// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * Copyright (c) 2016-2018 Christoph Hellwig. * All Rights Reserved. */ #include "xfs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_inode_item.h" #include "xfs_alloc.h" #include "xfs_error.h" #include "xfs_iomap.h" #include "xfs_trace.h" #include "xfs_bmap.h" #include "xfs_bmap_util.h" #include "xfs_bmap_btree.h" #include "xfs_reflink.h" #include /* * structure owned by writepages passed to individual writepage calls */ struct xfs_writepage_ctx { struct xfs_bmbt_irec imap; int fork; unsigned int data_seq; unsigned int cow_seq; struct xfs_ioend *ioend; }; struct block_device * xfs_find_bdev_for_inode( struct inode *inode) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; if (XFS_IS_REALTIME_INODE(ip)) return mp->m_rtdev_targp->bt_bdev; else return mp->m_ddev_targp->bt_bdev; } struct dax_device * xfs_find_daxdev_for_inode( struct inode *inode) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; if (XFS_IS_REALTIME_INODE(ip)) return mp->m_rtdev_targp->bt_daxdev; else return mp->m_ddev_targp->bt_daxdev; } static void xfs_finish_page_writeback( struct inode *inode, struct bio_vec *bvec, int error) { struct iomap_page *iop = to_iomap_page(bvec->bv_page); if (error) { SetPageError(bvec->bv_page); mapping_set_error(inode->i_mapping, -EIO); } ASSERT(iop || i_blocksize(inode) == PAGE_SIZE); ASSERT(!iop || atomic_read(&iop->write_count) > 0); if (!iop || atomic_dec_and_test(&iop->write_count)) end_page_writeback(bvec->bv_page); } /* * We're now finished for good with this ioend structure. Update the page * state, release holds on bios, and finally free up memory. Do not use the * ioend after this. */ STATIC void xfs_destroy_ioend( struct xfs_ioend *ioend, int error) { struct inode *inode = ioend->io_inode; struct bio *bio = &ioend->io_inline_bio; struct bio *last = ioend->io_bio, *next; u64 start = bio->bi_iter.bi_sector; bool quiet = bio_flagged(bio, BIO_QUIET); for (bio = &ioend->io_inline_bio; bio; bio = next) { struct bio_vec *bvec; int i; /* * For the last bio, bi_private points to the ioend, so we * need to explicitly end the iteration here. */ if (bio == last) next = NULL; else next = bio->bi_private; /* walk each page on bio, ending page IO on them */ bio_for_each_segment_all(bvec, bio, i) xfs_finish_page_writeback(inode, bvec, error); bio_put(bio); } if (unlikely(error && !quiet)) { xfs_err_ratelimited(XFS_I(inode)->i_mount, "writeback error on sector %llu", start); } } /* * Fast and loose check if this write could update the on-disk inode size. */ static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) { return ioend->io_offset + ioend->io_size > XFS_I(ioend->io_inode)->i_d.di_size; } STATIC int xfs_setfilesize_trans_alloc( struct xfs_ioend *ioend) { struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; struct xfs_trans *tp; int error; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, XFS_TRANS_NOFS, &tp); if (error) return error; ioend->io_append_trans = tp; /* * We may pass freeze protection with a transaction. So tell lockdep * we released it. */ __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); /* * We hand off the transaction to the completion thread now, so * clear the flag here. */ current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); return 0; } /* * Update on-disk file size now that data has been written to disk. */ STATIC int __xfs_setfilesize( struct xfs_inode *ip, struct xfs_trans *tp, xfs_off_t offset, size_t size) { xfs_fsize_t isize; xfs_ilock(ip, XFS_ILOCK_EXCL); isize = xfs_new_eof(ip, offset + size); if (!isize) { xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_trans_cancel(tp); return 0; } trace_xfs_setfilesize(ip, offset, size); ip->i_d.di_size = isize; xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); return xfs_trans_commit(tp); } int xfs_setfilesize( struct xfs_inode *ip, xfs_off_t offset, size_t size) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int error; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); if (error) return error; return __xfs_setfilesize(ip, tp, offset, size); } STATIC int xfs_setfilesize_ioend( struct