// SPDX-License-Identifier: GPL-2.0-or-later /* * Arasan Secure Digital Host Controller Interface. * Copyright (C) 2011 - 2012 Michal Simek * Copyright (c) 2012 Wind River Systems, Inc. * Copyright (C) 2013 Pengutronix e.K. * Copyright (C) 2013 Xilinx Inc. * * Based on sdhci-of-esdhc.c * * Copyright (c) 2007 Freescale Semiconductor, Inc. * Copyright (c) 2009 MontaVista Software, Inc. * * Authors: Xiaobo Xie * Anton Vorontsov */ #include #include #include #include #include #include #include #include #include "cqhci.h" #include "sdhci-pltfm.h" #define SDHCI_ARASAN_VENDOR_REGISTER 0x78 #define SDHCI_ARASAN_ITAPDLY_REGISTER 0xF0F8 #define SDHCI_ARASAN_OTAPDLY_REGISTER 0xF0FC #define SDHCI_ARASAN_CQE_BASE_ADDR 0x200 #define VENDOR_ENHANCED_STROBE BIT(0) #define PHY_CLK_TOO_SLOW_HZ 400000 #define SDHCI_ITAPDLY_CHGWIN 0x200 #define SDHCI_ITAPDLY_ENABLE 0x100 #define SDHCI_OTAPDLY_ENABLE 0x40 /* Default settings for ZynqMP Clock Phases */ #define ZYNQMP_ICLK_PHASE {0, 63, 63, 0, 63, 0, 0, 183, 54, 0, 0} #define ZYNQMP_OCLK_PHASE {0, 72, 60, 0, 60, 72, 135, 48, 72, 135, 0} #define VERSAL_ICLK_PHASE {0, 132, 132, 0, 132, 0, 0, 162, 90, 0, 0} #define VERSAL_OCLK_PHASE {0, 60, 48, 0, 48, 72, 90, 36, 60, 90, 0} /* * On some SoCs the syscon area has a feature where the upper 16-bits of * each 32-bit register act as a write mask for the lower 16-bits. This allows * atomic updates of the register without locking. This macro is used on SoCs * that have that feature. */ #define HIWORD_UPDATE(val, mask, shift) \ ((val) << (shift) | (mask) << ((shift) + 16)) /** * struct sdhci_arasan_soc_ctl_field - Field used in sdhci_arasan_soc_ctl_map * * @reg: Offset within the syscon of the register containing this field * @width: Number of bits for this field * @shift: Bit offset within @reg of this field (or -1 if not avail) */ struct sdhci_arasan_soc_ctl_field { u32 reg; u16 width; s16 shift; }; /** * struct sdhci_arasan_soc_ctl_map - Map in syscon to corecfg registers * * It's up to the licensee of the Arsan IP block to make these available * somewhere if needed. Presumably these will be scattered somewhere that's * accessible via the syscon API. * * @baseclkfreq: Where to find corecfg_baseclkfreq * @clockmultiplier: Where to find corecfg_clockmultiplier * @hiword_update: If true, use HIWORD_UPDATE to access the syscon */ struct sdhci_arasan_soc_ctl_map { struct sdhci_arasan_soc_ctl_field baseclkfreq; struct sdhci_arasan_soc_ctl_field clockmultiplier; bool hiword_update; }; /** * struct sdhci_arasan_clk_data * @sdcardclk_hw: Struct for the clock we might provide to a PHY. * @sdcardclk: Pointer to normal 'struct clock' for sdcardclk_hw. * @sampleclk_hw: Struct for the clock we might provide to a PHY. * @sampleclk: Pointer to normal 'struct clock' for sampleclk_hw. * @clk_phase_in: Array of Input Clock Phase Delays for all speed modes * @clk_phase_out: Array of Output Clock Phase Delays for all speed modes * @set_clk_delays: Function pointer for setting Clock Delays * @clk_of_data: Platform specific runtime clock data storage pointer */ struct sdhci_arasan_clk_data { struct clk_hw sdcardclk_hw; struct clk *sdcardclk; struct clk_hw sampleclk_hw; struct clk *sampleclk; int clk_phase_in[MMC_TIMING_MMC_HS400 + 1]; int clk_phase_out[MMC_TIMING_MMC_HS400 + 1]; void (*set_clk_delays)(struct sdhci_host *host); void *clk_of_data; }; struct sdhci_arasan_zynqmp_clk_data { const struct zynqmp_eemi_ops *eemi_ops; }; /** * struct sdhci_arasan_data * @host: Pointer to the main SDHCI host structure. * @clk_ahb: Pointer to the AHB clock * @phy: Pointer to the generic phy * @is_phy_on: True if the PHY is on; false if not. * @clk_data: Struct for the Arasan Controller Clock Data. * @soc_ctl_base: Pointer to regmap for syscon for soc_ctl registers. * @soc_ctl_map: Map to get offsets into soc_ctl registers. */ struct sdhci_arasan_data { struct sdhci_host *host; struct clk *clk_ahb; struct phy *phy; bool is_phy_on; bool has_cqe; struct sdhci_arasan_clk_data clk_data; struct regmap *soc_ctl_base; const struct sdhci_arasan_soc_ctl_map *soc_ctl_map; unsigned int quirks; /* Arasan deviations from spec */ /* Controller does not have CD wired and will not function normally without */ #define SDHCI_ARASAN_QUIRK_FORCE_CDTEST BIT(0) /* Controller immediately reports SDHCI_CLOCK_INT_STABLE after enabling the * internal clock even when the clock isn't stable */ #define SDHCI_ARASAN_QUIRK_CLOCK_UNSTABLE BIT(1) }; struct sdhci_arasan_of_data { const struct sdhci_arasan_soc_ctl_map *soc_ctl_map; const struct sdhci_pltfm_data *pdata; }; static const struct sdhci_arasan_soc_ctl_map rk3399_soc_ctl_map = { .baseclkfreq = { .reg = 0xf000, .width = 8, .shift = 8 }, .clockmultiplier = { .reg = 0xf02c, .width = 8, .shift = 0}, .hiword_update = true, }; static const struct sdhci_arasan_soc_ctl_map intel_lgm_emmc_soc_ctl_map = { .baseclkfreq = { .reg = 0xa0, .width = 8, .shift = 2 }, .clockmultiplier = { .reg = 0, .width = -1, .shift = -1 }, .hiword_update = false, }; static const struct sdhci_arasan_soc_ctl_map intel_lgm_sdxc_soc_ctl_map = { .baseclkfreq = { .reg = 0x80, .width = 8, .shift = 2 }, .clockmultiplier = { .reg = 0, .width = -1, .shift = -1 }, .hiword_update = false, }; /** * sdhci_arasan_syscon_write - Write to a field in soc_ctl registers * * This function allows writing to fields