// SPDX-License-Identifier: GPL-2.0-only /* * mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211 * Copyright (c) 2008, Jouni Malinen * Copyright (c) 2011, Javier Lopez * Copyright (c) 2016 - 2017 Intel Deutschland GmbH * Copyright (C) 2018 - 2022 Intel Corporation */ /* * TODO: * - Add TSF sync and fix IBSS beacon transmission by adding * competition for "air time" at TBTT * - RX filtering based on filter configuration (data->rx_filter) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mac80211_hwsim.h" #define WARN_QUEUE 100 #define MAX_QUEUE 200 MODULE_AUTHOR("Jouni Malinen"); MODULE_DESCRIPTION("Software simulator of 802.11 radio(s) for mac80211"); MODULE_LICENSE("GPL"); static int radios = 2; module_param(radios, int, 0444); MODULE_PARM_DESC(radios, "Number of simulated radios"); static int channels = 1; module_param(channels, int, 0444); MODULE_PARM_DESC(channels, "Number of concurrent channels"); static bool paged_rx = false; module_param(paged_rx, bool, 0644); MODULE_PARM_DESC(paged_rx, "Use paged SKBs for RX instead of linear ones"); static bool rctbl = false; module_param(rctbl, bool, 0444); MODULE_PARM_DESC(rctbl, "Handle rate control table"); static bool support_p2p_device = true; module_param(support_p2p_device, bool, 0444); MODULE_PARM_DESC(support_p2p_device, "Support P2P-Device interface type"); static bool mlo; module_param(mlo, bool, 0444); MODULE_PARM_DESC(mlo, "Support MLO"); /** * enum hwsim_regtest - the type of regulatory tests we offer * * These are the different values you can use for the regtest * module parameter. This is useful to help test world roaming * and the driver regulatory_hint() call and combinations of these. * If you want to do specific alpha2 regulatory domain tests simply * use the userspace regulatory request as that will be respected as * well without the need of this module parameter. This is designed * only for testing the driver regulatory request, world roaming * and all possible combinations. * * @HWSIM_REGTEST_DISABLED: No regulatory tests are performed, * this is the default value. * @HWSIM_REGTEST_DRIVER_REG_FOLLOW: Used for testing the driver regulatory * hint, only one driver regulatory hint will be sent as such the * secondary radios are expected to follow. * @HWSIM_REGTEST_DRIVER_REG_ALL: Used for testing the driver regulatory * request with all radios reporting the same regulatory domain. * @HWSIM_REGTEST_DIFF_COUNTRY: Used for testing the drivers calling * different regulatory domains requests. Expected behaviour is for * an intersection to occur but each device will still use their * respective regulatory requested domains. Subsequent radios will * use the resulting intersection. * @HWSIM_REGTEST_WORLD_ROAM: Used for testing the world roaming. We accomplish * this by using a custom beacon-capable regulatory domain for the first * radio. All other device world roam. * @HWSIM_REGTEST_CUSTOM_WORLD: Used for testing the custom world regulatory * domain requests. All radios will adhere to this custom world regulatory * domain. * @HWSIM_REGTEST_CUSTOM_WORLD_2: Used for testing 2 custom world regulatory * domain requests. The first radio will adhere to the first custom world * regulatory domain, the second one to the second custom world regulatory * domain. All other devices will world roam. * @HWSIM_REGTEST_STRICT_FOLLOW: Used for testing strict regulatory domain * settings, only the first radio will send a regulatory domain request * and use strict settings. The rest of the radios are expected to follow. * @HWSIM_REGTEST_STRICT_ALL: Used for testing strict regulatory domain * settings. All radios will adhere to this. * @HWSIM_REGTEST_STRICT_AND_DRIVER_REG: Used for testing strict regulatory * domain settings, combined with secondary driver regulatory domain * settings. The first radio will get a strict regulatory domain setting * using the first driver regulatory request and the second radio will use * non-strict settings using the second driver regulatory request. All * other devices should follow the intersection created between the * first two. * @HWSIM_REGTEST_ALL: Used for testing every possible mix. You will need * at least 6 radios for a complete test. We will test in this order: * 1 - driver custom world regulatory domain * 2 - second custom world regulatory domain * 3 - first driver regulatory domain request * 4 - second driver regulatory domain request * 5 - strict regulatory domain settings using the third driver regulatory * domain request * 6 and on - should follow the intersection of the 3rd, 4rth and 5th radio * regulatory requests. */ enum hwsim_regtest { HWSIM_REGTEST_DISABLED = 0, HWSIM_REGTEST_DRIVER_REG_FOLLOW = 1, HWSIM_REGTEST_DRIVER_REG_ALL = 2, HWSIM_REGTEST_DIFF_COUNTRY = 3, HWSIM_REGTEST_WORLD_ROAM = 4, HWSIM_REGTEST_CUSTOM_WORLD = 5, HWSIM_REGTEST_CUSTOM_WORLD_2 = 6, HWSIM_REGTEST_STRICT_FOLLOW = 7, HWSIM_REGTEST_STRICT_ALL = 8, HWSIM_REGTEST_STRICT_AND_DRIVER_REG = 9, HWSIM_REGTEST_ALL = 10, }; /* Set to one of the HWSIM_REGTEST_* values above */ static int regtest = HWSIM_REGTEST_DISABLED; module_param(regtest, int, 0444); MODULE_PARM_DESC(regtest, "The type of regulatory test we want to run"); static const char *hwsim_alpha2s[] = { "FI", "AL", "US", "DE", "JP", "AL", }; static const struct ieee80211_regdomain hwsim_world_regdom_custom_01 = { .n_reg_rules = 5, .alpha2 = "99", .reg_rules = { REG_RULE(2412-10, 2462+10, 40, 0, 20, 0), REG_RULE(2484-10, 2484+10, 40, 0, 20, 0), REG_RULE(5150-10, 5240+10, 40, 0, 30, 0), REG_RULE(5745-10, 5825+10, 40, 0, 30, 0), REG_RULE(5855-10, 5925+10, 40, 0, 33, 0), } }; static const struct ieee80211_regdomain hwsim_world_regdom_custom_02 = { .n_reg_rules = 3, .alpha2 = "99", .reg_rules = { REG_RULE(2412-10, 2462+10, 40, 0, 20, 0), REG_RULE(5725-10, 5850+10, 40, 0, 30, NL80211_RRF_NO_IR), REG_RULE(5855-10, 5925+10, 40, 0, 33, 0), } }; static const struct ieee80211_regdomain hwsim_world_regdom_custom_03 = { .n_reg_rules = 6, .alpha2 = "99", .reg_rules = { REG_RULE(2412 - 10, 2462 + 10, 40, 0, 20, 0), REG_RULE(2484 - 10, 2484 + 10, 40, 0, 20, 0), REG_RULE(5150 - 10, 5240 + 10, 40, 0, 30, 0), REG_RULE(5745 - 10, 5825 + 10, 40, 0, 30, 0), REG_RULE(5855 - 10, 5925 + 10, 40, 0, 33, 0), REG_RULE(5955 - 10, 7125 + 10, 320, 0, 33, 0), } }; static const struct ieee80211_regdomain *hwsim_world_regdom_custom[] = { &hwsim_world_regdom_custom_01, &hwsim_world_regdom_custom_02, &hwsim_world_regdom_custom_03, }; struct hwsim_vif_priv { u32 magic; u8 bssid[ETH_ALEN]; bool assoc; bool bcn_en; u16 aid; }; #define HWSIM_VIF_MAGIC 0x69537748 static inline void hwsim_check_magic(struct ieee80211_vif *vif) { struct hwsim_vif_priv *vp = (void *)vif->drv_priv; WARN(vp->magic != HWSIM_VIF_MAGIC, "Invalid VIF (%p) magic %#x, %pM, %d/%d\n", vif, vp->magic, vif->addr, vif->type, vif->p2p); } static inline void hwsim_set_magic(struct ieee80211_vif *vif) { struct hwsim_vif_priv *vp = (void *)vif->drv_priv; vp->magic = HWSIM_VIF_MAGIC; } static inline void hwsim_clear_magic(struct ieee80211_vif *vif) { struct hwsim_vif_priv *vp = (void *)vif->drv_priv; vp->magic = 0; } struct hwsim_sta_priv { u32 magic; }; #define HWSIM_STA_MAGIC 0x6d537749 static inline void hwsim_check_sta_magic(struct ieee80211_sta *sta) { struct hwsim_sta_priv *sp = (void *)sta->drv_priv; WARN_ON(sp->magic != HWSIM_STA_MAGIC); } static inline void hwsim_set_sta_magic(struct ieee80211_sta *sta) { struct hwsim_sta_priv *sp = (void *)sta->drv_priv; sp->magic = HWSIM_STA_MAGIC; } static inline void hwsim_clear_sta_magic(struct ieee80211_sta *sta) { struct hwsim_sta_priv *sp = (void *)sta->drv_priv; sp->magic = 0; } struct hwsim_chanctx_priv { u32 magic; }; #define HWSIM_CHANCTX_MAGIC 0x6d53774a static inline void hwsim_check_chanctx_magic(struct ieee80211_chanctx_conf *c) { struct hwsim_chanctx_priv *cp = (void *)c->drv_priv; WARN_ON(cp->magic != HWSIM_CHANCTX_MAGIC); } static inline void hwsim_set_chanctx_magic(struct ieee80211_chanctx_conf *c) { struct hwsim_chanctx_priv *cp = (void *)c->drv_priv; cp->magic = HWSIM_CHANCTX_MAGIC; } static inline void hwsim_clear_chanctx_magic(struct ieee80211_chanctx_conf *c) { struct hwsim_chanctx_priv *cp = (void *)c->drv_priv; cp->magic = 0; } static unsigned int hwsim_net_id; static DEFINE_IDA(hwsim_netgroup_ida); struct hwsim_net { int netgroup; u32 wmediumd; }; static inline int hwsim_net_get_netgroup(struct net *net) { struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id); return hwsim_net->netgroup; } static inline int hwsim_net_set_netgroup(struct net *net) { struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id); hwsim_net->netgroup = ida_alloc(&hwsim_netgroup_ida, GFP_KERNEL); return hwsim_net->netgroup >= 0 ? 0 : -ENOMEM; } static inline u32 hwsim_net_get_wmediumd(struct net *net) { struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id); return hwsim_net->wmediumd; } static inline void hwsim_net_set_wmediumd(struct net *net, u32 portid) { struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id); hwsim_net->wmediumd = portid; } static struct class *hwsim_class; static struct net_device *hwsim_mon; /* global monitor netdev */ #define CHAN2G(_freq) { \ .band = NL80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_freq), \ } #define CHAN5G(_freq) { \ .band = NL80211_BAND_5GHZ, \ .center_freq = (_freq), \ .hw_value = (_freq), \ } #define CHAN6G(_freq) { \ .band = NL80211_BAND_6GHZ, \ .center_freq = (_freq), \ .hw_value = (_freq), \ } static const struct ieee80211_channel hwsim_channels_2ghz[] = { CHAN2G(2412), /* Channel 1 */ CHAN2G(2417), /* Channel 2 */ CHAN2G(2422), /* Channel 3 */ CHAN2G(2427), /* Channel 4 */ CHAN2G(2432), /* Channel 5 */ CHAN2G(2437), /* Channel 6 */ CHAN2G(2442), /* Channel 7 */ CHAN2G(2447), /* Channel 8 */ CHAN2G(2452), /* Channel 9 */ CHAN2G(2457), /* Channel 10 */ CHAN2G(2462), /* Channel 11 */ CHAN2G(2467), /* Channel 12 */ CHAN2G(2472), /* Channel 13 */ CHAN2G(2484), /* Channel 14 */ }; static const struct ieee80211_channel hwsim_channels_5ghz[] = { CHAN5G(5180), /* Channel 36 */ CHAN5G(5200), /* Channel 40 */ CHAN5G(5220), /* Channel 44 */ CHAN5G(5240), /* Channel 48 */ CHAN5G(5260), /* Channel 52 */ CHAN5G(5280), /* Channel 56 */ CHAN5G(5300), /* Channel 60 */ CHAN5G(5320), /* Channel 64 */ CHAN5G(5500), /* Channel 100 */ CHAN5G(5520), /* Channel 104 */ CHAN5G(5540), /* Channel 108 */ CHAN5G(5560), /* Channel 112 */ CHAN5G(5580), /* Channel 116 */ CHAN5G(5600), /* Channel 120 */ CHAN5G(5620), /* Channel 124 */ CHAN5G(5640), /* Channel 128 */ CHAN5G(5660), /* Channel 132 */ CHAN5G(5680), /* Channel 136 */ CHAN5G(5700), /* Channel 140 */ CHAN5G(5745), /* Channel 149 */ CHAN5G(5765), /* Channel 153 */ CHAN5G(5785), /* Channel 157 */ CHAN5G(5805), /* Channel 161 */ CHAN5G(5825), /* Channel 165 */ CHAN5G(5845), /* Channel 169 */ CHAN5G(5855), /* Channel 171 */ CHAN5G(5860), /* Channel 172 */ CHAN5G(5865), /* Channel 173 */ CHAN5G(5870), /* Channel 174 */ CHAN5G(5875), /* Channel 175 */ CHAN5G(5880), /* Channel 176 */ CHAN5G(5885), /* Channel 177 */ CHAN5G(5890), /* Channel 178 */ CHAN5G(5895), /* Channel 179 */ CHAN5G(5900), /* Channel 180 */ CHAN5G(5905), /* Channel 181 */ CHAN5G(5910), /* Channel 182 */ CHAN5G(5915), /* Channel 183 */ CHAN5G(5920), /* Channel 184 */ CHAN5G(5925), /* Channel 185 */ }; static const struct ieee80211_channel hwsim_channels_6ghz[] = { CHAN6G(5955), /* Channel 1 */ CHAN6G(5975), /* Channel 5 */ CHAN6G(5995), /* Channel 9 */ CHAN6G(6015), /* Channel 13 */ CHAN6G(6035), /* Channel 17 */ CHAN6G(6055), /* Channel 21 */ CHAN6G(6075), /* Channel 25 */ CHAN6G(6095), /* Channel 29 */ CHAN6G(6115), /* Channel 33 */ CHAN6G(6135), /* Channel 37 */ CHAN6G(6155), /* Channel 41 */ CHAN6G(6175), /* Channel 45 */ CHAN6G(6195), /* Channel 49 */ CHAN6G(6215), /* Channel 53 */ CHAN6G(6235), /* Channel 57 */ CHAN6G(6255), /* Channel 61 */ CHAN6G(6275), /* Channel 65 */ CHAN6G(6295), /* Channel 69 */ CHAN6G(6315), /* Channel 73 */ CHAN6G(6335), /* Channel 77 */ CHAN6G(6355), /* Channel 81 */ CHAN6G(6375), /* Channel 85 */ CHAN6G(6395), /* Channel 89 */ CHAN6G(6415), /* Channel 93 */ CHAN6G(6435), /* Channel 97 */ CHAN6G(6455), /* Channel 181 */ CHAN6G(6475), /* Channel 105 */ CHAN6G(6495), /* Channel 109 */ CHAN6G(6515), /* Channel 113 */ CHAN6G(6535), /* Channel 117 */ CHAN6G(6555), /* Channel 121 */ CHAN6G(6575), /* Channel 125 */ CHAN6G(6595), /* Channel 129 */ CHAN6G(6615), /* Channel 133 */ CHAN6G(6635), /* Channel 137 */ CHAN6G(6655), /* Channel 141 */ CHAN6G(6675), /* Channel 145 */ CHAN6G(6695), /* Channel 149 */ CHAN6G(6715), /* Channel 153 */ CHAN6G(6735), /* Channel 157 */ CHAN6G(6755), /* Channel 161 */ CHAN6G(6775), /* Channel 165 */ CHAN6G(6795), /* Channel 169 */ CHAN6G(6815), /* Channel 173 */ CHAN6G(6835), /* Channel 177 */ CHAN6G(6855), /* Channel 181 */ CHAN6G(6875), /* Channel 185 */ CHAN6G(6895), /* Channel 189 */ CHAN6G(6915), /* Channel 193 */ CHAN6G(6935), /* Channel 197 */ CHAN6G(6955), /* Channel 201 */ CHAN6G(6975), /* Channel 205 */ CHAN6G(6995), /* Channel 209 */ CHAN6G(7015), /* Channel 213 */ CHAN6G(7035), /* Channel 217 */ CHAN6G(7055), /* Channel 221 */ CHAN6G(7075), /* Channel 225 */ CHAN6G(7095), /* Channel 229 */ CHAN6G(7115), /* Channel 233 */ }; #define NUM_S1G_CHANS_US 51 static struct ieee80211_channel hwsim_channels_s1g[NUM_S1G_CHANS_US]; static const struct ieee80211_sta_s1g_cap hwsim_s1g_cap = { .s1g = true, .cap = { S1G_CAP0_SGI_1MHZ | S1G_CAP0_SGI_2MHZ, 0, 0, S1G_CAP3_MAX_MPDU_LEN, 0, S1G_CAP5_AMPDU, 0, S1G_CAP7_DUP_1MHZ, S1G_CAP8_TWT_RESPOND | S1G_CAP8_TWT_REQUEST, 0}, .nss_mcs = { 0xfc | 1, /* MCS 7 for 1 SS */ /* RX Highest Supported Long GI Data Rate 0:7 */ 0, /* RX Highest Supported Long GI Data Rate 0:7 */ /* TX S1G MCS Map 0:6 */ 0xfa, /* TX S1G MCS Map :7 */ /* TX Highest Supported Long GI Data Rate 0:6 */ 0x80, /* TX Highest Supported Long GI Data Rate 7:8 */ /* Rx Single spatial stream and S1G-MCS Map for 1MHz */ /* Tx Single spatial stream and S1G-MCS Map for 1MHz */ 0 }, }; static void hwsim_init_s1g_channels(struct ieee80211_channel *chans) { int ch, freq; for (ch = 0; ch < NUM_S1G_CHANS_US; ch++) { freq = 902000 + (ch + 1) * 500; chans[ch].band = NL80211_BAND_S1GHZ; chans[ch].center_freq = KHZ_TO_MHZ(freq); chans[ch].freq_offset = freq % 1000; chans[ch].hw_value = ch + 1; } } static const struct ieee80211_rate hwsim_rates[] = { { .bitrate = 10 }, { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 60 }, { .bitrate = 90 }, { .bitrate = 120 }, { .bitrate = 180 }, { .bitrate = 240 }, { .bitrate = 360 }, { .bitrate = 480 }, { .bitrate = 540 } }; #define DEFAULT_RX_RSSI -50 static const u32 hwsim_ciphers[] = { WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, WLAN_CIPHER_SUITE_CCMP_256, WLAN_CIPHER_SUITE_GCMP, WLAN_CIPHER_SUITE_GCMP_256, WLAN_CIPHER_SUITE_AES_CMAC, WLAN_CIPHER_SUITE_BIP_CMAC_256, WLAN_CIPHER_SUITE_BIP_GMAC_128, WLAN_CIPHER_SUITE_BIP_GMAC_256, }; #define OUI_QCA 0x001374 #define QCA_NL80211_SUBCMD_TEST 1 enum qca_nl80211_vendor_subcmds { QCA_WLAN_VENDOR_ATTR_TEST = 8, QCA_WLAN_VENDOR_ATTR_MAX = QCA_WLAN_VENDOR_ATTR_TEST }; static const struct nla_policy hwsim_vendor_test_policy[QCA_WLAN_VENDOR_ATTR_MAX + 1] = { [QCA_WLAN_VENDOR_ATTR_MAX] = { .type = NLA_U32 }, }; static int mac80211_hwsim_vendor_cmd_test(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len) { struct sk_buff *skb; struct nlattr *tb[QCA_WLAN_VENDOR_ATTR_MAX + 1]; int err; u32 val; err = nla_parse_deprecated(tb, QCA_WLAN_VENDOR_ATTR_MAX, data, data_len, hwsim_vendor_test_policy, NULL); if (err) return err; if (!tb[QCA_WLAN_VENDOR_ATTR_TEST]) return -EINVAL; val = nla_get_u32(tb[QCA_WLAN_VENDOR_ATTR_TEST]); wiphy_dbg(wiphy, "%s: test=%u\n", __func__, val); /* Send a vendor event as a test. Note that this would not normally be * done within a command handler, but rather, based on some other * trigger. For simplicity, this command is used to trigger the event * here. * * event_idx = 0 (index in mac80211_hwsim_vendor_commands) */ skb = cfg80211_vendor_event_alloc(wiphy, wdev, 100, 0, GFP_KERNEL); if (skb) { /* skb_put() or nla_put() will fill up data within * NL80211_ATTR_VENDOR_DATA. */ /* Add vendor data */ nla_put_u32(skb, QCA_WLAN_VENDOR_ATTR_TEST, val + 1); /* Send the event - this will call nla_nest_end() */ cfg80211_vendor_event(skb, GFP_KERNEL); } /* Send a response to the command */ skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, 10); if (!skb) return -ENOMEM; /* skb_put() or nla_put() will fill up data within * NL80211_ATTR_VENDOR_DATA */ nla_put_u32(skb, QCA_WLAN_VENDOR_ATTR_TEST, val + 2); return cfg80211_vendor_cmd_reply(skb); } static struct wiphy_vendor_command mac80211_hwsim_vendor_commands[] = { { .info = { .vendor_id = OUI_QCA, .subcmd = QCA_NL80211_SUBCMD_TEST }, .flags = WIPHY_VENDOR_CMD_NEED_NETDEV, .doit = mac80211_hwsim_vendor_cmd_test, .policy = hwsim_vendor_test_policy, .maxattr = QCA_WLAN_VENDOR_ATTR_MAX, } }; /* Advertise support vendor specific events */ static const struct nl80211_vendor_cmd_info mac80211_hwsim_vendor_events[] = { { .vendor_id = OUI_QCA, .subcmd = 1 }, }; static DEFINE_SPINLOCK(hwsim_radio_lock); static LIST_HEAD(hwsim_radios); static struct rhashtable hwsim_radios_rht; static int hwsim_radio_idx; static int hwsim_radios_generation = 1; static struct platform_driver mac80211_hwsim_driver = { .driver = { .name = "mac80211_hwsim", }, }; struct mac80211_hwsim_link_data { u32 link_id; u64 beacon_int /* beacon interval in us */; struct hrtimer beacon_timer; }; struct mac80211_hwsim_data { struct list_head list; struct rhash_head rht; struct ieee80211_hw *hw; struct device *dev; struct ieee80211_supported_band bands[NUM_NL80211_BANDS]; struct ieee80211_channel channels_2ghz[ARRAY_SIZE(hwsim_channels_2ghz)]; struct ieee80211_channel channels_5ghz[ARRAY_SIZE(hwsim_channels_5ghz)]; struct ieee80211_channel channels_6ghz[ARRAY_SIZE(hwsim_channels_6ghz)]; struct ieee80211_channel channels_s1g[ARRAY_SIZE(hwsim_channels_s1g)]; struct ieee80211_rate rates[ARRAY_SIZE(hwsim_rates)]; struct ieee80211_iface_combination if_combination; struct ieee80211_iface_limit if_limits[3]; int n_if_limits; u32 ciphers[ARRAY_SIZE(hwsim_ciphers)]; struct mac_address addresses[2]; struct ieee80211_chanctx_conf *chanctx; int channels, idx; bool use_chanctx; bool destroy_on_close; u32 portid; char alpha2[2]; const struct ieee80211_regdomain *regd; struct ieee80211_channel *tmp_chan; struct ieee80211_channel *roc_chan; u32 roc_duration; struct delayed_work roc_start; struct delayed_work roc_done; struct delayed_work hw_scan; struct cfg80211_scan_request *hw_scan_request; struct ieee80211_vif *hw_scan_vif; int scan_chan_idx; u8 scan_addr[ETH_ALEN]; struct { struct ieee80211_channel *channel; unsigned long next_start, start, end; } survey_data[ARRAY_SIZE(hwsim_channels_2ghz) + ARRAY_SIZE(hwsim_channels_5ghz) + ARRAY_SIZE(hwsim_channels_6ghz)]; struct ieee80211_channel *channel; enum nl80211_chan_width bw; unsigned int rx_filter; bool started, idle, scanning; struct mutex mutex; enum ps_mode { PS_DISABLED, PS_ENABLED, PS_AUTO_POLL, PS_MANUAL_POLL } ps; bool ps_poll_pending; struct dentry *debugfs; atomic_t pending_cookie; struct sk_buff_head pending; /* packets pending */ /* * Only radios in the same group can communicate together (the * channel has to match too). Each bit represents a group. A * radio can be in more than one group. */ u64 group; /* group shared by radios created in the same netns */ int netgroup; /* wmediumd portid responsible for netgroup of this radio */ u32 wmediumd; /* difference between this hw's clock and the real clock, in usecs */ s64 tsf_offset; s64 bcn_delta; /* absolute beacon transmission time. Used to cover up "tx" delay. */ u64 abs_bcn_ts; /* Stats */ u64 tx_pkts; u64 rx_pkts; u64 tx_bytes; u64 rx_bytes; u64 tx_dropped; u64 tx_failed; /* RSSI in rx status of the receiver */ int rx_rssi; struct mac80211_hwsim_link_data link_data[IEEE80211_MLD_MAX_NUM_LINKS]; }; static const struct rhashtable_params hwsim_rht_params = { .nelem_hint = 2, .automatic_shrinking = true, .key_len = ETH_ALEN, .key_offset = offsetof(struct mac80211_hwsim_data, addresses[1]), .head_offset = offsetof(struct mac80211_hwsim_data, rht), }; struct hwsim_radiotap_hdr { struct ieee80211_radiotap_header hdr; __le64 rt_tsft; u8 rt_flags; u8 rt_rate; __le16 rt_channel; __le16 rt_chbitmask; } __packed; struct hwsim_radiotap_ack_hdr { struct ieee80211_radiotap_header hdr; u8 rt_flags; u8 pad; __le16 rt_channel; __le16 rt_chbitmask; } __packed; /* MAC80211_HWSIM netlink family */ static struct genl_family hwsim_genl_family; enum hwsim_multicast_groups { HWSIM_MCGRP_CONFIG, }; static const struct genl_multicast_group hwsim_mcgrps[] = { [HWSIM_MCGRP_CONFIG] = { .name = "config", }, }; /* MAC80211_HWSIM netlink policy */ static const struct nla_policy hwsim_genl_policy[HWSIM_ATTR_MAX + 1] = { [HWSIM_ATTR_ADDR_RECEIVER] = NLA_POLICY_ETH_ADDR_COMPAT, [HWSIM_ATTR_ADDR_TRANSMITTER] = NLA_POLICY_ETH_ADDR_COMPAT, [HWSIM_ATTR_FRAME] = { .type = NLA_BINARY, .len = IEEE80211_MAX_DATA_LEN }, [HWSIM_ATTR_FLAGS] = { .type = NLA_U32 }, [HWSIM_ATTR_RX_RATE] = { .type = NLA_U32 }, [HWSIM_ATTR_SIGNAL] = { .type = NLA_U32 }, [HWSIM_ATTR_TX_INFO] = { .type = NLA_BINARY, .len = IEEE80211_TX_MAX_RATES * sizeof(struct hwsim_tx_rate)}, [HWSIM_ATTR_COOKIE] = { .type = NLA_U64 }, [HWSIM_ATTR_CHANNELS] = { .type = NLA_U32 }, [HWSIM_ATTR_RADIO_ID] = { .type = NLA_U32 }, [HWSIM_ATTR_REG_HINT_ALPHA2] = { .type = NLA_STRING, .len = 2 }, [HWSIM_ATTR_REG_CUSTOM_REG] = { .type = NLA_U32 }, [HWSIM_ATTR_REG_STRICT_REG] = { .type = NLA_FLAG }, [HWSIM_ATTR_SUPPORT_P2P_DEVICE] = { .type = NLA_FLAG }, [HWSIM_ATTR_USE_CHANCTX] = { .type = NLA_FLAG }, [HWSIM_ATTR_DESTROY_RADIO_ON_CLOSE] = { .type = NLA_FLAG }, [HWSIM_ATTR_RADIO_NAME] = { .type = NLA_STRING }, [HWSIM_ATTR_NO_VIF] = { .type = NLA_FLAG }, [HWSIM_ATTR_FREQ] = { .type = NLA_U32 }, [HWSIM_ATTR_TX_INFO_FLAGS] = { .type = NLA_BINARY }, [HWSIM_ATTR_PERM_ADDR] = NLA_POLICY_ETH_ADDR_COMPAT, [HWSIM_ATTR_IFTYPE_SUPPORT] = { .type = NLA_U32 }, [HWSIM_ATTR_CIPHER_SUPPORT] = { .type = NLA_BINARY }, [HWSIM_ATTR_MLO_SUPPORT] = { .type = NLA_FLAG }, }; #if IS_REACHABLE(CONFIG_VIRTIO) /* MAC80211_HWSIM virtio queues */ static struct virtqueue *hwsim_vqs[HWSIM_NUM_VQS]; static bool hwsim_virtio_enabled; static DEFINE_SPINLOCK(hwsim_virtio_lock); static void hwsim_virtio_rx_work(struct work_struct *work); static DECLARE_WORK(hwsim_virtio_rx, hwsim_virtio_rx_work); static int hwsim_tx_virtio(struct mac80211_hwsim_data *data, struct sk_buff *skb) { struct scatterlist sg[1]; unsigned long flags; int err; spin_lock_irqsave(&hwsim_virtio_lock, flags); if (!hwsim_virtio_enabled) { err = -ENODEV; goto out_free; } sg_init_one(sg, skb->head, skb_end_offset(skb)); err = virtqueue_add_outbuf(hwsim_vqs[HWSIM_VQ_TX], sg, 1, skb, GFP_ATOMIC); if (err) goto out_free; virtqueue_kick(hwsim_vqs[HWSIM_VQ_TX]); spin_unlock_irqrestore(&hwsim_virtio_lock, flags); return 0; out_free: spin_unlock_irqrestore(&hwsim_virtio_lock, flags); nlmsg_free(skb); return err; } #else /* cause a linker error if this ends up being needed */ extern int hwsim_tx_virtio(struct mac80211_hwsim_data *data, struct sk_buff *skb); #define hwsim_virtio_enabled false #endif static int hwsim_get_chanwidth(enum nl80211_chan_width bw) { switch (bw) { case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: return 20; case NL80211_CHAN_WIDTH_40: return 40; case NL80211_CHAN_WIDTH_80: return 80; case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: return 160; case NL80211_CHAN_WIDTH_320: return 320; case NL80211_CHAN_WIDTH_5: return 5; case NL80211_CHAN_WIDTH_10: return 10; case NL80211_CHAN_WIDTH_1: return 1; case NL80211_CHAN_WIDTH_2: return 2; case NL80211_CHAN_WIDTH_4: return 4; case NL80211_CHAN_WIDTH_8: return 8; case NL80211_CHAN_WIDTH_16: return 16; } return INT_MAX; } static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_channel *chan); /* sysfs attributes */ static void hwsim_send_ps_poll(void *dat, u8 *mac, struct ieee80211_vif *vif) { struct mac80211_hwsim_data *data = dat; struct hwsim_vif_priv *vp = (void *)vif->drv_priv; struct sk_buff *skb; struct ieee80211_pspoll *pspoll; if (!vp->assoc) return; wiphy_dbg(data->hw->wiphy, "%s: send PS-Poll to %pM for aid %d\n", __func__, vp->bssid, vp->aid); skb = dev_alloc_skb(sizeof(*pspoll)); if (!skb) return; pspoll = skb_put(skb, sizeof(*pspoll)); pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL | IEEE80211_FCTL_PM); pspoll->aid = cpu_to_le16(0xc000 | vp->aid); memcpy(pspoll->bssid, vp->bssid, ETH_ALEN); memcpy(pspoll->ta, mac, ETH_ALEN); rcu_read_lock(); mac80211_hwsim_tx_frame(data->hw, skb, rcu_dereference(vif->bss_conf.chanctx_conf)->def.chan); rcu_read_unlock(); } static void hwsim_send_nullfunc(struct mac80211_hwsim_data *data, u8 *mac, struct ieee80211_vif *vif, int ps) { struct hwsim_vif_priv *vp = (void *)vif->drv_priv; struct sk_buff *skb; struct ieee80211_hdr *hdr; if (!vp->assoc) return; wiphy_dbg(data->hw->wiphy, "%s: send data::nullfunc to %pM ps=%d\n", __func__, vp->bssid, ps); skb = dev_alloc_skb(sizeof(*hdr)); if (!skb) return; hdr = skb_put(skb, sizeof(*hdr) - ETH_ALEN); hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_TODS | (ps ? IEEE80211_FCTL_PM : 0)); hdr->duration_id = cpu_to_le16(0); memcpy(hdr->addr1, vp->bssid, ETH_ALEN); memcpy(hdr->addr2, mac, ETH_ALEN); memcpy(hdr->addr3, vp->bssid, ETH_ALEN); rcu_read_lock(); mac80211_hwsim_tx_frame(data->hw, skb, rcu_dereference(vif->bss_conf.chanctx_conf)->def.chan); rcu_read_unlock(); } static void hwsim_send_nullfunc_ps(void *dat, u8 *mac, struct ieee80211_vif *vif) { struct mac80211_hwsim_data *data = dat; hwsim_send_nullfunc(data, mac, vif, 1); } static void hwsim_send_nullfunc_no_ps(void *dat, u8 *mac, struct ieee80211_vif *vif) { struct mac80211_hwsim_data *data = dat; hwsim_send_nullfunc(data, mac, vif, 0); } static int hwsim_fops_ps_read(void *dat, u64 *val) { struct mac80211_hwsim_data *data = dat; *val = data->ps; return 0; } static int hwsim_fops_ps_write(void *dat, u64 val) { struct mac80211_hwsim_data *data = dat; enum ps_mode old_ps; if (val != PS_DISABLED && val != PS_ENABLED && val != PS_AUTO_POLL && val != PS_MANUAL_POLL) return -EINVAL; if (val == PS_MANUAL_POLL) { if (data->ps != PS_ENABLED) return -EINVAL; local_bh_disable(); ieee80211_iterate_active_interfaces_atomic( data->hw, IEEE80211_IFACE_ITER_NORMAL, hwsim_send_ps_poll, data); local_bh_enable(); return 0; } old_ps = data->ps; data->ps = val; local_bh_disable(); if (old_ps == PS_DISABLED && val != PS_DISABLED) { ieee80211_iterate_active_interfaces_atomic( data->hw, IEEE80211_IFACE_ITER_NORMAL, hwsim_send_nullfunc_ps, data); } else if (old_ps != PS_DISABLED && val == PS_DISABLED) { ieee80211_iterate_active_interfaces_atomic( data->hw, IEEE80211_IFACE_ITER_NORMAL, hwsim_send_nullfunc_no_ps, data); } local_bh_enable(); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(hwsim_fops_ps, hwsim_fops_ps_read, hwsim_fops_ps_write, "%llu\n"); static int hwsim_write_simulate_radar(void *dat, u64 val) { struct mac80211_hwsim_data *data = dat; ieee80211_radar_detected(data->hw); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(hwsim_simulate_radar, NULL, hwsim_write_simulate_radar, "%llu\n"); static int hwsim_fops_group_read(void *dat, u64 *val) { struct mac80211_hwsim_data *data = dat; *val = data->group; return 0; } static int hwsim_fops_group_write(void *dat, u64 val) { struct mac80211_hwsim_data *data = dat; data->group = val; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(hwsim_fops_group, hwsim_fops_group_read, hwsim_fops_group_write, "%llx\n"); static int hwsim_fops_rx_rssi_read(void *dat, u64 *val) { struct mac80211_hwsim_data *data = dat; *val = data->rx_rssi; return 0; } static int hwsim_fops_rx_rssi_write(void *dat, u64 val) { struct mac80211_hwsim_data *data = dat; int rssi = (int)val; if (rssi >= 0 || rssi < -100) return -EINVAL; data->rx_rssi = rssi; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(hwsim_fops_rx_rssi, hwsim_fops_rx_rssi_read, hwsim_fops_rx_rssi_write, "%lld\n"); static netdev_tx_t hwsim_mon_xmit(struct sk_buff *skb, struct net_device *dev) { /* TODO: allow packet injection */ dev_kfree_skb(skb); return NETDEV_TX_OK; } static inline u64 mac80211_hwsim_get_tsf_raw(void) { return ktime_to_us(ktime_get_real()); } static __le64 __mac80211_hwsim_get_tsf(struct mac80211_hwsim_data *data) { u64 now = mac80211_hwsim_get_tsf_raw(); return cpu_to_le64(now + data->tsf_offset); } static u64 mac80211_hwsim_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mac80211_hwsim_data *data = hw->priv; return le64_to_cpu(__mac80211_hwsim_get_tsf(data)); } static void mac80211_hwsim_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf) { struct mac80211_hwsim_data *data = hw->priv; u64 now = mac80211_hwsim_get_tsf(hw, vif); /* MLD not supported here */ u32 bcn_int = data->link_data[0].beacon_int; u64 delta = abs(tsf - now); /* adjust after beaconing with new timestamp at old TBTT */ if (tsf > now) { data->tsf_offset += delta; data->bcn_delta = do_div(delta, bcn_int); } else { data->tsf_offset -= delta; data->bcn_delta = -(s64)do_div(delta, bcn_int); } } static void mac80211_hwsim_monitor_rx(struct ieee80211_hw *hw, struct sk_buff *tx_skb, struct ieee80211_channel *chan) { struct mac80211_hwsim_data *data = hw->priv; struct sk_buff *skb; struct hwsim_radiotap_hdr *hdr; u16 flags, bitrate; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_skb); struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info); if (!txrate) bitrate = 0; else bitrate = txrate->bitrate; if (!netif_running(hwsim_mon)) return; skb = skb_copy_expand(tx_skb, sizeof(*hdr), 0, GFP_ATOMIC); if (skb == NULL) return; hdr = skb_push(skb, sizeof(*hdr)); hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION; hdr->hdr.it_pad = 0; hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr)); hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | (1 << IEEE80211_RADIOTAP_TSFT) | (1 << IEEE80211_RADIOTAP_CHANNEL)); hdr->rt_tsft = __mac80211_hwsim_get_tsf(data); hdr->rt_flags = 0; hdr->rt_rate = bitrate / 5; hdr->rt_channel = cpu_to_le16(chan->center_freq); flags = IEEE80211_CHAN_2GHZ; if (txrate && txrate->flags & IEEE80211_RATE_ERP_G) flags |= IEEE80211_CHAN_OFDM; else flags |= IEEE80211_CHAN_CCK; hdr->rt_chbitmask = cpu_to_le16(flags); skb->dev = hwsim_mon; skb_reset_mac_header(skb); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } static void mac80211_hwsim_monitor_ack(struct ieee80211_channel *chan, const u8 *addr) { struct sk_buff *skb; struct hwsim_radiotap_ack_hdr *hdr; u16 flags; struct ieee80211_hdr *hdr11; if (!netif_running(hwsim_mon)) return; skb = dev_alloc_skb(100); if (skb == NULL) return; hdr = skb_put(skb, sizeof(*hdr)); hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION; hdr->hdr.it_pad = 0; hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr)); hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_CHANNEL)); hdr->rt_flags = 0; hdr->pad = 0; hdr->rt_channel = cpu_to_le16(chan->center_freq); flags = IEEE80211_CHAN_2GHZ; hdr->rt_chbitmask = cpu_to_le16(flags); hdr11 = skb_put(skb, 10); hdr11->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK); hdr11->duration_id = cpu_to_le16(0); memcpy(hdr11->addr1, addr, ETH_ALEN); skb->dev = hwsim_mon; skb_reset_mac_header(skb); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } struct mac80211_hwsim_addr_match_data { u8 addr[ETH_ALEN]; bool ret; }; static void mac80211_hwsim_addr_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { int i; struct mac80211_hwsim_addr_match_data *md = data; if (memcmp(mac, md->addr, ETH_ALEN) == 0) { md->ret = true; return; } /* Match the link address */ for (i = 0; i < ARRAY_SIZE(vif->link_conf); i++) { struct ieee80211_bss_conf *conf; conf = rcu_dereference(vif->link_conf[i]); if (!conf) continue; if (memcmp(conf->addr, md->addr, ETH_ALEN) == 0) { md->ret = true; return; } } } static bool mac80211_hwsim_addr_match(struct mac80211_hwsim_data *data, const u8 *addr) { struct mac80211_hwsim_addr_match_data md = { .ret = false, }; if (data->scanning && memcmp(addr, data->scan_addr, ETH_ALEN) == 0) return true; memcpy(md.addr, addr, ETH_ALEN); ieee80211_iterate_active_interfaces_atomic(data->hw, IEEE80211_IFACE_ITER_NORMAL, mac80211_hwsim_addr_iter, &md); return md.ret; } static bool hwsim_ps_rx_ok(struct mac80211_hwsim_data *data, struct sk_buff *skb) { switch (data->ps) { case PS_DISABLED: return true; case PS_ENABLED: return false; case PS_AUTO_POLL: /* TODO: accept (some) Beacons by default and other frames only * if pending PS-Poll has been sent */ return true; case PS_MANUAL_POLL: /* Allow unicast frames to own address if there is a pending * PS-Poll */ if (data->ps_poll_pending && mac80211_hwsim_addr_match(data, skb->data + 4)) { data->ps_poll_pending = false; return true; } return false; } return true; } static int hwsim_unicast_netgroup(struct mac80211_hwsim_data *data, struct sk_buff *skb, int portid) { struct net *net; bool found = false; int res = -ENOENT; rcu_read_lock(); for_each_net_rcu(net) { if (data->netgroup == hwsim_net_get_netgroup(net)) { res = genlmsg_unicast(net, skb, portid); found = true; break; } } rcu_read_unlock(); if (!found) nlmsg_free(skb); return res; } static void mac80211_hwsim_config_mac_nl(struct ieee80211_hw *hw, const u8 *addr, bool add) { struct mac80211_hwsim_data *data = hw->priv; u32 _portid = READ_ONCE(data->wmediumd); struct sk_buff *skb; void *msg_head; if (!