xfs_ioend *ioend, int error) { struct xfs_inode *ip = XFS_I(ioend->io_inode); struct xfs_trans *tp = ioend->io_append_trans; /* * The transaction may have been allocated in the I/O submission thread, * thus we need to mark ourselves as being in a transaction manually. * Similarly for freeze protection. */ current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); /* we abort the update if there was an IO error */ if (error) { xfs_trans_cancel(tp); return error; } return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); } /* * IO write completion. */ STATIC void xfs_end_io( struct work_struct *work) { struct xfs_ioend *ioend = container_of(work, struct xfs_ioend, io_work); struct xfs_inode *ip = XFS_I(ioend->io_inode); xfs_off_t offset = ioend->io_offset; size_t size = ioend->io_size; int error; /* * Just clean up the in-memory strutures if the fs has been shut down. */ if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { error = -EIO; goto done; } /* * Clean up any COW blocks on an I/O error. */ error = blk_status_to_errno(ioend->io_bio->bi_status); if (unlikely(error)) { if (ioend->io_fork == XFS_COW_FORK) xfs_reflink_cancel_cow_range(ip, offset, size, true); goto done; } /* * Success: commit the COW or unwritten blocks if needed. */ if (ioend->io_fork == XFS_COW_FORK) error = xfs_reflink_end_cow(ip, offset, size); else if (ioend->io_state == XFS_EXT_UNWRITTEN) error = xfs_iomap_write_unwritten(ip, offset, size, false); else ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans); done: if (ioend->io_append_trans) error = xfs_setfilesize_ioend(ioend, error); xfs_destroy_ioend(ioend, error); } STATIC void xfs_end_bio( struct bio *bio) { struct xfs_ioend *ioend = bio->bi_private; struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; if (ioend->io_fork == XFS_COW_FORK || ioend->io_state == XFS_EXT_UNWRITTEN) queue_work(mp->m_unwritten_workqueue, &ioend->io_work); else if (ioend->io_append_trans) queue_work(mp->m_data_workqueue, &ioend->io_work); else xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status)); } /* * Fast revalidation of the cached writeback mapping. Return true if the current * mapping is valid, false otherwise. */ static bool xfs_imap_valid( struct xfs_writepage_ctx *wpc, struct xfs_inode *ip, xfs_fileoff_t offset_fsb) { if (offset_fsb < wpc->imap.br_startoff || offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount) return false; /* * If this is a COW mapping, it is sufficient to check that the mapping * covers the offset. Be careful to check this first because the caller * can revalidate a COW mapping without updating the data seqno. */ if (wpc->fork == XFS_COW_FORK) return true; /* * This is not a COW mapping. Check the sequence number of the data fork * because concurrent changes could have invalidated the extent. Check * the COW fork because concurrent changes since the last time we * checked (and found nothing at this offset) could have added * overlapping blocks. */ if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq)) return false; if (xfs_inode_has_cow_data(ip) && wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) return false; return true; } /* * Pass in a dellalloc extent and convert it to real extents, return the real * extent that maps offset_fsb in wpc->imap. * * The current page is held locked so nothing could have removed the block * backing offset_fsb. */ static int xfs_convert_blocks( struct xfs_writepage_ctx *wpc, struct xfs_inode *ip, xfs_fileoff_t offset_fsb) { int error; /* * Attempt to allocate whatever delalloc extent currently backs * offset_fsb and put the result into wpc->imap. Allocate in a loop * because it may take several attempts to allocate real blocks for a * contiguous delalloc extent if free space is sufficiently fragmented. */ do { error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb, &wpc->imap, wpc->fork == XFS_COW_FORK ? &wpc->cow_seq : &wpc->data_seq); if (error) return error; } while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb); return 0; } STATIC int xfs_map_blocks( struct xfs_writepage_ctx *wpc, struct inode *inode, loff_t