in sdhci_arasan_soc_ctl_map. * Note that if a field is specified as not available (shift < 0) then * this function will silently return an error code. It will be noisy * and print errors for any other (unexpected) errors. * * @host: The sdhci_host * @fld: The field to write to * @val: The value to write */ static int sdhci_arasan_syscon_write(struct sdhci_host *host, const struct sdhci_arasan_soc_ctl_field *fld, u32 val) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host); struct regmap *soc_ctl_base = sdhci_arasan->soc_ctl_base; u32 reg = fld->reg; u16 width = fld->width; s16 shift = fld->shift; int ret; /* * Silently return errors for shift < 0 so caller doesn't have * to check for fields which are optional. For fields that * are required then caller needs to do something special * anyway. */ if (shift < 0) return -EINVAL; if (sdhci_arasan->soc_ctl_map->hiword_update) ret = regmap_write(soc_ctl_base, reg, HIWORD_UPDATE(val, GENMASK(width, 0), shift)); else ret = regmap_update_bits(soc_ctl_base, reg, GENMASK(shift + width, shift), val << shift); /* Yell about (unexpected) regmap errors */ if (ret) pr_warn("%s: Regmap write fail: %d\n", mmc_hostname(host->mmc), ret); return ret; } static void sdhci_arasan_set_clock(struct sdhci_host *host, unsigned int clock) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host); struct sdhci_arasan_clk_data *clk_data = &sdhci_arasan->clk_data; bool ctrl_phy = false; if (!IS_ERR(sdhci_arasan->phy)) { if (!sdhci_arasan->is_phy_on && clock <= PHY_CLK_TOO_SLOW_HZ) { /* * If PHY off, set clock to max speed and power PHY on. * * Although PHY docs apparently suggest power cycling * when changing the clock the PHY doesn't like to be * powered on while at low speeds like those used in ID * mode. Even worse is powering the PHY on while the * clock is off. * * To workaround the PHY limitations, the best we can * do is to power it on at a faster speed and then slam * through low speeds without power cycling. */ sdhci_set_clock(host, host->max_clk); phy_power_on(sdhci_arasan->phy); sdhci_arasan->is_phy_on = true; /* * We'll now fall through to the below case with * ctrl_phy = false (so we won't turn off/on). The * sdhci_set_clock() will set the real clock. */ } else if (clock > PHY_CLK_TOO_SLOW_HZ) { /* * At higher clock speeds the PHY is fine being power * cycled and docs say you _should_ power cycle when * changing clock speeds. */ ctrl_phy = true; } } if (ctrl_phy && sdhci_arasan->is_phy_on) { phy_power_off(sdhci_arasan->phy); sdhci_arasan->is_phy_on = false; } /* Set the Input and Output Clock Phase Delays */ if (clk_data->set_clk_delays) clk_data->set_clk_delays(host); sdhci_set_clock(host, clock); if (sdhci_arasan->quirks & SDHCI_ARASAN_QUIRK_CLOCK_UNSTABLE) /* * Some controllers immediately report SDHCI_CLOCK_INT_STABLE * after enabling the clock even though the clock is not * stable. Trying to use a clock without waiting here results * in EILSEQ while detecting some older/slower cards. The * chosen delay is the maximum delay from sdhci_set_clock. */ msleep(20); if (ctrl_phy) { phy_power_on(sdhci_arasan->phy); sdhci_arasan->is_phy_on = true; } } static void sdhci_arasan_hs400_enhanced_strobe(struct mmc_host *mmc, struct mmc_ios *ios) { u32 vendor; struct sdhci_host *host = mmc_priv(mmc); vendor = sdhci_readl(host, SDHCI_ARASAN_VENDOR_REGISTER); if (ios->enhanced_strobe) vendor |= VENDOR_ENHANCED_STROBE; else vendor &= ~VENDOR_ENHANCED_STROBE; sdhci_writel(host, vendor, SDHCI_ARASAN_VENDOR_REGISTER); } static void sdhci_arasan_reset(struct sdhci_host *host, u8 mask) { u8 ctrl; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host); sdhci_reset(host, mask); if (sdhci_arasan->quirks & SDHCI_ARASAN_QUIRK_FORCE_CDTEST) { ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); ctrl |= SDHCI_CTRL_CDTEST_INS | SDHCI_CTRL_CDTEST_EN; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } } static int sdhci_arasan_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) { switch (ios->signal_voltage) { case MMC_SIGNAL_VOLTAGE_180: /* * Plese don't switch to 1V8 as arasan,5.1 doesn't * actually refer to this setting to indicate the * signal voltage and the state machine will be broken * actually if we force to enable 1V8. That's something * like broken quirk but we could work around here. */ return 0; case MMC_SIGNAL_VOLTAGE_330: case MMC_SIGNAL_VOLTAGE_120: /* We don't support 3V3 and 1V2 */ break; } return -EINVAL; } static const struct sdhci_ops sdhci_arasan_ops = { .set_clock = sdhci_arasan_set_clock, .get_max_clock = sdhci_pltfm_clk_get_max_clock, .get_timeout_clock = sdhci_pltfm_clk_get_max_clock, .set_bus_width = sdhci_set_bus_width, .reset = sdhci_arasan_reset, .set_uhs_signaling = sdhci_set_uhs_signaling, .set_power = sdhci_set_power_and_bus_voltage, }; static const struct sdhci_pltfm_data sdhci_arasan_pdata = { .ops = &sdhci_arasan_ops, .quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN | SDHCI_QUIRK2_STOP_WITH_TC, }; static struct sdhci_arasan_of_data sdhci_arasan_generic_data = { .pdata = &sdhci_arasan_pdata, }; static const struct sdhci_pltfm_data sdhci_arasan_zynqmp_pdata = { .ops = &sdhci_arasan_ops, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN | SDHCI_QUIRK2_STOP_WITH_TC, }; static struct sdhci_arasan_of_data sdhci_arasan_zynqmp_data = { .pdata = &sdhci_arasan_zynqmp_pdata, }; static u32 sdhci_arasan_cqhci_irq(struct sdhci_host *host, u32 intmask) { int cmd_error = 0; int data_error = 0; if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) return intmask; cqhci_irq(host->mmc, intmask, cmd_error, data_error); return 0; } static void sdhci_arasan_dumpregs(struct mmc_host *mmc) { sdhci_dumpregs(mmc_priv(mmc)); } static void sdhci_arasan_cqe_enable(struct mmc_host *mmc) { struct sdhci_host *host = mmc_priv(mmc); u32 reg; reg = sdhci_readl(host, SDHCI_PRESENT_STATE); while (reg & SDHCI_DATA_AVAILABLE) { sdhci_readl(host, SDHCI_BUFFER); reg = sdhci_readl(host, SDHCI_PRESENT_STATE); } sdhci_cqe_enable(mmc); } static const struct cqhci_host_ops sdhci_arasan_cqhci_ops = { .enable = sdhci_arasan_cqe_enable, .disable = sdhci_cqe_disable, .dumpregs = sdhci_arasan_dumpregs, }; static const struct sdhci_ops sdhci_arasan_cqe_ops = { .set_clock = sdhci_arasan_set_clock, .get_max_clock = sdhci_pltfm_clk_get_max_clock, .get_timeout_clock = sdhci_pltfm_clk_get_max_clock, .set_bus_width = sdhci_set_bus_width, .reset = sdhci_arasan_reset, .set_uhs_signaling = sdhci_set_uhs_signaling, .set_power = sdhci_set_power_and_bus_voltage, .irq = sdhci_arasan_cqhci_irq, }; static const struct sdhci_pltfm_data sdhci_arasan_cqe_pdata = { .ops = &sdhci_arasan_cqe_ops, .quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN, }; static struct sdhci_arasan_of_data sdhci_arasan_rk3399_data = { .soc_ctl_map = &rk3399_soc_ctl_map, .pdata = &sdhci_arasan_cqe_pdata, }; static struct sdhci_arasan_of_data intel_lgm_emmc_data = { .soc_ctl_map = &intel_lgm_emmc_soc_ctl_map, .pdata = &sdhci_arasan_cqe_pdata, }; static struct sdhci_arasan_of_data intel_lgm_sdxc_data = { .soc_ctl_map = &intel_lgm_sdxc_soc_ctl_map, .pdata = &sdhci_arasan_cqe_pdata, }; #ifdef CONFIG_PM_SLEEP /** * sdhci_arasan_suspend - Suspend method for the driver * @dev: Address of the device structure * Returns 0 on success and error value on error * * Put the device in a low power state. */ static int sdhci_arasan_suspend(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host); int ret; if (host->tuning_mode != SDHCI_TUNING_MODE_3) mmc_retune_needed(host->mmc); if (sdhci_arasan->has_cqe) { ret = cqhci_suspend(host->mmc); if (ret) return ret; } ret = sdhci_suspend_host(host); if (ret) return ret; if (!IS_ERR(sdhci_arasan->phy) && sdhci_arasan->is_phy_on) { ret = phy_power_off(sdhci_arasan->phy); if (ret) { dev_err(dev, "Cannot power off phy.\n"); sdhci_resume_host(host); return ret; } sdhci_arasan->is_phy_on = false; } clk_disable(pltfm_host->clk); clk_disable(sdhci_arasan->clk_ahb); return 0; } /** * sdhci_arasan_resume - Resume method for the driver * @dev: Address of the device structure * Returns 0 on success and error value on error * * Resume operation after suspend */ static int sdhci_arasan_resume(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host); int ret; ret = clk_enable(sdhci_arasan->clk_ahb); if (ret) { dev_err(dev, "Cannot enable AHB clock.\n"); return ret; } ret = clk_enable(pltfm_host->clk); if (ret) { dev_err(dev, "Cannot enable SD clock.\n"); return ret; } if (!IS_ERR(sdhci_arasan->phy) && host->mmc->actual_clock) { ret = phy_power_on(sdhci_arasan->phy); if (ret) { dev_err(dev, "Cannot power on phy.\n"); return ret; } sdhci_arasan->is_phy_on = true; } ret = sdhci_resume_host(host); if (ret) { dev_err(dev, "Cannot resume host.\n"); return ret; } if (sdhci_arasan->has_cqe) return cqhci_resume(host->mmc); return 0; } #endif /* ! CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(sdhci_arasan_dev_pm_ops, sdhci_arasan_suspend, sdhci_arasan_resume); static const struct of_device_id sdhci_arasan_of_match[] = { /* SoC-specific compatible strings w/ soc_ctl_map */ { .compatible = "rockchip,rk3399-sdhci-5.1", .data = &sdhci_arasan_rk3399_data, }, { .compatible = "intel,lgm-sdhci-5.1-emmc", .data = &intel_lgm_emmc_data, }, { .compatible = "intel,lgm-sdhci-5.1-sdxc", .data = &intel_lgm_sdxc_data, }, /* Generic compatible below here */ { .compatible = "arasan,sdhci-8.9a", .data = &sdhci_arasan_generic_data, }, { .compatible = "arasan,sdhci-5.1", .data = &sdhci_arasan_generic_data, }, { .compatible = "arasan,sdhci-4.9a", .data = &sdhci_arasan_generic_data, }, { .compatible = "xlnx,zynqmp-8.9a", .data = &sdhci_arasan_zynqmp_data, }, { .compatible = "xlnx,versal-8.9a", .data = &sdhci_arasan_zynqmp_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, sdhci_arasan_of_match); /** * sdhci_arasan_sdcardclk_recalc_rate - Return the card clock rate * * Return the current actual rate of the SD card clock. This can be used * to communicate with out PHY. * * @hw: Pointer to the hardware clock structure. * @parent_rate The parent rate (should be rate of clk_xin). * Returns the card clock rate. */ static unsigned long sdhci_arasan_sdcardclk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct sdhci_arasan_clk_data *clk_data = container_of(hw, struct sdhci_arasan_clk_data, sdcardclk_hw); struct sdhci_arasan_data *sdhci_arasan = container_of(clk_data, struct sdhci_arasan_data, clk_data); struct sdhci_host *host = sdhci_arasan->host; return host->mmc->actual_clock; } static const struct clk_ops arasan_sdcardclk_ops = { .recalc_rate = sdhci_arasan_sdcardclk_recalc_rate, }; /** * sdhci_arasan_sampleclk_recalc_rate - Return the sampling clock