/* * Copyright (c) 2004-2008 Reyk Floeter * Copyright (c) 2006-2008 Nick Kossifidis * Copyright (c) 2007-2008 Matthew W. S. Bell * Copyright (c) 2007-2008 Luis Rodriguez * Copyright (c) 2007-2008 Pavel Roskin * Copyright (c) 2007-2008 Jiri Slaby * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ /*********************************\ * Protocol Control Unit Functions * \*********************************/ #include "ath5k.h" #include "reg.h" #include "debug.h" #include "base.h" /*******************\ * Generic functions * \*******************/ /** * ath5k_hw_set_opmode - Set PCU operating mode * * @ah: The &struct ath5k_hw * * Initialize PCU for the various operating modes (AP/STA etc) * * NOTE: ah->ah_op_mode must be set before calling this. */ int ath5k_hw_set_opmode(struct ath5k_hw *ah) { u32 pcu_reg, beacon_reg, low_id, high_id; /* Preserve rest settings */ pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000; pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE | (ah->ah_version == AR5K_AR5210 ? (AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0)); beacon_reg = 0; ATH5K_TRACE(ah->ah_sc); switch (ah->ah_op_mode) { case NL80211_IFTYPE_ADHOC: pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE; beacon_reg |= AR5K_BCR_ADHOC; if (ah->ah_version == AR5K_AR5210) pcu_reg |= AR5K_STA_ID1_NO_PSPOLL; else AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS); break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_MESH_POINT: pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE; beacon_reg |= AR5K_BCR_AP; if (ah->ah_version == AR5K_AR5210) pcu_reg |= AR5K_STA_ID1_NO_PSPOLL; else AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS); break; case NL80211_IFTYPE_STATION: pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE | (ah->ah_version == AR5K_AR5210 ? AR5K_STA_ID1_PWR_SV : 0); case NL80211_IFTYPE_MONITOR: pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE | (ah->ah_version == AR5K_AR5210 ? AR5K_STA_ID1_NO_PSPOLL : 0); break; default: return -EINVAL; } /* * Set PCU registers */ low_id = AR5K_LOW_ID(ah->ah_sta_id); high_id = AR5K_HIGH_ID(ah->ah_sta_id); ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0); ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1); /* * Set Beacon Control Register on 5210 */ if (ah->ah_version == AR5K_AR5210) ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR); return 0; } /** * ath5k_hw_update - Update mib counters (mac layer statistics) * * @ah: The &struct ath5k_hw * @stats: The &struct ieee80211_low_level_stats we use to track * statistics on the driver * * Reads MIB counters from PCU and updates sw statistics. Must be * called after a MIB interrupt. */ void ath5k_hw_update_mib_counters(struct ath5k_hw *ah, struct ieee80211_low_level_stats *stats) { ATH5K_TRACE(ah->ah_sc); /* Read-And-Clear */ stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL); stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL); stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK); stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL); /* XXX: Should we use this to track beacon count ? * -we read it anyway to clear the register */ ath5k_hw_reg_read(ah, AR5K_BEACON_CNT); /* Reset profile count registers on 5212*/ if (ah->ah_version == AR5K_AR5212) { ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX); ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX); ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR); ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE); } /* TODO: Handle ANI stats */ } /** * ath5k_hw_set_ack_bitrate - set bitrate for ACKs * * @ah: The &struct ath5k_hw * @high: Flag to determine if we want to use high transmition rate * for ACKs or not * * If high flag is set, we tell hw to use a set of control rates based on * the current transmition rate (check out control_rates array inside reset.c). * If not hw just uses the lowest rate available for the current modulation * scheme being used (1Mbit for CCK and 6Mbits for OFDM). */ void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high) { if (ah->ah_version != AR5K_AR5212) return; else { u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB; if (high) AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val); else AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val); } } /******************\ * ACK/CTS Timeouts * \******************/ /** * ath5k_hw_het_ack_timeout - Get ACK timeout from PCU in usec * * @ah: The &struct ath5k_hw */ unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah) { ATH5K_TRACE(ah->ah_sc); return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo); } /** * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU * * @ah: The &struct ath5k_hw * @timeout: Timeout in usec */ int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout) { ATH5K_TRACE(ah->ah_sc); if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK), ah->ah_turbo) <= timeout) return -EINVAL; AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK, ath5k_hw_htoclock(timeout, ah->ah_turbo)); return 0; } /** * ath5k_hw_get_cts_timeout - Get CTS timeout from PCU in usec * * @ah: The &struct ath5k_hw */ unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah) { ATH5K_TRACE(ah->ah_sc); return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo); } /** * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU * * @ah: The &struct ath5k_hw * @timeout: Timeout in usec */ int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout) { ATH5K_TRACE(ah->ah_sc); if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS), ah->ah_turbo) <= timeout) return -EINVAL; AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS, ath5k_hw_htoclock(timeout, ah->ah_turbo)); return 0; } /****************\ * BSSID handling * \****************/ /** * ath5k_hw_get_lladdr - Get station id * * @ah: The &struct ath5k_hw * @mac: The card's mac address * * Initialize ah->ah_sta_id using the mac address provided * (just a memcpy). * * TODO: Remove it once we merge ath5k_softc and ath5k_hw */ void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac) { ATH5K_TRACE(ah->ah_sc); memcpy(mac, ah->ah_sta_id, ETH_ALEN); } /** * ath5k_hw_set_lladdr - Set station id * * @ah: The &struct ath5k_hw * @mac: The card's mac address * * Set station id on hw using the provided mac address */ int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac) { u32 low_id, high_id; u32 pcu_reg; ATH5K_TRACE(ah->ah_sc); /* Set new station ID */ memcpy(ah->ah_sta_id, mac, ETH_ALEN); pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000; low_id = AR5K_LOW_ID(mac); high_id = AR5K_HIGH_ID(mac); ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0); ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1); return 0; } /** * ath5k_hw_set_associd - Set BSSID for association * * @ah: The &struct ath5k_hw * @bssid: BSSID * @assoc_id: Assoc id * * Sets the BSSID which trigers the "SME Join" operation */ void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id) { u32 low_id, high_id; u16 tim_offset = 0; /* * Set simple BSSID mask on 5212 */ if (ah->ah_version == AR5K_AR5212) { ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_bssid_mask), AR5K_BSS_IDM0); ath5k_hw_reg_write(ah, AR5K_HIGH_ID(ah->ah_bssid_mask), AR5K_BSS_IDM1); } /* * Set BSSID which triggers the "SME Join" operation */ low_id = AR5K_LOW_ID(bssid); high_id = AR5K_HIGH_ID(bssid); ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0); ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) << AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1); if (assoc_id == 0) { ath5k_hw_disable_pspoll(ah); return; } AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM, tim_offset ? tim_offset + 4 : 0); ath5k_hw_enable_pspoll(ah, NULL, 0); } /** * ath5k_hw_set_bssid_mask - filter out bssids we listen * * @ah: the &struct ath5k_hw * @mask: the bssid_mask, a u8 array of size ETH_ALEN * * BSSID masking is a method used by AR5212 and newer hardware to inform PCU * which bits of the interface's MAC address should be looked at when trying * to decide which packets to ACK. In station mode and AP mode with a single * BSS every bit matters since we lock to only one BSS. In AP mode with * multiple BSSes (virtual interfaces) not every bit matters because hw must * accept frames for all BSSes and so we tweak some bits of our mac address * in order to have multiple BSSes. * * NOTE: This is a simple filter and does *not* filter out all * relevant frames. Some frames that are not for us might get ACKed from us * by PCU because they just match the mask. * * When handling multiple BSSes you can get the BSSID mask by computing the * set of ~ ( MAC XOR BSSID ) for all bssids we handle. * * When you do this you are essentially computing the common bits of all your * BSSes. Later it is assumed the harware will "and" (&) the BSSID mask with * the MAC address to obtain the relevant bits and compare the result with * (frame's BSSID & mask) to see if they match. */ /* * Simple example: on your card you have have two BSSes you have created with * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address. * There is another BSSID-03 but you are not part of it. For simplicity's sake, * assuming only 4 bits for a mac address and for BSSIDs you can then have: * * \ * MAC: 0001 | * BSSID-01: 0100 | --> Belongs to us * BSSID-02: 1001 | * / * ------------------- * BSSID-03: 0110 | --> External * ------------------- * * Our bssid_mask would then be: * * On loop iteration for BSSID-01: * ~(0001 ^ 0100) -> ~(0101) * -> 1010 * bssid_mask = 1010 * * On loop iteration for BSSID-02: * bssid_mask &= ~(0001 ^ 1001) * bssid_mask = (1010) & ~(0001 ^ 1001) * bssid_mask = (1010) & ~(1001) * bssid_mask = (1010) & (0110) * bssid_mask = 0010 * * A bssid_mask of 0010 means "only pay attention to the second least * significant bit". This is because its the only bit common * amongst the MAC and all BSSIDs we support. To findout what the real * common bit is we can simply "&" the bssid_mask now with any BSSID we have * or our MAC address (we assume the hardware uses the MAC address). * * Now, suppose there's an incoming frame for BSSID-03: * * IFRAME-01: 0110 * * An easy eye-inspeciton of this already should tell you that this frame * will not pass our check. This is beacuse the bssid_mask tells the * hardware to only look at the second least significant bit and the * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB * as 1, which does not match 0. * * So with IFRAME-01 we *assume* the hardware will do: * * allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0; * --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0; * --> allow = (0010) == 0000 ? 1 : 0; * --> allow = 0 * * Lets now test a frame that should work: * * IFRAME-02: 0001 (we should allow) * * allow = (0001 & 1010) == 1010 * * allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0; * --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0; * --> allow = (0010) == (0010) * --> allow = 1 * * Other examples: * * IFRAME-03: 0100 --> allowed * IFRAME-04: 1001 --> allowed * IFRAME-05: 1101 --> allowed but its not for us!!! * */ int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask) { u32 low_id, high_id; ATH5K_TRACE(ah->ah_sc); /* Cache bssid mask so that we can restore it * on reset */ memcpy(ah->ah_bssid_mask, mask, ETH_ALEN); if (ah->ah_version == AR5K_AR5212) { low_id = AR5K_LOW_ID(mask); high_id = AR5K_HIGH_ID(mask); ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0); ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1); return 0; } return -EIO; } /************\ * RX Control * \************/ /** * ath5k_hw_start_rx_pcu - Start RX engine * * @ah: The &struct ath5k_hw * * Starts RX engine on PCU so that hw can process RXed frames * (ACK etc). * * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma * TODO: Init ANI here */ void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah) { ATH5K_TRACE(ah->ah_sc); AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX); } /** * at5k_hw_stop_rx_pcu - Stop RX engine * * @ah: The &struct ath5k_hw * * Stops RX engine on PCU * * TODO: Detach ANI here */ void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah) { ATH5K_TRACE(ah->ah_sc); AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX); } /* * Set multicast filter */ void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1) { ATH5K_TRACE(ah->ah_sc); /* Set the multicat filter */ ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0); ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1); } /* * Set multicast filter by index */ int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index) { ATH5K_TRACE(ah->ah_sc); if (index >= 64) return -EINVAL; else if (index >= 32) AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1, (1 << (index - 32))); else AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index)); return 0; } /* * Clear Multicast filter by index */ int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index) { ATH5K_TRACE(ah->ah_sc); if (index >= 64) return -EINVAL; else if (index >= 32) AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1, (1 << (index - 32))); else AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index)); return 0; } /** * ath5k_hw_get_rx_filter - Get current rx filter * * @ah: The &struct ath5k_hw * * Returns the RX filter by reading rx filter and * phy error filter registers. RX filter is used * to set the allowed frame types that PCU will accept * and pass to the driver. For a list of frame types * check out reg.h. */ u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah) { u32 data, filter = 0; ATH5K_TRACE(ah->ah_sc); filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER); /*Radar detection for 5212*/ if (ah->ah_version == AR5K_AR5212) { data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL); if (data & AR5K_PHY_ERR_FIL_RADAR) filter |= AR5K_RX_FILTER_RADARERR; if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK)) filter |= AR5K_RX_FILTER_PHYERR; } return filter; } /** * ath5k_hw_set_rx_filter - Set rx filter * * @ah: The &struct ath5k_hw * @filter: RX filter mask (see reg.h) * * Sets RX filter register and also handles PHY error filter * register on 5212 and newer chips so that we have proper PHY * error reporting. */ void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter) { u32 data = 0; ATH5K_TRACE(ah->ah_sc); /* Set PHY error filter