/* * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Eddie Dong * Kevin Tian * * Contributors: * Ping Gao * Zhi Wang * Bing Niu * */ #include "i915_drv.h" #include "gvt.h" #include "i915_pvinfo.h" void populate_pvinfo_page(struct intel_vgpu *vgpu) { /* setup the ballooning information */ vgpu_vreg64(vgpu, vgtif_reg(magic)) = VGT_MAGIC; vgpu_vreg(vgpu, vgtif_reg(version_major)) = 1; vgpu_vreg(vgpu, vgtif_reg(version_minor)) = 0; vgpu_vreg(vgpu, vgtif_reg(display_ready)) = 0; vgpu_vreg(vgpu, vgtif_reg(vgt_id)) = vgpu->id; vgpu_vreg(vgpu, vgtif_reg(avail_rs.mappable_gmadr.base)) = vgpu_aperture_gmadr_base(vgpu); vgpu_vreg(vgpu, vgtif_reg(avail_rs.mappable_gmadr.size)) = vgpu_aperture_sz(vgpu); vgpu_vreg(vgpu, vgtif_reg(avail_rs.nonmappable_gmadr.base)) = vgpu_hidden_gmadr_base(vgpu); vgpu_vreg(vgpu, vgtif_reg(avail_rs.nonmappable_gmadr.size)) = vgpu_hidden_sz(vgpu); vgpu_vreg(vgpu, vgtif_reg(avail_rs.fence_num)) = vgpu_fence_sz(vgpu); gvt_dbg_core("Populate PVINFO PAGE for vGPU %d\n", vgpu->id); gvt_dbg_core("aperture base [GMADR] 0x%llx size 0x%llx\n", vgpu_aperture_gmadr_base(vgpu), vgpu_aperture_sz(vgpu)); gvt_dbg_core("hidden base [GMADR] 0x%llx size=0x%llx\n", vgpu_hidden_gmadr_base(vgpu), vgpu_hidden_sz(vgpu)); gvt_dbg_core("fence size %d\n", vgpu_fence_sz(vgpu)); WARN_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE); } static struct { unsigned int low_mm; unsigned int high_mm; unsigned int fence; char *name; } vgpu_types[] = { /* Fixed vGPU type table */ { MB_TO_BYTES(64), MB_TO_BYTES(512), 4, "8" }, { MB_TO_BYTES(128), MB_TO_BYTES(512), 4, "4" }, { MB_TO_BYTES(256), MB_TO_BYTES(1024), 4, "2" }, { MB_TO_BYTES(512), MB_TO_BYTES(2048), 4, "1" }, }; /** * intel_gvt_init_vgpu_types - initialize vGPU type list * @gvt : GVT device * * Initialize vGPU type list based on available resource. * */ int intel_gvt_init_vgpu_types(struct intel_gvt *gvt) { unsigned int num_types; unsigned int i, low_avail, high_avail; unsigned int min_low; /* vGPU type name is defined as GVTg_Vx_y which contains * physical GPU generation type (e.g V4 as BDW server, V5 as * SKL server). * * Depend on physical SKU resource, might see vGPU types like * GVTg_V4_8, GVTg_V4_4, GVTg_V4_2, etc. We can create * different types of vGPU on same physical GPU depending on * available resource. Each vGPU type will have "avail_instance" * to indicate how many vGPU instance can be created for this * type. * */ low_avail = gvt_aperture_sz(gvt) - HOST_LOW_GM_SIZE; high_avail = gvt_hidden_sz(gvt) - HOST_HIGH_GM_SIZE; num_types = sizeof(vgpu_types) / sizeof(vgpu_types[0]); gvt->types = kzalloc(num_types * sizeof(struct intel_vgpu_type), GFP_KERNEL); if (!gvt->types) return -ENOMEM; min_low = MB_TO_BYTES(32); for (i = 0; i < num_types; ++i) { if (low_avail / vgpu_types[i].low_mm == 0) break; gvt->types[i].low_gm_size = vgpu_types[i].low_mm; gvt->types[i].high_gm_size = vgpu_types[i].high_mm; gvt->types[i].fence = vgpu_types[i].fence; gvt->types[i].avail_instance = min(low_avail / vgpu_types[i].low_mm, high_avail / vgpu_types[i].high_mm); if (IS_GEN8(gvt->dev_priv)) sprintf(gvt->types[i].name, "GVTg_V4_%s", vgpu_types[i].name); else if (IS_GEN9(gvt->dev_priv)) sprintf(gvt->types[i].name, "GVTg_V5_%s", vgpu_types[i].name); gvt_dbg_core("type[%d]: %s avail %u low %u high %u fence %u\n", i, gvt->types[i].name, gvt->types[i].avail_instance, gvt->types[i].low_gm_size, gvt->types[i].high_gm_size, gvt->types[i].fence); } gvt->num_types = i; return 0; } void intel_gvt_clean_vgpu_types(struct intel_gvt *gvt) { kfree(gvt->types); } static void intel_gvt_update_vgpu_types(struct intel_gvt *gvt) { int i; unsigned int low_gm_avail, high_gm_avail, fence_avail; unsigned int