offset) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; ssize_t count = i_blocksize(inode); xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); xfs_fileoff_t cow_fsb = NULLFILEOFF; struct xfs_bmbt_irec imap; struct xfs_iext_cursor icur; int error = 0; if (XFS_FORCED_SHUTDOWN(mp)) return -EIO; /* * COW fork blocks can overlap data fork blocks even if the blocks * aren't shared. COW I/O always takes precedent, so we must always * check for overlap on reflink inodes unless the mapping is already a * COW one, or the COW fork hasn't changed from the last time we looked * at it. * * It's safe to check the COW fork if_seq here without the ILOCK because * we've indirectly protected against concurrent updates: writeback has * the page locked, which prevents concurrent invalidations by reflink * and directio and prevents concurrent buffered writes to the same * page. Changes to if_seq always happen under i_lock, which protects * against concurrent updates and provides a memory barrier on the way * out that ensures that we always see the current value. */ if (xfs_imap_valid(wpc, ip, offset_fsb)) return 0; /* * If we don't have a valid map, now it's time to get a new one for this * offset. This will convert delayed allocations (including COW ones) * into real extents. If we return without a valid map, it means we * landed in a hole and we skip the block. */ xfs_ilock(ip, XFS_ILOCK_SHARED); ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || (ip->i_df.if_flags & XFS_IFEXTENTS)); /* * Check if this is offset is covered by a COW extents, and if yes use * it directly instead of looking up anything in the data fork. */ if (xfs_inode_has_cow_data(ip) && xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) cow_fsb = imap.br_startoff; if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); xfs_iunlock(ip, XFS_ILOCK_SHARED); wpc->fork = XFS_COW_FORK; goto allocate_blocks; } /* * No COW extent overlap. Revalidate now that we may have updated * ->cow_seq. If the data mapping is still valid, we're done. */ if (xfs_imap_valid(wpc, ip, offset_fsb)) { xfs_iunlock(ip, XFS_ILOCK_SHARED); return 0; } /* * If we don't have a valid map, now it's time to get a new one for this * offset. This will convert delayed allocations (including COW ones) * into real extents. */ if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) imap.br_startoff = end_fsb; /* fake a hole past EOF */ wpc->data_seq = READ_ONCE(ip->i_df.if_seq); xfs_iunlock(ip, XFS_ILOCK_SHARED); wpc->fork = XFS_DATA_FORK; if (imap.br_startoff > offset_fsb) { /* landed in a hole or beyond EOF */ imap.br_blockcount = imap.br_startoff - offset_fsb; imap.br_startoff = offset_fsb; imap.br_startblock = HOLESTARTBLOCK; imap.br_state = XFS_EXT_NORM; } else { /* * Truncate to the next COW extent if there is one. This is the * only opportunity to do this because we can skip COW fork * lookups for the subsequent blocks in the mapping; however, * the requirement to treat the COW range separately remains. */ if (cow_fsb != NULLFILEOFF && cow_fsb < imap.br_startoff + imap.br_blockcount) imap.br_blockcount = cow_fsb - imap.br_startoff; /* got a delalloc extent? */ if (isnullstartblock(imap.br_startblock)) goto allocate_blocks; } wpc->imap = imap; trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap); return 0; allocate_blocks: error = xfs_convert_blocks(wpc, ip, offset_fsb); if (error) return error; /* * Due to merging the return real extent might be larger than the * original delalloc one. Trim the return extent to the next COW * boundary again to force a re-lookup. */ if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF && cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount) wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff; ASSERT(wpc->imap.br_startoff <= offset_fsb); ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb); trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap); return 0; } /* * Submit the bio for an ioend. We are passed an ioend with a bio attached to * it, and we submit that bio. The ioend may be used for multiple bio * submissions, so we only want to allocate an append transaction for the ioend * once. In the case