register on 5212*/ if (ah->ah_version == AR5K_AR5212) { if (filter & AR5K_RX_FILTER_RADARERR) data |= AR5K_PHY_ERR_FIL_RADAR; if (filter & AR5K_RX_FILTER_PHYERR) data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK; } /* * The AR5210 uses promiscous mode to detect radar activity */ if (ah->ah_version == AR5K_AR5210 && (filter & AR5K_RX_FILTER_RADARERR)) { filter &= ~AR5K_RX_FILTER_RADARERR; filter |= AR5K_RX_FILTER_PROM; } /*Zero length DMA (phy error reporting) */ if (data) AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA); else AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA); /*Write RX Filter register*/ ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER); /*Write PHY error filter register on 5212*/ if (ah->ah_version == AR5K_AR5212) ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL); } /****************\ * Beacon control * \****************/ /** * ath5k_hw_get_tsf32 - Get a 32bit TSF * * @ah: The &struct ath5k_hw * * Returns lower 32 bits of current TSF */ u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah) { ATH5K_TRACE(ah->ah_sc); return ath5k_hw_reg_read(ah, AR5K_TSF_L32); } /** * ath5k_hw_get_tsf64 - Get the full 64bit TSF * * @ah: The &struct ath5k_hw * * Returns the current TSF */ u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah) { u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32); ATH5K_TRACE(ah->ah_sc); return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32); } /** * ath5k_hw_set_tsf64 - Set a new 64bit TSF * * @ah: The &struct ath5k_hw * @tsf64: The new 64bit TSF * * Sets the new TSF */ void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64) { ATH5K_TRACE(ah->ah_sc); ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32); ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32); } /** * ath5k_hw_reset_tsf - Force a TSF reset * * @ah: The &struct ath5k_hw * * Forces a TSF reset on PCU */ void ath5k_hw_reset_tsf(struct ath5k_hw *ah) { u32 val; ATH5K_TRACE(ah->ah_sc); val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF; /* * Each write to the RESET_TSF bit toggles a hardware internal * signal to reset TSF, but if left high it will cause a TSF reset * on the next chip reset as well. Thus we always write the value * twice to clear the signal. */ ath5k_hw_reg_write(ah, val, AR5K_BEACON); ath5k_hw_reg_write(ah, val, AR5K_BEACON); } /* * Initialize beacon timers */ void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval) { u32 timer1, timer2, timer3; ATH5K_TRACE(ah->ah_sc); /* * Set the additional timers by mode */ switch (ah->ah_op_mode) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_STATION: /* In STA mode timer1 is used as next wakeup * timer and timer2 as next CFP duration start * timer. Both in 1/8TUs. */ /* TODO: PCF handling */ if (ah->ah_version == AR5K_AR5210) { timer1 = 0xffffffff; timer2 = 0xffffffff; } else { timer1 = 0x0000ffff; timer2 = 0x0007ffff; } /* Mark associated AP as PCF incapable for now */ AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF); break; case NL80211_IFTYPE_ADHOC: AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM); default: /* On non-STA modes timer1 is used as next DMA * beacon alert (DBA) timer and timer2 as next * software beacon alert. Both in 1/8TUs. */ timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3; timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3; break; } /* Timer3 marks the end of our ATIM window * a zero length window is not allowed because * we 'll get no beacons */ timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1); /* * Set the beacon register and enable all timers. */ /* When in AP mode zero timer0 to start TSF */ if (ah->ah_op_mode == NL80211_IFTYPE_AP) ath5k_hw_reg_write(ah, 0, AR5K_TIMER0); else ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0); ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1); ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2); ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3); /* Force a TSF reset if requested and enable beacons */ if (interval & AR5K_BEACON_RESET_TSF) ath5k_hw_reset_tsf(ah); ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD | AR5K_BEACON_ENABLE), AR5K_BEACON); /* Flush any pending BMISS interrupts on ISR by * performing a clear-on-write operation on PISR * register for the BMISS bit (writing a bit on * ISR togles a reset for that bit and leaves * the rest bits intact) */ if (ah->ah_version == AR5K_AR5210) ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR); else ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR); /* TODO: Set enchanced sleep registers on AR5212 * based on vif->bss_conf params, until then * disable power save reporting.