rate * * Return the current actual rate of the sampling clock. This can be used * to communicate with out PHY. * * @hw: Pointer to the hardware clock structure. * @parent_rate The parent rate (should be rate of clk_xin). * Returns the sample clock rate. */ static unsigned long sdhci_arasan_sampleclk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct sdhci_arasan_clk_data *clk_data = container_of(hw, struct sdhci_arasan_clk_data, sampleclk_hw); struct sdhci_arasan_data *sdhci_arasan = container_of(clk_data, struct sdhci_arasan_data, clk_data); struct sdhci_host *host = sdhci_arasan->host; return host->mmc->actual_clock; } static const struct clk_ops arasan_sampleclk_ops = { .recalc_rate = sdhci_arasan_sampleclk_recalc_rate, }; /** * sdhci_zynqmp_sdcardclk_set_phase - Set the SD Output Clock Tap Delays * * Set the SD Output Clock Tap Delays for Output path * * @hw: Pointer to the hardware clock structure. * @degrees The clock phase shift between 0 - 359. * Return: 0 on success and error value on error */ static int sdhci_zynqmp_sdcardclk_set_phase(struct clk_hw *hw, int degrees) { struct sdhci_arasan_clk_data *clk_data = container_of(hw, struct sdhci_arasan_clk_data, sdcardclk_hw); struct sdhci_arasan_data *sdhci_arasan = container_of(clk_data, struct sdhci_arasan_data, clk_data); struct sdhci_host *host = sdhci_arasan->host; struct sdhci_arasan_zynqmp_clk_data *zynqmp_clk_data = clk_data->clk_of_data; const struct zynqmp_eemi_ops *eemi_ops = zynqmp_clk_data->eemi_ops; const char *clk_name = clk_hw_get_name(hw); u32 node_id = !strcmp(clk_name, "clk_out_sd0") ? NODE_SD_0 : NODE_SD_1; u8 tap_delay, tap_max = 0; int ret; /* * This is applicable for SDHCI_SPEC_300 and above * ZynqMP does not set phase for <=25MHz clock. * If degrees is zero, no need to do anything. */ if (host->version < SDHCI_SPEC_300 || host->timing == MMC_TIMING_LEGACY || host->timing == MMC_TIMING_UHS_SDR12 || !degrees) return 0; switch (host->timing) { case MMC_TIMING_MMC_HS: case MMC_TIMING_SD_HS: case MMC_TIMING_UHS_SDR25: case MMC_TIMING_UHS_DDR50: case MMC_TIMING_MMC_DDR52: /* For 50MHz clock, 30 Taps are available */ tap_max = 30; break; case MMC_TIMING_UHS_SDR50: /* For 100MHz clock, 15 Taps are available */ tap_max = 15; break; case MMC_TIMING_UHS_SDR104: case MMC_TIMING_MMC_HS200: /* For 200MHz clock, 8 Taps are available */ tap_max = 8; default: break; } tap_delay = (degrees * tap_max) / 360; /* Set the Clock Phase */ ret = eemi_ops->ioctl(node_id, IOCTL_SET_SD_TAPDELAY, PM_TAPDELAY_OUTPUT, tap_delay, NULL); if (ret) pr_err("Error setting Output Tap Delay\n"); return ret; } static const struct clk_ops zynqmp_sdcardclk_ops = { .recalc_rate = sdhci_arasan_sdcardclk_recalc_rate, .set_phase = sdhci_zynqmp_sdcardclk_set_phase, }; /** * sdhci_zynqmp_sampleclk_set_phase - Set the SD Input Clock Tap Delays * * Set the SD Input Clock Tap Delays for Input path * * @hw: Pointer to the hardware clock structure. * @degrees The clock phase shift between 0 - 359. * Return: 0 on success and error value on error */ static int sdhci_zynqmp_sampleclk_set_phase(struct clk_hw *hw, int degrees) { struct sdhci_arasan_clk_data *clk_data = container_of(hw, struct sdhci_arasan_clk_data, sampleclk_hw); struct sdhci_arasan_data *sdhci_arasan = container_of(clk_data, struct sdhci_arasan_data, clk_data); struct sdhci_host *host = sdhci_arasan->host; struct sdhci_arasan_zynqmp_clk_data *zynqmp_clk_data = clk_data->clk_of_data; const struct zynqmp_eemi_ops *eemi_ops = zynqmp_clk_data->eemi_ops; const char *clk_name = clk_hw_get_name(hw); u32 node_id = !strcmp(clk_name, "clk_in_sd0") ? NODE_SD_0 : NODE_SD_1; u8 tap_delay, tap_max = 0; int ret; /* * This is applicable for SDHCI_SPEC_300 and above * ZynqMP does not set phase for <=25MHz clock. * If degrees is zero, no need to do anything. */ if (host->version < SDHCI_SPEC_300 || host->timing == MMC_TIMING_LEGACY || host->timing == MMC_TIMING_UHS_SDR12 || !degrees) return 0; switch (host->timing) { case MMC_TIMING_MMC_HS: case MMC_TIMING_SD_HS: case MMC_TIMING_UHS_SDR25: case MMC_TIMING_UHS_DDR50: case MMC_TIMING_MMC_DDR52: /* For 50MHz clock, 120 Taps are available */ tap_max = 120; break; case MMC_TIMING_UHS_SDR50: /* For 100MHz clock, 60 Taps are available */ tap_max = 60; break; case MMC_TIMING_UHS_SDR104: case MMC_TIMING_MMC_HS200: /* For 200MHz clock, 30 Taps are available */ tap_max = 30; default: break; } tap_delay = (degrees * tap_max) / 360; /* Set the Clock Phase */ ret = eemi_ops->ioctl(node_id, IOCTL_SET_SD_TAPDELAY, PM_TAPDELAY_INPUT, tap_delay, NULL); if (ret) pr_err("Error setting Input Tap Delay\n"); return ret; } static const struct clk_ops zynqmp_sampleclk_ops = { .recalc_rate = sdhci_arasan_sampleclk_recalc_rate, .set_phase = sdhci_zynqmp_sampleclk_set_phase, }; /** * sdhci_versal_sdcardclk_set_phase - Set the SD Output Clock Tap Delays * * Set the SD Output Clock Tap Delays for Output path * * @hw: Pointer to the hardware clock structure. * @degrees The clock phase shift between 0 - 359. * Return: 0 on success and error value on error */ static int sdhci_versal_sdcardclk_set_phase(struct clk_hw *hw, int degrees) { struct sdhci_arasan_clk_data *clk_data = container_of(hw, struct sdhci_arasan_clk_data, sdcardclk_hw); struct sdhci_arasan_data *sdhci_arasan = container_of(clk_data, struct sdhci_arasan_data, clk_data); struct