of multiple bio submission, each bio will take an IO * reference to the ioend to ensure that the ioend completion is only done once * all bios have been submitted and the ioend is really done. * * If @fail is non-zero, it means that we have a situation where some part of * the submission process has failed after we have marked paged for writeback * and unlocked them. In this situation, we need to fail the bio and ioend * rather than submit it to IO. This typically only happens on a filesystem * shutdown. */ STATIC int xfs_submit_ioend( struct writeback_control *wbc, struct xfs_ioend *ioend, int status) { /* Convert CoW extents to regular */ if (!status && ioend->io_fork == XFS_COW_FORK) { /* * Yuk. This can do memory allocation, but is not a * transactional operation so everything is done in GFP_KERNEL * context. That can deadlock, because we hold pages in * writeback state and GFP_KERNEL allocations can block on them. * Hence we must operate in nofs conditions here. */ unsigned nofs_flag; nofs_flag = memalloc_nofs_save(); status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), ioend->io_offset, ioend->io_size); memalloc_nofs_restore(nofs_flag); } /* Reserve log space if we might write beyond the on-disk inode size. */ if (!status && (ioend->io_fork == XFS_COW_FORK || ioend->io_state != XFS_EXT_UNWRITTEN) && xfs_ioend_is_append(ioend) && !ioend->io_append_trans) status = xfs_setfilesize_trans_alloc(ioend); ioend->io_bio->bi_private = ioend; ioend->io_bio->bi_end_io = xfs_end_bio; ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); /* * If we are failing the IO now, just mark the ioend with an * error and finish it. This will run IO completion immediately * as there is only one reference to the ioend at this point in * time. */ if (status) { ioend->io_bio->bi_status = errno_to_blk_status(status); bio_endio(ioend->io_bio); return status; } ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; submit_bio(ioend->io_bio); return 0; } static struct xfs_ioend * xfs_alloc_ioend( struct inode *inode, int fork, xfs_exntst_t state, xfs_off_t offset, struct block_device *bdev, sector_t sector) { struct xfs_ioend *ioend; struct bio *bio; bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset); bio_set_dev(bio, bdev); bio->bi_iter.bi_sector = sector; ioend = container_of(bio, struct xfs_ioend, io_inline_bio); INIT_LIST_HEAD(&ioend->io_list); ioend->io_fork = fork; ioend->io_state = state; ioend->io_inode = inode; ioend->io_size = 0; ioend->io_offset = offset; INIT_WORK(&ioend->io_work, xfs_end_io); ioend->io_append_trans = NULL; ioend->io_bio = bio; return ioend; } /* * Allocate a new bio, and chain the old bio to the new one. * * Note that we have to do perform the chaining in this unintuitive order * so that the bi_private linkage is set up in the right direction for the * traversal in xfs_destroy_ioend(). */ static void xfs_chain_bio( struct xfs_ioend *ioend, struct writeback_control *wbc, struct block_device *bdev, sector_t sector) { struct bio *new; new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); bio_set_dev(new, bdev); new->bi_iter.bi_sector = sector; bio_chain(ioend->io_bio, new); bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; submit_bio(ioend->io_bio); ioend->io_bio = new; } /* * Test to see if we have an existing ioend structure that we could append to * first, otherwise finish off the current ioend and start another. */ STATIC void xfs_add_to_ioend( struct inode *inode, xfs_off_t offset, struct page *page, struct iomap_page *iop, struct xfs_writepage_ctx *wpc, struct writeback_control *wbc, struct list_head *iolist) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; struct block_device *bdev = xfs_find_bdev_for_inode(inode); unsigned len = i_blocksize(inode); unsigned poff = offset & (PAGE_SIZE - 1); sector_t sector; sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) + ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9); if (!wpc->ioend || wpc->fork != wpc->ioend->io_fork || wpc->imap.br_state != wpc->ioend->io_state || sector != bio_end_sector(wpc->ioend->io_bio) || offset != wpc->ioend->io_offset + wpc->ioend->io_size) { if (wpc->ioend) list_add(&wpc->ioend->io_list, iolist); wpc->ioend = xfs_alloc_ioend(inode, wpc->fork, wpc->imap.br_state, offset, bdev, sector); } if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff)) { if (iop) atomic_inc(&iop->write_count); if (bio_full(wpc->ioend->io_bio)) xfs_chain_bio(wpc->ioend, wbc, bdev, sector); __bio_add_page(wpc->ioend->io_bio, page, len, poff); } wpc->ioend->io_size += len; } STATIC void xfs_vm_invalidatepage( struct page *page, unsigned int offset, unsigned int length) { trace_xfs_invalidatepage(page->mapping->host, page, offset, length); iomap_invalidatepage(page, offset, length); } /* * If the page has delalloc blocks on it, we need to punch them out before we * invalidate the page. If we don't, we leave a stale delalloc mapping on the * inode that can trip up a later direct I/O read operation on the same region. * * We prevent this by truncating away the delalloc regions on the page. Because * they are delalloc, we can do this without needing a transaction. Indeed - if * we get ENOSPC errors, we have to be able to do this truncation without a * transaction as there is no space left for block reservation (typically why we * see a ENOSPC in writeback). */ STATIC void xfs_aops_discard_page( struct page *page) { struct inode *inode = page->mapping->host; struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; loff_t offset = page_offset(page); xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset); int error; if (XFS_FORCED_SHUTDOWN(mp)) goto out_invalidate; xfs_alert(mp, "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", page, ip->i_ino, offset); error = xfs_bmap_punch_delalloc_range(ip, start_fsb, PAGE_SIZE / i_blocksize(inode)); if (error && !XFS_FORCED_SHUTDOWN(mp)) xfs_alert(mp, "page discard unable to remove delalloc mapping."); out_invalidate: xfs_vm_invalidatepage(page, 0, PAGE_SIZE); } /* * We implement an immediate ioend submission policy here to avoid needing to * chain multiple ioends and hence nest mempool allocations which can violate * forward progress guarantees we need to provide. The current ioend we are * adding blocks to is cached on the writepage context, and if the new block * does not append to the cached ioend it will create a new ioend and cache that * instead. * * If a new ioend is created and cached, the old ioend is returned and queued * locally for submission once the entire page is processed or an error has been * detected. While ioends are submitted immediately after they are completed, * batching optimisations are provided by higher level block plugging. * * At the end of a writeback pass, there will be a cached ioend remaining on the * writepage context that the caller will need to submit. */ static int xfs_writepage_map( struct xfs_writepage_ctx *wpc, struct writeback_control *wbc, struct inode *inode, struct page *page, uint64_t end_offset) { LIST_HEAD(submit_list); struct iomap_page *iop = to_iomap_page(page); unsigned len = i_blocksize(inode); struct xfs_ioend *ioend, *next; uint64_t file_offset; /* file offset of page */ int error = 0, count = 0, i; ASSERT(iop || i_blocksize(inode) == PAGE_SIZE); ASSERT(!iop || atomic_read(&iop->write_count) == 0); /* * Walk through the page to find areas to write back. If we run off the * end of the current map or find the current map invalid, grab a new * one. */ for (i = 0, file_offset = page_offset(page); i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset; i++, file_offset += len) { if (iop && !test_bit(i, iop->uptodate)) continue; error = xfs_map_blocks(wpc, inode, file_offset); if (error) break; if (wpc->imap.br_startblock == HOLESTARTBLOCK) continue; xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc, &submit_list); count++; } ASSERT(wpc->ioend || list_empty(&submit_list)); ASSERT(PageLocked(page)); ASSERT(!PageWriteback(page)); /* * On error, we have to fail the ioend here because we may have set * pages under writeback, we have to make sure we run IO completion to * mark the error state of the IO appropriately, so we can't cancel the * ioend directly here. That means we have to mark this page as under * writeback if we included