// SPDX-License-Identifier: (GPL-2.0 OR MIT) /* Microsemi Ocelot Switch driver * Copyright (c) 2019 Microsemi Corporation */ #include #include #include #include "ocelot_police.h" #include "ocelot_vcap.h" #define ENTRY_WIDTH 32 enum vcap_sel { VCAP_SEL_ENTRY = 0x1, VCAP_SEL_ACTION = 0x2, VCAP_SEL_COUNTER = 0x4, VCAP_SEL_ALL = 0x7, }; enum vcap_cmd { VCAP_CMD_WRITE = 0, /* Copy from Cache to TCAM */ VCAP_CMD_READ = 1, /* Copy from TCAM to Cache */ VCAP_CMD_MOVE_UP = 2, /* Move up */ VCAP_CMD_MOVE_DOWN = 3, /* Move down */ VCAP_CMD_INITIALIZE = 4, /* Write all (from cache) */ }; #define VCAP_ENTRY_WIDTH 12 /* Max entry width (32bit words) */ #define VCAP_COUNTER_WIDTH 4 /* Max counter width (32bit words) */ struct vcap_data { u32 entry[VCAP_ENTRY_WIDTH]; /* ENTRY_DAT */ u32 mask[VCAP_ENTRY_WIDTH]; /* MASK_DAT */ u32 action[VCAP_ENTRY_WIDTH]; /* ACTION_DAT */ u32 counter[VCAP_COUNTER_WIDTH]; /* CNT_DAT */ u32 tg; /* TG_DAT */ u32 type; /* Action type */ u32 tg_sw; /* Current type-group */ u32 cnt; /* Current counter */ u32 key_offset; /* Current entry offset */ u32 action_offset; /* Current action offset */ u32 counter_offset; /* Current counter offset */ u32 tg_value; /* Current type-group value */ u32 tg_mask; /* Current type-group mask */ }; static u32 vcap_read_update_ctrl(struct ocelot *ocelot, const struct vcap_props *vcap) { return ocelot_target_read(ocelot, vcap->target, VCAP_CORE_UPDATE_CTRL); } static void vcap_cmd(struct ocelot *ocelot, const struct vcap_props *vcap, u16 ix, int cmd, int sel) { u32 value = (VCAP_CORE_UPDATE_CTRL_UPDATE_CMD(cmd) | VCAP_CORE_UPDATE_CTRL_UPDATE_ADDR(ix) | VCAP_CORE_UPDATE_CTRL_UPDATE_SHOT); if ((sel & VCAP_SEL_ENTRY) && ix >= vcap->entry_count) return; if (!(sel & VCAP_SEL_ENTRY)) value |= VCAP_CORE_UPDATE_CTRL_UPDATE_ENTRY_DIS; if (!(sel & VCAP_SEL_ACTION)) value |= VCAP_CORE_UPDATE_CTRL_UPDATE_ACTION_DIS; if (!(sel & VCAP_SEL_COUNTER)) value |= VCAP_CORE_UPDATE_CTRL_UPDATE_CNT_DIS; ocelot_target_write(ocelot, vcap->target, value, VCAP_CORE_UPDATE_CTRL); read_poll_timeout(vcap_read_update_ctrl, value, (value & VCAP_CORE_UPDATE_CTRL_UPDATE_SHOT) == 0, 10, 100000, false, ocelot, vcap); } /* Convert from 0-based row to VCAP entry row and run command */ static void vcap_row_cmd(struct ocelot *ocelot, const struct vcap_props *vcap, u32 row, int cmd, int sel) { vcap_cmd(ocelot, vcap, vcap->entry_count - row - 1, cmd, sel); } static void vcap_entry2cache(struct ocelot *ocelot, const struct vcap_props *vcap, struct vcap_data *data) { u32 entry_words, i; entry_words = DIV_ROUND_UP(vcap->entry_width, ENTRY_WIDTH); for (i = 0; i < entry_words; i++) { ocelot_target_write_rix(ocelot, vcap->target, data->entry[i], VCAP_CACHE_ENTRY_DAT, i); ocelot_target_write_rix(ocelot, vcap->target, ~data->mask[i], VCAP_CACHE_MASK_DAT, i); } ocelot_target_write(ocelot, vcap->target, data->tg, VCAP_CACHE_TG_DAT); } static void vcap_cache2entry(struct ocelot *ocelot, const struct vcap_props *vcap, struct vcap_data *data) { u32 entry_words, i; entry_words = DIV_ROUND_UP(vcap->entry_width, ENTRY_WIDTH); for (i = 0; i < entry_words; i++) { data->entry[i] = ocelot_target_read_rix(ocelot, vcap->target, VCAP_CACHE_ENTRY_DAT, i); // Invert mask data->mask[i] = ~ocelot_target_read_rix(ocelot, vcap->target, VCAP_CACHE_MASK_DAT, i); } data->tg = ocelot_target_read(ocelot, vcap->target, VCAP_CACHE_TG_DAT); } static void vcap_action2cache(struct ocelot *ocelot, const struct vcap_props *vcap, struct vcap_data *data) { u32 action_words, mask; int i, width; /* Encode action type */ width = vcap->action_type_width; if (width) { mask = GENMASK(width, 0); data->action[0] = ((data->action[0] & ~mask) | data->type); } action_words = DIV_ROUND_UP(vcap->action_width, ENTRY_WIDTH); for (i = 0; i < action_words; i++) ocelot_target_write_rix(ocelot, vcap->target, data->action[i], VCAP_CACHE_ACTION_DAT, i); for (i = 0; i < vcap->counter_words; i++) ocelot_target_write_rix(ocelot, vcap->target, data->counter[i], VCAP_CACHE_CNT_DAT, i); } static void vcap_cache2action(struct ocelot *ocelot, const struct vcap_props *vcap, struct vcap_data *data) { u32 action_words; int i, width; action_words = DIV_ROUND_UP(vcap->action_width, ENTRY_WIDTH); for (i = 0; i < action_words; i++) data->action[i] = ocelot_target_read_rix(ocelot, vcap->target, VCAP_CACHE_ACTION_DAT, i); for (i = 0; i < vcap->counter_words; i++) data->counter[i] = ocelot_target_read_rix(ocelot, vcap->target, VCAP_CACHE_CNT_DAT, i); /* Extract action type */ width = vcap->action_type_width; data->type = (width ? (data->action[0] & GENMASK(width, 0)) : 0); } /* Calculate offsets for entry */ static void vcap_data_offset_get(const struct vcap_props *vcap, struct vcap_data *data, int ix) { int num_subwords_per_entry, num_subwords_per_action; int i, col, offset, num_entries_per_row, base; u32 width = vcap->tg_width; switch (data->tg_sw) { case VCAP_TG_FULL: num_entries_per_row = 1; break; case VCAP_TG_HALF: num_entries_per_row = 2; break; case VCAP_TG_QUARTER: num_entries_per_row = 4; break; default: return; } col = (ix % num_entries_per_row); num_subwords_per_entry = (vcap->sw_count / num_entries_per_row); base = (vcap->sw_count - col * num_subwords_per_entry - num_subwords_per_entry); data->tg_value = 0; data->tg_mask = 0; for (i = 0; i < num_subwords_per_entry; i++) { offset = ((base + i) * width); data->tg_value |= (data->tg_sw << offset); data->tg_mask |= GENMASK(offset + width - 1, offset); } /* Calculate key/action/counter offsets */ col = (num_entries_per_row - col - 1); data->key_offset = (base * vcap->entry_width) / vcap->sw_count; data->counter_offset = (num_subwords_per_entry * col * vcap->counter_width); i = data->type; width = vcap->action_table[i].width; num_subwords_per_action = vcap->action_table[i].count; data->action_offset = ((num_subwords_per_action * col * width) / num_entries_per_row); data->action_offset += vcap->action_type_width; } static void vcap_data_set(u32 *data, u32 offset, u32 len, u32 value) { u32 i, v, m; for (i = 0; i < len; i++, offset++) { v = data[offset / ENTRY_WIDTH]; m = (1 << (offset % ENTRY_WIDTH)); if (value & (1 << i)) v |= m; else v &= ~m; data[offset / ENTRY_WIDTH] = v; } } static u32 vcap_data_get(u32 *data, u32 offset, u32 len) { u32 i, v, m, value = 0; for (i = 0; i < len; i++, offset++) { v = data[offset / ENTRY_WIDTH]; m = (1 << (offset % ENTRY_WIDTH)); if (v & m) value |= (1 << i); } return value; } static void vcap_key_field_set(struct vcap_data *data, u32 offset, u32 width, u32 value, u32 mask) { vcap_data_set(data->entry, offset + data->key_offset, width, value); vcap_data_set(data->mask, offset + data->key_offset, width, mask); } static void vcap_key_set(const struct vcap_props *vcap, struct vcap_data *data, int field, u32 value, u32 mask) { u32 offset = vcap->keys[field].offset; u32 length = vcap->keys[field].length; vcap_key_field_set(data, offset, length, value, mask); } static void vcap_key_bytes_set(const struct vcap_props *vcap, struct vcap_data *data, int field, u8 *val, u8 *msk) { u32 offset = vcap->keys[field].offset; u32 count = vcap->keys[field].length; u32 i, j, n = 0, value = 0, mask = 0; WARN_ON(count % 8); /* Data wider than 32 bits are split up in chunks of maximum 32 bits. * The 32 LSB of the data are written to the 32 MSB of the TCAM. */ offset += count; count /= 8; for (i = 0; i < count; i++) { j = (count - i - 1); value += (val[j] << n); mask += (msk[j] << n); n += 8; if (n == ENTRY_WIDTH || (i + 1) == count) { offset -= n; vcap_key_field_set(data, offset, n, value, mask); n = 0; value = 0; mask = 0; } } } static void vcap_key_l4_port_set(const struct vcap_props *vcap, struct vcap_data *data, int field, struct ocelot_vcap_udp_tcp *port) { u32 offset = vcap->keys[field].offset; u32 length = vcap->keys[field].length; WARN_ON(length != 16); vcap_key_field_set(data, offset, length, port->value, port->mask); } static void vcap_key_bit_set(const struct vcap_props *vcap, struct vcap_data *data, int field, enum ocelot_vcap_bit val) { u32 value = (val == OCELOT_VCAP_BIT_1 ? 1 : 0); u32 msk = (val == OCELOT_VCAP_BIT_ANY ? 0 : 1); u32 offset = vcap->keys[field].offset; u32 length = vcap->keys[field].length; WARN_ON(length != 1); vcap_key_field_set(data, offset, length, value, msk); } static void vcap_action_set(const struct vcap_props *vcap, struct vcap_data *data, int field, u32 value) { int offset = vcap->actions[field].offset; int length = vcap->actions[field].length; vcap_data_set(data->action, offset + data->action_offset, length, value); } static void is2_action_set(struct ocelot *ocelot, struct vcap_data *data, struct ocelot_vcap_filter *filter) { const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS2]; struct ocelot_vcap_action *a = &filter->action; vcap_action_set(vcap, data, VCAP_IS2_ACT_MASK_MODE, a->mask_mode); vcap_action_set(vcap, data, VCAP_IS2_ACT_PORT_MASK, a->port_mask); vcap_action_set(vcap, data, VCAP_IS2_ACT_POLICE_ENA, a->police_ena); vcap_action_set(vcap, data, VCAP_IS2_ACT_POLICE_IDX, a->pol_ix); vcap_action_set(vcap, data, VCAP_IS2_ACT_CPU_QU_NUM, a->cpu_qu_num); vcap_action_set(vcap, data, VCAP_IS2_ACT_CPU_COPY_ENA, a->cpu_copy_ena); } static void is2_entry_set(struct ocelot *ocelot, int ix, struct ocelot_vcap_filter *filter) { const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS2]; struct ocelot_vcap_key_vlan *tag = &filter->vlan; u32 val, msk, type, type_mask = 0xf, i, count; struct ocelot_vcap_u64 payload; struct vcap_data data; int row = (ix / 2); memset(&payload, 0, sizeof(payload)); memset(&data, 0, sizeof(data)); /* Read row */ vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_ALL); vcap_cache2entry(ocelot, vcap, &data); vcap_cache2action(ocelot, vcap, &data); data.tg_sw = VCAP_TG_HALF; vcap_data_offset_get(vcap, &data, ix); data.tg = (data.tg & ~data.tg_mask); if (filter->prio != 0) data.tg |= data.tg_value; data.type = IS2_ACTION_TYPE_NORMAL; vcap_key_set(vcap, &data, VCAP_IS2_HK_PAG, filter->pag, 0xff); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_FIRST, (filter->lookup == 0) ? OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0); vcap_key_set(vcap, &data, VCAP_IS2_HK_IGR_PORT_MASK, 0, ~filter->ingress_port_mask); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_FIRST, OCELOT_VCAP_BIT_ANY); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_HOST_MATCH, OCELOT_VCAP_BIT_ANY); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L2_MC, filter->dmac_mc); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L2_BC, filter->dmac_bc); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_VLAN_TAGGED, tag->tagged); vcap_key_set(vcap, &data, VCAP_IS2_HK_VID, tag->vid.value, tag->vid.mask); vcap_key_set(vcap, &data, VCAP_IS2_HK_PCP, tag->pcp.value[0], tag->pcp.mask[0]); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_DEI, tag->dei); switch (filter->key_type) { case OCELOT_VCAP_KEY_ETYPE: { struct ocelot_vcap_key_etype *etype = &filter->key.etype; type = IS2_TYPE_ETYPE; vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_DMAC, etype->dmac.value, etype->dmac.mask); vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_SMAC, etype->smac.value, etype->smac.mask); vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_ETYPE, etype->etype.value, etype->etype.mask); /* Clear unused bits */ vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD0, 0, 0); vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD1, 0, 0); vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD2, 0, 0); vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD0, etype->data.value, etype->data.mask); break; } case OCELOT_VCAP_KEY_LLC: { struct ocelot_vcap_key_llc *llc = &filter->key.llc; type = IS2_TYPE_LLC; vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_DMAC, llc->dmac.value, llc->dmac.mask); vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_SMAC, llc->smac.value, llc->smac.mask); for (i = 0; i < 4; i++) { payload.value[i] = llc->llc.value[i]; payload.mask[i] = llc->llc.mask[i]; } vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_LLC_L2_LLC, payload.value, payload.mask); break; } case OCELOT_VCAP_KEY_SNAP: { struct ocelot_vcap_key_snap *snap = &filter->key.snap; type = IS2_TYPE_SNAP; vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_DMAC, snap->dmac.value, snap->dmac.mask); vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_SMAC, snap->smac.value, snap->smac.mask); vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_SNAP_L2_SNAP, filter->key.snap.snap.value, filter->key.snap.snap.mask); break; } case OCELOT_VCAP_KEY_ARP: { struct ocelot_vcap_key_arp *arp = &filter->key.arp; type = IS2_TYPE_ARP; vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_SMAC, arp->smac.value, arp->smac.mask); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_ADDR_SPACE_OK, arp->ethernet); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_PROTO_SPACE_OK, arp->ip); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_LEN_OK, arp->length); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_TARGET_MATCH, arp->dmac_match); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_SENDER_MATCH, arp->smac_match); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_OPCODE_UNKNOWN, arp->unknown); /* OPCODE is inverse, bit 0 is reply flag, bit 1 is RARP flag */ val = ((arp->req == OCELOT_VCAP_BIT_0 ? 1 : 0) | (arp->arp == OCELOT_VCAP_BIT_0 ? 2 : 0)); msk = ((arp->req == OCELOT_VCAP_BIT_ANY ? 0 : 1) | (arp->arp == OCELOT_VCAP_BIT_ANY ? 0 : 2)); vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_OPCODE, val, msk); vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_L3_IP4_DIP, arp->dip.value.addr, arp->dip.mask.addr); vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_L3_IP4_SIP, arp->sip.value.addr, arp->sip.mask.addr); vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_DIP_EQ_SIP, 0, 0); break; } case OCELOT_VCAP_KEY_IPV4: case OCELOT_VCAP_KEY_IPV6: { enum ocelot_vcap_bit sip_eq_dip, sport_eq_dport, seq_zero, tcp; enum ocelot_vcap_bit ttl, fragment, options, tcp_ack, tcp_urg; enum ocelot_vcap_bit tcp_fin, tcp_syn, tcp_rst, tcp_psh; struct ocelot_vcap_key_ipv4 *ipv4 = NULL; struct ocelot_vcap_key_ipv6 *ipv6 = NULL; struct ocelot_vcap_udp_tcp *sport, *dport; struct ocelot_vcap_ipv4 sip, dip; struct ocelot_vcap_u8 proto, ds; struct ocelot_vcap_u48 *ip_data; if (filter->key_type == OCELOT_VCAP_KEY_IPV4) { ipv4 = &filter->key.ipv4; ttl = ipv4->ttl; fragment = ipv4->fragment; options = ipv4->options; proto = ipv4->proto; ds = ipv4->ds; ip_data = &ipv4->data; sip = ipv4->sip; dip = ipv4->dip; sport = &ipv4->sport; dport = &ipv4->dport; tcp_fin = ipv4->tcp_fin; tcp_syn = ipv4->tcp_syn; tcp_rst = ipv4->tcp_rst; tcp_psh = ipv4->tcp_psh; tcp_ack = ipv4->tcp_ack; tcp_urg = ipv4->tcp_urg; sip_eq_dip = ipv4->sip_eq_dip; sport_eq_dport = ipv4->sport_eq_dport; seq_zero = ipv4->seq_zero; } else { ipv6 = &filter->key.ipv6; ttl = ipv6->ttl; fragment = OCELOT_VCAP_BIT_ANY; options = OCELOT_VCAP_BIT_ANY; proto = ipv6->proto; ds = ipv6->ds; ip_data = &ipv6->data; for (i = 0; i < 8; i++) { val = ipv6->sip.value[i + 8]; msk = ipv6->sip.mask[i + 8]; if (i < 4) { dip.value.addr[i] = val; dip.mask.addr[i] = msk; } else { sip.value.addr[i - 4] = val; sip.mask.addr[i - 4] = msk; } } sport = &ipv6->sport; dport = &ipv6->dport; tcp_fin = ipv6->tcp_fin; tcp_syn = ipv6->tcp_syn; tcp_rst = ipv6->tcp_rst; tcp_psh = ipv6->tcp_psh; tcp_ack = ipv6->tcp_ack; tcp_urg = ipv6->tcp_urg; sip_eq_dip = ipv6->sip_eq_dip; sport_eq_dport = ipv6->sport_eq_dport; seq_zero = ipv6->seq_zero; } vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_IP4, ipv4 ? OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L3_FRAGMENT, fragment); vcap_key_set(vcap, &data, VCAP_IS2_HK_L3_FRAG_OFS_GT0, 0, 0); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L3_OPTIONS, options); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_IP4_L3_TTL_GT0, ttl); vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L3_TOS, ds.value, ds.mask); vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L3_IP4_DIP, dip.value.addr, dip.mask.addr); vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L3_IP4_SIP, sip.value.addr, sip.mask.addr); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_DIP_EQ_SIP, sip_eq_dip); val = proto.value[0]; msk = proto.mask[0]; type = IS2_TYPE_IP_UDP_TCP; if (msk == 0xff && (val == 6 || val == 17)) { /* UDP/TCP protocol match */ tcp = (val == 6 ? OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_TCP, tcp); vcap_key_l4_port_set(vcap, &data, VCAP_IS2_HK_L4_DPORT, dport); vcap_key_l4_port_set(vcap, &data, VCAP_IS2_HK_L4_SPORT, sport); vcap_key_set(vcap, &data, VCAP_IS2_HK_L4_RNG, 0, 0); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_SPORT_EQ_DPORT, sport_eq_dport); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_SEQUENCE_EQ0, seq_zero); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_FIN, tcp_fin); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_SYN, tcp_syn); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_RST, tcp_rst); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_PSH, tcp_psh); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_ACK, tcp_ack); vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_URG, tcp_urg); vcap_key_set(vcap, &data, VCAP_IS2_HK_L4_1588_DOM, 0, 0); vcap_key_set(vcap, &data, VCAP_IS2_HK_L4_1588_VER, 0, 0); } else { if (msk == 0) { /* Any IP protocol match */ type_mask = IS2_TYPE_MASK_IP_ANY; } else { /* Non-UDP/TCP protocol match */ type = IS2_TYPE_IP_OTHER; for (i = 0; i < 6; i++) { payload.value[i] = ip_data->value[i]; payload.mask[i] = ip_data->mask[i]; } } vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_IP4_L3_PROTO, proto.value, proto.mask); vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L3_PAYLOAD, payload.value, payload.mask); } break; } case OCELOT_VCAP_KEY_ANY: default: type = 0; type_mask = 0; count = vcap->entry_width / 2; /* Iterate over the non-common part of the key and * clear entry data */ for (i = vcap->keys[VCAP_IS2_HK_L2_DMAC].offset; i < count; i += ENTRY_WIDTH) { vcap_key_field_set(&data, i, min(32u, count - i), 0, 0); } break; } vcap_key_set(vcap, &data, VCAP_IS2_TYPE, type, type_mask); is2_action_set(ocelot, &data, filter); vcap_data_set(data.counter, data.counter_offset, vcap->counter_width, filter->stats.pkts); /* Write row */ vcap_entry2cache(ocelot, vcap, &data); vcap_action2cache(ocelot, vcap, &data); vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_WRITE, VCAP_SEL_ALL); } static void is1_action_set(struct ocelot *ocelot, struct vcap_data *data, const struct ocelot_vcap_filter *filter) { const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS1]; const struct ocelot_vcap_action *a = &filter->action; vcap_action_set(vcap, data, VCAP_IS1_ACT_VID_REPLACE_ENA, a->vid_replace_ena); vcap_action_set(vcap, data, VCAP_IS1_ACT_VID_ADD_VAL, a->vid); vcap_action_set(vcap, data, VCAP_IS1_ACT_VLAN_POP_CNT_ENA, a->vlan_pop_cnt_ena); vcap_action_set(vcap, data, VCAP_IS1_ACT_VLAN_POP_CNT, a->vlan_pop_cnt); vcap_action_set(vcap, data, VCAP_IS1_ACT_PCP_DEI_ENA, a->pcp_dei_ena); vcap_action_set(vcap, data, VCAP_IS1_ACT_PCP_VAL, a->pcp); vcap_action_set(vcap, data, VCAP_IS1_ACT_DEI_VAL, a->dei); vcap_action_set(vcap, data, VCAP_IS1_ACT_QOS_ENA, a->qos_ena); vcap_action_set(vcap, data, VCAP_IS1_ACT_QOS_VAL, a->qos_val); vcap_action_set(vcap, data, VCAP_IS1_ACT_PAG_OVERRIDE_MASK, a->pag_override_mask); vcap_action_set(vcap, data, VCAP_IS1_ACT_PAG_VAL, a->pag_val); } static void is1_entry_set(struct ocelot *ocelot, int ix, struct