/* * Copyright 2009 Jerome Glisse. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * */ /* * Authors: * Jerome Glisse * Thomas Hellstrom * Dave Airlie */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "amdgpu.h" #include "amdgpu_object.h" #include "amdgpu_trace.h" #include "amdgpu_amdkfd.h" #include "amdgpu_sdma.h" #include "amdgpu_ras.h" #include "bif/bif_4_1_d.h" static int amdgpu_map_buffer(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem, unsigned num_pages, uint64_t offset, unsigned window, struct amdgpu_ring *ring, uint64_t *addr); static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) { return 0; } /** * amdgpu_init_mem_type - Initialize a memory manager for a specific type of * memory request. * * @bdev: The TTM BO device object (contains a reference to amdgpu_device) * @type: The type of memory requested * @man: The memory type manager for each domain * * This is called by ttm_bo_init_mm() when a buffer object is being * initialized. */ static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, struct ttm_mem_type_manager *man) { struct amdgpu_device *adev; adev = amdgpu_ttm_adev(bdev); switch (type) { case TTM_PL_SYSTEM: /* System memory */ man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; man->available_caching = TTM_PL_MASK_CACHING; man->default_caching = TTM_PL_FLAG_CACHED; break; case TTM_PL_TT: /* GTT memory */ man->func = &amdgpu_gtt_mgr_func; man->gpu_offset = adev->gmc.gart_start; man->available_caching = TTM_PL_MASK_CACHING; man->default_caching = TTM_PL_FLAG_CACHED; man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; break; case TTM_PL_VRAM: /* "On-card" video ram */ man->func = &amdgpu_vram_mgr_func; man->gpu_offset = adev->gmc.vram_start; man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE; man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; man->default_caching = TTM_PL_FLAG_WC; break; case AMDGPU_PL_GDS: case AMDGPU_PL_GWS: case AMDGPU_PL_OA: /* On-chip GDS memory*/ man->func = &ttm_bo_manager_func; man->gpu_offset = 0; man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; man->available_caching = TTM_PL_FLAG_UNCACHED; man->default_caching = TTM_PL_FLAG_UNCACHED; break; default: DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); return -EINVAL; } return 0; } /** * amdgpu_evict_flags - Compute placement flags * * @bo: The buffer object to evict * @placement: Possible destination(s) for evicted BO * * Fill in placement data when ttm_bo_evict() is called */ static void amdgpu_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *placement) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); struct amdgpu_bo *abo; static const struct ttm_place placements = { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM }; /* Don't handle scatter gather BOs */ if (bo->type == ttm_bo_type_sg) { placement->num_placement = 0; placement->num_busy_placement = 0; return; } /* Object isn't an AMDGPU object so ignore */ if (!amdgpu_bo_is_amdgpu_bo(bo)) { placement->placement = &placements; placement->busy_placement = &placements; placement->num_placement = 1; placement->num_busy_placement = 1; return; } abo = ttm_to_amdgpu_bo(bo); switch (bo->mem.mem_type) { case AMDGPU_PL_GDS: case AMDGPU_PL_GWS: case AMDGPU_PL_OA: placement->num_placement = 0; placement->num_busy_placement = 0; return; case TTM_PL_VRAM: if (!adev->mman.buffer_funcs_enabled) { /* Move to system memory */ amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && amdgpu_bo_in_cpu_visible_vram(abo)) { /* Try evicting to the CPU inaccessible part of VRAM * first, but only set GTT as busy placement, so this * BO will be evicted to GTT rather than causing other * BOs to be evicted from VRAM */ amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT); abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; abo->placements[0].lpfn = 0; abo->placement.busy_placement = &abo->placements[1]; abo->placement.num_busy_placement = 1; } else { /* Move to GTT memory */ amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); } break; case TTM_PL_TT: default: amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); break; } *placement = abo->placement; } /** * amdgpu_verify_access - Verify access for a mmap call * * @bo: The buffer object to map * @filp: The file pointer from the process performing the mmap * * This is called by ttm_bo_mmap() to verify whether a process * has the right to mmap a BO to their process space. */ static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) { struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); /* * Don't verify access for KFD BOs. They don't have a GEM * object associated with them. */ if (abo->kfd_bo) return 0; if (amdgpu_ttm_tt_get_usermm(bo->ttm)) return -EPERM; return drm_vma_node_verify_access(&abo->tbo.base.vma_node, filp->private_data); } /** * amdgpu_move_null - Register memory for a buffer object * * @bo: The bo to assign the memory to * @new_mem: The memory to be assigned. * * Assign the memory from new_mem to the memory of the buffer object bo. */ static void amdgpu_move_null(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem) { struct ttm_mem_reg *old_mem = &bo->mem; BUG_ON(old_mem->mm_node != NULL); *old_mem = *new_mem; new_mem->mm_node = NULL; } /** * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. * * @bo: The bo to assign the memory to. * @mm_node: Memory manager node for drm allocator. * @mem: The region where the bo resides. * */ static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, struct drm_mm_node *mm_node, struct ttm_mem_reg *mem) { uint64_t addr = 0; if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { addr = mm_node->start << PAGE_SHIFT; addr += bo->bdev->man[mem->mem_type].gpu_offset; } return addr; } /** * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to * @offset. It also modifies the offset to be within the drm_mm_node returned * * @mem: The region where the bo resides. * @offset: The offset that drm_mm_node is used for finding. * */ static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, unsigned long *offset) { struct drm_mm_node *mm_node = mem->mm_node; while (*offset >= (mm_node->size << PAGE_SHIFT)) { *offset -= (mm_node->size << PAGE_SHIFT); ++mm_node; } return mm_node; } /** * amdgpu_copy_ttm_mem_to_mem - Helper function for copy * * The function copies @size bytes from {src->mem + src->offset} to * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a * move and different for a BO to BO copy. * * @f: Returns the last fence if multiple jobs are submitted. */ int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, struct amdgpu_copy_mem *src, struct amdgpu_copy_mem *dst, uint64_t size, struct dma_resv *resv, struct dma_fence **f) { struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; struct drm_mm_node *src_mm, *dst_mm; uint64_t src_node_start, dst_node_start, src_node_size, dst_node_size, src_page_offset, dst_page_offset; struct dma_fence *fence = NULL; int r = 0; const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * AMDGPU_GPU_PAGE_SIZE); if (!adev->mman.buffer_funcs_enabled) { DRM_ERROR("Trying to move memory with ring turned off.