry(evsel, &evlist->entries, node) { TEST_ASSERT_VAL("wrong exclude_user", !evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", !evsel->attr.precise_ip); } return test__checkevent_tracepoint_multi(evlist); } static int test__checkevent_raw_modifier(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong exclude_user", evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", !evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", evsel->attr.precise_ip); return test__checkevent_raw(evlist); } static int test__checkevent_numeric_modifier(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong exclude_user", evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", !evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", evsel->attr.precise_ip); return test__checkevent_numeric(evlist); } static int test__checkevent_symbolic_name_modifier(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong exclude_user", evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", !evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", !evsel->attr.precise_ip); return test__checkevent_symbolic_name(evlist); } static int test__checkevent_symbolic_alias_modifier(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong exclude_user", !evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", !evsel->attr.precise_ip); return test__checkevent_symbolic_alias(evlist); } static int test__checkevent_genhw_modifier(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong exclude_user", evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", !evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", evsel->attr.precise_ip); return test__checkevent_genhw(evlist); } static int test__checkevent_breakpoint_modifier(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong exclude_user", !evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", !evsel->attr.precise_ip); return test__checkevent_breakpoint(evlist); } static int test__checkevent_breakpoint_x_modifier(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong exclude_user", evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", !evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", !evsel->attr.precise_ip); return test__checkevent_breakpoint_x(evlist); } static int test__checkevent_breakpoint_r_modifier(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong exclude_user", evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", !evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", evsel->attr.precise_ip); return test__checkevent_breakpoint_r(evlist); } static int test__checkevent_breakpoint_w_modifier(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong exclude_user", !evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", evsel->attr.precise_ip); return test__checkevent_breakpoint_w(evlist); } static int test__checkevent_pmu(struct perf_evlist *evlist) { struct perf_evsel *evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong number of entries", 1 == evlist->nr_entries); TEST_ASSERT_VAL("wrong type", PERF_TYPE_RAW == evsel->attr.type); TEST_ASSERT_VAL("wrong config", 10 == evsel->attr.config); TEST_ASSERT_VAL("wrong config1", 1 == evsel->attr.config1); TEST_ASSERT_VAL("wrong config2", 3 == evsel->attr.config2); TEST_ASSERT_VAL("wrong period", 1000 == evsel->attr.sample_period); return 0; } static int test__checkevent_list(struct perf_evlist *evlist) { struct perf_evsel *evsel; TEST_ASSERT_VAL("wrong number of entries", 3 == evlist->nr_entries); /* r1 */ evsel = list_entry(evlist->entries.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong type", PERF_TYPE_RAW == evsel->attr.type); TEST_ASSERT_VAL("wrong config", 1 == evsel->attr.config); TEST_ASSERT_VAL("wrong config1", 0 == evsel->attr.config1); TEST_ASSERT_VAL("wrong config2", 0 == evsel->attr.config2); TEST_ASSERT_VAL("wrong exclude_user", !evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", !evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", !evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", !evsel->attr.precise_ip); /* syscalls:sys_enter_open:k */ evsel = list_entry(evsel->node.