ocelot_vcap_filter *filter) { const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS1]; struct ocelot_vcap_key_vlan *tag = &filter->vlan; struct ocelot_vcap_u64 payload; struct vcap_data data; int row = ix / 2; u32 type; memset(&payload, 0, sizeof(payload)); memset(&data, 0, sizeof(data)); /* Read row */ vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_ALL); vcap_cache2entry(ocelot, vcap, &data); vcap_cache2action(ocelot, vcap, &data); data.tg_sw = VCAP_TG_HALF; data.type = IS1_ACTION_TYPE_NORMAL; vcap_data_offset_get(vcap, &data, ix); data.tg = (data.tg & ~data.tg_mask); if (filter->prio != 0) data.tg |= data.tg_value; vcap_key_set(vcap, &data, VCAP_IS1_HK_LOOKUP, filter->lookup, 0x3); vcap_key_set(vcap, &data, VCAP_IS1_HK_IGR_PORT_MASK, 0, ~filter->ingress_port_mask); vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_L2_MC, filter->dmac_mc); vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_L2_BC, filter->dmac_bc); vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_VLAN_TAGGED, tag->tagged); vcap_key_set(vcap, &data, VCAP_IS1_HK_VID, tag->vid.value, tag->vid.mask); vcap_key_set(vcap, &data, VCAP_IS1_HK_PCP, tag->pcp.value[0], tag->pcp.mask[0]); type = IS1_TYPE_S1_NORMAL; switch (filter->key_type) { case OCELOT_VCAP_KEY_ETYPE: { struct ocelot_vcap_key_etype *etype = &filter->key.etype; vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_L2_SMAC, etype->smac.value, etype->smac.mask); vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_ETYPE, etype->etype.value, etype->etype.mask); break; } case OCELOT_VCAP_KEY_IPV4: { struct ocelot_vcap_key_ipv4 *ipv4 = &filter->key.ipv4; struct ocelot_vcap_udp_tcp *sport = &ipv4->sport; struct ocelot_vcap_udp_tcp *dport = &ipv4->dport; enum ocelot_vcap_bit tcp_udp = OCELOT_VCAP_BIT_0; struct ocelot_vcap_u8 proto = ipv4->proto; struct ocelot_vcap_ipv4 sip = ipv4->sip; u32 val, msk; vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_IP_SNAP, OCELOT_VCAP_BIT_1); vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_IP4, OCELOT_VCAP_BIT_1); vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_ETYPE_LEN, OCELOT_VCAP_BIT_1); vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_L3_IP4_SIP, sip.value.addr, sip.mask.addr); val = proto.value[0]; msk = proto.mask[0]; if ((val == NEXTHDR_TCP || val == NEXTHDR_UDP) && msk == 0xff) tcp_udp = OCELOT_VCAP_BIT_1; vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_TCP_UDP, tcp_udp); if (tcp_udp) { enum ocelot_vcap_bit tcp = OCELOT_VCAP_BIT_0; if (val == NEXTHDR_TCP) tcp = OCELOT_VCAP_BIT_1; vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_TCP, tcp); vcap_key_l4_port_set(vcap, &data, VCAP_IS1_HK_L4_SPORT, sport); /* Overloaded field */ vcap_key_l4_port_set(vcap, &data, VCAP_IS1_HK_ETYPE, dport); } else { /* IPv4 "other" frame */ struct ocelot_vcap_u16 etype = {0}; /* Overloaded field */ etype.value[0] = proto.value[0]; etype.mask[0] = proto.mask[0]; vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_ETYPE, etype.value, etype.mask); } } default: break; } vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_TYPE, type ? OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0); is1_action_set(ocelot, &data, filter); vcap_data_set(data.counter, data.counter_offset, vcap->counter_width, filter->stats.pkts); /* Write row */ vcap_entry2cache(ocelot, vcap, &data); vcap_action2cache(ocelot, vcap, &data); vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_WRITE, VCAP_SEL_ALL); } static void es0_action_set(struct ocelot *ocelot, struct vcap_data *data, const struct ocelot_vcap_filter *filter) { const struct vcap_props *vcap = &ocelot->vcap[VCAP_ES0]; const struct ocelot_vcap_action *a = &filter->action; vcap_action_set(vcap, data, VCAP_ES0_ACT_PUSH_OUTER_TAG, a->push_outer_tag); vcap_action_set(vcap, data, VCAP_ES0_ACT_PUSH_INNER_TAG, a->push_inner_tag); vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_A_TPID_SEL, a->tag_a_tpid_sel); vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_A_VID_SEL, a->tag_a_vid_sel); vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_A_PCP_SEL, a->tag_a_pcp_sel); vcap_action_set(vcap, data, VCAP_ES0_ACT_VID_A_VAL, a->vid_a_val); vcap_action_set(vcap, data, VCAP_ES0_ACT_PCP_A_VAL, a->pcp_a_val); vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_B_TPID_SEL, a->tag_b_tpid_sel); vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_B_VID_SEL, a->tag_b_vid_sel); vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_B_PCP_SEL, a->tag_b_pcp_sel); vcap_action_set(vcap, data, VCAP_ES0_ACT_VID_B_VAL, a->vid_b_val); vcap_action_set(vcap, data, VCAP_ES0_ACT_PCP_B_VAL, a->pcp_b_val); } static void es0_entry_set(struct ocelot *ocelot, int ix, struct ocelot_vcap_filter *filter) { const struct vcap_props *vcap = &ocelot->vcap[VCAP_ES0]; struct ocelot_vcap_key_vlan *tag = &filter->vlan; struct ocelot_vcap_u64 payload; struct vcap_data data; int