\n"); return -EINVAL; } src_mm = amdgpu_find_mm_node(src->mem, &src->offset); src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + src->offset; src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; src_page_offset = src_node_start & (PAGE_SIZE - 1); dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + dst->offset; dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; dst_page_offset = dst_node_start & (PAGE_SIZE - 1); mutex_lock(&adev->mman.gtt_window_lock); while (size) { unsigned long cur_size; uint64_t from = src_node_start, to = dst_node_start; struct dma_fence *next; /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst * begins at an offset, then adjust the size accordingly */ cur_size = min3(min(src_node_size, dst_node_size), size, GTT_MAX_BYTES); if (cur_size + src_page_offset > GTT_MAX_BYTES || cur_size + dst_page_offset > GTT_MAX_BYTES) cur_size -= max(src_page_offset, dst_page_offset); /* Map only what needs to be accessed. Map src to window 0 and * dst to window 1 */ if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { r = amdgpu_map_buffer(src->bo, src->mem, PFN_UP(cur_size + src_page_offset), src_node_start, 0, ring, &from); if (r) goto error; /* Adjust the offset because amdgpu_map_buffer returns * start of mapped page */ from += src_page_offset; } if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { r = amdgpu_map_buffer(dst->bo, dst->mem, PFN_UP(cur_size + dst_page_offset), dst_node_start, 1, ring, &to); if (r) goto error; to += dst_page_offset; } r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, &next, false, true); if (r) goto error; dma_fence_put(fence); fence = next; size -= cur_size; if (!size) break; src_node_size -= cur_size; if (!src_node_size) { src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, src->mem); src_node_size = (src_mm->size << PAGE_SHIFT); src_page_offset = 0; } else { src_node_start += cur_size; src_page_offset = src_node_start & (PAGE_SIZE - 1); } dst_node_size -= cur_size; if (!dst_node_size) { dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, dst->mem); dst_node_size = (dst_mm->size << PAGE_SHIFT); dst_page_offset = 0; } else { dst_node_start += cur_size; dst_page_offset = dst_node_start & (PAGE_SIZE - 1); } } error: mutex_unlock(&adev->mman.gtt_window_lock); if (f) *f = dma_fence_get(fence); dma_fence_put(fence); return r; } /** * amdgpu_move_blit - Copy an entire buffer to another buffer * * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to * help move buffers to and from VRAM. */ static int amdgpu_move_blit(struct ttm_buffer_object *bo, bool evict, bool no_wait_gpu, struct ttm_mem_reg *new_mem, struct ttm_mem_reg *old_mem) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); struct amdgpu_copy_mem src, dst; struct dma_fence *fence = NULL; int r; src.bo = bo; dst.bo = bo; src.mem = old_mem; dst.mem = new_mem; src.offset = 0; dst.offset = 0; r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, new_mem->num_pages << PAGE_SHIFT, bo->base.resv, &fence); if (r) goto error; /* clear the space being freed */ if (old_mem->mem_type == TTM_PL_VRAM && (ttm_to_amdgpu_bo(bo)->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { struct dma_fence *wipe_fence = NULL; r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, NULL, &wipe_fence); if (r) { goto error; } else if (wipe_fence) { dma_fence_put(fence); fence = wipe_fence; } } /* Always block for VM page tables before committing the new location */ if (bo->type == ttm_bo_type_kernel) r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); else r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); dma_fence_put(fence); return r; error: if (fence) dma_fence_wait(fence, false); dma_fence_put(fence); return r; } /** * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer * * Called by amdgpu_bo_move(). */ static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, struct ttm_operation_ctx *ctx, struct ttm_mem_reg *new_mem) { struct ttm_mem_reg *old_mem = &bo->mem; struct ttm_mem_reg tmp_mem; struct ttm_place placements; struct ttm_placement placement; int r; /* create space/pages for new_mem in GTT space */ tmp_mem = *new_mem; tmp_mem.mm_node = NULL; placement.num_placement = 1; placement.placement = &placements; placement.num_busy_placement = 1; placement.busy_placement = &placements; placements.fpfn = 0; placements.lpfn = 0; placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); if (unlikely(r)) { pr_err("Failed to find GTT space for blit from VRAM\n"); return r; } /* set caching flags */ r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); if (unlikely(r)) { goto out_cleanup; } /* Bind the memory to the GTT space */ r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); if (unlikely(r)) { goto out_cleanup; } /* blit VRAM to GTT */ r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); if (unlikely(r)) { goto out_cleanup; } /* move BO (in tmp_mem) to new_mem */ r = ttm_bo_move_ttm(bo, ctx, new_mem); out_cleanup: ttm_bo_mem_put(bo, &tmp_mem); return r; } /** * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM * * Called by amdgpu_bo_move(). */ static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, struct ttm_operation_ctx *ctx, struct ttm_mem_reg *new_mem) { struct ttm_mem_reg *old_mem = &bo->mem; struct ttm_mem_reg tmp_mem; struct ttm_placement placement; struct ttm_place placements; int r; /* make space in GTT for old_mem buffer */ tmp_mem = *new_mem; tmp_mem.mm_node = NULL; placement.num_placement = 1; placement.placement = &placements; placement.num_busy_placement = 1; placement.busy_placement = &placements; placements.fpfn = 0; placements.lpfn = 0; placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); if (unlikely(r)) { pr_err("Failed to find GTT space for blit to VRAM\n"); return r; } /* move/bind old memory to GTT space */ r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); if (unlikely(r)) { goto out_cleanup; } /* copy to VRAM */ r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); if (unlikely(r)) { goto out_cleanup; } out_cleanup: ttm_bo_mem_put(bo, &tmp_mem); return r; } /** * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy * * Called by amdgpu_bo_move() */ static bool amdgpu_mem_visible(struct amdgpu_device *adev, struct ttm_mem_reg *mem) { struct drm_mm_node *nodes = mem->mm_node; if (mem->mem_type == TTM_PL_SYSTEM || mem->mem_type == TTM_PL_TT) return true; if (mem->mem_type != TTM_PL_VRAM) return false; /* ttm_mem_reg_ioremap only supports contiguous memory */ if (nodes->size != mem->num_pages) return false; return ((nodes->start + nodes->size) << PAGE_SHIFT) <= adev->gmc.visible_vram_size; } /** * amdgpu_bo_move - Move a buffer object to a new memory location * * Called by ttm_bo_handle_move_mem() */ static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, struct ttm_operation_ctx *ctx, struct ttm_mem_reg *new_mem) { struct amdgpu_device *adev; struct amdgpu_bo *abo; struct ttm_mem_reg *old_mem = &bo->mem; int r; /* Can't move a pinned BO */ abo = ttm_to_amdgpu_bo(bo); if (WARN_ON_ONCE(abo->pin_count > 0)) return -EINVAL; adev = amdgpu_ttm_adev(bo->bdev); if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { amdgpu_move_null(bo, new_mem); return 0; } if ((old_mem->mem_type == TTM_PL_TT && new_mem->mem_type == TTM_PL_SYSTEM) || (old_mem->mem_type == TTM_PL_SYSTEM && new_mem->mem_type == TTM_PL_TT)) { /* bind is enough */ amdgpu_move_null(bo, new_mem); return 0; } if (old_mem->mem_type == AMDGPU_PL_GDS || old_mem->mem_type == AMDGPU_PL_GWS || old_mem->mem_type == AMDGPU_PL_OA || new_mem->mem_type == AMDGPU_PL_GDS || new_mem->mem_type == AMDGPU_PL_GWS || new_mem->mem_type == AMDGPU_PL_OA) { /* Nothing to save here */ amdgpu_move_null(bo, new_mem); return 0; } if (!adev->mman.buffer_funcs_enabled) { r = -ENODEV; goto memcpy; } if (old_mem->mem_type == TTM_PL_VRAM && new_mem->mem_type == TTM_PL_SYSTEM) { r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); } else if (old_mem->mem_type == TTM_PL_SYSTEM && new_mem->mem_type == TTM_PL_VRAM) { r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); } else { r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); } if (r) { memcpy: /* Check that all memory is CPU accessible */ if (!amdgpu_mem_visible(adev, old_mem) || !amdgpu_mem_visible(adev, new_mem)) { pr_err("Move buffer fallback to memcpy unavailable\n"); return r; } r = ttm_bo_move_memcpy(bo, ctx, new_mem); if (r) return r; } if (bo->type == ttm_bo_type_device && new_mem->mem_type == TTM_PL_VRAM && old_mem->mem_type != TTM_PL_VRAM) { /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU * accesses the BO after it's moved. */ abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; } /* update statistics */ atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); return 0; } /** * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault * * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() */ static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) { struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); struct drm_mm_node *mm_node = mem->mm_node; mem->bus.addr = NULL; mem->bus.offset = 0; mem->bus.size = mem->num_pages << PAGE_SHIFT; mem->bus.base = 0; mem->bus.is_iomem = false; if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) return -EINVAL; switch (mem->mem_type) { case TTM_PL_SYSTEM: /* system memory */ return 0; case TTM_PL_TT: break; case TTM_PL_VRAM: mem->bus.offset = mem->start << PAGE_SHIFT; /* check if it's visible */ if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) return -EINVAL; /* Only physically contiguous buffers apply. In a contiguous * buffer, size of the first mm_node would match the number of * pages in ttm_mem_reg. */ if (adev->mman.aper_base_kaddr && (mm_node->size == mem->num_pages)) mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + mem->bus.offset; mem->bus.base = adev->gmc.aper_base; mem->bus.is_iomem = true; break; default: return -EINVAL; } return 0; } static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) { } static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, unsigned long page_offset) { struct drm_mm_node *mm; unsigned long offset = (page_offset << PAGE_SHIFT); mm = amdgpu_find_mm_node(&bo->mem, &offset); return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + (offset >> PAGE_SHIFT); } /* * TTM backend functions. */ struct amdgpu_ttm_tt { struct ttm_dma_tt ttm; struct drm_gem_object *gobj; u64 offset; uint64_t userptr; struct task_struct *usertask; uint32_t userflags; #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) struct hmm_range *range; #endif }; #ifdef CONFIG_DRM_AMDGPU_USERPTR /* flags used by HMM internal, not related to CPU/GPU PTE flags */ static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = { (1 << 0), /* HMM_PFN_VALID */ (1 << 1), /* HMM_PFN_WRITE */ }; static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = { 0xfffffffffffffffeUL, /* HMM_PFN_ERROR */ 0, /* HMM_PFN_NONE */ 0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */ }; /** * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user * memory and start HMM tracking CPU page table update * * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only * once afterwards to stop HMM tracking */ int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) { struct ttm_tt *ttm = bo->tbo.ttm; struct amdgpu_ttm_tt *gtt = (void *)ttm; unsigned long start = gtt->userptr; struct vm_area_struct *vma; struct hmm_range *range; unsigned long timeout; struct mm_struct *mm; unsigned long i; int r = 0; mm = bo->notifier.mm; if (unlikely(!mm)) { DRM_DEBUG_DRIVER("BO is not registered?\n"); return -EFAULT; } /* Another get_user_pages is running at the same time?? */ if (WARN_ON(gtt->range)) return -EFAULT; if (!mmget_not_zero(mm)) /* Happens during process shutdown */ return -ESRCH; range = kzalloc(sizeof(*range), GFP_KERNEL); if (unlikely(!range)) { r = -ENOMEM; goto out; } range->notifier = &bo->notifier; range->flags = hmm_range_flags; range->values = hmm_range_values; range->pfn_shift = PAGE_SHIFT; range->start = bo->notifier.interval_tree.start; range->end = bo->notifier.interval_tree.last + 1; range->default_flags = hmm_range_flags[HMM_PFN_VALID]; if (!amdgpu_ttm_tt_is_readonly(ttm)) range->default_flags |= range->flags[HMM_PFN_WRITE]; range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns), GFP_KERNEL); if (unlikely(!range->pfns)) { r = -ENOMEM; goto out_free_ranges; } down_read(&mm->mmap_sem); vma = find_vma(mm, start); if (unlikely(!vma || start < vma->vm_start)) { r = -EFAULT; goto out_unlock; } if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && vma->vm_file)) { r = -EPERM; goto out_unlock; } up_read(&mm->mmap_sem); timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); retry: range->notifier_seq = mmu_interval_read_begin(&bo->notifier); down_read(&mm->mmap_sem); r = hmm_range_fault(range, 0); up_read(&mm->mmap_sem); if (unlikely(r <= 0)) { /* * FIXME: This timeout should encompass the retry from * mmu_interval_read_retry() as well. */ if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout)) goto retry; goto out_free_pfns; } for (i = 0; i < ttm->num_pages; i++) { /* FIXME: The pages cannot be touched outside the notifier_lock */ pages[i] = hmm_device_entry_to_page(range, range->pfns[i]); if (unlikely(!pages[i])) { pr_err("Page fault failed for pfn[%lu] = 0x%llx\n", i, range->pfns[i]); r = -ENOMEM; goto out_free_pfns; } } gtt->range = range; mmput(mm); return 0; out_unlock: up_read(&mm->mmap_sem); out_free_pfns: kvfree(range->pfns); out_free_ranges: kfree(range); out: mmput(mm); return r; } /** * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change * Check if the pages backing this ttm range have been invalidated * * Returns: true if pages are still valid */ bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = (void *)ttm; bool r = false; if (!gtt || !gtt->userptr) return false; DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", gtt->userptr, ttm->num_pages); WARN_ONCE(!gtt->range || !gtt->range->pfns, "No user pages to check\n"); if (gtt->range) { /* * FIXME: Must always hold notifier_lock for this, and must * not ignore the return code. */ r = mmu_interval_read_retry(gtt->range->notifier, gtt->range->notifier_seq); kvfree(gtt->range->pfns); kfree(gtt->range); gtt->range = NULL; } return !r; } #endif /** * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. * * Called by amdgpu_cs_list_validate(). This creates the page list * that backs user memory and will ultimately be mapped into the device * address space. */ void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) { unsigned long i; for (i = 0; i < ttm->num_pages; ++i) ttm->pages[i] = pages ? pages[i] : NULL; } /** * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages * * Called by amdgpu_ttm_backend_bind() **/ static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) { struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); struct amdgpu_ttm_tt *gtt = (void *)ttm; unsigned nents; int r; int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); enum dma_data_direction direction = write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE; /* Allocate an SG array and squash pages into it */ r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, ttm->num_pages << PAGE_SHIFT, GFP_KERNEL); if (r) goto release_sg; /* Map SG to device */ r = -ENOMEM; nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); if (nents != ttm->sg->nents) goto release_sg; /* convert SG to linear array of pages and dma addresses */ drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, gtt->ttm.dma_address, ttm->num_pages); return 0; release_sg: kfree(ttm->sg); return r; } /** * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages */ static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) { struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); struct amdgpu_ttm_tt *gtt = (void *)ttm; int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); enum dma_data_direction direction = write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE; /* double check that we don't free the table twice */ if (!ttm->sg->sgl) return; /* unmap the pages mapped to the device */ dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); sg_free_table(ttm->sg); #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) if (gtt->range) { unsigned long i; for (i = 0; i < ttm->num_pages; i++) { if (ttm->pages[i] != hmm_device_entry_to_page(gtt->range, gtt->range->pfns[i])) break; } WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); } #endif } int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, struct ttm_buffer_object *tbo, uint64_t flags) { struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); struct ttm_tt *ttm = tbo->ttm; struct amdgpu_ttm_tt *gtt = (void *)ttm; int r; if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { uint64_t page_idx = 1; r = amdgpu_gart_bind(adev, gtt->offset, page_idx, ttm->pages, gtt->ttm.dma_address, flags); if (r) goto gart_bind_fail; /* Patch mtype of the second part BO */ flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); r = amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT), ttm->num_pages - page_idx, &ttm->pages[page_idx], &(gtt->ttm.dma_address[page_idx]), flags); } else { r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, ttm->pages, gtt->ttm.dma_address, flags); } gart_bind_fail: if (r) DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", ttm->num_pages, gtt->offset); return r; } /** * amdgpu_ttm_backend_bind - Bind GTT memory * * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). * This handles binding GTT memory to the device address space. */ static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem) { struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); struct amdgpu_ttm_tt *gtt = (void*)ttm; uint64_t flags; int r = 0; if (gtt->userptr) { r = amdgpu_ttm_tt_pin_userptr(ttm); if (r) { DRM_ERROR("failed to pin userptr\n"); return r; } } if (!ttm->num_pages) { WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", ttm->num_pages, bo_mem, ttm); } if (bo_mem->mem_type == AMDGPU_PL_GDS || bo_mem->mem_type == AMDGPU_PL_GWS || bo_mem->mem_type == AMDGPU_PL_OA) return -EINVAL; if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { gtt->offset = AMDGPU_BO_INVALID_OFFSET; return 0; } /* compute PTE flags relevant to this BO memory */ flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); /* bind pages into GART page tables */ gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, ttm->pages, gtt->ttm.dma_address, flags); if (r) DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", ttm->num_pages, gtt->offset); return r; } /** * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object */ int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); struct ttm_operation_ctx ctx = { false, false }; struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; struct ttm_mem_reg tmp; struct ttm_placement placement; struct ttm_place placements; uint64_t addr, flags; int r; if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) return 0; addr = amdgpu_gmc_agp_addr(bo); if (addr != AMDGPU_BO_INVALID_OFFSET) { bo->mem.start = addr >> PAGE_SHIFT; } else { /* allocate GART space */ tmp = bo->mem; tmp.mm_node = NULL; placement.num_placement = 1; placement.placement = &placements; placement.num_busy_placement = 1; placement.busy_placement = &placements; placements.fpfn = 0; placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | TTM_PL_FLAG_TT; r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); if (unlikely(r)) return r; /* compute PTE flags for this buffer object */ flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); /* Bind pages */ gtt->offset = (u64)tmp.start << PAGE_SHIFT; r = amdgpu_ttm_gart_bind(adev, bo, flags); if (unlikely(r)) { ttm_bo_mem_put(bo, &tmp); return r; } ttm_bo_mem_put(bo, &bo->mem); bo->mem = tmp; } bo->offset = (bo->mem.start << PAGE_SHIFT) + bo->bdev->man[bo->mem.mem_type].gpu_offset; return 0; } /** * amdgpu_ttm_recover_gart - Rebind GTT pages * * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to * rebind GTT pages during a GPU reset. */ int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) { struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); uint64_t flags; int r; if (!tbo->ttm) return 0; flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); r = amdgpu_ttm_gart_bind(adev, tbo, flags); return r; } /** * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages * * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and * ttm_tt_destroy(). */ static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) { struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); struct amdgpu_ttm_tt *gtt = (void *)ttm; int r; /* if the pages have userptr pinning then clear that first */ if (gtt->userptr) amdgpu_ttm_tt_unpin_userptr(ttm); if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) return 0; /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); if (r) DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", gtt->ttm.ttm.num_pages, gtt->offset); return r; } static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = (void *)ttm; if (gtt->usertask) put_task_struct(gtt->usertask); ttm_dma_tt_fini(>t->ttm); kfree(gtt); } static struct ttm_backend_func amdgpu_backend_func = { .bind = &amdgpu_ttm_backend_bind, .unbind = &amdgpu_ttm_backend_unbind, .destroy = &amdgpu_ttm_backend_destroy, }; /** * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO * * @bo: The buffer object to create a GTT ttm_tt object around * * Called by ttm_tt_create(). */ static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags) { struct amdgpu_ttm_tt *gtt; gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); if (gtt == NULL) { return