_portid && !hwsim_virtio_enabled) return; skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (!skb) return; msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0, add ? HWSIM_CMD_ADD_MAC_ADDR : HWSIM_CMD_DEL_MAC_ADDR); if (!msg_head) { pr_debug("mac80211_hwsim: problem with msg_head\n"); goto nla_put_failure; } if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER, ETH_ALEN, data->addresses[1].addr)) goto nla_put_failure; if (nla_put(skb, HWSIM_ATTR_ADDR_RECEIVER, ETH_ALEN, addr)) goto nla_put_failure; genlmsg_end(skb, msg_head); if (hwsim_virtio_enabled) hwsim_tx_virtio(data, skb); else hwsim_unicast_netgroup(data, skb, _portid); return; nla_put_failure: nlmsg_free(skb); } static inline u16 trans_tx_rate_flags_ieee2hwsim(struct ieee80211_tx_rate *rate) { u16 result = 0; if (rate->flags & IEEE80211_TX_RC_USE_RTS_CTS) result |= MAC80211_HWSIM_TX_RC_USE_RTS_CTS; if (rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT) result |= MAC80211_HWSIM_TX_RC_USE_CTS_PROTECT; if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) result |= MAC80211_HWSIM_TX_RC_USE_SHORT_PREAMBLE; if (rate->flags & IEEE80211_TX_RC_MCS) result |= MAC80211_HWSIM_TX_RC_MCS; if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD) result |= MAC80211_HWSIM_TX_RC_GREEN_FIELD; if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) result |= MAC80211_HWSIM_TX_RC_40_MHZ_WIDTH; if (rate->flags & IEEE80211_TX_RC_DUP_DATA) result |= MAC80211_HWSIM_TX_RC_DUP_DATA; if (rate->flags & IEEE80211_TX_RC_SHORT_GI) result |= MAC80211_HWSIM_TX_RC_SHORT_GI; if (rate->flags & IEEE80211_TX_RC_VHT_MCS) result |= MAC80211_HWSIM_TX_RC_VHT_MCS; if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH) result |= MAC80211_HWSIM_TX_RC_80_MHZ_WIDTH; if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH) result |= MAC80211_HWSIM_TX_RC_160_MHZ_WIDTH; return result; } static void mac80211_hwsim_tx_frame_nl(struct ieee80211_hw *hw, struct sk_buff *my_skb, int dst_portid, struct ieee80211_channel *channel) { struct sk_buff *skb; struct mac80211_hwsim_data *data = hw->priv; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) my_skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(my_skb); void *msg_head; unsigned int hwsim_flags = 0; int i; struct hwsim_tx_rate tx_attempts[IEEE80211_TX_MAX_RATES]; struct hwsim_tx_rate_flag tx_attempts_flags[IEEE80211_TX_MAX_RATES]; uintptr_t cookie; if (data->ps != PS_DISABLED) hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); /* If the queue contains MAX_QUEUE skb's drop some */ if (skb_queue_len(&data->pending) >= MAX_QUEUE) { /* Dropping until WARN_QUEUE level */ while (skb_queue_len(&data->pending) >= WARN_QUEUE) { ieee80211_free_txskb(hw, skb_dequeue(&data->pending)); data->tx_dropped++; } } skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (skb == NULL) goto nla_put_failure; msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0, HWSIM_CMD_FRAME); if (msg_head == NULL) { pr_debug("mac80211_hwsim: problem with msg_head\n"); goto nla_put_failure; } if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER, ETH_ALEN, data->addresses[1].addr)) goto nla_put_failure; /* We get the skb->data */ if (nla_put(skb, HWSIM_ATTR_FRAME, my_skb->len, my_skb->data)) goto nla_put_failure; /* We get the flags for this transmission, and we translate them to wmediumd flags */ if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) hwsim_flags |= HWSIM_TX_CTL_REQ_TX_STATUS; if (info->flags & IEEE80211_TX_CTL_NO_ACK) hwsim_flags |= HWSIM_TX_CTL_NO_ACK; if (nla_put_u32(skb, HWSIM_ATTR_FLAGS, hwsim_flags)) goto nla_put_failure; if (nla_put_u32(skb, HWSIM_ATTR_FREQ, channel->center_freq)) goto nla_put_failure; /* We get the tx control (rate and retries) info*/ for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { tx_attempts[i].idx = info->status.rates[i].idx; tx_attempts_flags[i].idx = info->status.rates[i].idx; tx_attempts[i].count = info->status.rates[i].count; tx_attempts_flags[i].flags = trans_tx_rate_flags_ieee2hwsim( &info->status.rates[i]); } if (nla_put(skb, HWSIM_ATTR_TX_INFO, sizeof(struct hwsim_tx_rate)*IEEE80211_TX_MAX_RATES, tx_attempts)) goto nla_put_failure; if (nla_put(skb, HWSIM_ATTR_TX_INFO_FLAGS, sizeof(struct hwsim_tx_rate_flag) * IEEE80211_TX_MAX_RATES, tx_attempts_flags)) goto nla_put_failure; /* We create a cookie to identify this skb */ cookie = atomic_inc_return(&data->pending_cookie); info->rate_driver_data[0] = (void *)cookie; if (nla_put_u64_64bit(skb, HWSIM_ATTR_COOKIE, cookie, HWSIM_ATTR_PAD)) goto nla_put_failure; genlmsg_end(skb, msg_head); if (hwsim_virtio_enabled) { if (hwsim_tx_virtio(data, skb)) goto err_free_txskb; } else { if (hwsim_unicast_netgroup(data, skb, dst_portid)) goto err_free_txskb; } /* Enqueue the packet */ skb_queue_tail(&data->pending, my_skb); data->tx_pkts++; data->tx_bytes += my_skb->len; return; nla_put_failure: nlmsg_free(skb); err_free_txskb: pr_debug("mac80211_hwsim: error occurred in %s\n", __func__); ieee80211_free_txskb(hw, my_skb); data->tx_failed++; } static bool hwsim_chans_compat(struct ieee80211_channel *c1, struct ieee80211_channel *c2) { if (!c1 || !c2) return false; return c1->center_freq == c2->center_freq; } struct tx_iter_data { struct ieee80211_channel *channel; bool receive; }; static void mac80211_hwsim_tx_iter(void *_data, u8 *addr, struct ieee80211_vif *vif) { struct tx_iter_data *data = _data; int i; for (i = 0; i < ARRAY_SIZE(vif->link_conf); i++) { struct ieee80211_bss_conf *conf; struct ieee80211_chanctx_conf *chanctx; conf = rcu_dereference(vif->link_conf[i]); if (!conf) continue; chanctx = rcu_dereference(conf->chanctx_conf); if (!chanctx) continue; if (!hwsim_chans_compat(data->channel, chanctx->def.chan)) continue; data->receive = true; return; } } static void mac80211_hwsim_add_vendor_rtap(struct sk_buff *skb) { /* * To enable this code, #define the HWSIM_RADIOTAP_OUI, * e.g. like this: * #define HWSIM_RADIOTAP_OUI "\x02\x00\x00" * (but you should use a valid OUI, not that) * * If anyone wants to 'donate' a radiotap OUI/subns code * please send a patch removing this #ifdef and changing * the values accordingly. */ #ifdef HWSIM_RADIOTAP_OUI struct ieee80211_vendor_radiotap *rtap; /* * Note that this code requires the headroom in the SKB * that was allocated earlier. */ rtap = skb_push(skb, sizeof(*rtap) + 8 + 4); rtap->oui[0] = HWSIM_RADIOTAP_OUI[0]; rtap->oui[1] = HWSIM_RADIOTAP_OUI[1]; rtap->oui[2] = HWSIM_RADIOTAP_OUI[2]; rtap->subns = 127; /* * Radiotap vendor namespaces can (and should) also be * split into fields by using the standard radiotap * presence bitmap mechanism. Use just BIT(0) here for * the presence bitmap. */ rtap->present = BIT(0); /* We have 8 bytes of (dummy) data */ rtap->len = 8; /* For testing, also require it to be aligned */ rtap->align = 8; /* And also test that padding works, 4 bytes */ rtap->pad = 4; /* push the data */ memcpy(rtap->data, "ABCDEFGH", 8); /* make sure to clear padding, mac80211 doesn't */ memset(rtap->data + 8, 0, 4); IEEE80211_SKB_RXCB(skb)->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; #endif } static bool mac80211_hwsim_tx_frame_no_nl(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_channel *chan) { struct mac80211_hwsim_data *data = hw->priv, *data2; bool ack = false; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_rx_status rx_status; u64 now; memset(&rx_status, 0, sizeof(rx_status)); rx_status.flag |= RX_FLAG_MACTIME_START; rx_status.freq = chan->center_freq; rx_status.freq_offset = chan->freq_offset ? 1 : 0; rx_status.band = chan->band; if (info->control.rates[0].flags & IEEE80211_TX_RC_VHT_MCS) { rx_status.rate_idx = ieee80211_rate_get_vht_mcs(&info->control.rates[0]); rx_status.nss = ieee80211_rate_get_vht_nss(&info->control.rates[0]); rx_status.encoding = RX_ENC_VHT; } else { rx_status.rate_idx = info->control.rates[0].idx; if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS) rx_status.encoding = RX_ENC_HT; } if (info->control.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) rx_status.bw = RATE_INFO_BW_40; else if (info->control.rates[0].flags & IEEE80211_TX_RC_80_MHZ_WIDTH) rx_status.bw = RATE_INFO_BW_80; else if (info->control.rates[0].flags & IEEE80211_TX_RC_160_MHZ_WIDTH) rx_status.bw = RATE_INFO_BW_160; else rx_status.bw = RATE_INFO_BW_20; if (info->control.rates[0].flags & IEEE80211_TX_RC_SHORT_GI) rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI; /* TODO: simulate optional packet loss */ rx_status.signal = data->rx_rssi; if (info->control.vif) rx_status.signal += info->control.vif->bss_conf.txpower; if (data->ps != PS_DISABLED) hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); /* release the skb's source info */ skb_orphan(skb); skb_dst_drop(skb); skb->mark = 0; skb_ext_reset(skb); nf_reset_ct(skb); /* * Get absolute mactime here so all HWs RX at the "same time", and * absolute TX time for beacon mactime so the timestamp matches. * Giving beacons a different mactime than non-beacons looks messy, but * it helps the Toffset be exact and a ~10us mactime discrepancy * probably doesn't really matter. */ if (ieee80211_is_beacon(hdr->frame_control) || ieee80211_is_probe_resp(hdr->frame_control)) { rx_status.boottime_ns = ktime_get_boottime_ns(); now = data->abs_bcn_ts; } else { now = mac80211_hwsim_get_tsf_raw(); } /* Copy skb to all enabled radios that are on the current frequency */ spin_lock(&hwsim_radio_lock); list_for_each_entry(data2, &hwsim_radios, list) { struct sk_buff *nskb; struct tx_iter_data tx_iter_data = { .receive = false, .channel = chan, }; if (data == data2) continue; if (!data2->started || (data2->idle && !data2->tmp_chan) || !hwsim_ps_rx_ok(data2, skb)) continue; if (!