/* * Copyright (C) 2017 Netronome Systems, Inc. * * This software is dual licensed under the GNU General License Version 2, * June 1991 as shown in the file COPYING in the top-level directory of this * source tree or the BSD 2-Clause License provided below. You have the * option to license this software under the complete terms of either license. * * The BSD 2-Clause License: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * 1. Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include "cmsg.h" #include "main.h" #include "../nfpcore/nfp_cpp.h" #include "../nfpcore/nfp_nsp.h" #include "../nfp_app.h" #include "../nfp_main.h" #include "../nfp_net.h" #include "../nfp_port.h" #define NFP_FLOWER_WHITELIST_DISSECTOR \ (BIT(FLOW_DISSECTOR_KEY_CONTROL) | \ BIT(FLOW_DISSECTOR_KEY_BASIC) | \ BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | \ BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | \ BIT(FLOW_DISSECTOR_KEY_PORTS) | \ BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | \ BIT(FLOW_DISSECTOR_KEY_VLAN) | \ BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \ BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \ BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \ BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \ BIT(FLOW_DISSECTOR_KEY_MPLS) | \ BIT(FLOW_DISSECTOR_KEY_IP)) #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR \ (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \ BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \ BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \ BIT(FLOW_DISSECTOR_KEY_ENC_PORTS)) #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R \ (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \ BIT(FLOW_DISSECTOR_KEY_ENC_PORTS)) static int nfp_flower_xmit_flow(struct net_device *netdev, struct nfp_fl_payload *nfp_flow, u8 mtype) { u32 meta_len, key_len, mask_len, act_len, tot_len; struct nfp_repr *priv = netdev_priv(netdev); struct sk_buff *skb; unsigned char *msg; meta_len = sizeof(struct nfp_fl_rule_metadata); key_len = nfp_flow->meta.key_len; mask_len = nfp_flow->meta.mask_len; act_len = nfp_flow->meta.act_len; tot_len = meta_len + key_len + mask_len + act_len; /* Convert to long words as firmware expects * lengths in units of NFP_FL_LW_SIZ. */ nfp_flow->meta.key_len >>= NFP_FL_LW_SIZ; nfp_flow->meta.mask_len >>= NFP_FL_LW_SIZ; nfp_flow->meta.act_len >>= NFP_FL_LW_SIZ; skb = nfp_flower_cmsg_alloc(priv->app, tot_len, mtype, GFP_KERNEL); if (!skb) return -ENOMEM; msg = nfp_flower_cmsg_get_data(skb); memcpy(msg, &nfp_flow->meta, meta_len); memcpy(&msg[meta_len], nfp_flow->unmasked_data, key_len); memcpy(&msg[meta_len + key_len], nfp_flow->mask_data, mask_len); memcpy(&msg[meta_len + key_len + mask_len], nfp_flow->action_data, act_len); /* Convert back to bytes as software expects * lengths in units of bytes. */ nfp_flow->meta.key_len <<= NFP_FL_LW_SIZ; nfp_flow->meta.mask_len <<= NFP_FL_LW_SIZ; nfp_flow->meta.act_len <<= NFP_FL_LW_SIZ; nfp_ctrl_tx(priv->app->ctrl, skb); return 0; } static bool nfp_flower_check_higher_than_mac(struct tc_cls_flower_offload *f) { return dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS) || dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS) || dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_PORTS) || dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ICMP); } static int nfp_flower_calculate_key_layers(struct nfp_fl_key_ls *ret_key_ls, struct tc_cls_flower_offload *flow) { struct flow_dissector_key_basic *mask_basic = NULL; struct flow_dissector_key_basic *key_basic = NULL; u32 key_layer_two; u8 key_layer; int key_size; if (flow->dissector->used_keys & ~NFP_FLOWER_WHITELIST_DISSECTOR) return -EOPNOTSUPP; /* If any tun dissector is used then the required set must be used. */ if (flow->dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR && (flow->dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) return -EOPNOTSUPP; key_layer_two = 0; key_layer = NFP_FLOWER_LAYER_PORT | NFP_FLOWER_LAYER_MAC; key_size = sizeof(struct nfp_flower_meta_one) + sizeof(struct nfp_flower_in_port) + sizeof(struct nfp_flower_mac_mpls); if (dissector_uses_key(flow->dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL)) { struct flow_dissector_key_ipv4_addrs *mask_ipv4 = NULL; struct flow_dissector_key_ports *mask_enc_ports = NULL; struct flow_dissector_key_ports *enc_ports = NULL; struct flow_dissector_key_control *mask_enc_ctl = skb_flow_dissector_target(flow->dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL, flow->mask); struct flow_dissector_key_control *enc_ctl = skb_flow_dissector_target(flow->dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL, flow->key); if (mask_enc_ctl->addr_type != 0xffff || enc_ctl->addr_type != FLOW_DISSECTOR_KEY_IPV4_ADDRS) return -EOPNOTSUPP; /* These fields are already verified as used. */ mask_ipv4 = skb_flow_dissector_target(flow->dissector, FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, flow->mask); if (mask_ipv4->dst != cpu_to_be32(~0)) return -EOPNOTSUPP; mask_enc_ports = skb_flow_dissector_target(flow->dissector, FLOW_DISSECTOR_KEY_ENC_PORTS, flow->mask); enc_ports = skb_flow_dissector_target(flow->dissector, FLOW_DISSECTOR_KEY_ENC_PORTS, flow->key); if (mask_enc_ports->dst != cpu_to_be16(~0) || enc_ports->dst != htons(NFP_FL_VXLAN_PORT)) return -EOPNOTSUPP; key_layer |= NFP_FLOWER_LAYER_VXLAN; key_size += sizeof(struct nfp_flower_vxlan); } if (dissector_uses_key(flow->dissector, FLOW_DISSECTOR_KEY_BASIC)) { mask_basic = skb_flow_dissector_target(flow->dissector, FLOW_DISSECTOR_KEY_BASIC, flow->mask); key_basic = skb_flow_dissector_target(flow->dissector, FLOW_DISSECTOR_KEY_BASIC, flow->key); } if (mask_basic && mask_basic->n_proto) { /* Ethernet type is present in the key. */ switch (key_basic->n_proto) { case cpu_to_be16(ETH_P_IP): key_layer |= NFP_FLOWER_LAYER_IPV4; key_size += sizeof(struct nfp_flower_ipv4); break; case cpu_to_be16(ETH_P_IPV6): key_layer |= NFP_FLOWER_LAYER_IPV6; key_size += sizeof(struct nfp_flower_ipv6); break; /* Currently we do not offload ARP * because we rely on it to get to the host. */ case cpu_to_be16(ETH_P_ARP): return -EOPNOTSUPP; /* Will be included in layer 2. */ case cpu_to_be16(ETH_P_8021Q): break; default: /* Other ethtype - we need check the masks for the * remainder of the key to ensure we can offload. */ if (nfp_flower_check_higher_than_mac(flow)) return -EOPNOTSUPP; break; } } if (mask_basic && mask_basic->ip_proto) { /* Ethernet type is present in the key. */ switch (key_basic->ip_proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_SCTP: case IPPROTO_ICMP: case IPPROTO_ICMPV6: key_layer |= NFP_FLOWER_LAYER_TP; key_size += sizeof(struct nfp_flower_tp_ports); break; default: /* Other ip proto - we need check the masks for the * remainder of the key to ensure we can offload. */ return -EOPNOTSUPP; } } ret_key_ls->key_layer = key_layer; ret_key_ls->key_layer_two = key_layer_two; ret_key_ls->key_size = key_size; return 0; } static struct nfp_fl_payload * nfp_flower_allocate_new(struct nfp_fl_key_ls *key_layer) { struct nfp_fl_payload *flow_pay; flow_pay = kmalloc(sizeof(*flow_pay), GFP_KERNEL); if (!flow_pay) return NULL; flow_pay->meta.key_len = key_layer->key_size; flow_pay->unmasked_data = kmalloc(key_layer->key_size, GFP_KERNEL); if (!flow_pay->unmasked_data) goto err_free_flow; flow_pay->meta.mask_len = key_layer->key_size; flow_pay->mask_data = kmalloc(key_layer->key_size, GFP_KERNEL); if (!flow_pay->mask_data) goto err_free_unmasked; flow_pay->action_data = kmalloc(NFP_FL_MAX_A_SIZ, GFP_KERNEL); if (!flow_pay->action_data) goto err_free_mask; flow_pay->nfp_tun_ipv4_addr = 0; flow_pay->meta.flags = 0; spin_lock_init(&flow_pay->lock); return flow_pay; err_free_mask: kfree(flow_pay->mask_data); err_free_unmasked: kfree(flow_pay->unmasked_data); err_free_flow: kfree(flow_pay); return NULL; } /** * nfp_flower_add_offload() - Adds a new flow to hardware. * @app: Pointer to the APP handle * @netdev: netdev structure. * @flow: TC flower classifier offload structure. * * Adds a new flow to the repeated hash structure and action payload. * * Return: negative value on error, 0 if configured successfully. */ static int nfp_flower_add_offload(struct nfp_app *app, struct net_device *netdev, struct tc_cls_flower_offload *flow) { struct nfp_flower_priv *priv = app->priv; struct nfp_fl_payload *flow_pay; struct nfp_fl_key_ls *key_layer; int err; key_layer = kmalloc(sizeof(*key_layer), GFP_KERNEL); if (!key_layer) return -ENOMEM; err = nfp_flower_calculate_key_layers(key_layer, flow); if (err) goto err_free_key_ls; flow_pay = nfp_flower_allocate_new(key_layer); if (!flow_pay) { err = -ENOMEM; goto err_free_key_ls; } err = nfp_flower_compile_flow_match(flow, key_layer, netdev, flow_pay); if (err) goto err_destroy_flow; err = nfp_flower_compile_action(flow, netdev, flow_pay); if (err) goto err_destroy_flow; err = nfp_compile_flow_metadata(app, flow, flow_pay); if (err) goto err_destroy_flow; err = nfp_flower_xmit_flow(netdev, flow_pay, NFP_FLOWER_CMSG_TYPE_FLOW_ADD); if (err) goto err_destroy_flow; INIT_HLIST_NODE(&flow_pay->link); flow_pay->tc_flower_cookie = flow->cookie; hash_add_rcu(priv->flow_table, &flow_pay->link, flow->cookie); /* Deallocate flow payload when flower rule has been destroyed. */ kfree(key_layer); return 0; err_destroy_flow: kfree(flow_pay->action_data); kfree(flow_pay->mask_data); kfree(flow_pay->unmasked_data); kfree(flow_pay); err_free_key_ls: kfree(key_layer); return err; } /** * nfp_flower_del_offload() - Removes a flow from hardware. * @app: Pointer to the APP handle * @netdev: netdev structure. * @flow: TC flower classifier offload structure * * Removes a flow from the repeated hash structure and clears the * action payload. * * Return: negative value on error, 0 if removed successfully. */ static int nfp_flower_del_offload(struct nfp_app *app, struct net_device *netdev, struct tc_cls_flower_offload *flow) { struct nfp_fl_payload *nfp_flow; int err; nfp_flow = nfp_flower_search_fl_table(app, flow->cookie); if (!nfp_flow) return -ENOENT; err = nfp_modify_flow_metadata(app, nfp_flow); if (err) goto err_free_flow; if (nfp_flow->nfp_tun_ipv4_addr) nfp_tunnel_del_ipv4_off(app, nfp_flow->nfp_tun_ipv4_addr); err = nfp_flower_xmit_flow(netdev, nfp_flow, NFP_FLOWER_CMSG_TYPE_FLOW_DEL); if (err) goto err_free_flow; err_free_flow: hash_del_rcu(&nfp_flow->link); kfree(nfp_flow->action_data); kfree(nfp_flow->mask_data); kfree(nfp_flow->unmasked_data); kfree_rcu(nfp_flow, rcu); return err; } /** * nfp_flower_get_stats() - Populates flow stats obtained from hardware. * @app: Pointer to the APP handle * @flow: TC flower classifier offload structure * * Populates a flow statistics structure which which corresponds to a * specific flow. * * Return: negative value on error, 0 if stats populated successfully. */ static int nfp_flower_get_stats(struct nfp_app *app, struct tc_cls_flower_offload *flow) { struct nfp_fl_payload *nfp_flow; nfp_flow = nfp_flower_search_fl_table(app, flow->cookie); if (!nfp_flow) return -EINVAL; spin_lock_bh(&nfp_flow->lock); tcf_exts_stats_update(flow->exts, nfp_flow->stats.bytes, nfp_flow->stats.pkts, nfp_flow->stats.used); nfp_flow->stats.pkts = 0; nfp_flow->stats.bytes = 0; spin_unlock_bh(&nfp_flow->lock); return 0; } static int nfp_flower_repr_offload(struct nfp_app *app, struct net_device *netdev, struct tc_cls_flower_offload *flower) { if (!eth_proto_is_802_3(flower->common.protocol) || flower->common.chain_index) return -EOPNOTSUPP; switch (flower->command) { case TC_CLSFLOWER_REPLACE: return nfp_flower_add_offload(app, netdev, flower); case TC_CLSFLOWER_DESTROY: return nfp_flower_del_offload(app, netdev, flower); case TC_CLSFLOWER_STATS: return nfp_flower_get_stats(app, flower); } return -EOPNOTSUPP; } int nfp_flower_setup_tc_egress_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { return -EINVAL; } static int nfp_flower_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct nfp_repr *repr = cb_priv; if (!tc_can_offload(repr->netdev)) return -EOPNOTSUPP; switch (type) { case TC_SETUP_CLSFLOWER: return nfp_flower_repr_offload(repr->app, repr->netdev, type_data); default: return -EOPNOTSUPP; } } static int nfp_flower_setup_tc_block(struct net_device *netdev, struct tc_block_offload *f) { struct nfp_repr *repr = netdev_priv(netdev); if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) return -EOPNOTSUPP; switch (f->command) { case TC_BLOCK_BIND: return tcf_block_cb_register(f->block, nfp_flower_setup_tc_block_cb, repr, repr); case TC_BLOCK_UNBIND: tcf_block_cb_unregister(f->block, nfp_flower_setup_tc_block_cb, repr); return 0; default: return -EOPNOTSUPP; } } int nfp_flower_setup_tc(struct nfp_app *app, struct net_device *netdev, enum tc_setup_type type, void *type_data) { switch (type) { case TC_SETUP_BLOCK: return nfp_flower_setup_tc_block(netdev, type_data); default: return -EOPNOTSUPP; } }