any blocks from it in the ioend chain so * that completion treats it correctly. * * If we didn't include the page in the ioend, the on error we can * simply discard and unlock it as there are no other users of the page * now. The caller will still need to trigger submission of outstanding * ioends on the writepage context so they are treated correctly on * error. */ if (unlikely(error)) { if (!count) { xfs_aops_discard_page(page); ClearPageUptodate(page); unlock_page(page); goto done; } /* * If the page was not fully cleaned, we need to ensure that the * higher layers come back to it correctly. That means we need * to keep the page dirty, and for WB_SYNC_ALL writeback we need * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed * so another attempt to write this page in this writeback sweep * will be made. */ set_page_writeback_keepwrite(page); } else { clear_page_dirty_for_io(page); set_page_writeback(page); } unlock_page(page); /* * Preserve the original error if there was one, otherwise catch * submission errors here and propagate into subsequent ioend * submissions. */ list_for_each_entry_safe(ioend, next, &submit_list, io_list) { int error2; list_del_init(&ioend->io_list); error2 = xfs_submit_ioend(wbc, ioend, error); if (error2 && !error) error = error2; } /* * We can end up here with no error and nothing to write only if we race * with a partial page truncate on a sub-page block sized filesystem. */ if (!count) end_page_writeback(page); done: mapping_set_error(page->mapping, error); return error; } /* * Write out a dirty page. * * For delalloc space on the page we need to allocate space and flush it. * For unwritten space on the page we need to start the conversion to * regular allocated space. */ STATIC int xfs_do_writepage( struct page *page, struct writeback_control *wbc, void *data) { struct xfs_writepage_ctx *wpc = data; struct inode *inode = page->mapping->host; loff_t offset; uint64_t end_offset; pgoff_t end_index; trace_xfs_writepage(inode, page, 0, 0); /* * Refuse to write the page out if we are called from reclaim context. * * This avoids stack overflows when called from deeply used stacks in * random callers for direct reclaim or memcg reclaim. We explicitly * allow reclaim from kswapd as the stack usage there is relatively low. * * This should never happen except in the case of a VM regression so * warn about it. */ if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)) goto redirty; /* * Given that we do not allow direct reclaim to call us, we should * never be called while in a filesystem transaction. */ if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) goto redirty; /* * Is this page beyond the end of the file? * * The page index is less than the end_index, adjust the end_offset * to the highest offset that this page should represent. * ----------------------------------------------------- * | file mapping | | * ----------------------------------------------------- * | Page ... | Page N-2 | Page N-1 | Page N | | * ^--------------------------------^----------|-------- * | desired writeback range | see else | * ---------------------------------^------------------| */ offset = i_size_read(inode); end_index = offset >> PAGE_SHIFT; if (page->index < end_index) end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; else { /* * Check whether the page to write out is beyond or straddles * i_size or not. * ------------------------------------------------------- * | file mapping | | * ------------------------------------------------------- * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | * ^--------------------------------^-----------|--------- * | | Straddles | * ---------------------------------^-----------|--------| */ unsigned offset_into_page = offset & (PAGE_SIZE - 1); /* * Skip the page if it is fully outside i_size, e.g. due to a * truncate operation that is in progress. We must redirty the * page so that reclaim stops reclaiming it. Otherwise * xfs_vm_releasepage() is called on it and gets confused. * * Note that the end_index is unsigned long, it would overflow * if the given offset is greater than 16TB on 32-bit