(data->group & data2->group)) continue; if (data->netgroup != data2->netgroup) continue; if (!hwsim_chans_compat(chan, data2->tmp_chan) && !hwsim_chans_compat(chan, data2->channel)) { ieee80211_iterate_active_interfaces_atomic( data2->hw, IEEE80211_IFACE_ITER_NORMAL, mac80211_hwsim_tx_iter, &tx_iter_data); if (!tx_iter_data.receive) continue; } /* * reserve some space for our vendor and the normal * radiotap header, since we're copying anyway */ if (skb->len < PAGE_SIZE && paged_rx) { struct page *page = alloc_page(GFP_ATOMIC); if (!page) continue; nskb = dev_alloc_skb(128); if (!nskb) { __free_page(page); continue; } memcpy(page_address(page), skb->data, skb->len); skb_add_rx_frag(nskb, 0, page, 0, skb->len, skb->len); } else { nskb = skb_copy(skb, GFP_ATOMIC); if (!nskb) continue; } if (mac80211_hwsim_addr_match(data2, hdr->addr1)) ack = true; rx_status.mactime = now + data2->tsf_offset; memcpy(IEEE80211_SKB_RXCB(nskb), &rx_status, sizeof(rx_status)); mac80211_hwsim_add_vendor_rtap(nskb); data2->rx_pkts++; data2->rx_bytes += nskb->len; ieee80211_rx_irqsafe(data2->hw, nskb); } spin_unlock(&hwsim_radio_lock); return ack; } static void mac80211_hwsim_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct mac80211_hwsim_data *data = hw->priv; struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *)skb->data; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_channel *channel; bool ack; enum nl80211_chan_width confbw = NL80211_CHAN_WIDTH_20_NOHT; u32 _portid, i; if (WARN_ON(skb->len < 10)) { /* Should not happen; just a sanity check for addr1 use */ ieee80211_free_txskb(hw, skb); return; } if (!data->use_chanctx) { channel = data->channel; confbw = data->bw; } else if (txi->hw_queue == 4) { channel = data->tmp_chan; } else { struct ieee80211_bss_conf *bss_conf; bss_conf = &txi->control.vif->bss_conf; chanctx_conf = rcu_dereference(bss_conf->chanctx_conf); if (chanctx_conf) { channel = chanctx_conf->def.chan; confbw = chanctx_conf->def.width; } else { channel = NULL; } } if (WARN(!channel, "TX w/o channel - queue = %d\n", txi->hw_queue)) { ieee80211_free_txskb(hw, skb); return; } if (data->idle && !data->tmp_chan) { wiphy_dbg(hw->wiphy, "Trying to TX when idle - reject\n"); ieee80211_free_txskb(hw, skb); return; } if (txi->control.vif) hwsim_check_magic(txi->control.vif); if (control->sta) hwsim_check_sta_magic(control->sta); if (ieee80211_hw_check(hw, SUPPORTS_RC_TABLE)) ieee80211_get_tx_rates(txi->control.vif, control->sta, skb, txi->control.rates, ARRAY_SIZE(txi->control.rates)); for (i = 0; i < ARRAY_SIZE(txi->control.rates); i++) { u16 rflags = txi->control.rates[i].flags; /* initialize to data->bw for 5/10 MHz handling */ enum nl80211_chan_width bw = data->bw; if (txi->control.rates[i].idx == -1) break; if (rflags & IEEE80211_TX_RC_40_MHZ_WIDTH) bw = NL80211_CHAN_WIDTH_40; else if (rflags & IEEE80211_TX_RC_80_MHZ_WIDTH) bw = NL80211_CHAN_WIDTH_80; else if (rflags & IEEE80211_TX_RC_160_MHZ_WIDTH) bw = NL80211_CHAN_WIDTH_160; if (WARN_ON(hwsim_get_chanwidth(bw) > hwsim_get_chanwidth(confbw))) return; } if (skb->len >= 24 + 8 && ieee80211_is_probe_resp(hdr->frame_control)) { /* fake header transmission time */ struct ieee80211_mgmt *mgmt; struct ieee80211_rate *txrate; /* TODO: get MCS */ int bitrate = 100; u64 ts; mgmt = (struct ieee80211_mgmt *)skb->data; txrate = ieee80211_get_tx_rate(hw, txi); if (txrate) bitrate = txrate->bitrate; ts = mac80211_hwsim_get_tsf_raw(); mgmt->u.probe_resp.timestamp = cpu_to_le64(ts + data->tsf_offset + 24 * 8 * 10 / bitrate); } mac80211_hwsim_monitor_rx(hw, skb, channel); /* wmediumd mode check */ _portid = READ_ONCE(data->wmediumd); if (_portid || hwsim_virtio_enabled) return mac80211_hwsim_tx_frame_nl(hw, skb, _portid, channel); /* NO wmediumd detected, perfect medium simulation */ data->tx_pkts++; data->tx_bytes += skb->len; ack = mac80211_hwsim_tx_frame_no_nl(hw, skb, channel); if (ack && skb->len >= 16) mac80211_hwsim_monitor_ack(channel, hdr->addr2); ieee80211_tx_info_clear_status(txi); /* frame was transmitted at most favorable rate at first attempt */ txi->control.rates[0].count = 1; txi->control.rates[1].idx = -1; if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) && ack) txi->flags |= IEEE80211_TX_STAT_ACK; ieee80211_tx_status_irqsafe(hw, skb); } static int mac80211_hwsim_start(struct ieee80211_hw *hw) { struct mac80211_hwsim_data *data = hw->priv; wiphy_dbg(hw->wiphy, "%s\n", __func__); data->started = true; return 0; } static void mac80211_hwsim_stop(struct ieee80211_hw *hw) { struct mac80211_hwsim_data *data = hw->priv; int i; data->started = false; for (i = 0; i < ARRAY_SIZE(data->link_data); i++) hrtimer_cancel(&data->link_data[i].beacon_timer); while (!skb_queue_empty(&data->pending)) ieee80211_free_txskb(hw, skb_dequeue(&data->pending)); wiphy_dbg(hw->wiphy, "%s\n", __func__); } static int mac80211_hwsim_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { wiphy_dbg(hw->wiphy, "%s (type=%d mac_addr=%pM)\n", __func__, ieee80211_vif_type_p2p(vif), vif->addr); hwsim_set_magic(vif); if (vif->type != NL80211_IFTYPE_MONITOR) mac80211_hwsim_config_mac_nl(hw, vif->addr, true); vif->cab_queue = 0; vif->hw_queue[IEEE80211_AC_VO] = 0; vif->hw_queue[IEEE80211_AC_VI] = 1; vif->hw_queue[IEEE80211_AC_BE] = 2; vif->hw_queue[IEEE80211_AC_BK] = 3; return 0; } static int mac80211_hwsim_change_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum nl80211_iftype newtype, bool newp2p) { newtype = ieee80211_iftype_p2p(newtype, newp2p); wiphy_dbg(hw->wiphy, "%s (old type=%d, new type=%d, mac_addr=%pM)\n", __func__, ieee80211_vif_type_p2p(vif), newtype, vif->addr); hwsim_check_magic(vif); /* * interface may change from non-AP to AP in * which case this needs to be set up again */ vif->cab_queue = 0; return 0; } static void mac80211_hwsim_remove_interface( struct ieee80211_hw *hw, struct ieee80211_vif *vif) { wiphy_dbg(hw->wiphy, "%s (type=%d mac_addr=%pM)\n", __func__, ieee80211_vif_type_p2p(vif), vif->addr); hwsim_check_magic(vif); hwsim_clear_magic(vif); if (vif->type != NL80211_IFTYPE_MONITOR) mac80211_hwsim_config_mac_nl(hw, vif->addr, false); } static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_channel *chan) { struct mac80211_hwsim_data *data = hw->priv; u32 _pid = READ_ONCE(data->wmediumd); if (ieee80211_hw_check(hw, SUPPORTS_RC_TABLE)) { struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb); ieee80211_get_tx_rates(txi->control.vif, NULL, skb, txi->control.rates, ARRAY_SIZE(txi->control.rates)); } mac80211_hwsim_monitor_rx(hw, skb, chan); if (_pid || hwsim_virtio_enabled) return mac80211_hwsim_tx_frame_nl(hw, skb, _pid, chan); data->tx_pkts++; data->tx_bytes += skb->len; mac80211_hwsim_tx_frame_no_nl(hw, skb, chan); dev_kfree_skb(skb); } static void mac80211_hwsim_beacon_tx(void *arg, u8 *mac, struct ieee80211_vif *vif) { struct mac80211_hwsim_link_data *link_data = arg; u32 link_id = link_data->link_id; struct ieee80211_bss_conf *link_conf; struct mac80211_hwsim_data *data = container_of(link_data, struct mac80211_hwsim_data, link_data[link_id]); struct ieee80211_hw *hw = data->hw; struct ieee80211_tx_info *info; struct ieee80211_rate *txrate; struct ieee80211_mgmt *mgmt; struct sk_buff *skb; /* TODO: get MCS */ int bitrate = 100; hwsim_check_magic(vif); link_conf = rcu_dereference(vif->link_conf[link_id]); if (!link_conf) return; if (vif->type != NL80211_IFTYPE_AP && vif->type != NL80211_IFTYPE_MESH_POINT && vif->type != NL80211_IFTYPE_ADHOC && vif->type != NL80211_IFTYPE_OCB) return; skb = ieee80211_beacon_get(hw, vif, link_data->link_id); if (skb == NULL) return; info = IEEE80211_SKB_CB(skb); if (ieee80211_hw_check(hw, SUPPORTS_RC_TABLE)) ieee80211_get_tx_rates(vif, NULL, skb, info->control.rates, ARRAY_SIZE(info->control.rates)); txrate = ieee80211_get_tx_rate(hw, info); if (txrate) bitrate = txrate->bitrate; mgmt = (struct ieee80211_mgmt *) skb->data; /* fake header transmission time */ data->abs_bcn_ts = mac80211_hwsim_get_tsf_raw(); if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { struct ieee80211_ext *ext = (void *) mgmt; ext->u.s1g_beacon.timestamp = cpu_to_le32(data->abs_bcn_ts + data->tsf_offset + 10 * 8 * 10 / bitrate); } else { mgmt->u.beacon.timestamp = cpu_to_le64(data->abs_bcn_ts + data->tsf_offset + 24 * 8 * 10 / bitrate); } mac80211_hwsim_tx_frame(hw, skb, rcu_dereference(link_conf->chanctx_conf)->def.chan); while ((skb = ieee80211_get_buffered_bc(hw, vif)) != NULL) { mac80211_hwsim_tx_frame(hw, skb, rcu_dereference(link_conf->chanctx_conf)->def.chan); } if (link_conf->csa_active && ieee80211_beacon_cntdwn_is_complete(vif)) ieee80211_csa_finish(vif); } static enum hrtimer_restart mac80211_hwsim_beacon(struct hrtimer *timer) { struct mac80211_hwsim_link_data *link_data = container_of(timer, struct mac80211_hwsim_link_data, beacon_timer); struct mac80211_hwsim_data *data = container_of(link_data, struct mac80211_hwsim_data, link_data[link_data->link_id]); struct ieee80211_hw *hw = data->hw; u64 bcn_int = link_data->beacon_int; if (!data->started) return HRTIMER_NORESTART; ieee80211_iterate_active_interfaces_atomic( hw, IEEE80211_IFACE_ITER_NORMAL, mac80211_hwsim_beacon_tx, link_data); /* beacon at new TBTT + beacon interval */ if (data->bcn_delta) { bcn_int -= data->bcn_delta; data->bcn_delta = 0; } hrtimer_forward_now(&link_data->beacon_timer, ns_to_ktime(bcn_int * NSEC_PER_USEC)); return HRTIMER_RESTART; } static const char * const hwsim_chanwidths[] = { [NL80211_CHAN_WIDTH_5] = "ht5", [NL80211_CHAN_WIDTH_10] = "ht10", [NL80211_CHAN_WIDTH_20_NOHT] = "noht", [NL80211_CHAN_WIDTH_20] = "ht20", [NL80211_CHAN_WIDTH_40] = "ht40", [NL80211_CHAN_WIDTH_80] = "vht80", [NL80211_CHAN_WIDTH_80P80] = "vht80p80", [NL80211_CHAN_WIDTH_160] = "vht160", [NL80211_CHAN_WIDTH_1] = "1MHz", [NL80211_CHAN_WIDTH_2] = "2MHz", [NL80211_CHAN_WIDTH_4] = "4MHz", [NL80211_CHAN_WIDTH_8] = "8MHz", [NL80211_CHAN_WIDTH_16] = "16MHz", }; static int mac80211_hwsim_config(struct ieee80211_hw *hw, u32 changed) { struct mac80211_hwsim_data *data = hw->priv; struct ieee80211_conf *conf = &hw->conf; static const char *smps_modes[IEEE80211_SMPS_NUM_MODES] = { [IEEE80211_SMPS_AUTOMATIC] = "auto", [IEEE80211_SMPS_OFF] = "off", [IEEE80211_SMPS_STATIC] = "static", [IEEE80211_SMPS_DYNAMIC] = "dynamic", }; int idx; if (conf->chandef.chan) wiphy_dbg(hw->wiphy, "%s (freq=%d(%d - %d)/%s idle=%d ps=%d smps=%s)\n", __func__, conf->chandef.chan->center_freq, conf->chandef.center_freq1, conf->chandef.center_freq2, hwsim_chanwidths[conf->chandef.width], !!(conf->flags & IEEE80211_CONF_IDLE), !!(conf->flags & IEEE80211_CONF_PS), smps_modes[conf->smps_mode]); else wiphy_dbg(hw->wiphy, "%s (freq=0 idle=%d ps=%d smps=%s)\n", __func__, !!(conf->flags & IEEE80211_CONF_IDLE), !!(conf->flags & IEEE80211_CONF_PS), smps_modes[conf->smps_mode]); data->idle = !!