/* * Copyright (c) 2006 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include #include #include #include "rds.h" /* When transmitting messages in rds_send_xmit, we need to emerge from * time to time and briefly release the CPU. Otherwise the softlock watchdog * will kick our shin. * Also, it seems fairer to not let one busy connection stall all the * others. * * send_batch_count is the number of times we'll loop in send_xmit. Setting * it to 0 will restore the old behavior (where we looped until we had * drained the queue). */ static int send_batch_count = 64; module_param(send_batch_count, int, 0444); MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue"); /* * Reset the send state. Caller must hold c_send_lock when calling here. */ void rds_send_reset(struct rds_connection *conn) { struct rds_message *rm, *tmp; unsigned long flags; if (conn->c_xmit_rm) { /* Tell the user the RDMA op is no longer mapped by the * transport. This isn't entirely true (it's flushed out * independently) but as the connection is down, there's * no ongoing RDMA to/from that memory */ rds_message_unmapped(conn->c_xmit_rm); rds_message_put(conn->c_xmit_rm); conn->c_xmit_rm = NULL; } conn->c_xmit_sg = 0; conn->c_xmit_hdr_off = 0; conn->c_xmit_data_off = 0; conn->c_xmit_rdma_sent = 0; conn->c_map_queued = 0; conn->c_unacked_packets = rds_sysctl_max_unacked_packets; conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes; /* Mark messages as retransmissions, and move them to the send q */ spin_lock_irqsave(&conn->c_lock, flags); list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags); } list_splice_init(&conn->c_retrans, &conn->c_send_queue); spin_unlock_irqrestore(&conn->c_lock, flags); } /* * We're making the concious trade-off here to only send one message * down the connection at a time. * Pro: * - tx queueing is a simple fifo list * - reassembly is optional and easily done by transports per conn * - no per flow rx lookup at all, straight to the socket * - less per-frag memory and wire overhead * Con: * - queued acks can be delayed behind large messages * Depends: * - small message latency is higher behind queued large messages * - large message latency isn't starved by intervening small sends */ int rds_send_xmit(struct rds_connection *conn) { struct rds_message *rm; unsigned long flags; unsigned int tmp; unsigned int send_quota = send_batch_count; struct scatterlist *sg; int ret = 0; int was_empty = 0; LIST_HEAD(to_be_dropped); /* * sendmsg calls here after having queued its message on the send * queue. We only have one task feeding the connection at a time. If * another thread is already feeding the queue then we back off. This * avoids blocking the caller and trading per-connection data between * caches per message. * * The sem holder will issue a retry if they notice that someone queued * a message after they stopped walking the send queue but before they * dropped the sem. */ if (!mutex_trylock(&conn->c_send_lock)) { rds_stats_inc(s_send_sem_contention); ret = -ENOMEM; goto out; } if (conn->c_trans->xmit_prepare) conn->c_trans->xmit_prepare(conn); /* * spin trying to push headers and data down the connection until * the connection doens't make forward progress. */ while (--send_quota) { /* * See if need to send a congestion map update if we're * between sending messages. The send_sem protects our sole * use of c_map_offset and _bytes. * Note this is used only by transports that define a special * xmit_cong_map function. For all others, we create allocate * a cong_map message and treat it just like any other send. */ if (conn->c_map_bytes) { ret = conn->c_trans->xmit_cong_map(conn, conn->c_lcong, conn->c_map_offset); if (ret <= 0) break; conn->c_map_offset += ret; conn->c_map_bytes -= ret; if (conn->c_map_bytes) continue; } /* If we're done sending the current message, clear the * offset and S/G temporaries. */ rm = conn->c_xmit_rm; if (rm && conn->c_xmit_hdr_off == sizeof(struct rds_header) && conn->c_xmit_sg == rm->data.m_nents) { conn->c_xmit_rm = NULL; conn->c_xmit_sg = 0; conn->c_xmit_hdr_off = 0; conn->c_xmit_data_off = 0; conn->c_xmit_rdma_sent = 0; /* Release the reference to the previous message. */ rds_message_put(rm); rm = NULL; } /* If we're asked to send a cong map update, do so. */ if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) { if (conn->c_trans->xmit_cong_map) { conn->c_map_offset = 0; conn->c_map_bytes = sizeof(struct rds_header) + RDS_CONG_MAP_BYTES; continue; } rm = rds_cong_update_alloc(conn); if (IS_ERR(rm)) { ret = PTR_ERR(rm); break; } conn->c_xmit_rm = rm; } /* * Grab the next message from the send queue, if there is one. * * c_xmit_rm holds a ref while we're sending this message down * the connction. We can use this ref while holding the * send_sem.. rds_send_reset() is serialized with it. */ if (!rm) { unsigned int len; spin_lock_irqsave(&conn->c_lock, flags); if (!list_empty(&conn->c_send_queue)) { rm = list_entry(conn->c_send_queue.next, struct rds_message, m_conn_item); rds_message_addref(rm); /* * Move the message from the send queue to the retransmit * list right away. */ list_move_tail(&rm->m_conn_item, &conn->c_retrans); } spin_unlock_irqrestore(&conn->c_lock, flags); if (!rm) { was_empty = 1; break; } /* Unfortunately, the way Infiniband deals with * RDMA to a bad MR key is by moving the entire * queue pair to error state. We cold possibly * recover from that, but right now we drop the * connection. * Therefore, we never retransmit messages with RDMA ops. */ if (rm->rdma.m_rdma_op && test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) { spin_lock_irqsave(&conn->c_lock, flags); if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) list_move(&rm->m_conn_item, &to_be_dropped); spin_unlock_irqrestore(&conn->c_lock, flags); rds_message_put(rm); continue; } /* Require an ACK every once in a while */ len = ntohl(rm->m_inc.i_hdr.h_len); if (conn->c_unacked_packets == 0 || conn->c_unacked_bytes < len) { __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); conn->c_unacked_packets = rds_sysctl_max_unacked_packets; conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes; rds_stats_inc(s_send_ack_required); } else { conn->c_unacked_bytes -= len; conn->c_unacked_packets--; } conn->c_xmit_rm = rm; } /* * Try and send an rdma message. Let's see if we can * keep this simple and require that the transport either * send the whole rdma or none of it. */ if (rm->rdma.m_rdma_op && !conn->c_xmit_rdma_sent) { ret = conn->c_trans->xmit_rdma(conn, rm->rdma.m_rdma_op); if (ret) break; conn->c_xmit_rdma_sent = 1; /* The transport owns the mapped memory for now. * You can't unmap it while it's on the send queue */ set_bit(RDS_MSG_MAPPED, &rm->m_flags); } if (conn->c_xmit_hdr_off < sizeof(struct rds_header) || conn->c_xmit_sg < rm->data.m_nents) { ret = conn->c_trans->xmit(conn, rm, conn->c_xmit_hdr_off, conn->c_xmit_sg, conn->c_xmit_data_off); if (ret <= 0) break; if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) { tmp = min_t(int, ret, sizeof(struct rds_header) - conn->c_xmit_hdr_off); conn->c_xmit_hdr_off += tmp; ret -= tmp; } sg = &rm->data.m_sg[conn->c_xmit_sg]; while (ret) { tmp = min_t(int, ret, sg->length - conn->c_xmit_data_off); conn->c_xmit_data_off += tmp; ret -= tmp; if (conn->c_xmit_data_off == sg->length) { conn->c_xmit_data_off = 0; sg++; conn->c_xmit_sg++; BUG_ON(ret != 0 && conn->c_xmit_sg == rm->data.m_nents); } } } } /* Nuke any messages we decided not to retransmit. */ if (!list_empty(&to_be_dropped)) rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED); if (conn->c_trans->xmit_complete) conn->c_trans->xmit_complete(conn); /* * We might be racing with another sender who queued a message but * backed off on noticing that we held the c_send_lock. If we check * for queued messages after dropping the sem then either we'll * see the queued message or the queuer will get the sem. If we * notice the queued message then we trigger an immediate retry. * * We need to be careful only to do this when we stopped processing * the send queue because it was empty. It's the only way we * stop processing the loop when the transport hasn't taken * responsibility for forward progress. */ mutex_unlock(&conn->c_send_lock); if (conn->c_map_bytes || (send_quota == 0 && !was_empty)) { /* We exhausted the send quota, but there's work left to * do. Return and (re-)schedule