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong type", PERF_TYPE_TRACEPOINT == evsel->attr.type); TEST_ASSERT_VAL("wrong sample_type", (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | PERF_SAMPLE_CPU) == evsel->attr.sample_type); TEST_ASSERT_VAL("wrong sample_period", 1 == evsel->attr.sample_period); TEST_ASSERT_VAL("wrong exclude_user", evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", !evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", !evsel->attr.precise_ip); /* 1:1:hp */ evsel = list_entry(evsel->node.next, struct perf_evsel, node); TEST_ASSERT_VAL("wrong type", 1 == evsel->attr.type); TEST_ASSERT_VAL("wrong config", 1 == evsel->attr.config); TEST_ASSERT_VAL("wrong exclude_user", evsel->attr.exclude_user); TEST_ASSERT_VAL("wrong exclude_kernel", evsel->attr.exclude_kernel); TEST_ASSERT_VAL("wrong exclude_hv", !evsel->attr.exclude_hv); TEST_ASSERT_VAL("wrong precise_ip", evsel->attr.precise_ip); return 0; } static struct test__event_st { const char *name; __u32 type; int (*check)(struct perf_evlist *evlist); } test__events[] = { { .name = "syscalls:sys_enter_open", .check = test__checkevent_tracepoint, }, { .name = "syscalls:*", .check = test__checkevent_tracepoint_multi, }, { .name = "r1a", .check = test__checkevent_raw, }, { .name = "1:1", .check = test__checkevent_numeric, }, { .name = "instructions", .check = test__checkevent_symbolic_name, }, { .name = "cycles/period=100000,config2/", .check = test__checkevent_symbolic_name_config, }, { .name = "faults", .check = test__checkevent_symbolic_alias, }, { .name = "L1-dcache-load-miss", .check = test__checkevent_genhw, }, { .name = "mem:0", .check = test__checkevent_breakpoint, }, { .name = "mem:0:x", .check = test__checkevent_breakpoint_x, }, { .name = "mem:0:r", .check = test__checkevent_breakpoint_r, }, { .name = "mem:0:w", .check = test__checkevent_breakpoint_w, }, { .name = "syscalls:sys_enter_open:k", .check = test__checkevent_tracepoint_modifier, }, { .name = "syscalls:*:u", .check = test__checkevent_tracepoint_multi_modifier, }, { .name = "r1a:kp", .check = test__checkevent_raw_modifier, }, { .name = "1:1:hp", .check = test__checkevent_numeric_modifier, }, { .name = "instructions:h", .check = test__checkevent_symbolic_name_modifier, }, { .name = "faults:u", .check = test__checkevent_symbolic_alias_modifier, }, { .name = "L1-dcache-load-miss:kp", .check = test__checkevent_genhw_modifier, }, { .name = "mem:0:u", .check = test__checkevent_breakpoint_modifier, }, { .name = "mem:0:x:k", .check = test__checkevent_breakpoint_x_modifier, }, { .name = "mem:0:r:hp", .check = test__checkevent_breakpoint_r_modifier, }, { .name = "mem:0:w:up", .check = test__checkevent_breakpoint_w_modifier, }, { .name = "cpu/config=10,config1,config2=3,period=1000/u", .check = test__checkevent_pmu, }, { .name = "r1,syscalls:sys_enter_open:k,1:1:hp", .check = test__checkevent_list, }, }; #define TEST__EVENTS_CNT (sizeof(test__events) / sizeof(struct test__event_st)) static int test__parse_events(void) { struct perf_evlist *evlist; u_int i; int ret = 0; for (i = 0; i < TEST__EVENTS_CNT; i++) { struct test__event_st *e = &test__events[i]; evlist = perf_evlist__new(NULL, NULL); if (evlist == NULL) break; ret = parse_events(evlist, e->name, 0); if (ret) { pr_debug("failed to parse event '%s', err %d\n", e->name, ret); break; } ret = e->check(evlist); perf_evlist__delete(evlist); if (ret) break; } return ret; } static int sched__get_first_possible_cpu(pid_t pid, cpu_set_t **maskp, size_t *sizep) { cpu_set_t *mask; size_t size; int i, cpu = -1, nrcpus = 1024; realloc: mask = CPU_ALLOC(nrcpus); size = CPU_ALLOC_SIZE(nrcpus); CPU_ZERO_S(size, mask); if (sched_getaffinity(pid, size, mask) == -1) { CPU_FREE(mask); if (errno == EINVAL && nrcpus < (1024 << 8)) { nrcpus = nrcpus << 2; goto realloc; } perror("sched_getaffinity"); return -1; } for (i = 0; i < nrcpus; i++) { if (CPU_ISSET_S(i, size, mask)) { if (cpu == -1) { cpu = i; *maskp = mask; *sizep = size; } else CPU_CLR_S(i, size, mask); } } if (cpu == -1) CPU_FREE(mask); return cpu; } static int test__PERF_RECORD(void) { struct perf_record_opts opts = { .no_delay = true, .freq = 10, .mmap_pages = 256, }; cpu_set_t *cpu_mask = NULL; size_t cpu_mask_size = 0; struct perf_evlist *evlist = perf_evlist__new(NULL, NULL); struct perf_evsel *evsel; struct perf_sample sample; const char *cmd = "sleep"; const char *argv[] = { cmd, "1", NULL, }; char *bname; u64 sample_type, prev_time = 0; bool found_cmd_mmap = false, found_libc_mmap = false, found_vdso_mmap = false, found_ld_mmap = false; int err = -1, errs = 0, i, wakeups = 0, sample_size; u32 cpu; int total_events = 0, nr_events[PERF_RECORD_MAX] = { 0, }; if (evlist == NULL || argv == NULL) { pr_debug("Not enough memory to create evlist\n"); goto out; } /* * We need at least one evsel in the evlist, use the default * one: "cycles". */ err = perf_evlist__add_default(evlist); if (err < 0) { pr_debug("Not enough memory to create evsel\n"); goto out_delete_evlist; } /* * Create maps of threads and cpus to monitor. In this case * we start with all threads and cpus (-1, -1) but then in * perf_evlist__prepare_workload we'll fill in the only thread * we're monitoring, the one forked there. */ err = perf_evlist__create_maps(evlist, opts.target_pid, opts.target_tid, UINT_MAX, opts.cpu_list); if (err < 0) { pr_debug("Not enough memory to create thread/cpu maps\n"); goto out_delete_evlist; } /* * Prepare the workload in argv[] to run, it'll fork it, and then wait * for perf_evlist__start_workload() to exec it. This is done this way * so that we have time to open the evlist (calling sys_perf_event_open * on all the fds) and then mmap them. */ err = perf_evlist__prepare_workload(evlist, &opts, argv); if (err < 0) { pr_debug("Couldn't run the workload!\n"); goto out_delete_evlist; } /* * Config the evsels, setting attr->comm on the first one, etc. */ evsel = list_entry(evlist->entries.next, struct perf_evsel, node); evsel->attr.sample_type |= PERF_SAMPLE_CPU; evsel->attr.sample_type |= PERF_SAMPLE_TID; evsel->attr.sample_type |= PERF_SAMPLE_TIME; perf_evlist__config_attrs(evlist, &opts); err = sched__get_first_possible_cpu(evlist->workload.pid, &cpu_mask, &cpu_mask_size); if (err < 0) { pr_debug("sched__get_first_possible_cpu: %s\n", strerror(errno)); goto out_delete_evlist; } cpu = err; /* * So that we can check perf_sample.cpu on all the samples. */ if (sched_setaffinity(evlist->workload.pid, cpu_mask_size, cpu_mask) < 0) { pr_debug("sched_setaffinity: %s\n", strerror(errno)); goto out_free_cpu_mask; } /* * Call sys_perf_event_open on all the fds on all the evsels, * grouping them if asked to. */ err = perf_evlist__open(evlist, opts.group); if (err < 0) { pr_debug("perf_evlist__open: %s\n", strerror(errno)); goto out_delete_evlist; } /* * mmap the first fd on a given CPU and ask for events for the other * fds in the same CPU to be injected in the same mmap ring buffer * (using ioctl(PERF_EVENT_IOC_SET_OUTPUT)). */ err = perf_evlist__mmap(evlist, opts.mmap_pages, false); if (err < 0) { pr_debug("perf_evlist__mmap: %s\n", strerror(errno)); goto out_delete_evlist; } /* * We'll need these two to parse the PERF_SAMPLE_* fields in each * event. */ sample_type = perf_evlist__sample_type(evlist); sample_size = __perf_evsel__sample_size(sample_type); /* * Now that all is properly set up, enable the events, they will * count just on workload.pid, which will start... */ perf_evlist__enable(evlist); /* * Now! */ perf_evlist__start_workload(evlist); while (1) { int before = total_events; for (i = 0; i < evlist->nr_mmaps; i++) { union perf_event *event; while ((event = perf_evlist__mmap_read(evlist, i)) != NULL) { const u32 type = event->header.type; const char *name = perf_event__name(type); ++total_events; if (type < PERF_RECORD_MAX) nr_events[type]++; err = perf_event__parse_sample(event, sample_type, sample_size, true, &sample, false); if (err < 0) { if (verbose) perf_event__fprintf(event, stderr); pr_debug("Couldn't parse sample\n"); goto out_err; } if (verbose) { pr_info("%" PRIu64" %d ", sample.time, sample.cpu); perf_event__fprintf(event, stderr); } if (prev_time > sample.time) { pr_debug("%s going backwards in time, prev=%" PRIu64 ", curr=%" PRIu64 "\n", name, prev_time, sample.time); ++errs; } prev_time = sample.time; if (sample.cpu != cpu) { pr_debug("%s with unexpected cpu, expected %d, got %d\n", name, cpu, sample.cpu); ++errs; } if ((pid_t)sample.pid != evlist->workload.pid) { pr_debug("%s with unexpected pid, expected %d, got %d\n", name, evlist->workload.pid, sample.pid); ++errs; } if ((pid_t)sample.tid != evlist->workload.pid) { pr_debug("%s with unexpected tid, expected %d, got %d\n", name, evlist->workload.pid, sample.tid); ++errs; } if ((type == PERF_RECORD_COMM || type == PERF_RECORD_MMAP || type == PERF_RECORD_FORK || type == PERF_RECORD_EXIT) && (pid_t)event->comm.pid != evlist->workload.pid) { pr_debug("%s with unexpected pid/tid\n", name); ++errs; } if ((type == PERF_RECORD_COMM || type == PERF_RECORD_MMAP) && event->comm.pid != event->comm.tid) { pr_debug("%s with different pid/tid!\n", name); ++errs; } switch (type) { case PERF_RECORD_COMM: if (strcmp(event->comm.comm, cmd)) { pr_debug("%s with unexpected comm!\n", name); ++errs; } break; case PERF_RECORD_EXIT: goto found_exit; case PERF_RECORD_MMAP: bname = strrchr(event->mmap.filename, '/'); if (bname != NULL) { if (!found_cmd_mmap) found_cmd_mmap = !strcmp(bname + 1, cmd); if (!found_libc_mmap) found_libc_mmap = !strncmp(bname + 1, "libc", 4); if (!found_ld_mmap) found_ld_mmap = !strncmp(bname + 1, "ld", 2); } else if (!found_vdso_mmap) found_vdso_mmap = !strcmp(event->mmap.filename, "[vdso]"); break; case PERF_RECORD_SAMPLE: /* Just ignore samples for now */ break; default: pr_debug("Unexpected perf_event->header.type %d!\n", type); ++errs; } } } /* * We don't use poll here because at least at 3.1 times the * PERF_RECORD_{!SAMPLE} events don't honour * perf_event_attr.wakeup_events, just PERF_EVENT_SAMPLE does. */ if (total_events == before && false) poll(evlist->pollfd, evlist->nr_fds, -1); sleep(1); if (++wakeups > 5) { pr_debug("No PERF_RECORD_EXIT event!\n"); break; } } found_exit: if (nr_events[PERF_RECORD_COMM] > 1) { pr_debug("Excessive number of PERF_RECORD_COMM events!\n"); ++errs; } if (nr_events[PERF_RECORD_COMM] == 0) { pr_debug("Missing PERF_RECORD_COMM for %s!\n", cmd); ++errs; } if (!found_cmd_mmap) { pr_debug("PERF_RECORD_MMAP for %s missing!\n", cmd); ++errs; } if (!found_libc_mmap) { pr_debug("PERF_RECORD_MMAP for %s missing!\n", "libc"); ++errs; } if (!found_ld_mmap) { pr_debug("PERF_RECORD_MMAP for %s missing!\n", "ld"); ++errs; } if (!found_vdso_mmap) { pr_debug("PERF_RECORD_MMAP for %s missing!\n", "[vdso]"); ++errs; } out_err: perf_evlist__munmap(evlist); out_free_cpu_mask: CPU_FREE(cpu_mask); out_delete_evlist: perf_evlist__delete(evlist); out: return (err < 0 || errs > 0) ? -1 : 0; } #if defined(__x86_64__) || defined(__i386__) #define barrier() asm volatile("" ::: "memory") static u64 rdpmc(unsigned int counter) { unsigned int low, high; asm volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (counter)); return low | ((u64)high) << 32; } static u64 rdtsc(void) { unsigned int low, high; asm volatile("rdtsc" : "=a" (low), "=d" (high)); return low | ((u64)high) << 32; } static u64 mmap_read_self(void *addr) { struct perf_event_mmap_page *pc = addr; u32 seq, idx, time_mult = 0, time_shift = 0; u64 count, cyc = 0, time_offset = 0, enabled, running, delta; do { seq = pc->lock; barrier(); enabled = pc->time_enabled; running = pc->time_running; if (enabled != running) { cyc = rdtsc(); time_mult = pc->time_mult; time_shift = pc->time_shift; time_offset = pc->time_offset; } idx = pc->index; count = pc->offset; if (idx) count += rdpmc(idx - 1); barrier(); } while (pc->lock != seq); if (enabled != running) { u64 quot, rem; quot = (cyc >> time_shift); rem = cyc & ((1 << time_shift) - 1); delta = time_offset + quot * time_mult + ((rem * time_mult) >> time_shift); enabled += delta; if (idx) running += delta; quot = count / running; rem = count % running; count = quot * enabled + (rem * enabled) / running; } return count; } /* * If the RDPMC instruction faults then signal this back to the test parent task: */ static void segfault_handler(int sig __used, siginfo_t *info __used, void *uc __used) { exit(-1); } static int __test__rdpmc(void) { long page_size = sysconf(_SC_PAGE_SIZE); volatile int tmp = 0; u64 i, loops = 1000; int n; int fd; void *addr; struct perf_event_attr attr = { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS, .exclude_kernel = 1, }; u64 delta_sum = 0; struct sigaction sa; sigfillset(&sa.sa_mask); sa.sa_sigaction = segfault_handler; sigaction(SIGSEGV, &sa, NULL); fd = sys_perf_event_open(&attr, 0, -1, -1, 0); if (fd < 0) { die("Error: sys_perf_event_open() syscall returned " "with %d (%s)\n", fd, strerror(errno)); } addr = mmap(NULL, page_size, PROT_READ, MAP_SHARED, fd, 0); if (addr == (void *)(-1)) { die("Error: mmap() syscall returned " "with (%s)\n", strerror(errno)); } for (n = 0; n < 6; n++) { u64 stamp, now, delta; stamp = mmap_read_self(addr); for (i = 0; i < loops; i++) tmp++; now = mmap_read_self(addr); loops *= 10; delta = now - stamp; pr_debug("%14d: %14Lu\n", n, (long long)delta); delta_sum += delta; } munmap(addr, page_size); close(fd); pr_debug(" "); if (!delta_sum) return -1; return 0; } static int test__rdpmc(void) { int status = 0; int wret = 0; int ret; int pid; pid = fork(); if (pid < 0) return -1; if (!pid) { ret = __test__rdpmc(); exit(ret); } wret = waitpid(pid, &status, 0); if (wret < 0 || status) return -1; return 0; } #endif static int test__perf_pmu(void) { return perf_pmu__test(); } static struct test { const char *desc; int (*func)(void); } tests[] = { { .desc = "vmlinux symtab matches kallsyms", .func = test__vmlinux_matches_kallsyms, }, { .desc = "detect open syscall event", .func = test__open_syscall_event, }, { .desc = "detect open syscall event on all cpus", .func = test__open_syscall_event_on_all_cpus, }, { .desc = "read samples using the mmap interface", .func = test__basic_mmap, }, { .desc = "parse events tests", .func = test__parse_events, }, #if defined(__x86_64__) || defined(__i386__) { .desc = "x86 rdpmc test", .func = test__rdpmc, }, #endif { .desc = "Validate PERF_RECORD_* events & perf_sample fields", .func = test__PERF_RECORD, }, { .desc = "Test perf pmu format parsing", .func = test__perf_pmu, }, { .func = NULL, }, }; static bool perf_test__matches(int curr, int argc, const char *argv[]) { int i; if (argc == 0) return true; for (i = 0; i < argc; ++i) { char *end; long nr = strtoul(argv[i], &end, 10); if (*end == '\0') { if (nr == curr + 1) return true; continue; } if (strstr(tests[curr].desc, argv[i])) return true; } return false; } static int __cmd_test(int argc, const char *argv[]) { int i = 0; while (tests[i].func) { int curr = i++, err; if (!perf_test__matches(curr, argc, argv)) continue; pr_info("%2d: %s:", i, tests[curr].desc); pr_debug("\n--- start ---\n"); err = tests[curr].func(); pr_debug("---- end ----\n%s:", tests[curr].desc); pr_info(" %s\n", err ? "FAILED!\n" : "Ok"); } return 0; } static int perf_test__list(int argc, const char **argv) { int i = 0; while (tests[i].func) { int curr = i++; if (argc > 1 && !strstr(tests[curr].desc, argv[1])) continue; pr_info("%2d: %s\n", i, tests[curr].desc); } return 0; } int cmd_test(int argc, const char **argv, const char *prefix __used) { const char * const test_usage[] = { "perf test [] [{list |[|]}]", NULL, }; const struct option test_options[] = { OPT_INCR('v', "verbose", &verbose, "be more verbose (show symbol address, etc)"), OPT_END() }; argc = parse_options(argc, argv, test_options, test_usage, 0); if (argc >= 1 && !strcmp(argv[0], "list")) return perf_test__list(argc, argv); symbol_conf.priv_size = sizeof(int); symbol_conf.sort_by_name = true; symbol_conf.try_vmlinux_path = true; if (symbol__init() < 0) return -1; return __cmd_test(argc, argv); }