NULL; } gtt->ttm.ttm.func = &amdgpu_backend_func; gtt->gobj = &bo->base; /* allocate space for the uninitialized page entries */ if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { kfree(gtt); return NULL; } return >t->ttm.ttm; } /** * amdgpu_ttm_tt_populate - Map GTT pages visible to the device * * Map the pages of a ttm_tt object to an address space visible * to the underlying device. */ static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) { struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); struct amdgpu_ttm_tt *gtt = (void *)ttm; /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ if (gtt && gtt->userptr) { ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); if (!ttm->sg) return -ENOMEM; ttm->page_flags |= TTM_PAGE_FLAG_SG; ttm->state = tt_unbound; return 0; } if (ttm->page_flags & TTM_PAGE_FLAG_SG) { if (!ttm->sg) { struct dma_buf_attachment *attach; struct sg_table *sgt; attach = gtt->gobj->import_attach; sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); if (IS_ERR(sgt)) return PTR_ERR(sgt); ttm->sg = sgt; } drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, gtt->ttm.dma_address, ttm->num_pages); ttm->state = tt_unbound; return 0; } #ifdef CONFIG_SWIOTLB if (adev->need_swiotlb && swiotlb_nr_tbl()) { return ttm_dma_populate(>t->ttm, adev->dev, ctx); } #endif /* fall back to generic helper to populate the page array * and map them to the device */ return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); } /** * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays * * Unmaps pages of a ttm_tt object from the device address space and * unpopulates the page array backing it. */ static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = (void *)ttm; struct amdgpu_device *adev; if (gtt && gtt->userptr) { amdgpu_ttm_tt_set_user_pages(ttm, NULL); kfree(ttm->sg); ttm->page_flags &= ~TTM_PAGE_FLAG_SG; return; } if (ttm->sg && gtt->gobj->import_attach) { struct dma_buf_attachment *attach; attach = gtt->gobj->import_attach; dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); ttm->sg = NULL; return; } if (ttm->page_flags & TTM_PAGE_FLAG_SG) return; adev = amdgpu_ttm_adev(ttm->bdev); #ifdef CONFIG_SWIOTLB if (adev->need_swiotlb && swiotlb_nr_tbl()) { ttm_dma_unpopulate(>t->ttm, adev->dev); return; } #endif /* fall back to generic helper to unmap and unpopulate array */ ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); } /** * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current * task * * @ttm: The ttm_tt object to bind this userptr object to * @addr: The address in the current tasks VM space to use * @flags: Requirements of userptr object. * * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages * to current task */ int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, uint32_t flags) { struct amdgpu_ttm_tt *gtt = (void *)ttm; if (gtt == NULL) return -EINVAL; gtt->userptr = addr; gtt->userflags = flags; if (gtt->usertask) put_task_struct(gtt->usertask); gtt->usertask = current->group_leader; get_task_struct(gtt->usertask); return 0; } /** * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object */ struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = (void *)ttm; if (gtt == NULL) return NULL; if (gtt->usertask == NULL) return NULL; return gtt->usertask->mm; } /** * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an * address range for the current task. * */ bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, unsigned long end) { struct amdgpu_ttm_tt *gtt = (void *)ttm; unsigned long size; if (gtt == NULL || !gtt->userptr) return false; /* Return false if no part of the ttm_tt object lies within * the range */ size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; if (gtt->userptr > end || gtt->userptr + size <= start) return false; return true; } /** * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? */ bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = (void *)ttm; if (gtt == NULL || !gtt->userptr) return false; return true; } /** * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? */ bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = (void *)ttm; if (gtt == NULL) return false; return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); } /** * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object * * @ttm: The ttm_tt object to compute the flags for * @mem: The memory registry backing this ttm_tt object * * Figure out the flags to use for a VM PDE (Page Directory Entry). */ uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) { uint64_t flags = 0; if (mem && mem->mem_type != TTM_PL_SYSTEM) flags |= AMDGPU_PTE_VALID; if (mem && mem->mem_type == TTM_PL_TT) { flags |= AMDGPU_PTE_SYSTEM; if (ttm->caching_state == tt_cached) flags |= AMDGPU_PTE_SNOOPED; } return flags; } /** * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object * * @ttm: The ttm_tt object to compute the flags for * @mem: The memory registry backing this ttm_tt object * Figure out the flags to use for a VM PTE (Page Table Entry). */ uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, struct ttm_mem_reg *mem) { uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); flags |= adev->gart.gart_pte_flags; flags |= AMDGPU_PTE_READABLE; if (!amdgpu_ttm_tt_is_readonly(ttm)) flags |= AMDGPU_PTE_WRITEABLE; return flags; } /** * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer * object. * * Return true if eviction is sensible. Called by ttm_mem_evict_first() on * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until * it can find space for a new object and by ttm_bo_force_list_clean() which is * used to clean out a memory space. */ static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, const struct ttm_place *place) { unsigned long num_pages = bo->mem.num_pages; struct drm_mm_node *node = bo->mem.mm_node; struct dma_resv_list *flist; struct dma_fence *f; int i; if (bo->type == ttm_bo_type_kernel && !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) return false; /* If bo is a KFD BO, check if the bo belongs to the current process. * If true, then return false as any KFD process needs all its BOs to * be resident to run successfully */ flist = dma_resv_get_list(bo->base.resv); if (flist) { for (i = 0; i < flist->shared_count; ++i) { f = rcu_dereference_protected(flist->shared[i], dma_resv_held(bo->base.resv)); if (amdkfd_fence_check_mm(f, current->mm)) return false; } } switch (bo->mem.mem_type) { case TTM_PL_TT: return true; case TTM_PL_VRAM: /* Check each drm MM node individually */ while (num_pages) { if (place->fpfn < (node->start + node->size) && !