*/ AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV); } #if 0 /* * Set beacon timers */ int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah, const struct ath5k_beacon_state *state) { u32 cfp_period, next_cfp, dtim, interval, next_beacon; /* * TODO: should be changed through *state * review struct ath5k_beacon_state struct * * XXX: These are used for cfp period bellow, are they * ok ? Is it O.K. for tsf here to be 0 or should we use * get_tsf ? */ u32 dtim_count = 0; /* XXX */ u32 cfp_count = 0; /* XXX */ u32 tsf = 0; /* XXX */ ATH5K_TRACE(ah->ah_sc); /* Return on an invalid beacon state */ if (state->bs_interval < 1) return -EINVAL; interval = state->bs_interval; dtim = state->bs_dtim_period; /* * PCF support? */ if (state->bs_cfp_period > 0) { /* * Enable PCF mode and set the CFP * (Contention Free Period) and timer registers */ cfp_period = state->bs_cfp_period * state->bs_dtim_period * state->bs_interval; next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) * state->bs_interval; AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF); ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD); ath5k_hw_reg_write(ah, state->bs_cfp_max_duration, AR5K_CFP_DUR); ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period : next_cfp)) << 3, AR5K_TIMER2); } else { /* Disable PCF mode */ AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF); } /* * Enable the beacon timer register */ ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0); /* * Start the beacon timers */ ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) & ~(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) | AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0, AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval, AR5K_BEACON_PERIOD), AR5K_BEACON); /* * Write new beacon miss threshold, if it appears to be valid * XXX: Figure out right values for min <= bs_bmiss_threshold <= max * and return if its not in range. We can test this by reading value and * setting value to a largest value and seeing which values register. */ AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS, state->bs_bmiss_threshold); /* * Set sleep control register * XXX: Didn't find this in 5210 code but since this register * exists also in ar5k's 5210 headers i leave it as common code. */ AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR, (state->bs_sleep_duration - 3) << 3); /* * Set enhanced sleep registers on 5212 */ if (ah->ah_version == AR5K_AR5212) { if (state->bs_sleep_duration > state->bs_interval && roundup(state->bs_sleep_duration, interval) == state->bs_sleep_duration) interval = state->bs_sleep_duration; if (state->bs_sleep_duration > dtim && (dtim == 0 || roundup(state->bs_sleep_duration, dtim) == state->bs_sleep_duration)) dtim = state->bs_sleep_duration; if (interval > dtim) return -EINVAL; next_beacon = interval == dtim ? state->bs_next_dtim : state->bs_next_beacon; ath5k_hw_reg_write(ah, AR5K_REG_SM((state->bs_next_dtim - 3) << 3, AR5K_SLEEP0_NEXT_DTIM) | AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) | AR5K_SLEEP0_ENH_SLEEP_EN | AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0); ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3, AR5K_SLEEP1_NEXT_TIM) | AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1); ath5k_hw_reg_write(ah, AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) | AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2); } return 0; } /* * Reset beacon timers */ void ath5k_hw_reset_beacon(struct ath5k_hw *ah) { ATH5K_TRACE(ah->ah_sc); /* * Disable beacon timer */ ath5k_hw_reg_write(ah, 0, AR5K_TIMER0); /* * Disable some beacon register values */ AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF); ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON); } /* * Wait for beacon queue to finish */ int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr) { unsigned int i; int ret; ATH5K_TRACE(ah->ah_sc); /* 5210 doesn't have QCU*/ if (ah->ah_version == AR5K_AR5210) { /* * Wait for beaconn queue to finish by checking * Control Register and Beacon Status Register. */ for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) { if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F) || !