sdhci_host *host = sdhci_arasan->host; u8 tap_delay, tap_max = 0; int ret; /* * This is applicable for SDHCI_SPEC_300 and above * Versal does not set phase for <=25MHz clock. * If degrees is zero, no need to do anything. */ if (host->version < SDHCI_SPEC_300 || host->timing == MMC_TIMING_LEGACY || host->timing == MMC_TIMING_UHS_SDR12 || !degrees) return 0; switch (host->timing) { case MMC_TIMING_MMC_HS: case MMC_TIMING_SD_HS: case MMC_TIMING_UHS_SDR25: case MMC_TIMING_UHS_DDR50: case MMC_TIMING_MMC_DDR52: /* For 50MHz clock, 30 Taps are available */ tap_max = 30; break; case MMC_TIMING_UHS_SDR50: /* For 100MHz clock, 15 Taps are available */ tap_max = 15; break; case MMC_TIMING_UHS_SDR104: case MMC_TIMING_MMC_HS200: /* For 200MHz clock, 8 Taps are available */ tap_max = 8; default: break; } tap_delay = (degrees * tap_max) / 360; /* Set the Clock Phase */ if (tap_delay) { u32 regval; regval = sdhci_readl(host, SDHCI_ARASAN_OTAPDLY_REGISTER); regval |= SDHCI_OTAPDLY_ENABLE; sdhci_writel(host, regval, SDHCI_ARASAN_OTAPDLY_REGISTER); regval |= tap_delay; sdhci_writel(host, regval, SDHCI_ARASAN_OTAPDLY_REGISTER); } return ret; } static const struct clk_ops versal_sdcardclk_ops = { .recalc_rate = sdhci_arasan_sdcardclk_recalc_rate, .set_phase = sdhci_versal_sdcardclk_set_phase, }; /** * sdhci_versal_sampleclk_set_phase - Set the SD Input Clock Tap Delays * * Set the SD Input Clock Tap Delays for Input path * * @hw: Pointer to the hardware clock structure. * @degrees The clock phase shift between 0 - 359. * Return: 0 on success and error value on error */ static int sdhci_versal_sampleclk_set_phase(struct clk_hw *hw, int degrees) { struct sdhci_arasan_clk_data *clk_data = container_of(hw, struct sdhci_arasan_clk_data, sampleclk_hw); struct sdhci_arasan_data *sdhci_arasan = container_of(clk_data, struct sdhci_arasan_data, clk_data); struct sdhci_host *host = sdhci_arasan->host; u8 tap_delay, tap_max = 0; int ret; /* * This is applicable for SDHCI_SPEC_300 and above * Versal does not set phase for <=25MHz clock. * If degrees is zero, no need to do anything. */ if (host->version < SDHCI_SPEC_300 || host->timing == MMC_TIMING_LEGACY || host->timing == MMC_TIMING_UHS_SDR12 || !degrees) return 0; switch (host->timing) { case MMC_TIMING_MMC_HS: case MMC_TIMING_SD_HS: case MMC_TIMING_UHS_SDR25: case MMC_TIMING_UHS_DDR50: case MMC_TIMING_MMC_DDR52: /* For 50MHz clock, 120 Taps are available */ tap_max = 120; break; case MMC_TIMING_UHS_SDR50: /* For 100MHz clock, 60 Taps are available */ tap_max = 60; break; case MMC_TIMING_UHS_SDR104: case MMC_TIMING_MMC_HS200: /* For 200MHz clock, 30 Taps are available */ tap_max = 30; default: break; } tap_delay = (degrees * tap_max) / 360; /* Set the Clock Phase */ if (tap_delay) { u32 regval; regval = sdhci_readl(host, SDHCI_ARASAN_ITAPDLY_REGISTER); regval |= SDHCI_ITAPDLY_CHGWIN; sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER); regval |= SDHCI_ITAPDLY_ENABLE; sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER); regval |= tap_delay; sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER); regval &= ~SDHCI_ITAPDLY_CHGWIN; sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER); } return ret; } static const struct clk_ops versal_sampleclk_ops = { .recalc_rate = sdhci_arasan_sampleclk_recalc_rate, .set_phase = sdhci_versal_sampleclk_set_phase, }; static void arasan_zynqmp_dll_reset(struct sdhci_host *host, u32 deviceid) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host); struct sdhci_arasan_zynqmp_clk_data *zynqmp_clk_data = sdhci_arasan->clk_data.clk_of_data; const struct zynqmp_eemi_ops *eemi_ops = zynqmp_clk_data->eemi_ops; u16 clk; clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); clk &= ~(SDHCI_CLOCK_CARD_EN | SDHCI_CLOCK_INT_EN); sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); /* Issue DLL Reset */ eemi_ops->ioctl(deviceid, IOCTL_SD_DLL_RESET, PM_DLL_RESET_PULSE, 0, NULL); clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); sdhci_enable_clk(host, clk); } static int arasan_zynqmp_execute_tuning(struct mmc_host *mmc, u32 opcode) { struct sdhci_host *host = mmc_priv(mmc); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host); struct clk_hw *hw = &sdhci_arasan->clk_data.sdcardclk_hw; const char *clk_name = clk_hw_get_name(hw); u32 device_id = !strcmp(clk_name, "clk_out_sd0") ? NODE_SD_0 : NODE_SD_1; int err; arasan_zynqmp_dll_reset(host, device_id); err = sdhci_execute_tuning(mmc, opcode); if (err) return err; arasan_zynqmp_dll_reset(host, device_id); return 0; } /** * sdhci_arasan_update_clockmultiplier - Set corecfg_clockmultiplier * * The corecfg_clockmultiplier is supposed to contain clock multiplier * value of programmable clock generator. * * NOTES: * - Many existing devices don't seem to do this and work fine. To keep * compatibility for old hardware where the device tree doesn't provide a * register map, this function is a noop if a soc_ctl_map hasn't been provided * for this platform. * - The value of corecfg_clockmultiplier should sync with that of corresponding * value reading from sdhci_capability_register. So this function is called * once at probe time and never called again. * * @host: The sdhci_host */ static void sdhci_arasan_update_clockmultiplier(struct sdhci_host *host, u32 value) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host); const struct sdhci_arasan_soc_ctl_map *soc_ctl_map = sdhci_arasan->soc_ctl_map; /* Having a map is optional */ if (!soc_ctl_map) return; /* If we have a map, we expect to have a syscon */ if (!sdhci_arasan->soc_ctl_base) { pr_warn("%s: Have regmap, but no soc-ctl-syscon\n", mmc_hostname(host->mmc)); return; } sdhci_arasan_syscon_write(host, &soc_ctl_map->clockmultiplier, value); } /** * sdhci_arasan_update_baseclkfreq - Set corecfg_baseclkfreq * * The corecfg_baseclkfreq is supposed to contain the MHz of clk_xin. This * function can be used to make that happen. * * NOTES: * - Many existing devices don't seem to do this and work fine. To keep * compatibility for old hardware where the device tree doesn't provide a * register map, this function is a noop if a soc_ctl_map hasn't been provided * for this platform. * - It's assumed that clk_xin is not dynamic and that we use the SDHCI divider * to achieve lower clock rates. That means that this function is called once * at probe time and never called again. * * @host: The sdhci_host */ static void sdhci_arasan_update_baseclkfreq(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host); const struct sdhci_arasan_soc_ctl_map *soc_ctl_map = sdhci_arasan->soc_ctl_map; u32 mhz = DIV_ROUND_CLOSEST(clk_get_rate(pltfm_host->clk), 1000000); /* Having a map is optional */ if (!soc_ctl_map) return; /* If we have a map, we expect to have a syscon */ if (!sdhci_arasan->soc_ctl_base) { pr_warn("%s: Have regmap, but no soc-ctl-syscon\n", mmc_hostname(host->mmc)); return; } sdhci_arasan_syscon_write(host, &soc_ctl_map->baseclkfreq, mhz); } static void sdhci_arasan_set_clk_delays(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host); struct sdhci_arasan_clk_data *clk_data = &sdhci_arasan->clk_data; clk_set_phase(clk_data->sampleclk, clk_data->clk_phase_in[host->timing]); clk_set_phase(clk_data->sdcardclk, clk_data->clk_phase_out[host->timing]); } static void arasan_dt_read_clk_phase(struct device *dev, struct sdhci_arasan_clk_data *clk_data, unsigned int timing, const char *prop) { struct device_node *np = dev->of_node; int clk_phase[2] = {0}; /* * Read Tap Delay values from DT, if the DT does not contain the * Tap Values then use the pre-defined values. */ if (of_property_read_variable_u32_array(np, prop, &clk_phase[0], 2, 0)) { dev_dbg(dev, "Using predefined clock phase for %s = %d %d\n", prop, clk_data->clk_phase_in[timing], clk_data->clk_phase_out[timing]); return; } /* The values read are Input and Output Clock Delays in order */ clk_data->clk_phase_in[timing] = clk_phase[0]; clk_data->clk_phase_out[timing] = clk_phase[1]; } /** * arasan_dt_parse_clk_phases - Read Clock Delay values from DT * * Called at initialization to parse the values of Clock Delays. * * @dev: Pointer to our struct device. * @clk_data: Pointer to the Clock Data structure */ static void arasan_dt_parse_clk_phases(struct device *dev, struct sdhci_arasan_clk_data *clk_data) { int *iclk_phase, *oclk_phase; u32 mio_bank = 0; int i; /* * This has been kept as a pointer and is assigned a function here. * So that different controller variants can assign their own handling * function. */ clk_data->set_clk_delays = sdhci_arasan_set_clk_delays; if (of_device_is_compatible(dev->of_node, "xlnx,zynqmp-8.9a")) { iclk_phase = (int [MMC_TIMING_MMC_HS400 + 1]) ZYNQMP_ICLK_PHASE; oclk_phase = (int [MMC_TIMING_MMC_HS400 + 1]) ZYNQMP_OCLK_PHASE; of_property_read_u32(dev->of_node, "xlnx,mio-bank", &mio_bank); if (mio_bank == 2) { oclk_phase[MMC_TIMING_UHS_SDR104] = 90; oclk_phase[MMC_TIMING_MMC_HS200] = 90; } for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) { clk_data->clk_phase_in[i] = iclk_phase[i]; clk_data->clk_phase_out[i] = oclk_phase[i]; } } if (of_device_is_compatible(dev->of_node, "xlnx,versal-8.9a")) { iclk_phase = (int [MMC_TIMING_MMC_HS400 + 1]) VERSAL_ICLK_PHASE; oclk_phase = (int [MMC_TIMING_MMC_HS400 + 1]) VERSAL_OCLK_PHASE; for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) { clk_data->clk_phase_in[i] = iclk_phase[i]; clk_data->clk_phase_out[i] = oclk_phase[i]; } } arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_LEGACY, "clk-phase-legacy"); arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_MMC_HS, "clk-phase-mmc-hs"); arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_SD_HS, "clk-phase-sd-hs"); arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_SDR12, "clk-phase-uhs-sdr12"); arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_SDR25, "clk-phase-uhs-sdr25"); arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_SDR50, "clk-phase-uhs-sdr50"); arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_SDR104, "clk-phase-uhs-sdr104"); arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_DDR50, "clk-phase-uhs-ddr50"); arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_MMC_DDR52, "clk-phase-mmc-ddr52"); arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_MMC_HS200, "clk-phase-mmc-hs200"); arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_MMC_HS400, "clk-phase-mmc-hs400"); } /** * sdhci_arasan_register_sdcardclk - Register the sdcardclk for a PHY to use * * Some PHY devices need to know what the actual card clock is. In order for * them to find out, we'll provide a clock through the common clock framework * for them to