(place->lpfn && place->lpfn <= node->start)) return true; num_pages -= node->size; ++node; } return false; default: break; } return ttm_bo_eviction_valuable(bo, place); } /** * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. * * @bo: The buffer object to read/write * @offset: Offset into buffer object * @buf: Secondary buffer to write/read from * @len: Length in bytes of access * @write: true if writing * * This is used to access VRAM that backs a buffer object via MMIO * access for debugging purposes. */ static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, unsigned long offset, void *buf, int len, int write) { struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); struct drm_mm_node *nodes; uint32_t value = 0; int ret = 0; uint64_t pos; unsigned long flags; if (bo->mem.mem_type != TTM_PL_VRAM) return -EIO; nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); pos = (nodes->start << PAGE_SHIFT) + offset; while (len && pos < adev->gmc.mc_vram_size) { uint64_t aligned_pos = pos & ~(uint64_t)3; uint32_t bytes = 4 - (pos & 3); uint32_t shift = (pos & 3) * 8; uint32_t mask = 0xffffffff << shift; if (len < bytes) { mask &= 0xffffffff >> (bytes - len) * 8; bytes = len; } spin_lock_irqsave(&adev->mmio_idx_lock, flags); WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); if (!write || mask != 0xffffffff) value = RREG32_NO_KIQ(mmMM_DATA); if (write) { value &= ~mask; value |= (*(uint32_t *)buf << shift) & mask; WREG32_NO_KIQ(mmMM_DATA, value); } spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); if (!write) { value = (value & mask) >> shift; memcpy(buf, &value, bytes); } ret += bytes; buf = (uint8_t *)buf + bytes; pos += bytes; len -= bytes; if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { ++nodes; pos = (nodes->start << PAGE_SHIFT); } } return ret; } static struct ttm_bo_driver amdgpu_bo_driver = { .ttm_tt_create = &amdgpu_ttm_tt_create, .ttm_tt_populate = &amdgpu_ttm_tt_populate, .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, .invalidate_caches = &amdgpu_invalidate_caches, .init_mem_type = &amdgpu_init_mem_type, .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, .evict_flags = &amdgpu_evict_flags, .move = &amdgpu_bo_move, .verify_access = &amdgpu_verify_access, .move_notify = &amdgpu_bo_move_notify, .release_notify = &amdgpu_bo_release_notify, .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, .io_mem_free = &amdgpu_ttm_io_mem_free, .io_mem_pfn = amdgpu_ttm_io_mem_pfn, .access_memory = &amdgpu_ttm_access_memory, .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify }; /* * Firmware Reservation functions */ /** * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram * * @adev: amdgpu_device pointer * * free fw reserved vram if it has been reserved. */ static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, NULL, &adev->fw_vram_usage.va); } /** * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw * * @adev: amdgpu_device pointer * * create bo vram reservation from fw. */ static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) { uint64_t vram_size = adev->gmc.visible_vram_size; adev->fw_vram_usage.va = NULL; adev->fw_vram_usage.reserved_bo = NULL; if (adev->fw_vram_usage.size == 0 || adev->fw_vram_usage.size > vram_size) return 0; return amdgpu_bo_create_kernel_at(adev, adev->fw_vram_usage.start_offset, adev->fw_vram_usage.size, AMDGPU_GEM_DOMAIN_VRAM, &adev->fw_vram_usage.reserved_bo, &adev->fw_vram_usage.va); } /* * Memoy training reservation functions */ /** * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram * * @adev: amdgpu_device pointer * * free memory training reserved vram if it has been reserved. */ static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) { struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); ctx->c2p_bo = NULL; return 0; } static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size) { if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) ) vram_size -= SZ_1M; return ALIGN(vram_size, SZ_1M); } /** * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training * * @adev: amdgpu_device pointer * * create bo vram reservation from memory training. */ static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev) { int ret; struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; memset(ctx, 0, sizeof(*ctx)); if (!adev->fw_vram_usage.mem_train_support) { DRM_DEBUG("memory training does not support!\n"); return 0; } ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size); ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", ctx->train_data_size, ctx->p2c_train_data_offset, ctx->c2p_train_data_offset); ret = amdgpu_bo_create_kernel_at(adev, ctx->c2p_train_data_offset, ctx->train_data_size, AMDGPU_GEM_DOMAIN_VRAM, &ctx->c2p_bo, NULL); if (ret) { DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); amdgpu_ttm_training_reserve_vram_fini(adev); return ret; } ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; return 0; } /** * amdgpu_ttm_init - Init the memory management (ttm) as well as various * gtt/vram related fields. * * This initializes all of the memory space pools that the TTM layer * will need such as the GTT space (system memory mapped to the device), * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which * can be mapped per VMID. */ int amdgpu_ttm_init(struct amdgpu_device *adev) { uint64_t gtt_size; int r; u64 vis_vram_limit; void *stolen_vga_buf; mutex_init(&adev->mman.gtt_window_lock); /* No others user of address space so set it to 0 */ r = ttm_bo_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->ddev->anon_inode->i_mapping, adev->ddev->vma_offset_manager, dma_addressing_limited(adev->dev)); if (r) { DRM_ERROR("failed initializing buffer object driver(%d).\n", r); return r; } adev->mman.initialized = true; /* We opt to avoid OOM on system pages allocations */ adev->mman.bdev.no_retry = true; /* Initialize VRAM pool with all of VRAM divided into pages */ r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, adev->gmc.real_vram_size >> PAGE_SHIFT); if (r) { DRM_ERROR("Failed initializing VRAM heap.\n"); return r; } /* Reduce size of CPU-visible VRAM if requested */ vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; if (amdgpu_vis_vram_limit > 0 && vis_vram_limit <= adev->gmc.visible_vram_size) adev->gmc.visible_vram_size = vis_vram_limit; /* Change the size here instead of the init above so only lpfn is affected */ amdgpu_ttm_set_buffer_funcs_status(adev, false); #ifdef CONFIG_64BIT adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, adev->gmc.visible_vram_size); #endif /* *The reserved vram for firmware must be pinned to the specified *place on the VRAM, so reserve it early. */ r = amdgpu_ttm_fw_reserve_vram_init(adev); if (r) { return r; } /* *The reserved vram for memory training must be pinned to the specified *place on the VRAM, so reserve it early. */ r = amdgpu_ttm_training_reserve_vram_init(adev); if (r) return r; /* allocate memory as required for VGA * This is used for VGA emulation and pre-OS scanout buffers to * avoid display artifacts while transitioning between pre-OS * and driver. */ r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM, &adev->stolen_vga_memory, NULL, &stolen_vga_buf); if (r) return r; /* * reserve one TMR (64K) memory at the top of VRAM which holds * IP Discovery data and is protected by PSP. */ r = amdgpu_bo_create_kernel_at(adev, adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE, DISCOVERY_TMR_SIZE, AMDGPU_GEM_DOMAIN_VRAM, &adev->discovery_memory, NULL); if (r) return r; DRM_INFO("amdgpu: %uM of VRAM memory ready\n", (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); /* Compute GTT size, either bsaed on 3/4th the size of RAM size * or whatever the user passed on module init */ if (amdgpu_gtt_size == -1) { struct sysinfo si; si_meminfo(&si); gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), adev->gmc.mc_vram_size), ((uint64_t)si.totalram * si.mem_unit * 3/4)); } else gtt_size = (uint64_t)amdgpu_gtt_size << 20; /* Initialize GTT memory pool */ r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); if (r) { DRM_ERROR("Failed initializing GTT heap.