(conf->flags & IEEE80211_CONF_IDLE); WARN_ON(conf->chandef.chan && data->use_chanctx); mutex_lock(&data->mutex); if (data->scanning && conf->chandef.chan) { for (idx = 0; idx < ARRAY_SIZE(data->survey_data); idx++) { if (data->survey_data[idx].channel == data->channel) { data->survey_data[idx].start = data->survey_data[idx].next_start; data->survey_data[idx].end = jiffies; break; } } data->channel = conf->chandef.chan; data->bw = conf->chandef.width; for (idx = 0; idx < ARRAY_SIZE(data->survey_data); idx++) { if (data->survey_data[idx].channel && data->survey_data[idx].channel != data->channel) continue; data->survey_data[idx].channel = data->channel; data->survey_data[idx].next_start = jiffies; break; } } else { data->channel = conf->chandef.chan; data->bw = conf->chandef.width; } mutex_unlock(&data->mutex); for (idx = 0; idx < ARRAY_SIZE(data->link_data); idx++) { struct mac80211_hwsim_link_data *link_data = &data->link_data[idx]; if (!data->started || !link_data->beacon_int) { hrtimer_cancel(&link_data->beacon_timer); } else if (!hrtimer_is_queued(&link_data->beacon_timer)) { u64 tsf = mac80211_hwsim_get_tsf(hw, NULL); u32 bcn_int = link_data->beacon_int; u64 until_tbtt = bcn_int - do_div(tsf, bcn_int); hrtimer_start(&link_data->beacon_timer, ns_to_ktime(until_tbtt * NSEC_PER_USEC), HRTIMER_MODE_REL_SOFT); } } return 0; } static void mac80211_hwsim_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags,u64 multicast) { struct mac80211_hwsim_data *data = hw->priv; wiphy_dbg(hw->wiphy, "%s\n", __func__); data->rx_filter = 0; if (*total_flags & FIF_ALLMULTI) data->rx_filter |= FIF_ALLMULTI; if (*total_flags & FIF_MCAST_ACTION) data->rx_filter |= FIF_MCAST_ACTION; *total_flags = data->rx_filter; } static void mac80211_hwsim_bcn_en_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { unsigned int *count = data; struct hwsim_vif_priv *vp = (void *)vif->drv_priv; if (vp->bcn_en) (*count)++; } static void mac80211_hwsim_vif_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 changed) { struct hwsim_vif_priv *vp = (void *)vif->drv_priv; hwsim_check_magic(vif); wiphy_dbg(hw->wiphy, "%s(changed=0x%llx vif->addr=%pM)\n", __func__, changed, vif->addr); if (changed & BSS_CHANGED_ASSOC) { wiphy_dbg(hw->wiphy, " ASSOC: assoc=%d aid=%d\n", vif->cfg.assoc, vif->cfg.aid); vp->assoc = vif->cfg.assoc; vp->aid = vif->cfg.aid; } } static void mac80211_hwsim_link_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u64 changed) { struct hwsim_vif_priv *vp = (void *)vif->drv_priv; struct mac80211_hwsim_data *data = hw->priv; unsigned int link_id = info->link_id; struct mac80211_hwsim_link_data *link_data = &data->link_data[link_id]; hwsim_check_magic(vif); wiphy_dbg(hw->wiphy, "%s(changed=0x%llx vif->addr=%pM, link id %u)\n", __func__, (unsigned long long)changed, vif->addr, link_id); if (changed & BSS_CHANGED_BSSID) { wiphy_dbg(hw->wiphy, "%s: BSSID changed: %pM\n", __func__, info->bssid); memcpy(vp->bssid, info->bssid, ETH_ALEN); } if (changed & BSS_CHANGED_BEACON_ENABLED) { wiphy_dbg(hw->wiphy, " BCN EN: %d (BI=%u)\n", info->enable_beacon, info->beacon_int); vp->bcn_en = info->enable_beacon; if (data->started && !hrtimer_is_queued(&link_data->beacon_timer) && info->enable_beacon) { u64 tsf, until_tbtt; u32 bcn_int; link_data->beacon_int = info->beacon_int * 1024; tsf = mac80211_hwsim_get_tsf(hw, vif); bcn_int = link_data->beacon_int; until_tbtt = bcn_int - do_div(tsf, bcn_int); hrtimer_start(&link_data->beacon_timer, ns_to_ktime(until_tbtt * NSEC_PER_USEC), HRTIMER_MODE_REL_SOFT); } else if (!info->enable_beacon) { unsigned int count = 0; ieee80211_iterate_active_interfaces_atomic( data->hw, IEEE80211_IFACE_ITER_NORMAL, mac80211_hwsim_bcn_en_iter, &count); wiphy_dbg(hw->wiphy, " beaconing vifs remaining: %u", count); if (count == 0) { hrtimer_cancel(&link_data->beacon_timer); link_data->beacon_int = 0; } } } if (changed & BSS_CHANGED_ERP_CTS_PROT) { wiphy_dbg(hw->wiphy, " ERP_CTS_PROT: %d\n", info->use_cts_prot); } if (changed & BSS_CHANGED_ERP_PREAMBLE) { wiphy_dbg(hw->wiphy, " ERP_PREAMBLE: %d\n", info->use_short_preamble); } if (changed & BSS_CHANGED_ERP_SLOT) { wiphy_dbg(hw->wiphy, " ERP_SLOT: %d\n", info->use_short_slot); } if (changed & BSS_CHANGED_HT) { wiphy_dbg(hw->wiphy, " HT: op_mode=0x%x\n", info->ht_operation_mode); } if (changed & BSS_CHANGED_BASIC_RATES) { wiphy_dbg(hw->wiphy, " BASIC_RATES: 0x%llx\n", (unsigned long long) info->basic_rates); } if (changed & BSS_CHANGED_TXPOWER) wiphy_dbg(hw->wiphy, " TX Power: %d dBm\n", info->txpower); } static void mac80211_hwsim_sta_rc_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u32 changed) { struct mac80211_hwsim_data *data = hw->priv; u32 bw = U32_MAX; enum nl80211_chan_width confbw = NL80211_CHAN_WIDTH_20_NOHT; switch (sta->deflink.bandwidth) { #define C(_bw) case IEEE80211_STA_RX_BW_##_bw: bw = _bw; break C(20); C(40); C(80); C(160); C(320); #undef C } if (!data->use_chanctx) { confbw = data->bw; } else { struct ieee80211_chanctx_conf *chanctx_conf; rcu_read_lock(); chanctx_conf = rcu_dereference(vif->bss_conf.chanctx_conf); if (!WARN_ON(!chanctx_conf)) confbw = chanctx_conf->def.width; rcu_read_unlock(); } WARN(bw > hwsim_get_chanwidth(confbw), "intf %pM: bad STA %pM bandwidth %d MHz (%d) > channel config %d MHz (%d)\n", vif->addr, sta->addr, bw, sta->deflink.bandwidth, hwsim_get_chanwidth(data->bw), data->bw); } static int mac80211_hwsim_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { hwsim_check_magic(vif); hwsim_set_sta_magic(sta); mac80211_hwsim_sta_rc_update(hw, vif, sta, 0); return 0; } static int mac80211_hwsim_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { hwsim_check_magic(vif); hwsim_clear_sta_magic(sta); return 0; } static void mac80211_hwsim_sta_notify(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum sta_notify_cmd cmd, struct ieee80211_sta *sta) { hwsim_check_magic(vif); switch (cmd) { case STA_NOTIFY_SLEEP: case STA_NOTIFY_AWAKE: /* TODO: make good use of these flags */ break; default: WARN(1, "Invalid sta notify: %d\n", cmd); break; } } static int mac80211_hwsim_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool set) { hwsim_check_sta_magic(sta); return 0; } static int mac80211_hwsim_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int link_id, u16 queue, const struct ieee80211_tx_queue_params *params) { wiphy_dbg(hw->wiphy, "%s (queue=%d txop=%d cw_min=%d cw_max=%d aifs=%d)\n", __func__, queue, params->txop, params->cw_min, params->cw_max, params->aifs); return 0; } static int mac80211_hwsim_get_survey(struct ieee80211_hw *hw, int idx, struct survey_info *survey) { struct mac80211_hwsim_data *hwsim = hw->priv; if (idx < 0 || idx >= ARRAY_SIZE(hwsim->survey_data)) return -ENOENT; mutex_lock(&hwsim->mutex); survey->channel = hwsim->survey_data[idx].channel; if (!survey->channel) { mutex_unlock(&hwsim->mutex); return -ENOENT; } /* * Magically conjured dummy values --- this is only ok for simulated hardware. * * A real driver which cannot determine real values noise MUST NOT * report any, especially not a magically conjured ones :-) */ survey->filled = SURVEY_INFO_NOISE_DBM | SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY; survey->noise = -92; survey->time = jiffies_to_msecs(hwsim->survey_data[idx].end - hwsim->survey_data[idx].start); /* report 12.5% of channel time is used */ survey->time_busy = survey->time/8; mutex_unlock(&hwsim->mutex); return 0; } #ifdef CONFIG_NL80211_TESTMODE /* * This section contains example code for using netlink * attributes with the testmode command in nl80211. */ /* These enums need to be kept in sync with userspace */ enum hwsim_testmode_attr { __HWSIM_TM_ATTR_INVALID = 0, HWSIM_TM_ATTR_CMD = 1, HWSIM_TM_ATTR_PS = 2, /* keep last */ __HWSIM_TM_ATTR_AFTER_LAST, HWSIM_TM_ATTR_MAX = __HWSIM_TM_ATTR_AFTER_LAST - 1 }; enum hwsim_testmode_cmd { HWSIM_TM_CMD_SET_PS = 0, HWSIM_TM_CMD_GET_PS = 1, HWSIM_TM_CMD_STOP_QUEUES = 2, HWSIM_TM_CMD_WAKE_QUEUES = 3, }; static const struct nla_policy hwsim_testmode_policy[HWSIM_TM_ATTR_MAX + 1] = { [HWSIM_TM_ATTR_CMD] = { .type = NLA_U32 }, [HWSIM_TM_ATTR_PS] = { .type = NLA_U32 }, }; static int mac80211_hwsim_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len) { struct mac80211_hwsim_data *hwsim = hw->priv; struct nlattr *tb[HWSIM_TM_ATTR_MAX + 1]; struct sk_buff *skb; int err, ps; err = nla_parse_deprecated(tb, HWSIM_TM_ATTR_MAX, data, len, hwsim_testmode_policy, NULL); if (err) return err; if (!tb[HWSIM_TM_ATTR_CMD]) return -EINVAL; switch (nla_get_u32(tb[HWSIM_TM_ATTR_CMD])) { case HWSIM_TM_CMD_SET_PS: if (!tb[HWSIM_TM_ATTR_PS]) return -EINVAL; ps = nla_get_u32(tb[HWSIM_TM_ATTR_PS]); return hwsim_fops_ps_write(hwsim, ps); case HWSIM_TM_CMD_GET_PS: skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32))); if (!skb) return -ENOMEM; if (nla_put_u32(skb, HWSIM_TM_ATTR_PS, hwsim->ps)) goto nla_put_failure; return cfg80211_testmode_reply(skb); case HWSIM_TM_CMD_STOP_QUEUES: ieee80211_stop_queues(hw); return 0; case HWSIM_TM_CMD_WAKE_QUEUES: ieee80211_wake_queues(hw); return 0; default: return -EOPNOTSUPP; } nla_put_failure: kfree_skb(skb); return -ENOBUFS; } #endif static int mac80211_hwsim_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) { struct ieee80211_sta *sta = params->sta; enum ieee80211_ampdu_mlme_action action = params->action; u16 tid = params->tid; switch (action) { case IEEE80211_AMPDU_TX_START: return IEEE80211_AMPDU_TX_START_IMMEDIATE; case IEEE80211_AMPDU_TX_STOP_CONT: case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; case IEEE80211_AMPDU_TX_OPERATIONAL: break; case IEEE80211_AMPDU_RX_START: case IEEE80211_AMPDU_RX_STOP: break; default: return -EOPNOTSUPP; } return 0; } static void mac80211_hwsim_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 queues, bool drop) { /* Not implemented, queues only on kernel side */ } static void hw_scan_work(struct work_struct *work) { struct mac80211_hwsim_data *hwsim = container_of(work, struct mac80211_hwsim_data, hw_scan.work); struct cfg80211_scan_request *req = hwsim->hw_scan_request; int dwell, i; mutex_lock(&hwsim->mutex); if (hwsim->scan_chan_idx >= req->n_channels) { struct cfg80211_scan_info info = { .aborted = false, }; wiphy_dbg(hwsim->hw->wiphy, "hw scan complete\n"); ieee80211_scan_completed(hwsim->hw, &info); hwsim->hw_scan_request = NULL; hwsim->hw_scan_vif = NULL; hwsim->tmp_chan = NULL; mutex_unlock(&hwsim->mutex); mac80211_hwsim_config_mac_nl(hwsim->hw, hwsim->scan_addr, false); return; } wiphy_dbg(hwsim->hw->wiphy, "hw scan %d MHz\n", req->channels[hwsim->scan_chan_idx]->center_freq); hwsim->tmp_chan = req->channels[hwsim->scan_chan_idx]; if (hwsim->tmp_chan->flags & (IEEE80211_CHAN_NO_IR | IEEE80211_CHAN_RADAR) || !req->n_ssids) { dwell = 120; } else { dwell = 30; /* send probes */ for (i = 0; i < req->n_ssids; i++) { struct sk_buff *probe; struct ieee80211_mgmt *mgmt; probe = ieee80211_probereq_get(hwsim->hw, hwsim->scan_addr, req->ssids[i].ssid, req->ssids[i].ssid_len, req->ie_len); if (!probe) continue; mgmt = (struct ieee80211_mgmt *) probe->data; memcpy(mgmt->da, req->bssid, ETH_ALEN); memcpy(mgmt->bssid, req->bssid, ETH_ALEN); if (req->ie_len) skb_put_data(probe, req->ie, req->ie_len); rcu_read_lock(); if (!ieee80211_tx_prepare_skb(hwsim->hw, hwsim->hw_scan_vif, probe, hwsim->tmp_chan->band, NULL)) { rcu_read_unlock(); kfree_skb(probe); continue; } local_bh_disable(); mac80211_hwsim_tx_frame(hwsim->hw, probe, hwsim->tmp_chan); rcu_read_unlock(); local_bh_enable(); } } ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan, msecs_to_jiffies(dwell)); hwsim->survey_data[hwsim->scan_chan_idx].channel = hwsim->tmp_chan; hwsim->survey_data[hwsim->scan_chan_idx].start = jiffies; hwsim->survey_data[hwsim->scan_chan_idx].end = jiffies + msecs_to_jiffies(dwell); hwsim->scan_chan_idx++; mutex_unlock(&hwsim->mutex); } static int mac80211_hwsim_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_scan_request *hw_req) { struct mac80211_hwsim_data *hwsim = hw->priv; struct cfg80211_scan_request *req = &hw_req->req; mutex_lock(&hwsim->mutex); if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) { mutex_unlock(&hwsim->mutex); return -EBUSY; } hwsim->hw_scan_request = req; hwsim->hw_scan_vif = vif; hwsim->scan_chan_idx = 0; if (req->flags & NL80211_SCAN_FLAG_RANDOM_ADDR) get_random_mask_addr(hwsim->scan_addr, hw_req->req.mac_addr, hw_req->req.mac_addr_mask); else memcpy(hwsim->scan_addr, vif->addr, ETH_ALEN); memset(hwsim->survey_data, 0, sizeof(hwsim->survey_data)); mutex_unlock(&hwsim->mutex); mac80211_hwsim_config_mac_nl(hw, hwsim->scan_addr, true); wiphy_dbg(hw->wiphy, "hwsim hw_scan request\n"); ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan, 0); return 0; } static void mac80211_hwsim_cancel_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mac80211_hwsim_data *hwsim = hw->priv; struct cfg80211_scan_info info = { .aborted = true, }; wiphy_dbg(hw->wiphy, "hwsim cancel_hw_scan\n"); cancel_delayed_work_sync(&hwsim->hw_scan); mutex_lock(&hwsim->mutex); ieee80211_scan_completed(hwsim->hw, &info); hwsim->tmp_chan = NULL; hwsim->hw_scan_request = NULL; hwsim->hw_scan_vif = NULL; mutex_unlock(&hwsim->mutex); } static void mac80211_hwsim_sw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const u8 *mac_addr) { struct mac80211_hwsim_data *hwsim = hw->priv; mutex_lock(&hwsim->mutex); if (hwsim->scanning) { pr_debug("two hwsim sw_scans detected!\n"); goto out; } pr_debug("hwsim sw_scan request, prepping stuff\n"); memcpy(hwsim->scan_addr, mac_addr, ETH_ALEN); mac80211_hwsim_config_mac_nl(hw, hwsim->scan_addr, true); hwsim->scanning = true; memset(hwsim->survey_data, 0, sizeof(hwsim->survey_data)); out: mutex_unlock(&hwsim->mutex); } static void mac80211_hwsim_sw_scan_complete(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mac80211_hwsim_data *hwsim = hw->priv; mutex_lock(&hwsim->mutex); pr_debug("hwsim sw_scan_complete\n"); hwsim->scanning = false; mac80211_hwsim_config_mac_nl(hw, hwsim->scan_addr, false); eth_zero_addr(hwsim->scan_addr); mutex_unlock(&hwsim->mutex); } static void hw_roc_start(struct work_struct *work) { struct mac80211_hwsim_data *hwsim = container_of(work, struct mac80211_hwsim_data, roc_start.work); mutex_lock(&hwsim->mutex); wiphy_dbg(hwsim->hw->wiphy, "hwsim ROC begins\n"); hwsim->tmp_chan = hwsim->roc_chan; ieee80211_ready_on_channel(hwsim->hw); ieee80211_queue_delayed_work(hwsim->hw, &hwsim->roc_done, msecs_to_jiffies(hwsim->roc_duration)); mutex_unlock(&hwsim->mutex); } static void hw_roc_done(struct work_struct *work) { struct mac80211_hwsim_data *hwsim = container_of(work, struct mac80211_hwsim_data, roc_done.work); mutex_lock(&hwsim->mutex); ieee80211_remain_on_channel_expired(hwsim->hw); hwsim->tmp_chan = NULL; mutex_unlock(&hwsim->mutex); wiphy_dbg(hwsim->hw->wiphy, "hwsim ROC expired\n"); } static int mac80211_hwsim_roc(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_channel *chan, int duration, enum ieee80211_roc_type type) { struct mac80211_hwsim_data *hwsim = hw->priv; mutex_lock(&hwsim->mutex); if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) { mutex_unlock(&hwsim->mutex); return -EBUSY; } hwsim->roc_chan = chan; hwsim->roc_duration = duration; mutex_unlock(&hwsim->mutex); wiphy_dbg(hw->wiphy, "hwsim ROC (%d MHz, %d ms)\n", chan->center_freq, duration); ieee80211_queue_delayed_work(hw, &hwsim->roc_start, HZ/50); return 0; } static int mac80211_hwsim_croc(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mac80211_hwsim_data *hwsim = hw->priv; cancel_delayed_work_sync(&hwsim->roc_start); cancel_delayed_work_sync(&hwsim->roc_done); mutex_lock(&hwsim->mutex); hwsim->tmp_chan = NULL; mutex_unlock(&hwsim->mutex); wiphy_dbg(hw->wiphy, "hwsim ROC canceled\n"); return 0; } static int mac80211_hwsim_add_chanctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx) { struct mac80211_hwsim_data *hwsim = hw->priv; mutex_lock(&hwsim->mutex); hwsim->chanctx = ctx; mutex_unlock(&hwsim->mutex); hwsim_set_chanctx_magic(ctx); wiphy_dbg(hw->wiphy, "add channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n", ctx->def.chan->center_freq, ctx->def.width, ctx->def.center_freq1, ctx->def.center_freq2); return 0; } static void mac80211_hwsim_remove_chanctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx) { struct mac80211_hwsim_data *hwsim = hw->priv; mutex_lock(&hwsim->mutex); hwsim->chanctx = NULL; mutex_unlock(&hwsim->mutex); wiphy_dbg(hw->wiphy, "remove channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n", ctx->def.chan->center_freq, ctx->def.width, ctx->def.center_freq1, ctx->def.center_freq2); hwsim_check_chanctx_magic(ctx); hwsim_clear_chanctx_magic(ctx); } static void mac80211_hwsim_change_chanctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx, u32 changed) { struct mac80211_hwsim_data *hwsim = hw->priv; mutex_lock(&hwsim->mutex); hwsim->chanctx = ctx; mutex_unlock(&hwsim->mutex); hwsim_check_chanctx_magic(ctx); wiphy_dbg(hw->wiphy, "change channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n", ctx->def.chan->center_freq, ctx->def.width, ctx->def.center_freq1, ctx->def.center_freq2); } static int mac80211_hwsim_assign_vif_chanctx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *link_conf, struct ieee80211_chanctx_conf *ctx) { hwsim_check_magic(vif); hwsim_check_chanctx_magic(ctx); return 0; } static void mac80211_hwsim_unassign_vif_chanctx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *link_conf, struct ieee80211_chanctx_conf *ctx) { hwsim_check_magic(vif); hwsim_check_chanctx_magic(ctx); } static const char mac80211_hwsim_gstrings_stats[][ETH_GSTRING_LEN] = { "tx_pkts_nic", "tx_bytes_nic", "rx_pkts_nic", "rx_bytes_nic", "d_tx_dropped", "d_tx_failed", "d_ps_mode", "d_group", }; #define MAC80211_HWSIM_SSTATS_LEN ARRAY_SIZE(mac80211_hwsim_gstrings_stats) static void mac80211_hwsim_get_et_strings(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 sset, u8 *data) { if (sset == ETH_SS_STATS) memcpy(data, *mac80211_hwsim_gstrings_stats, sizeof(mac80211_hwsim_gstrings_stats)); } static int mac80211_hwsim_get_et_sset_count(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int sset) { if (sset == ETH_SS_STATS) return MAC80211_HWSIM_SSTATS_LEN; return 0; } static void mac80211_hwsim_get_et_stats(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ethtool_stats *stats, u64 *data) { struct mac80211_hwsim_data *ar = hw->priv; int i = 0; data[i++] = ar->tx_pkts; data[i++] = ar->tx_bytes; data[i++] = ar->rx_pkts; data[i++] = ar->rx_bytes; data[i++] = ar->tx_dropped; data[i++] = ar->tx_failed; data[i++] = ar->ps; data[i++] = ar->group; WARN_ON(i != MAC80211_HWSIM_SSTATS_LEN); } static int mac80211_hwsim_tx_last_beacon(struct ieee80211_hw *hw) { return 1; } static int mac80211_hwsim_set_rts_threshold(struct ieee80211_hw *hw, u32 value) { return -EOPNOTSUPP; } static int mac80211_hwsim_change_vif_links(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 old_links, u16 new_links, struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS]) { return 0; } static int mac80211_hwsim_change_sta_links(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u16 old_links, u16 new_links) { return 0; } #define HWSIM_COMMON_OPS \ .tx = mac80211_hwsim_tx, \ .start = mac80211_hwsim_start, \ .stop = mac80211_hwsim_stop, \ .add_interface = mac80211_hwsim_add_interface, \ .change_interface = mac80211_hwsim_change_interface, \ .remove_interface = mac80211_hwsim_remove_interface, \ .config = mac80211_hwsim_config, \ .configure_filter = mac80211_hwsim_configure_filter, \ .vif_cfg_changed = mac80211_hwsim_vif_info_changed, \ .link_info_changed = mac80211_hwsim_link_info_changed, \ .tx_last_beacon = mac80211_hwsim_tx_last_beacon, \ .sta_add = mac80211_hwsim_sta_add, \ .sta_remove = mac80211_hwsim_sta_remove, \ .sta_notify = mac80211_hwsim_sta_notify, \ .sta_rc_update = mac80211_hwsim_sta_rc_update, \ .conf_tx = mac80211_hwsim_conf_tx, \ .get_survey = mac80211_hwsim_get_survey, \ CFG80211_TESTMODE_CMD(mac80211_hwsim_testmode_cmd) \ .ampdu_action = mac80211_hwsim_ampdu_action, \ .flush = mac80211_hwsim_flush, \ .get_et_sset_count = mac80211_hwsim_get_et_sset_count, \ .get_et_stats = mac80211_hwsim_get_et_stats, \ .get_et_strings = mac80211_hwsim_get_et_strings, #define HWSIM_NON_MLO_OPS \ .set_tim = mac80211_hwsim_set_tim, \ .get_tsf = mac80211_hwsim_get_tsf, \ .set_tsf = mac80211_hwsim_set_tsf, static const struct ieee80211_ops mac80211_hwsim_ops = { HWSIM_COMMON_OPS HWSIM_NON_MLO_OPS .sw_scan_start = mac80211_hwsim_sw_scan, .sw_scan_complete = mac80211_hwsim_sw_scan_complete, }; #define HWSIM_CHANCTX_OPS \ .hw_scan = mac80211_hwsim_hw_scan, \ .cancel_hw_scan = mac80211_hwsim_cancel_hw_scan, \ .remain_on_channel = mac80211_hwsim_roc, \ .cancel_remain_on_channel = mac80211_hwsim_croc, \ .add_chanctx = mac80211_hwsim_add_chanctx, \ .remove_chanctx = mac80211_hwsim_remove_chanctx, \ .change_chanctx = mac80211_hwsim_change_chanctx, \ .assign_vif_chanctx = mac80211_hwsim_assign_vif_chanctx,\ .unassign_vif_chanctx = mac80211_hwsim_unassign_vif_chanctx, static const struct ieee80211_ops mac80211_hwsim_mchan_ops = { HWSIM_COMMON_OPS HWSIM_NON_MLO_OPS HWSIM_CHANCTX_OPS }; static const struct ieee80211_ops mac80211_hwsim_mlo_ops = { HWSIM_COMMON_OPS HWSIM_CHANCTX_OPS .set_rts_threshold = mac80211_hwsim_set_rts_threshold, .change_vif_links = mac80211_hwsim_change_vif_links, .change_sta_links = mac80211_hwsim_change_sta_links, }; struct hwsim_new_radio_params { unsigned int channels; const char *reg_alpha2; const struct ieee80211_regdomain *regd; bool reg_strict; bool p2p_device; bool use_chanctx; bool destroy_on_close; const char *hwname; bool no_vif; const u8 *perm_addr; u32 iftypes; u32 *ciphers; u8 n_ciphers; bool mlo; }; static void hwsim_mcast_config_msg(struct