system * and if we do check the page is fully outside i_size or not * via "if (page->index >= end_index + 1)" as "end_index + 1" * will be evaluated to 0. Hence this page will be redirtied * and be written out repeatedly which would result in an * infinite loop, the user program that perform this operation * will hang. Instead, we can verify this situation by checking * if the page to write is totally beyond the i_size or if it's * offset is just equal to the EOF. */ if (page->index > end_index || (page->index == end_index && offset_into_page == 0)) goto redirty; /* * The page straddles i_size. It must be zeroed out on each * and every writepage invocation because it may be mmapped. * "A file is mapped in multiples of the page size. For a file * that is not a multiple of the page size, the remaining * memory is zeroed when mapped, and writes to that region are * not written out to the file." */ zero_user_segment(page, offset_into_page, PAGE_SIZE); /* Adjust the end_offset to the end of file */ end_offset = offset; } return xfs_writepage_map(wpc, wbc, inode, page, end_offset); redirty: redirty_page_for_writepage(wbc, page); unlock_page(page); return 0; } STATIC int xfs_vm_writepage( struct page *page, struct writeback_control *wbc) { struct xfs_writepage_ctx wpc = { }; int ret; ret = xfs_do_writepage(page, wbc, &wpc); if (wpc.ioend) ret = xfs_submit_ioend(wbc, wpc.ioend, ret); return ret; } STATIC int xfs_vm_writepages( struct address_space *mapping, struct writeback_control *wbc) { struct xfs_writepage_ctx wpc = { }; int ret; xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); if (wpc.ioend) ret = xfs_submit_ioend(wbc, wpc.ioend, ret); return ret; } STATIC int xfs_dax_writepages( struct address_space *mapping, struct writeback_control *wbc) { xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); return dax_writeback_mapping_range(mapping, xfs_find_bdev_for_inode(mapping->host), wbc); } STATIC int xfs_vm_releasepage( struct page *page, gfp_t gfp_mask) { trace_xfs_releasepage(page->mapping->host, page, 0, 0); return iomap_releasepage(page, gfp_mask); } STATIC sector_t xfs_vm_bmap( struct address_space *mapping, sector_t block) { struct xfs_inode *ip = XFS_I(mapping->host); trace_xfs_vm_bmap(ip); /* * The swap code (ab-)uses ->bmap to get a block mapping and then * bypasses the file system for actual I/O. We really can't allow * that on reflinks inodes, so we have to skip out here. And yes, * 0 is the magic code for a bmap error. * * Since we don't pass back blockdev info, we can't return bmap * information for rt files either. */ if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip)) return 0; return iomap_bmap(mapping, block, &xfs_iomap_ops); } STATIC int xfs_vm_readpage( struct file *unused, struct page *page) { trace_xfs_vm_readpage(page->mapping->host, 1); return iomap_readpage(page, &xfs_iomap_ops); } STATIC int xfs_vm_readpages( struct file *unused, struct address_space *mapping, struct list_head *pages, unsigned nr_pages) { trace_xfs_vm_readpages(mapping->host, nr_pages); return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops); } static int xfs_iomap_swapfile_activate( struct swap_info_struct *sis, struct file *swap_file, sector_t *span) { sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file)); return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops); } const struct address_space_operations xfs_address_space_operations = { .readpage = xfs_vm_readpage, .readpages = xfs_vm_readpages, .writepage = xfs_vm_writepage, .writepages = xfs_vm_writepages, .set_page_dirty = iomap_set_page_dirty, .releasepage = xfs_vm_releasepage, .invalidatepage = xfs_vm_invalidatepage, .bmap = xfs_vm_bmap, .direct_IO = noop_direct_IO, .migratepage = iomap_migrate_page, .is_partially_uptodate = iomap_is_partially_uptodate, .error_remove_page = generic_error_remove_page, .swap_activate = xfs_iomap_swapfile_activate, }; const struct address_space_operations xfs_dax_aops = { .writepages = xfs_dax_writepages, .direct_IO = noop_direct_IO, .set_page_dirty = noop_set_page_dirty, .invalidatepage = noop_invalidatepage, .swap_activate = xfs_iomap_swapfile_activate, };