the send worker. */ ret = -EAGAIN; } if (ret == 0 && was_empty) { /* A simple bit test would be way faster than taking the * spin lock */ spin_lock_irqsave(&conn->c_lock, flags); if (!list_empty(&conn->c_send_queue)) { rds_stats_inc(s_send_sem_queue_raced); ret = -EAGAIN; } spin_unlock_irqrestore(&conn->c_lock, flags); } out: return ret; } static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm) { u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); assert_spin_locked(&rs->rs_lock); BUG_ON(rs->rs_snd_bytes < len); rs->rs_snd_bytes -= len; if (rs->rs_snd_bytes == 0) rds_stats_inc(s_send_queue_empty); } static inline int rds_send_is_acked(struct rds_message *rm, u64 ack, is_acked_func is_acked) { if (is_acked) return is_acked(rm, ack); return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack; } /* * Returns true if there are no messages on the send and retransmit queues * which have a sequence number greater than or equal to the given sequence * number. */ int rds_send_acked_before(struct rds_connection *conn, u64 seq) { struct rds_message *rm, *tmp; int ret = 1; spin_lock(&conn->c_lock); list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq) ret = 0; break; } list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) { if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq) ret = 0; break; } spin_unlock(&conn->c_lock); return ret; } /* * This is pretty similar to what happens below in the ACK * handling code - except that we call here as soon as we get * the IB send completion on the RDMA op and the accompanying * message. */ void rds_rdma_send_complete(struct rds_message *rm, int status) { struct rds_sock *rs = NULL; struct rds_rdma_op *ro; struct rds_notifier *notifier; unsigned long flags; spin_lock_irqsave(&rm->m_rs_lock, flags); ro = rm->rdma.m_rdma_op; if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && ro && ro->r_notify && ro->r_notifier) { notifier = ro->r_notifier; rs = rm->m_rs; sock_hold(rds_rs_to_sk(rs)); notifier->n_status = status; spin_lock(&rs->rs_lock); list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); spin_unlock(&rs->rs_lock); ro->r_notifier = NULL; } spin_unlock_irqrestore(&rm->m_rs_lock, flags); if (rs) { rds_wake_sk_sleep(rs); sock_put(rds_rs_to_sk(rs)); } } EXPORT_SYMBOL_GPL(rds_rdma_send_complete); /* * This is the same as rds_rdma_send_complete except we * don't do any locking - we have all the ingredients (message, * socket, socket lock) and can just move the notifier. */ static inline void __rds_rdma_send_complete(struct rds_sock *rs, struct rds_message *rm, int status) { struct rds_rdma_op *ro; ro = rm->rdma.m_rdma_op; if (ro && ro->r_notify && ro->r_notifier) { ro->r_notifier->n_status = status; list_add_tail(&ro->r_notifier->n_list, &rs->rs_notify_queue); ro->r_notifier = NULL; } /* No need to wake the app - caller does this */ } /* * This is called from the IB send completion when we detect * a RDMA operation that failed with remote access error. * So speed is not an issue here. */ struct rds_message *rds_send_get_message(struct rds_connection *conn, struct rds_rdma_op *op) { struct rds_message *rm, *tmp, *found = NULL; unsigned long flags; spin_lock_irqsave(&conn->c_lock, flags); list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { if (rm->rdma.m_rdma_op == op) { atomic_inc(&rm->m_refcount); found = rm; goto out; } } list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) { if (rm->rdma.m_rdma_op == op) { atomic_inc(&rm->m_refcount); found = rm; break; } } out: spin_unlock_irqrestore(&conn->c_lock, flags); return found; } EXPORT_SYMBOL_GPL(rds_send_get_message); /* * This removes messages from the socket's list if they're on it. The list * argument must be private to the caller, we must be able to modify it * without locks. The messages must have a reference held for their * position on the list. This function will drop that reference after * removing the messages from the 'messages' list regardless of if it found * the messages on the socket list or not. */ void rds_send_remove_from_sock(struct list_head *messages, int status) { unsigned long flags; struct rds_sock *rs = NULL; struct rds_message *rm; while (!list_empty(messages)) { int was_on_sock = 0; rm = list_entry(messages->next, struct rds_message, m_conn_item); list_del_init(&rm->m_conn_item); /* * If we see this flag cleared then we're *sure* that someone * else beat us to removing it from the sock. If we race * with their flag update we'll get the lock and then really * see that the flag has been cleared. * * The message spinlock makes sure nobody clears rm->m_rs * while we're messing with it. It does not prevent the * message from being removed from the socket, though. */ spin_lock_irqsave(&rm->m_rs_lock, flags); if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) goto unlock_and_drop; if (rs != rm->m_rs) { if (rs) { rds_wake_sk_sleep(rs); sock_put(rds_rs_to_sk(rs)); } rs = rm->m_rs; sock_hold(rds_rs_to_sk(rs)); } spin_lock(&rs->rs_lock); if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) { struct rds_rdma_op *ro = rm->rdma.m_rdma_op; struct rds_notifier *notifier; list_del_init(&rm->m_sock_item); rds_send_sndbuf_remove(rs, rm); if (ro && ro->r_notifier && (status || ro->r_notify)) { notifier = ro->r_notifier; list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); if (!notifier->n_status) notifier->n_status = status; rm->rdma.m_rdma_op->r_notifier = NULL; } was_on_sock = 1; rm->m_rs = NULL; } spin_unlock(&rs->rs_lock); unlock_and_drop: spin_unlock_irqrestore(&rm->m_rs_lock, flags); rds_message_put(rm); if (was_on_sock) rds_message_put(rm); } if (rs) { rds_wake_sk_sleep(rs); sock_put(rds_rs_to_sk(rs)); } } /* * Transports call here when they've determined that the receiver queued * messages up to, and including, the given sequence number. Messages are * moved to the retrans queue when rds_send_xmit picks them off the send * queue. This means that in the TCP case, the message may not have been * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked * checks the RDS_MSG_HAS_ACK_SEQ bit. * * XXX It's not clear to me how this is safely serialized with socket * destruction. Maybe it should bail if it sees SOCK_DEAD. */ void rds_send_drop_acked(struct rds_connection *conn, u64 ack, is_acked_func is_acked) { struct rds_message *rm, *tmp; unsigned long flags; LIST_HEAD(list); spin_lock_irqsave(&conn->c_lock, flags); list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { if (!rds_send_is_acked(rm, ack, is_acked)) break; list_move(&rm->m_conn_item, &list); clear_bit(RDS_MSG_ON_CONN, &rm->m_flags); } /* order flag updates with spin locks */ if (!list_empty(&list)) smp_mb__after_clear_bit(); spin_unlock_irqrestore(&conn->c_lock, flags); /* now remove the messages from the sock list as needed */ rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS); } EXPORT_SYMBOL_GPL(rds_send_drop_acked); void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest) { struct rds_message *rm, *tmp; struct rds_connection *conn; unsigned long flags; LIST_HEAD(list); /* get all the messages we're dropping under the rs lock */ spin_lock_irqsave(&rs->rs_lock, flags); list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) { if (dest && (dest->sin_addr.s_addr != rm->m_daddr || dest->sin_port != rm->m_inc.i_hdr.h_dport)) continue; list_move(&rm->m_sock_item, &list); rds_send_sndbuf_remove(rs, rm); clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags); } /* order flag updates with the rs lock */ smp_mb__after_clear_bit(); spin_unlock_irqrestore(&rs->rs_lock, flags); if (list_empty(&list)) return; /* Remove the messages from the conn */ list_for_each_entry(rm, &list, m_sock_item) { conn = rm->m_inc.i_conn; spin_lock_irqsave(&conn->c_lock, flags); /* * Maybe someone else beat us to removing rm from the conn. * If we race with their flag update we'll get the lock and * then really see that the flag has been cleared. */ if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) { spin_unlock_irqrestore(&conn->c_lock, flags); continue; } list_del_init(&rm->m_conn_item); spin_unlock_irqrestore(&conn->c_lock, flags); /* * Couldn't grab m_rs_lock in top loop (lock ordering), * but we can now. */ spin_lock_irqsave(&rm->m_rs_lock, flags); spin_lock(&rs->rs_lock); __rds_rdma_send_complete(rs, rm, RDS_RDMA_CANCELED); spin_unlock(&rs->rs_lock); rm->m_rs = NULL; spin_unlock_irqrestore(&rm->m_rs_lock, flags); rds_message_put(rm); } rds_wake_sk_sleep(rs); while (!list_empty(&list)) { rm = list_entry(list.next, struct rds_message, m_sock_item); list_del_init(&rm->m_sock_item); rds_message_wait(rm); rds_message_put(rm); } } /* * we only want this to fire once so we use the callers 'queued'. It's * possible that another thread can race with us and remove the * message from the flow with RDS_CANCEL_SENT_TO. */ static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn, struct rds_message *rm, __be16 sport, __be16 dport, int *queued) { unsigned long flags; u32 len; if (*queued) goto out; len = be32_to_cpu(rm->m_inc.i_hdr.h_len); /* this is the only place which holds both the socket's rs_lock * and the connection's c_lock */ spin_lock_irqsave(&rs->rs_lock, flags); /* * If there is a little space in sndbuf, we don't queue anything, * and userspace gets -EAGAIN. But poll() indicates there's send * room. This can lead to bad behavior (spinning) if snd_bytes isn't * freed up by incoming acks. So we check the *old* value of * rs_snd_bytes here to allow the last msg to exceed the buffer, * and poll() now knows no more data can be sent. */ if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) { rs->rs_snd_bytes += len; /* let recv side know we are close to send space exhaustion. * This is probably not the optimal way to do it, as this * means we set the flag on *all* messages as soon as our * throughput hits a certain threshold. */ if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2) __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); list_add_tail(&rm->m_sock_item, &rs->rs_send_queue); set_bit(RDS_MSG_ON_SOCK, &rm->m_flags); rds_message_addref(rm); rm->m_rs = rs; /* The code ordering is a little weird, but we're trying to minimize the time we hold c_lock */ rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0); rm->m_inc.i_conn = conn; rds_message_addref(rm); spin_lock(&conn->c_lock); rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++); list_add_tail(&rm->m_conn_item, &conn->c_send_queue); set_bit(RDS_MSG_ON_CONN, &rm->m_flags); spin_unlock(&conn->c_lock); rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n", rm, len, rs, rs->rs_snd_bytes, (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence)); *queued = 1; } spin_unlock_irqrestore(&rs->rs_lock, flags); out: return *queued; } /* * rds_message is getting to be quite complicated, and we'd like to allocate * it all in one go. This figures out how big it needs to be up front. */ static int rds_rm_size(struct msghdr *msg, int data_len) { int size = 0; size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist); return size; } static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm, struct msghdr *msg, int *allocated_mr) { struct cmsghdr *cmsg; int ret = 0; for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_RDS) continue; /* As a side effect, RDMA_DEST and RDMA_MAP will set * rm->m_rdma_cookie and rm->m_rdma_mr. */ switch (cmsg->cmsg_type) { case RDS_CMSG_RDMA_ARGS: ret = rds_cmsg_rdma_args(rs, rm, cmsg); break; case RDS_CMSG_RDMA_DEST: ret = rds_cmsg_rdma_dest(rs, rm, cmsg); break; case RDS_CMSG_RDMA_MAP: ret = rds_cmsg_rdma_map(rs, rm, cmsg); if (!ret) *allocated_mr = 1; break; default: return -EINVAL; } if (ret) break; } return ret; } int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t payload_len) { struct sock *sk = sock->sk; struct rds_sock *rs = rds_sk_to_rs(sk); struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name; __be32 daddr; __be16 dport; struct rds_message *rm = NULL; struct rds_connection *conn; int ret = 0; int queued = 0, allocated_mr = 0; int nonblock = msg->msg_flags & MSG_DONTWAIT; long timeo = sock_sndtimeo(sk, nonblock); /* Mirror Linux UDP mirror of BSD error message compatibility */ /* XXX: Perhaps MSG_MORE someday */ if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) { printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags); ret = -EOPNOTSUPP; goto out; } if (msg->msg_namelen) { /* XXX fail non-unicast destination IPs? */ if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) { ret = -EINVAL; goto out; } daddr = usin->sin_addr.s_addr; dport = usin->sin_port; } else { /* We only care about consistency with ->connect() */ lock_sock(sk); daddr = rs->rs_conn_addr; dport = rs->rs_conn_port; release_sock(sk); } /* racing with another thread binding seems ok here */ if (daddr == 0 || rs->rs_bound_addr == 0) { ret = -ENOTCONN; /* XXX not a great errno */ goto out; } /* size of rm including all sgs */ ret = rds_rm_size(msg, payload_len); if (ret < 0) goto out; rm = rds_message_alloc(ret, GFP_KERNEL); if (!rm) { ret = -ENOMEM; goto out; } rm->data.m_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE)); /* XXX fix this to not allocate memory */ ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len); if (ret) goto out; rm->m_daddr = daddr; /* rds_conn_create has a spinlock that runs with IRQ off. * Caching the conn in the socket helps a lot. */ if (rs->rs_conn && rs->rs_conn->c_faddr == daddr) conn = rs->rs_conn; else { conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr, rs->rs_transport, sock->sk->sk_allocation); if (IS_ERR(conn)) { ret = PTR_ERR(conn); goto out; } rs->rs_conn = conn; } /* Parse any control messages the user may have included. */ ret = rds_cmsg_send(rs, rm, msg, &allocated_mr); if (ret) goto out; if ((rm->m_rdma_cookie || rm->rdma.m_rdma_op) && !conn->c_trans->xmit_rdma) { if (printk_ratelimit()) printk(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n", rm->rdma.m_rdma_op, conn->c_trans->xmit_rdma); ret = -EOPNOTSUPP; goto out; } /* If the connection is down, trigger a connect. We may * have scheduled a delayed reconnect however - in this case * we should not interfere. */ if (rds_conn_state(conn) == RDS_CONN_DOWN && !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags)) queue_delayed_work(rds_wq, &conn->c_conn_w, 0); ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs); if (ret) { rs->rs_seen_congestion = 1; goto out; } while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port, dport, &queued)) { rds_stats_inc(s_send_queue_full); /* XXX make sure this is reasonable */ if (payload_len > rds_sk_sndbuf(rs)) { ret = -EMSGSIZE; goto out; } if (nonblock) { ret = -EAGAIN; goto out; } timeo = wait_event_interruptible_timeout(*sk_sleep(sk), rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port, dport, &queued), timeo); rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo); if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) continue; ret = timeo; if (ret == 0) ret = -ETIMEDOUT; goto out; } /* * By now we've committed to the send. We reuse rds_send_worker() * to retry sends in the rds thread if the transport asks us to. */ rds_stats_inc(s_send_queued); if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags)) rds_send_worker(&conn->c_send_w.work); rds_message_put(rm); return payload_len; out: /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly. * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN * or in any other way, we need to destroy the MR again */ if (allocated_mr) rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1); if (rm) rds_message_put(rm); return ret; } /* * Reply to a ping packet. */ int rds_send_pong(struct rds_connection *conn, __be16 dport) { struct rds_message *rm; unsigned long flags; int ret = 0; rm = rds_message_alloc(0, GFP_ATOMIC); if (!rm) { ret = -ENOMEM; goto out; } rm->m_daddr = conn->c_faddr; /* If the connection is down, trigger a connect. We may * have scheduled a delayed reconnect however - in this case * we should not interfere. */ if (rds_conn_state(conn) == RDS_CONN_DOWN && !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags)) queue_delayed_work(rds_wq, &conn->c_conn_w, 0); ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL); if (ret) goto out; spin_lock_irqsave(&conn->c_lock, flags); list_add_tail(&rm->m_conn_item, &conn->c_send_queue); set_bit(RDS_MSG_ON_CONN, &rm->m_flags); rds_message_addref(rm); rm->m_inc.i_conn = conn; rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport, conn->c_next_tx_seq); conn->c_next_tx_seq++; spin_unlock_irqrestore(&conn->c_lock, flags); rds_stats_inc(s_send_queued); rds_stats_inc(s_send_pong); queue_delayed_work(rds_wq, &conn->c_send_w, 0); rds_message_put(rm); return 0; out: if (rm) rds_message_put(rm); return ret; }