low_gm_min, high_gm_min, fence_min; /* Need to depend on maxium hw resource size but keep on * static config for now. */ low_gm_avail = gvt_aperture_sz(gvt) - HOST_LOW_GM_SIZE - gvt->gm.vgpu_allocated_low_gm_size; high_gm_avail = gvt_hidden_sz(gvt) - HOST_HIGH_GM_SIZE - gvt->gm.vgpu_allocated_high_gm_size; fence_avail = gvt_fence_sz(gvt) - HOST_FENCE - gvt->fence.vgpu_allocated_fence_num; for (i = 0; i < gvt->num_types; i++) { low_gm_min = low_gm_avail / gvt->types[i].low_gm_size; high_gm_min = high_gm_avail / gvt->types[i].high_gm_size; fence_min = fence_avail / gvt->types[i].fence; gvt->types[i].avail_instance = min(min(low_gm_min, high_gm_min), fence_min); gvt_dbg_core("update type[%d]: %s avail %u low %u high %u fence %u\n", i, gvt->types[i].name, gvt->types[i].avail_instance, gvt->types[i].low_gm_size, gvt->types[i].high_gm_size, gvt->types[i].fence); } } /** * intel_gvt_destroy_vgpu - destroy a virtual GPU * @vgpu: virtual GPU * * This function is called when user wants to destroy a virtual GPU. * */ void intel_gvt_destroy_vgpu(struct intel_vgpu *vgpu) { struct intel_gvt *gvt = vgpu->gvt; mutex_lock(&gvt->lock); vgpu->active = false; idr_remove(&gvt->vgpu_idr, vgpu->id); if (atomic_read(&vgpu->running_workload_num)) { mutex_unlock(&gvt->lock); intel_gvt_wait_vgpu_idle(vgpu); mutex_lock(&gvt->lock); } intel_vgpu_stop_schedule(vgpu); intel_vgpu_clean_sched_policy(vgpu); intel_vgpu_clean_gvt_context(vgpu); intel_vgpu_clean_execlist(vgpu); intel_vgpu_clean_display(vgpu); intel_vgpu_clean_opregion(vgpu); intel_vgpu_clean_gtt(vgpu); intel_gvt_hypervisor_detach_vgpu(vgpu); intel_vgpu_free_resource(vgpu); intel_vgpu_clean_mmio(vgpu); vfree(vgpu); intel_gvt_update_vgpu_types(gvt); mutex_unlock(&gvt->lock); } static struct intel_vgpu *__intel_gvt_create_vgpu(struct intel_gvt *gvt, struct intel_vgpu_creation_params *param) { struct intel_vgpu *vgpu; int ret; gvt_dbg_core("handle %llu low %llu MB high %llu MB fence %llu\n", param->handle, param->low_gm_sz, param->high_gm_sz, param->fence_sz); vgpu = vzalloc(sizeof(*vgpu)); if (!vgpu) return ERR_PTR(-ENOMEM); mutex_lock(&gvt->lock); ret = idr_alloc(&gvt->vgpu_idr, vgpu, 1, GVT_MAX_VGPU, GFP_KERNEL); if (ret < 0) goto out_free_vgpu; vgpu->id = ret; vgpu->handle = param->handle; vgpu->gvt = gvt; bitmap_zero(vgpu->tlb_handle_pending, I915_NUM_ENGINES); intel_vgpu_init_cfg_space(vgpu, param->primary); ret = intel_vgpu_init_mmio(vgpu); if (ret) goto out_clean_idr; ret = intel_vgpu_alloc_resource(vgpu, param); if (ret) goto out_clean_vgpu_mmio; populate_pvinfo_page(vgpu); ret = intel_gvt_hypervisor_attach_vgpu(vgpu); if (ret) goto out_clean_vgpu_resource; ret = intel_vgpu_init_gtt(vgpu); if (ret) goto out_detach_hypervisor_vgpu; ret = intel_vgpu_init_display(vgpu); if (ret) goto out_clean_gtt; ret = intel_vgpu_init_execlist(vgpu); if (ret) goto out_clean_display; ret = intel_vgpu_init_gvt_context(vgpu); if (ret) goto out_clean_execlist; ret = intel_vgpu_init_sched_policy(vgpu); if (ret) goto out_clean_shadow_ctx; vgpu->active = true; mutex_unlock(&gvt->lock); return vgpu; out_clean_shadow_ctx: intel_vgpu_clean_gvt_context(vgpu); out_clean_execlist: intel_vgpu_clean_execlist(vgpu); out_clean_display: intel_vgpu_clean_display(vgpu); out_clean_gtt: intel_vgpu_clean_gtt(vgpu); out_detach_hypervisor_vgpu: intel_gvt_hypervisor_detach_vgpu(vgpu); out_clean_vgpu_resource: intel_vgpu_free_resource(vgpu); out_clean_vgpu_mmio: intel_vgpu_clean_mmio(vgpu); out_clean_idr: idr_remove(&gvt->vgpu_idr, vgpu->id); out_free_vgpu: vfree(vgpu); mutex_unlock(&gvt->lock); return ERR_PTR(ret); } /** * intel_gvt_create_vgpu - create a virtual GPU * @gvt: GVT device * @type: type of the vGPU to create * * This