\n"); return r; } DRM_INFO("amdgpu: %uM of GTT memory ready.\n", (unsigned)(gtt_size / (1024 * 1024))); /* Initialize various on-chip memory pools */ r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, adev->gds.gds_size); if (r) { DRM_ERROR("Failed initializing GDS heap.\n"); return r; } r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, adev->gds.gws_size); if (r) { DRM_ERROR("Failed initializing gws heap.\n"); return r; } r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, adev->gds.oa_size); if (r) { DRM_ERROR("Failed initializing oa heap.\n"); return r; } /* Register debugfs entries for amdgpu_ttm */ r = amdgpu_ttm_debugfs_init(adev); if (r) { DRM_ERROR("Failed to init debugfs\n"); return r; } return 0; } /** * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm */ void amdgpu_ttm_late_init(struct amdgpu_device *adev) { void *stolen_vga_buf; /* return the VGA stolen memory (if any) back to VRAM */ amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf); } /** * amdgpu_ttm_fini - De-initialize the TTM memory pools */ void amdgpu_ttm_fini(struct amdgpu_device *adev) { if (!adev->mman.initialized) return; amdgpu_ttm_debugfs_fini(adev); amdgpu_ttm_training_reserve_vram_fini(adev); /* return the IP Discovery TMR memory back to VRAM */ amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL); amdgpu_ttm_fw_reserve_vram_fini(adev); if (adev->mman.aper_base_kaddr) iounmap(adev->mman.aper_base_kaddr); adev->mman.aper_base_kaddr = NULL; ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); ttm_bo_device_release(&adev->mman.bdev); adev->mman.initialized = false; DRM_INFO("amdgpu: ttm finalized\n"); } /** * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions * * @adev: amdgpu_device pointer * @enable: true when we can use buffer functions. * * Enable/disable use of buffer functions during suspend/resume. This should * only be called at bootup or when userspace isn't running. */ void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) { struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; uint64_t size; int r; if (!adev->mman.initialized || adev->in_gpu_reset || adev->mman.buffer_funcs_enabled == enable) return; if (enable) { struct amdgpu_ring *ring; struct drm_gpu_scheduler *sched; ring = adev->mman.buffer_funcs_ring; sched = &ring->sched; r = drm_sched_entity_init(&adev->mman.entity, DRM_SCHED_PRIORITY_KERNEL, &sched, 1, NULL); if (r) { DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", r); return; } } else { drm_sched_entity_destroy(&adev->mman.entity); dma_fence_put(man->move); man->move = NULL; } /* this just adjusts TTM size idea, which sets lpfn to the correct value */ if (enable) size = adev->gmc.real_vram_size; else size = adev->gmc.visible_vram_size; man->size = size >> PAGE_SHIFT; adev->mman.buffer_funcs_enabled = enable; } int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) { struct drm_file *file_priv = filp->private_data; struct amdgpu_device *adev = file_priv->minor->dev->dev_private; if (adev == NULL) return -EINVAL; return ttm_bo_mmap(filp, vma, &adev->mman.bdev); } static int amdgpu_map_buffer(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem, unsigned num_pages, uint64_t offset, unsigned window, struct amdgpu_ring *ring, uint64_t *addr) { struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; struct amdgpu_device *adev = ring->adev; struct ttm_tt *ttm = bo->ttm; struct amdgpu_job *job; unsigned num_dw, num_bytes; dma_addr_t *dma_address; struct dma_fence *fence; uint64_t src_addr, dst_addr; uint64_t flags; int r; BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); *addr = adev->gmc.gart_start; *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * AMDGPU_GPU_PAGE_SIZE; num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); num_bytes = num_pages * 8; r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); if (r) return r; src_addr = num_dw * 4; src_addr += job->ibs[0].gpu_addr; dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, num_bytes); amdgpu_ring_pad_ib(ring, &job->ibs[0]); WARN_ON(job->ibs[0].length_dw > num_dw); dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, &job->ibs[0].ptr[num_dw]); if (r) goto error_free; r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence); if (r) goto error_free; dma_fence_put(fence); return r; error_free: amdgpu_job_free(job); return r; } int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, uint64_t dst_offset, uint32_t byte_count, struct dma_resv *resv, struct dma_fence **fence, bool direct_submit, bool vm_needs_flush) { struct amdgpu_device *adev = ring->adev; struct amdgpu_job *job; uint32_t max_bytes; unsigned num_loops, num_dw; unsigned i; int r; if (direct_submit && !ring->sched.ready) { DRM_ERROR("Trying to move memory with ring turned off.\n"); return -EINVAL; } max_bytes = adev->mman.buffer_funcs->copy_max_bytes; num_loops = DIV_ROUND_UP(byte_count, max_bytes); num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); if (r) return r; if (vm_needs_flush) { job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); job->vm_needs_flush = true; } if (resv) { r = amdgpu_sync_resv(adev, &job->sync, resv, AMDGPU_FENCE_OWNER_UNDEFINED, false); if (r) { DRM_ERROR("sync failed (%d).\n", r); goto error_free; } } for (i = 0; i < num_loops; i++) { uint32_t cur_size_in_bytes = min(byte_count, max_bytes); amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, dst_offset, cur_size_in_bytes); src_offset += cur_size_in_bytes; dst_offset += cur_size_in_bytes; byte_count -= cur_size_in_bytes; } amdgpu_ring_pad_ib(ring, &job->ibs[0]); WARN_ON(job->ibs[0].length_dw > num_dw); if (direct_submit) r = amdgpu_job_submit_direct(job, ring, fence); else r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, fence); if (r) goto error_free; return r; error_free: amdgpu_job_free(job); DRM_ERROR("Error scheduling IBs (%d)\n", r); return r; } int amdgpu_fill_buffer(struct amdgpu_bo *bo, uint32_t src_data, struct dma_resv *resv, struct dma_fence **fence) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; struct drm_mm_node *mm_node; unsigned long num_pages; unsigned int num_loops, num_dw; struct amdgpu_job *job; int r; if (!adev->mman.buffer_funcs_enabled) { DRM_ERROR("Trying to clear memory with ring turned off.\n"); return -EINVAL; } if (bo->tbo.mem.mem_type == TTM_PL_TT) { r = amdgpu_ttm_alloc_gart(&bo->tbo); if (r) return r; } num_pages = bo->tbo.num_pages; mm_node = bo->tbo.mem.mm_node; num_loops = 0; while (num_pages) { uint64_t byte_count = mm_node->size << PAGE_SHIFT; num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); num_pages -= mm_node->size; ++mm_node; } num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; /* for IB padding */ num_dw += 64; r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); if (r) return r; if (resv) { r = amdgpu_sync_resv(adev, &job->sync, resv, AMDGPU_FENCE_OWNER_UNDEFINED, false); if (r) { DRM_ERROR("sync failed (%d).