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F)) break; udelay(10); } /* Timeout... */ if (i <= 0) { /* * Re-schedule the beacon queue */ ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1); ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE, AR5K_BCR); return -EIO; } ret = 0; } else { /*5211/5212*/ ret = ath5k_hw_register_timeout(ah, AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON), AR5K_QCU_STS_FRMPENDCNT, 0, false); if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON)) return -EIO; } return ret; } #endif /*********************\ * Key table functions * \*********************/ /* * Reset a key entry on the table */ int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry) { unsigned int i, type; u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET; ATH5K_TRACE(ah->ah_sc); AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE); type = ath5k_hw_reg_read(ah, AR5K_KEYTABLE_TYPE(entry)); for (i = 0; i < AR5K_KEYCACHE_SIZE; i++) ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i)); /* Reset associated MIC entry if TKIP * is enabled located at offset (entry + 64) */ if (type == AR5K_KEYTABLE_TYPE_TKIP) { AR5K_ASSERT_ENTRY(micentry, AR5K_KEYTABLE_SIZE); for (i = 0; i < AR5K_KEYCACHE_SIZE / 2 ; i++) ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(micentry, i)); } /* * Set NULL encryption on AR5212+ * * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5) * AR5K_KEYTABLE_TYPE_NULL -> 0x00000007 * * Note2: Windows driver (ndiswrapper) sets this to * 0x00000714 instead of 0x00000007 */ if (ah->ah_version >= AR5K_AR5211) { ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL, AR5K_KEYTABLE_TYPE(entry)); if (type == AR5K_KEYTABLE_TYPE_TKIP) { ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL, AR5K_KEYTABLE_TYPE(micentry)); } } return 0; } /* * Check if a table entry is valid */ int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry) { ATH5K_TRACE(ah->ah_sc); AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE); /* Check the validation flag at the end of the entry */ return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) & AR5K_KEYTABLE_VALID; } static int ath5k_keycache_type(const struct ieee80211_key_conf *key) { switch (key->alg) { case ALG_TKIP: return AR5K_KEYTABLE_TYPE_TKIP; case ALG_CCMP: return AR5K_KEYTABLE_TYPE_CCM; case ALG_WEP: if (key->keylen == LEN_WEP40) return AR5K_KEYTABLE_TYPE_40; else if (key->keylen == LEN_WEP104) return AR5K_KEYTABLE_TYPE_104; return -EINVAL; default: return -EINVAL; } return -EINVAL; } /* * Set a key entry on the table */ int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry, const struct ieee80211_key_conf *key, const u8 *mac) { unsigned int i; int keylen; __le32 key_v[5] = {}; __le32 key0 = 0, key1 = 0; __le32 *rxmic, *txmic; int keytype; u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET; bool is_tkip; const u8 *key_ptr; ATH5K_TRACE(ah->ah_sc); is_tkip = (key->alg == ALG_TKIP); /* * key->keylen comes in from mac80211 in bytes. * TKIP is 128 bit + 128 bit mic */ keylen = (is_tkip) ? (128 / 8) : key->keylen; if (entry > AR5K_KEYTABLE_SIZE || (is_tkip && micentry > AR5K_KEYTABLE_SIZE)) return -EOPNOTSUPP; if (unlikely(keylen > 16)) return -EOPNOTSUPP; keytype = ath5k_keycache_type(key); if (keytype < 0) return keytype; /* * each key block is 6 bytes wide, written as pairs of * alternating 32 and 16 bit le values. */ key_ptr = key->key; for (i = 0; keylen >= 6; keylen -= 6) { memcpy(&key_v[i], key_ptr, 6); i += 2; key_ptr += 6; } if (keylen) memcpy(&key_v[i], key_ptr, keylen); /* intentionally corrupt key until mic is installed */ if (is_tkip) { key0 = key_v[0] = ~key_v[0]; key1 = key_v[1] = ~key_v[1]; } for (i = 0; i < ARRAY_SIZE(key_v); i++) ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]), AR5K_KEYTABLE_OFF(entry, i)); ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry)); if (is_tkip) { /* Install rx/tx MIC */ rxmic = (__le32 *) &key->key[16]; txmic = (__le32 *) &key->key[24]; if (ah->ah_combined_mic) { key_v[0] = rxmic[0]; key_v[1] = cpu_to_le32(le32_to_cpu(txmic[0]) >> 16); key_v[2] = rxmic[1]; key_v[3] = cpu_to_le32(le32_to_cpu(txmic[0]) & 0xffff); key_v[4] = txmic[1]; } else { key_v[0] = rxmic[0]; key_v[1] = 0; key_v[2] = rxmic[1]; key_v[3] = 0; key_v[4] = 0; } for (i = 0; i < ARRAY_SIZE(key_v); i++) ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]), AR5K_KEYTABLE_OFF(micentry, i)); ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL, AR5K_KEYTABLE_TYPE(micentry)); ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC0(micentry)); ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC1(micentry)); /* restore first 2 words of key */ ath5k_hw_reg_write(ah, le32_to_cpu(~key0), AR5K_KEYTABLE_OFF(entry, 0)); ath5k_hw_reg_write(ah, le32_to_cpu(~key1), AR5K_KEYTABLE_OFF(entry, 1)); } return ath5k_hw_set_key_lladdr(ah, entry, mac); } int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac) { u32 low_id, high_id; ATH5K_TRACE(ah->ah_sc); /* Invalid entry (key table overflow) */ AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE); /* MAC may be NULL if it's a broadcast key. In this case no need to * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */ if (!mac) { low_id = 0xffffffff; high_id = 0xffff | AR5K_KEYTABLE_VALID; } else { low_id = AR5K_LOW_ID(mac); high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID; } ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry)); ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry)); return 0; }