function is called when user wants to create a virtual GPU. * * Returns: * pointer to intel_vgpu, error pointer if failed. */ struct intel_vgpu *intel_gvt_create_vgpu(struct intel_gvt *gvt, struct intel_vgpu_type *type) { struct intel_vgpu_creation_params param; struct intel_vgpu *vgpu; param.handle = 0; param.primary = 1; param.low_gm_sz = type->low_gm_size; param.high_gm_sz = type->high_gm_size; param.fence_sz = type->fence; /* XXX current param based on MB */ param.low_gm_sz = BYTES_TO_MB(param.low_gm_sz); param.high_gm_sz = BYTES_TO_MB(param.high_gm_sz); vgpu = __intel_gvt_create_vgpu(gvt, ¶m); if (IS_ERR(vgpu)) return vgpu; /* calculate left instance change for types */ intel_gvt_update_vgpu_types(gvt); return vgpu; } /** * intel_gvt_reset_vgpu_locked - reset a virtual GPU by DMLR or GT reset * @vgpu: virtual GPU * @dmlr: vGPU Device Model Level Reset or GT Reset * @engine_mask: engines to reset for GT reset * * This function is called when user wants to reset a virtual GPU through * device model reset or GT reset. The caller should hold the gvt lock. * * vGPU Device Model Level Reset (DMLR) simulates the PCI level reset to reset * the whole vGPU to default state as when it is created. This vGPU function * is required both for functionary and security concerns.The ultimate goal * of vGPU FLR is that reuse a vGPU instance by virtual machines. When we * assign a vGPU to a virtual machine we must isse such reset first. * * Full GT Reset and Per-Engine GT Reset are soft reset flow for GPU engines * (Render, Blitter, Video, Video Enhancement). It is defined by GPU Spec. * Unlike the FLR, GT reset only reset particular resource of a vGPU per * the reset request. Guest driver can issue a GT reset by programming the * virtual GDRST register to reset specific virtual GPU engine or all * engines. * * The parameter dev_level is to identify if we will do DMLR or GT reset. * The parameter engine_mask is to specific the engines that need to be * resetted. If value ALL_ENGINES is given for engine_mask, it means * the caller requests a full GT reset that we will reset all virtual * GPU engines. For FLR, engine_mask is ignored. */ void intel_gvt_reset_vgpu_locked(struct intel_vgpu *vgpu, bool dmlr, unsigned int engine_mask) { struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; gvt_dbg_core("------------------------------------------\n"); gvt_dbg_core("resseting vgpu%d, dmlr %d, engine_mask %08x\n", vgpu->id, dmlr, engine_mask); vgpu->resetting = true; intel_vgpu_stop_schedule(vgpu); /* * The current_vgpu will set to NULL after stopping the * scheduler when the reset is triggered by current vgpu. */ if (scheduler->current_vgpu == NULL) { mutex_unlock(&gvt->lock); intel_gvt_wait_vgpu_idle(vgpu); mutex_lock(&gvt->lock); } intel_vgpu_reset_execlist(vgpu, dmlr ? ALL_ENGINES : engine_mask); /* full GPU reset or device model level reset */ if (engine_mask == ALL_ENGINES || dmlr) { intel_vgpu_reset_gtt(vgpu, dmlr); intel_vgpu_reset_resource(vgpu); intel_vgpu_reset_mmio(vgpu); populate_pvinfo_page(vgpu); intel_vgpu_reset_display(vgpu); if (dmlr) { intel_vgpu_reset_cfg_space(vgpu); /* only reset the failsafe mode when dmlr reset */ vgpu->failsafe = false; vgpu->pv_notified = false; } } vgpu->resetting = false; gvt_dbg_core("reset vgpu%d done\n", vgpu->id); gvt_dbg_core("------------------------------------------\n"); } /** * intel_gvt_reset_vgpu - reset a virtual GPU (Function Level) * @vgpu: virtual GPU * * This function is called when user wants to reset a virtual GPU. * */ void intel_gvt_reset_vgpu(struct intel_vgpu *vgpu) { mutex_lock(&vgpu->gvt->lock); intel_gvt_reset_vgpu_locked(vgpu, true, 0); mutex_unlock(&vgpu->gvt->lock); }