query. * * @sdhci_arasan: Our private data structure. * @clk_xin: Pointer to the functional clock * @dev: Pointer to our struct device. * Returns 0 on success and error value on error */ static int sdhci_arasan_register_sdcardclk(struct sdhci_arasan_data *sdhci_arasan, struct clk *clk_xin, struct device *dev) { struct sdhci_arasan_clk_data *clk_data = &sdhci_arasan->clk_data; struct device_node *np = dev->of_node; struct clk_init_data sdcardclk_init; const char *parent_clk_name; int ret; ret = of_property_read_string_index(np, "clock-output-names", 0, &sdcardclk_init.name); if (ret) { dev_err(dev, "DT has #clock-cells but no clock-output-names\n"); return ret; } parent_clk_name = __clk_get_name(clk_xin); sdcardclk_init.parent_names = &parent_clk_name; sdcardclk_init.num_parents = 1; sdcardclk_init.flags = CLK_GET_RATE_NOCACHE; if (of_device_is_compatible(np, "xlnx,zynqmp-8.9a")) sdcardclk_init.ops = &zynqmp_sdcardclk_ops; else if (of_device_is_compatible(np, "xlnx,versal-8.9a")) sdcardclk_init.ops = &versal_sdcardclk_ops; else sdcardclk_init.ops = &arasan_sdcardclk_ops; clk_data->sdcardclk_hw.init = &sdcardclk_init; clk_data->sdcardclk = devm_clk_register(dev, &clk_data->sdcardclk_hw); clk_data->sdcardclk_hw.init = NULL; ret = of_clk_add_provider(np, of_clk_src_simple_get, clk_data->sdcardclk); if (ret) dev_err(dev, "Failed to add sdcard clock provider\n"); return ret; } /** * sdhci_arasan_register_sampleclk - Register the sampleclk for a PHY to use * * Some PHY devices need to know what the actual card clock is. In order for * them to find out, we'll provide a clock through the common clock framework * for them to query. * * @sdhci_arasan: Our private data structure. * @clk_xin: Pointer to the functional clock * @dev: Pointer to our struct device. * Returns 0 on success and error value on error */ static int sdhci_arasan_register_sampleclk(struct sdhci_arasan_data *sdhci_arasan, struct clk *clk_xin, struct device *dev) { struct sdhci_arasan_clk_data *clk_data = &sdhci_arasan->clk_data; struct device_node *np = dev->of_node; struct clk_init_data sampleclk_init; const char *parent_clk_name; int ret; ret = of_property_read_string_index(np, "clock-output-names", 1, &sampleclk_init.name); if (ret) { dev_err(dev, "DT has #clock-cells but no clock-output-names\n"); return ret; } parent_clk_name = __clk_get_name(clk_xin); sampleclk_init.parent_names = &parent_clk_name; sampleclk_init.num_parents = 1; sampleclk_init.flags = CLK_GET_RATE_NOCACHE; if (of_device_is_compatible(np, "xlnx,zynqmp-8.9a")) sampleclk_init.ops = &zynqmp_sampleclk_ops; else if (of_device_is_compatible(np, "xlnx,versal-8.9a")) sampleclk_init.ops = &versal_sampleclk_ops; else sampleclk_init.ops = &arasan_sampleclk_ops; clk_data->sampleclk_hw.init = &sampleclk_init; clk_data->sampleclk = devm_clk_register(dev, &clk_data->sampleclk_hw); clk_data->sampleclk_hw.init = NULL; ret = of_clk_add_provider(np, of_clk_src_simple_get, clk_data->sampleclk); if (ret) dev_err(dev, "Failed to add sample clock provider\n"); return ret; } /** * sdhci_arasan_unregister_sdclk - Undoes sdhci_arasan_register_sdclk() * * Should be called any time we're exiting and sdhci_arasan_register_sdclk() * returned success. * * @dev: Pointer to our struct device. */ static void sdhci_arasan_unregister_sdclk(struct device *dev) { struct device_node *np = dev->of_node; if (!of_find_property(np, "#clock-cells", NULL)) return; of_clk_del_provider(dev->of_node); } /** * sdhci_arasan_register_sdclk - Register the sdcardclk for a PHY to use * * Some PHY devices need to know what the actual card clock is. In order for * them to find out, we'll provide a clock through the common clock framework * for them to query. * * Note: without seriously re-architecting SDHCI's clock code and testing on * all platforms, there's no way to create a totally beautiful clock here * with all clock ops implemented. Instead, we'll just create a clock that can * be queried and set the CLK_GET_RATE_NOCACHE attribute to tell common clock * framework that we're doing things behind its back. This should be sufficient * to create nice clean device tree bindings and later (if needed) we can try * re-architecting SDHCI if we see some benefit to it. * * @sdhci_arasan: Our private data structure. * @clk_xin: Pointer to the functional clock * @dev: Pointer to our struct device. * Returns 0 on success and error value on error */ static int sdhci_arasan_register_sdclk(struct sdhci_arasan_data *sdhci_arasan, struct clk *clk_xin, struct device *dev) { struct device_node *np = dev->of_node; u32 num_clks = 0; int ret; /* Providing a clock to the PHY is optional; no error if missing */ if (of_property_read_u32(np, "#clock-cells", &num_clks) < 0) return 0; ret = sdhci_arasan_register_sdcardclk(sdhci_arasan, clk_xin, dev); if (ret) return ret; if (num_clks) { ret = sdhci_arasan_register_sampleclk(sdhci_arasan, clk_xin, dev); if (ret) { sdhci_arasan_unregister_sdclk(dev); return ret; } } return 0; } static int sdhci_arasan_add_host(struct sdhci_arasan_data *sdhci_arasan) { struct sdhci_host *host = sdhci_arasan->host; struct cqhci_host *cq_host; bool dma64; int ret; if (!sdhci_arasan->has_cqe) return sdhci_add_host(host); ret = sdhci_setup_host(host); if (ret) return ret; cq_host = devm_kzalloc(host->mmc->parent, sizeof(*cq_host), GFP_KERNEL); if (!cq_host) { ret = -ENOMEM; goto cleanup; } cq_host->mmio = host->ioaddr + SDHCI_ARASAN_CQE_BASE_ADDR; cq_host->ops = &sdhci_arasan_cqhci_ops; dma64 = host->flags & SDHCI_USE_64_BIT_DMA; if (dma64) cq_host->caps |= CQHCI_TASK_DESC_SZ_128; ret = cqhci_init(cq_host, host->mmc, dma64); if (ret) goto cleanup; ret = __sdhci_add_host(host); if (ret) goto cleanup; return 0; cleanup: sdhci_cleanup_host(host); return ret; } static int sdhci_arasan_probe(struct platform_device *pdev) { int ret; const struct of_device_id *match; struct device_node *node; struct clk *clk_xin; struct sdhci_host *host; struct sdhci_pltfm_host *pltfm_host; struct sdhci_arasan_data *sdhci_arasan; struct device_node *np = pdev->dev.of_node; const struct sdhci_arasan_of_data *data; match = of_match_node(sdhci_arasan_of_match, pdev->dev.of_node); data = match->data; host = sdhci_pltfm_init(pdev, data->pdata, sizeof(*sdhci_arasan)); if (IS_ERR(host)) return PTR_ERR(host); pltfm_host = sdhci_priv(host); sdhci_arasan = sdhci_pltfm_priv(pltfm_host); sdhci_arasan->host = host; sdhci_arasan->soc_ctl_map = data->soc_ctl_map; node = of_parse_phandle(pdev->dev.of_node, "arasan,soc-ctl-syscon", 0); if (node) { sdhci_arasan->soc_ctl_base = syscon_node_to_regmap(node); of_node_put(node); if (IS_ERR(sdhci_arasan->soc_ctl_base)) { ret = PTR_ERR(sdhci_arasan->soc_ctl_base); if (ret != -EPROBE_DEFER) dev_err(&pdev->dev, "Can't get syscon: %d\n", ret); goto err_pltfm_free; } } sdhci_arasan->clk_ahb = devm_clk_get(&pdev->dev, "clk_ahb"); if (IS_ERR(sdhci_arasan->clk_ahb)) { dev_err(&pdev->dev, "clk_ahb clock not found.\n"); ret = PTR_ERR(sdhci_arasan->clk_ahb); goto err_pltfm_free; } clk_xin = devm_clk_get(&pdev->dev, "clk_xin"); if (IS_ERR(clk_xin)) { dev_err(&pdev->dev, "clk_xin clock not found.\n"); ret = PTR_ERR(clk_xin); goto err_pltfm_free; } ret = clk_prepare_enable(sdhci_arasan->clk_ahb); if (ret) { dev_err(&pdev->dev, "Unable to enable AHB clock.\n"); goto err_pltfm_free; } ret = clk_prepare_enable(clk_xin); if (ret) { dev_err(&pdev->dev, "Unable to enable SD clock.\n"); goto clk_dis_ahb; } sdhci_get_of_property(pdev); if (of_property_read_bool(np, "xlnx,fails-without-test-cd")) sdhci_arasan->quirks |= SDHCI_ARASAN_QUIRK_FORCE_CDTEST; if (of_property_read_bool(np, "xlnx,int-clock-stable-broken")) sdhci_arasan->quirks |= SDHCI_ARASAN_QUIRK_CLOCK_UNSTABLE; pltfm_host->clk = clk_xin; if (of_device_is_compatible(pdev->dev.of_node, "rockchip,rk3399-sdhci-5.1")) sdhci_arasan_update_clockmultiplier(host, 0x0); sdhci_arasan_update_baseclkfreq(host); ret = sdhci_arasan_register_sdclk(sdhci_arasan, clk_xin, &pdev->dev); if (ret) goto clk_disable_all; if (of_device_is_compatible(np, "xlnx,zynqmp-8.9a")) { struct sdhci_arasan_zynqmp_clk_data *zynqmp_clk_data; const struct zynqmp_eemi_ops *eemi_ops; zynqmp_clk_data = devm_kzalloc(&pdev->dev, sizeof(*zynqmp_clk_data), GFP_KERNEL); eemi_ops = zynqmp_pm_get_eemi_ops(); if (IS_ERR(eemi_ops)) { ret = PTR_ERR(eemi_ops); goto unreg_clk; } zynqmp_clk_data->eemi_ops = eemi_ops; sdhci_arasan->clk_data.clk_of_data = zynqmp_clk_data; host->mmc_host_ops.execute_tuning = arasan_zynqmp_execute_tuning; } arasan_dt_parse_clk_phases(&pdev->dev, &sdhci_arasan->clk_data); ret = mmc_of_parse(host->mmc); if (ret) { if (ret != -EPROBE_DEFER) dev_err(&pdev->dev, "parsing dt failed (%d)\n", ret); goto unreg_clk; } sdhci_arasan->phy = ERR_PTR(-ENODEV); if (of_device_is_compatible(pdev->dev.of_node, "arasan,sdhci-5.1")) { sdhci_arasan->phy = devm_phy_get(&pdev->dev, "phy_arasan"); if (IS_ERR(sdhci_arasan->phy)) { ret = PTR_ERR(sdhci_arasan->phy); dev_err(&pdev->dev, "No phy for arasan,sdhci-5.1.\n"); goto unreg_clk; } ret = phy_init(sdhci_arasan->phy); if (ret < 0) { dev_err(&pdev->dev, "phy_init err.\n"); goto unreg_clk; } host->mmc_host_ops.hs400_enhanced_strobe = sdhci_arasan_hs400_enhanced_strobe; host->mmc_host_ops.start_signal_voltage_switch = sdhci_arasan_voltage_switch; sdhci_arasan->has_cqe = true; host->mmc->caps2 |= MMC_CAP2_CQE; if (!of_property_read_bool(np, "disable-cqe-dcmd")) host->mmc->caps2 |= MMC_CAP2_CQE_DCMD; } ret = sdhci_arasan_add_host(sdhci_arasan); if (ret) goto err_add_host; return 0; err_add_host: if (!IS_ERR(sdhci_arasan->phy)) phy_exit(sdhci_arasan->phy); unreg_clk: sdhci_arasan_unregister_sdclk(&pdev->dev); clk_disable_all: clk_disable_unprepare(clk_xin); clk_dis_ahb: clk_disable_unprepare(sdhci_arasan->clk_ahb); err_pltfm_free: sdhci_pltfm_free(pdev); return ret; } static int sdhci_arasan_remove(struct platform_device *pdev) { int ret; struct sdhci_host *host = platform_get_drvdata(pdev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host); struct clk *clk_ahb = sdhci_arasan->clk_ahb; if (!IS_ERR(sdhci_arasan->phy)) { if (sdhci_arasan->is_phy_on) phy_power_off(sdhci_arasan->phy); phy_exit(sdhci_arasan->phy); } sdhci_arasan_unregister_sdclk(&pdev->dev); ret = sdhci_pltfm_unregister(pdev); clk_disable_unprepare(clk_ahb); return ret; } static struct platform_driver sdhci_arasan_driver = { .driver = { .name = "sdhci-arasan", .of_match_table = sdhci_arasan_of_match, .pm = &sdhci_arasan_dev_pm_ops, }, .probe = sdhci_arasan_probe, .remove = sdhci_arasan_remove, }; module_platform_driver(sdhci_arasan_driver); MODULE_DESCRIPTION("Driver for the Arasan SDHCI Controller"); MODULE_AUTHOR("Soeren Brinkmann "); MODULE_LICENSE("GPL");