\n", r); goto error_free; } } num_pages = bo->tbo.num_pages; mm_node = bo->tbo.mem.mm_node; while (num_pages) { uint64_t byte_count = mm_node->size << PAGE_SHIFT; uint64_t dst_addr; dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); while (byte_count) { uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, max_bytes); amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, cur_size_in_bytes); dst_addr += cur_size_in_bytes; byte_count -= cur_size_in_bytes; } num_pages -= mm_node->size; ++mm_node; } amdgpu_ring_pad_ib(ring, &job->ibs[0]); WARN_ON(job->ibs[0].length_dw > num_dw); r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, fence); if (r) goto error_free; return 0; error_free: amdgpu_job_free(job); return r; } #if defined(CONFIG_DEBUG_FS) static int amdgpu_mm_dump_table(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *)m->private; unsigned ttm_pl = (uintptr_t)node->info_ent->data; struct drm_device *dev = node->minor->dev; struct amdgpu_device *adev = dev->dev_private; struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; struct drm_printer p = drm_seq_file_printer(m); man->func->debug(man, &p); return 0; } static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, #ifdef CONFIG_SWIOTLB {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} #endif }; /** * amdgpu_ttm_vram_read - Linear read access to VRAM * * Accesses VRAM via MMIO for debugging purposes. */ static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; if (*pos >= adev->gmc.mc_vram_size) return -ENXIO; while (size) { unsigned long flags; uint32_t value; if (*pos >= adev->gmc.mc_vram_size) return result; spin_lock_irqsave(&adev->mmio_idx_lock, flags); WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); value = RREG32_NO_KIQ(mmMM_DATA); spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); r = put_user(value, (uint32_t *)buf); if (r) return r; result += 4; buf += 4; *pos += 4; size -= 4; } return result; } /** * amdgpu_ttm_vram_write - Linear write access to VRAM * * Accesses VRAM via MMIO for debugging purposes. */ static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; if (*pos >= adev->gmc.mc_vram_size) return -ENXIO; while (size) { unsigned long flags; uint32_t value; if (*pos >= adev->gmc.mc_vram_size) return result; r = get_user(value, (uint32_t *)buf); if (r) return r; spin_lock_irqsave(&adev->mmio_idx_lock, flags); WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); WREG32_NO_KIQ(mmMM_DATA, value); spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); result += 4; buf += 4; *pos += 4; size -= 4; } return result; } static const struct file_operations amdgpu_ttm_vram_fops = { .owner = THIS_MODULE, .read = amdgpu_ttm_vram_read, .write = amdgpu_ttm_vram_write, .llseek = default_llseek, }; #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS /** * amdgpu_ttm_gtt_read - Linear read access to GTT memory */ static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; while (size) { loff_t p = *pos / PAGE_SIZE; unsigned off = *pos & ~PAGE_MASK; size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); struct page *page; void *ptr; if (p >= adev->gart.num_cpu_pages) return result; page = adev->gart.pages[p]; if (page) { ptr = kmap(page); ptr += off; r = copy_to_user(buf, ptr, cur_size); kunmap(adev->gart.pages[p]); } else r = clear_user(buf, cur_size); if (r) return -EFAULT; result += cur_size; buf += cur_size; *pos += cur_size; size -= cur_size; } return result; } static const struct file_operations amdgpu_ttm_gtt_fops = { .owner = THIS_MODULE, .read = amdgpu_ttm_gtt_read, .llseek = default_llseek }; #endif /** * amdgpu_iomem_read - Virtual read access to GPU mapped memory * * This function is used to read memory that has been mapped to the * GPU and the known addresses are not physical addresses but instead * bus addresses (e.g., what you'd put in an IB or ring buffer). */ static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; struct iommu_domain *dom; ssize_t result = 0; int r; /* retrieve the IOMMU domain if any for this device */ dom = iommu_get_domain_for_dev(adev->dev); while (size) { phys_addr_t addr = *pos & PAGE_MASK; loff_t off = *pos & ~PAGE_MASK; size_t bytes = PAGE_SIZE - off; unsigned long pfn; struct page *p; void *ptr; bytes = bytes < size ? bytes : size; /* Translate the bus address to a physical address. If * the domain is NULL it means there is no IOMMU active * and the address translation is the identity */ addr = dom ? iommu_iova_to_phys(dom, addr) : addr; pfn = addr >> PAGE_SHIFT; if (!pfn_valid(pfn)) return -EPERM; p = pfn_to_page(pfn); if (p->mapping != adev->mman.bdev.dev_mapping) return -EPERM; ptr = kmap(p); r = copy_to_user(buf, ptr + off, bytes); kunmap(p); if (r) return -EFAULT; size -= bytes; *pos += bytes; result += bytes; } return result; } /** * amdgpu_iomem_write - Virtual write access to GPU mapped memory * * This function is used to write memory that has been mapped to the * GPU and the known addresses are not physical addresses but instead * bus addresses (e.g., what you'd put in an IB or ring buffer). */ static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; struct iommu_domain *dom; ssize_t result = 0; int r; dom = iommu_get_domain_for_dev(adev->dev); while (size) { phys_addr_t addr = *pos & PAGE_MASK; loff_t off = *pos & ~PAGE_MASK; size_t bytes = PAGE_SIZE - off; unsigned long pfn; struct page *p; void *ptr; bytes = bytes < size ? bytes : size; addr = dom ? iommu_iova_to_phys(dom, addr) : addr; pfn = addr >> PAGE_SHIFT; if (!pfn_valid(pfn)) return -EPERM; p = pfn_to_page(pfn); if (p->mapping != adev->mman.bdev.dev_mapping) return -EPERM; ptr = kmap(p); r = copy_from_user(ptr + off, buf, bytes); kunmap(p); if (r) return -EFAULT; size -= bytes; *pos += bytes; result += bytes; } return result; } static const struct file_operations amdgpu_ttm_iomem_fops = { .owner = THIS_MODULE, .read = amdgpu_iomem_read, .write = amdgpu_iomem_write, .llseek = default_llseek }; static const struct { char *name; const struct file_operations *fops; int domain; } ttm_debugfs_entries[] = { { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, #endif { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, }; #endif static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) unsigned count; struct drm_minor *minor = adev->ddev->primary; struct dentry *ent, *root = minor->debugfs_root; for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { ent = debugfs_create_file( ttm_debugfs_entries[count].name, S_IFREG | S_IRUGO, root, adev, ttm_debugfs_entries[count].fops); if (IS_ERR(ent)) return PTR_ERR(ent); if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) i_size_write(ent->d_inode, adev->gmc.mc_vram_size); else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) i_size_write(ent->d_inode, adev->gmc.gart_size); adev->mman.debugfs_entries[count] = ent; } count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); #ifdef CONFIG_SWIOTLB if (!(adev->need_swiotlb && swiotlb_nr_tbl())) --count; #endif return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); #else return 0; #endif } static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) unsigned i; for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) debugfs_remove(adev->mman.debugfs_entries[i]); #endif }