row = ix; memset(&payload, 0, sizeof(payload)); memset(&data, 0, sizeof(data)); /* Read row */ vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_ALL); vcap_cache2entry(ocelot, vcap, &data); vcap_cache2action(ocelot, vcap, &data); data.tg_sw = VCAP_TG_FULL; data.type = ES0_ACTION_TYPE_NORMAL; vcap_data_offset_get(vcap, &data, ix); data.tg = (data.tg & ~data.tg_mask); if (filter->prio != 0) data.tg |= data.tg_value; vcap_key_set(vcap, &data, VCAP_ES0_IGR_PORT, filter->ingress_port.value, filter->ingress_port.mask); vcap_key_set(vcap, &data, VCAP_ES0_EGR_PORT, filter->egress_port.value, filter->egress_port.mask); vcap_key_bit_set(vcap, &data, VCAP_ES0_L2_MC, filter->dmac_mc); vcap_key_bit_set(vcap, &data, VCAP_ES0_L2_BC, filter->dmac_bc); vcap_key_set(vcap, &data, VCAP_ES0_VID, tag->vid.value, tag->vid.mask); vcap_key_set(vcap, &data, VCAP_ES0_PCP, tag->pcp.value[0], tag->pcp.mask[0]); es0_action_set(ocelot, &data, filter); vcap_data_set(data.counter, data.counter_offset, vcap->counter_width, filter->stats.pkts); /* Write row */ vcap_entry2cache(ocelot, vcap, &data); vcap_action2cache(ocelot, vcap, &data); vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_WRITE, VCAP_SEL_ALL); } static void vcap_entry_get(struct ocelot *ocelot, int ix, struct ocelot_vcap_filter *filter) { const struct vcap_props *vcap = &ocelot->vcap[filter->block_id]; struct vcap_data data; int row, count; u32 cnt; if (filter->block_id == VCAP_ES0) data.tg_sw = VCAP_TG_FULL; else data.tg_sw = VCAP_TG_HALF; count = (1 << (data.tg_sw - 1)); row = (ix / count); vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_COUNTER); vcap_cache2action(ocelot, vcap, &data); vcap_data_offset_get(vcap, &data, ix); cnt = vcap_data_get(data.counter, data.counter_offset, vcap->counter_width); filter->stats.pkts = cnt; } static void vcap_entry_set(struct ocelot *ocelot, int ix, struct ocelot_vcap_filter *filter) { if (filter->block_id == VCAP_IS1) return is1_entry_set(ocelot, ix, filter); if (filter->block_id == VCAP_IS2) return is2_entry_set(ocelot, ix, filter); if (filter->block_id == VCAP_ES0) return es0_entry_set(ocelot, ix, filter); } static int ocelot_vcap_policer_add(struct ocelot *ocelot, u32 pol_ix, struct ocelot_policer *pol) { struct qos_policer_conf pp = { 0 }; if (!pol) return -EINVAL; pp.mode = MSCC_QOS_RATE_MODE_DATA; pp.pir = pol->rate; pp.pbs = pol->burst; return qos_policer_conf_set(ocelot, 0, pol_ix, &pp); } static void ocelot_vcap_policer_del(struct ocelot *ocelot, struct ocelot_vcap_block *block, u32 pol_ix) { struct ocelot_vcap_filter *filter; struct qos_policer_conf pp = {0}; int index = -1; if (pol_ix < block->pol_lpr) return; list_for_each_entry(filter, &block->rules, list) { index++; if (filter->block_id == VCAP_IS2 && filter->action.police_ena && filter->action.pol_ix < pol_ix) { filter->action.pol_ix += 1; ocelot_vcap_policer_add(ocelot, filter->action.pol_ix, &filter->action.pol); is2_entry_set(ocelot, index, filter); } } pp.mode = MSCC_QOS_RATE_MODE_DISABLED; qos_policer_conf_set(ocelot, 0, pol_ix, &pp); block->pol_lpr++; } static void ocelot_vcap_filter_add_to_block(struct ocelot *ocelot, struct ocelot_vcap_block *block, struct ocelot_vcap_filter *filter) { struct ocelot_vcap_filter *tmp; struct list_head *pos, *n; if (filter->block_id == VCAP_IS2 && filter->action.police_ena) { block->pol_lpr--; filter->action.pol_ix = block->pol_lpr; ocelot_vcap_policer_add(ocelot, filter->action.pol_ix, &filter->action.pol); } block->count++; if (list_empty(&block->rules)) { list_add(&filter->list, &block->rules); return; } list_for_each_safe(pos, n, &block->rules) { tmp = list_entry(pos, struct ocelot_vcap_filter, list); if (filter->prio < tmp->prio) break; } list_add(&filter->list, pos->prev); } static int ocelot_vcap_block_get_filter_index(struct ocelot_vcap_block *block, struct ocelot_vcap_filter *filter) { struct ocelot_vcap_filter *tmp; int index = 0; list_for_each_entry(tmp, &block->rules, list) { if (filter->id == tmp->id) return index; index++; } return -ENOENT; } static struct ocelot_vcap_filter* ocelot_vcap_block_find_filter_by_index(struct ocelot_vcap_block *block, int index) { struct ocelot_vcap_filter *tmp; int i = 0; list_for_each_entry(tmp, &block->rules, list) { if (i == index) return tmp; ++i; } return NULL; } struct ocelot_vcap_filter * ocelot_vcap_block_find_filter_by_id(struct ocelot_vcap_block *block, int id) { struct ocelot_vcap_filter *filter; list_for_each_entry(filter, &block->rules, list) if (filter->id == id) return filter; return NULL; } /* If @on=false, then SNAP, ARP, IP and OAM frames will not match on keys based * on destination and source MAC addresses, but only on higher-level protocol * information. The only frame types to match on keys containing MAC addresses * in this case are non-SNAP, non-ARP, non-IP and non-OAM frames. * * If @on=true, then the above frame types (SNAP, ARP, IP and OAM) will match * on MAC_ETYPE keys such as destination and source MAC on this ingress port. * However the setting has the side effect of making these frames not matching * on any _other_ keys than MAC_ETYPE ones. */ static void ocelot_match_all_as_mac_etype(struct ocelot *ocelot, int port, bool on) { u32 val = 0; if (on) val = ANA_PORT_VCAP_S2_CFG_S2_SNAP_DIS(3) | ANA_PORT_VCAP_S2_CFG_S2_ARP_DIS(3) | ANA_PORT_VCAP_S2_CFG_S2_IP_TCPUDP_DIS(3) | ANA_PORT_VCAP_S2_CFG_S2_IP_OTHER_DIS(3) | ANA_PORT_VCAP_S2_CFG_S2_OAM_DIS(3); ocelot_rmw_gix(ocelot, val, ANA_PORT_VCAP_S2_CFG_S2_SNAP_DIS_M | ANA_PORT_VCAP_S2_CFG_S2_ARP_DIS_M | ANA_PORT_VCAP_S2_CFG_S2_IP_TCPUDP_DIS_M | ANA_PORT_VCAP_S2_CFG_S2_IP_OTHER_DIS_M | ANA_PORT_VCAP_S2_CFG_S2_OAM_DIS_M, ANA_PORT_VCAP_S2_CFG, port); } static bool ocelot_vcap_is_problematic_mac_etype(struct ocelot_vcap_filter *filter) { u16 proto, mask; if (filter->key_type != OCELOT_VCAP_KEY_ETYPE) return false; proto = ntohs(*(__be16 *)filter->key.etype.etype.value); mask = ntohs(*(__be16 *)filter->key.etype.etype.mask); /* ETH_P_ALL match, so all protocols below are included */ if (mask == 0) return true; if (proto == ETH_P_ARP) return true; if (proto == ETH_P_IP) return true; if (proto == ETH_P_IPV6) return true; return false; } static bool ocelot_vcap_is_problematic_non_mac_etype(struct ocelot_vcap_filter *filter) { if (filter->key_type == OCELOT_VCAP_KEY_SNAP) return true; if (filter->key_type == OCELOT_VCAP_KEY_ARP) return true; if (filter->key_type == OCELOT_VCAP_KEY_IPV4) return true; if (filter->key_type == OCELOT_VCAP_KEY_IPV6) return true; return false; } static bool ocelot_exclusive_mac_etype_filter_rules(struct ocelot *ocelot, struct ocelot_vcap_filter *filter) { struct ocelot_vcap_block *block = &ocelot->block[filter->block_id]; struct ocelot_vcap_filter *tmp; unsigned long port; int i; if (ocelot_vcap_is_problematic_mac_etype(filter)) { /* Search for any non-MAC_ETYPE rules on the port */ for (i = 0; i < block->count; i++) { tmp = ocelot_vcap_block_find_filter_by_index(block, i); if (tmp->ingress_port_mask & filter->ingress_port_mask && ocelot_vcap_is_problematic_non_mac_etype(tmp)) return false; } for_each_set_bit(port, &filter->ingress_port_mask, ocelot->num_phys_ports) ocelot_match_all_as_mac_etype(ocelot, port, true); } else if (ocelot_vcap_is_problematic_non_mac_etype(filter)) { /* Search for any MAC_ETYPE rules on the port */ for (i = 0; i < block->count; i++) { tmp = ocelot_vcap_block_find_filter_by_index(block, i); if (tmp->ingress_port_mask & filter->ingress_port_mask && ocelot_vcap_is_problematic_mac_etype(tmp)) return false; } for_each_set_bit(port, &filter->ingress_port_mask, ocelot->num_phys_ports) ocelot_match_all_as_mac_etype(ocelot, port, false); } return true; } int ocelot_vcap_filter_add(struct ocelot *ocelot, struct ocelot_vcap_filter *filter, struct netlink_ext_ack *extack) { struct ocelot_vcap_block *block = &ocelot->block[filter->block_id]; int i, index; if (!ocelot_exclusive_mac_etype_filter_rules(ocelot, filter)) { NL_SET_ERR_MSG_MOD(extack, "Cannot mix MAC_ETYPE with non-MAC_ETYPE rules"); return -EBUSY; } /* Add filter to the linked list */ ocelot_vcap_filter_add_to_block(ocelot, block, filter); /* Get the index of the inserted filter */ index = ocelot_vcap_block_get_filter_index(block, filter); if (index < 0) return index; /* Move down the rules to make place for the new filter */ for (i = block->count - 1; i > index; i--) { struct ocelot_vcap_filter *tmp; tmp = ocelot_vcap_block_find_filter_by_index(block, i); vcap_entry_set(ocelot, i, tmp); } /* Now insert the new filter */ vcap_entry_set(ocelot, index, filter); return 0; } static void ocelot_vcap_block_remove_filter(struct ocelot *ocelot, struct ocelot_vcap_block *block, struct ocelot_vcap_filter *filter) { struct ocelot_vcap_filter *tmp; struct list_head *pos, *q; list_for_each_safe(pos, q, &block->rules) { tmp = list_entry(pos, struct ocelot_vcap_filter, list); if (tmp->id == filter->id) { if (tmp->block_id == VCAP_IS2 && tmp->action.police_ena) ocelot_vcap_policer_del(ocelot, block, tmp->action.pol_ix); list_del(pos); kfree(tmp); } } block->count--; } int ocelot_vcap_filter_del(struct ocelot *ocelot, struct ocelot_vcap_filter *filter) { struct ocelot_vcap_block *block = &ocelot->block[filter->block_id]; struct ocelot_vcap_filter del_filter; int i, index; memset(&del_filter, 0, sizeof(del_filter)); /* Gets index of the filter */ index = ocelot_vcap_block_get_filter_index(block, filter); if (index < 0) return index; /* Delete filter */ ocelot_vcap_block_remove_filter(ocelot, block, filter); /* Move up all the blocks over the deleted filter */ for (i = index; i < block->count; i++) { struct ocelot_vcap_filter *tmp; tmp = ocelot_vcap_block_find_filter_by_index(block, i); vcap_entry_set(ocelot, i, tmp); } /* Now delete the last filter, because it is duplicated */ vcap_entry_set(ocelot, block->count, &del_filter); return 0; } int ocelot_vcap_filter_stats_update(struct ocelot *ocelot, struct ocelot_vcap_filter *filter) { struct ocelot_vcap_block *block = &ocelot->block[filter->block_id]; struct ocelot_vcap_filter tmp; int index; index = ocelot_vcap_block_get_filter_index(block, filter); if (index < 0) return index; vcap_entry_get(ocelot, index, filter); /* After we get the result we need to clear the counters */ tmp = *filter; tmp.stats.pkts = 0; vcap_entry_set(ocelot, index, &tmp); return 0; } static void ocelot_vcap_init_one(struct ocelot *ocelot, const struct vcap_props *vcap) { struct vcap_data data; memset(&data, 0, sizeof(data)); vcap_entry2cache(ocelot, vcap, &data); ocelot_target_write(ocelot, vcap->target, vcap->entry_count, VCAP_CORE_MV_CFG); vcap_cmd(ocelot, vcap, 0, VCAP_CMD_INITIALIZE, VCAP_SEL_ENTRY); vcap_action2cache(ocelot, vcap, &data); ocelot_target_write(ocelot, vcap->target, vcap->action_count, VCAP_CORE_MV_CFG); vcap_cmd(ocelot, vcap, 0, VCAP_CMD_INITIALIZE, VCAP_SEL_ACTION | VCAP_SEL_COUNTER); } static void ocelot_vcap_detect_constants(struct ocelot *ocelot, struct vcap_props *vcap) { int counter_memory_width; int num_default_actions; int version; version = ocelot_target_read(ocelot, vcap->target, VCAP_CONST_VCAP_VER); /* Only version 0 VCAP supported for now */ if (WARN_ON(version != 0)) return; /* Width in bits of type-group field */ vcap->tg_width = ocelot_target_read(ocelot, vcap->target, VCAP_CONST_ENTRY_TG_WIDTH); /* Number of subwords per TCAM row */ vcap->sw_count = ocelot_target_read(ocelot, vcap->target, VCAP_CONST_ENTRY_SWCNT); /* Number of rows in TCAM. There can be this many full keys, or double * this number half keys, or 4 times this number quarter keys. */ vcap->entry_count = ocelot_target_read(ocelot, vcap->target, VCAP_CONST_ENTRY_CNT); /* Assuming there are 4 subwords per TCAM row, their layout in the * actual TCAM (not in the cache) would be: * * | SW 3 | TG 3 | SW 2 | TG 2 | SW 1 | TG 1 | SW 0 | TG 0 | * * (where SW=subword and TG=Type-Group). * * What VCAP_CONST_ENTRY_CNT is giving us is the width of one full TCAM * row. But when software accesses the TCAM through the cache * registers, the Type-Group values are written through another set of * registers VCAP_TG_DAT, and therefore, it appears as though the 4 * subwords are contiguous in the cache memory. * Important mention: regardless of the number of key entries per row * (and therefore of key size: 1 full key or 2 half keys or 4 quarter * keys), software always has to configure 4 Type-Group values. For * example, in the case of 1 full key, the driver needs to set all 4 * Type-Group to be full key. * * For this reason, we need to fix up the value that the hardware is * giving us. We don't actually care about the width of the entry in * the TCAM. What we care about is the width of the entry in the cache * registers, which is how we get to interact with it. And since the * VCAP_ENTRY_DAT cache registers access only the subwords and not the * Type-Groups, this means we need to subtract the width of the * Type-Groups when packing and unpacking key entry data in a TCAM row. */ vcap->entry_width = ocelot_target_read(ocelot, vcap->target, VCAP_CONST_ENTRY_WIDTH); vcap->entry_width -= vcap->tg_width * vcap->sw_count; num_default_actions = ocelot_target_read(ocelot, vcap->target, VCAP_CONST_ACTION_DEF_CNT); vcap->action_count = vcap->entry_count + num_default_actions; vcap->action_width = ocelot_target_read(ocelot, vcap->target, VCAP_CONST_ACTION_WIDTH); /* The width of the counter memory, this is the complete width of all * counter-fields associated with one full-word entry. There is one * counter per entry sub-word (see CAP_CORE::ENTRY_SWCNT for number of * subwords.) */ vcap->counter_words = vcap->sw_count; counter_memory_width = ocelot_target_read(ocelot, vcap->target, VCAP_CONST_CNT_WIDTH); vcap->counter_width = counter_memory_width / vcap->counter_words; } int ocelot_vcap_init(struct ocelot *ocelot) { int i; /* Create a policer that will drop the frames for the cpu. * This policer will be used as action in the acl rules to drop * frames. */ ocelot_write_gix(ocelot, 0x299, ANA_POL_MODE_CFG, OCELOT_POLICER_DISCARD); ocelot_write_gix(ocelot, 0x1, ANA_POL_PIR_CFG, OCELOT_POLICER_DISCARD); ocelot_write_gix(ocelot, 0x3fffff, ANA_POL_PIR_STATE, OCELOT_POLICER_DISCARD); ocelot_write_gix(ocelot, 0x0, ANA_POL_CIR_CFG, OCELOT_POLICER_DISCARD); ocelot_write_gix(ocelot, 0x3fffff, ANA_POL_CIR_STATE, OCELOT_POLICER_DISCARD); for (i = 0; i < OCELOT_NUM_VCAP_BLOCKS; i++) { struct ocelot_vcap_block *block = &ocelot->block[i]; struct vcap_props *vcap = &ocelot->vcap[i]; INIT_LIST_HEAD(&block->rules); block->pol_lpr = OCELOT_POLICER_DISCARD - 1; ocelot_vcap_detect_constants(ocelot, vcap); ocelot_vcap_init_one(ocelot, vcap); } INIT_LIST_HEAD(&ocelot->dummy_rules); return 0; }