sk_buff *mcast_skb, struct genl_info *info) { if (info) genl_notify(&hwsim_genl_family, mcast_skb, info, HWSIM_MCGRP_CONFIG, GFP_KERNEL); else genlmsg_multicast(&hwsim_genl_family, mcast_skb, 0, HWSIM_MCGRP_CONFIG, GFP_KERNEL); } static int append_radio_msg(struct sk_buff *skb, int id, struct hwsim_new_radio_params *param) { int ret; ret = nla_put_u32(skb, HWSIM_ATTR_RADIO_ID, id); if (ret < 0) return ret; if (param->channels) { ret = nla_put_u32(skb, HWSIM_ATTR_CHANNELS, param->channels); if (ret < 0) return ret; } if (param->reg_alpha2) { ret = nla_put(skb, HWSIM_ATTR_REG_HINT_ALPHA2, 2, param->reg_alpha2); if (ret < 0) return ret; } if (param->regd) { int i; for (i = 0; i < ARRAY_SIZE(hwsim_world_regdom_custom); i++) { if (hwsim_world_regdom_custom[i] != param->regd) continue; ret = nla_put_u32(skb, HWSIM_ATTR_REG_CUSTOM_REG, i); if (ret < 0) return ret; break; } } if (param->reg_strict) { ret = nla_put_flag(skb, HWSIM_ATTR_REG_STRICT_REG); if (ret < 0) return ret; } if (param->p2p_device) { ret = nla_put_flag(skb, HWSIM_ATTR_SUPPORT_P2P_DEVICE); if (ret < 0) return ret; } if (param->use_chanctx) { ret = nla_put_flag(skb, HWSIM_ATTR_USE_CHANCTX); if (ret < 0) return ret; } if (param->hwname) { ret = nla_put(skb, HWSIM_ATTR_RADIO_NAME, strlen(param->hwname), param->hwname); if (ret < 0) return ret; } return 0; } static void hwsim_mcast_new_radio(int id, struct genl_info *info, struct hwsim_new_radio_params *param) { struct sk_buff *mcast_skb; void *data; mcast_skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!mcast_skb) return; data = genlmsg_put(mcast_skb, 0, 0, &hwsim_genl_family, 0, HWSIM_CMD_NEW_RADIO); if (!data) goto out_err; if (append_radio_msg(mcast_skb, id, param) < 0) goto out_err; genlmsg_end(mcast_skb, data); hwsim_mcast_config_msg(mcast_skb, info); return; out_err: nlmsg_free(mcast_skb); } static const struct ieee80211_sband_iftype_data sband_capa_2ghz[] = { { .types_mask = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP), .he_cap = { .has_he = true, .he_cap_elem = { .mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE, .mac_cap_info[1] = IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, .mac_cap_info[2] = IEEE80211_HE_MAC_CAP2_BSR | IEEE80211_HE_MAC_CAP2_MU_CASCADING | IEEE80211_HE_MAC_CAP2_ACK_EN, .mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL | IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3, .mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU, .phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK | IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD | IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS, .phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US | IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ | IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ | IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO | IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO, /* Leave all the other PHY capability bytes * unset, as DCM, beam forming, RU and PPE * threshold information are not supported */ }, .he_mcs_nss_supp = { .rx_mcs_80 = cpu_to_le16(0xfffa), .tx_mcs_80 = cpu_to_le16(0xfffa), .rx_mcs_160 = cpu_to_le16(0xffff), .tx_mcs_160 = cpu_to_le16(0xffff), .rx_mcs_80p80 = cpu_to_le16(0xffff), .tx_mcs_80p80 = cpu_to_le16(0xffff), }, }, .eht_cap = { .has_eht = true, .eht_cap_elem = { .mac_cap_info[0] = IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS | IEEE80211_EHT_MAC_CAP0_OM_CONTROL | IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1, .phy_cap_info[0] = IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ | IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI | IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO | IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER | IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE, .phy_cap_info[3] = IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK | IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK | IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK | IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK, .phy_cap_info[4] = IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO | IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP | IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP | IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI | IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK, .phy_cap_info[5] = IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK | IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP | IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP | IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT | IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK | IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK, .phy_cap_info[6] = IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK | IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK, .phy_cap_info[7] = IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW, }, /* For all MCS and bandwidth, set 8 NSS for both Tx and * Rx */ .eht_mcs_nss_supp = { /* * Since B0, B1, B2 and B3 are not set in * the supported channel width set field in the * HE PHY capabilities information field the * device is a 20MHz only device on 2.4GHz band. */ .only_20mhz = { .rx_tx_mcs7_max_nss = 0x88, .rx_tx_mcs9_max_nss = 0x88, .rx_tx_mcs11_max_nss = 0x88, .rx_tx_mcs13_max_nss = 0x88, }, }, /* PPE threshold information is not supported */ }, }, #ifdef CONFIG_MAC80211_MESH { .types_mask = BIT(NL80211_IFTYPE_MESH_POINT), .he_cap = { .has_he = true, .he_cap_elem = { .mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE, .mac_cap_info[1] = IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, .mac_cap_info[2] = IEEE80211_HE_MAC_CAP2_ACK_EN, .mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL | IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3, .mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU, .phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK | IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD | IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS, .phy_cap_info[2] = 0, /* Leave all the other PHY capability bytes * unset, as DCM, beam forming, RU and PPE * threshold information are not supported */ }, .he_mcs_nss_supp = { .rx_mcs_80 = cpu_to_le16(0xfffa), .tx_mcs_80 = cpu_to_le16(0xfffa), .rx_mcs_160 = cpu_to_le16(0xffff), .tx_mcs_160 = cpu_to_le16(0xffff), .rx_mcs_80p80 = cpu_to_le16(0xffff), .tx_mcs_80p80 = cpu_to_le16(0xffff), }, }, }, #endif }; static const struct ieee80211_sband_iftype_data sband_capa_5ghz[] = { { /* TODO: should we support other types, e.g., P2P?*/ .types_mask = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP), .he_cap = { .has_he = true, .he_cap_elem = { .mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE, .mac_cap_info[1] = IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, .mac_cap_info[2] = IEEE80211_HE_MAC_CAP2_BSR | IEEE80211_HE_MAC_CAP2_MU_CASCADING | IEEE80211_HE_MAC_CAP2_ACK_EN, .mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL | IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3, .mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU, .phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G, .phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK | IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD | IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS, .phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US | IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ | IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ | IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO | IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO, /* Leave all the other PHY capability bytes * unset, as DCM, beam forming, RU and PPE * threshold information are not supported */ }, .he_mcs_nss_supp = { .rx_mcs_80 = cpu_to_le16(0xfffa), .tx_mcs_80 = cpu_to_le16(0xfffa), .rx_mcs_160 = cpu_to_le16(0xfffa), .tx_mcs_160 = cpu_to_le16(0xfffa), .rx_mcs_80p80 = cpu_to_le16(0xfffa), .tx_mcs_80p80 = cpu_to_le16(0xfffa), }, }, .eht_cap = { .has_eht = true, .eht_cap_elem = { .mac_cap_info[0] = IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS | IEEE80211_EHT_MAC_CAP0_OM_CONTROL | IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1, .phy_cap_info[0] = IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ | IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI | IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO | IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER | IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE | IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK, .phy_cap_info[1] = IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK | IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK, .phy_cap_info[2] = IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK | IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK, .phy_cap_info[3] = IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK | IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK | IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK | IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK, .phy_cap_info[4] = IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO | IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP | IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP | IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI | IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK, .phy_cap_info[5] = IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK | IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP | IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP | IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT | IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK | IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK, .phy_cap_info[6] = IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK | IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK, .phy_cap_info[7] = IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW | IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ | IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ, }, /* For all MCS and bandwidth, set 8 NSS for both Tx and * Rx */ .eht_mcs_nss_supp = { /* * As B1 and B2 are set in the supported * channel width set field in the HE PHY * capabilities information field include all * the following MCS/NSS. */ .bw._80 = { .rx_tx_mcs9_max_nss = 0x88, .rx_tx_mcs11_max_nss = 0x88, .rx_tx_mcs13_max_nss = 0x88, }, .bw._160 = { .rx_tx_mcs9_max_nss = 0x88, .rx_tx_mcs11_max_nss = 0x88, .rx_tx_mcs13_max_nss = 0x88, }, }, /* PPE threshold information is not supported */ }, }, #ifdef CONFIG_MAC80211_MESH { /* TODO: should we support other types, e.g., IBSS?*/ .types_mask = BIT(NL80211_IFTYPE_MESH_POINT), .he_cap = { .has_he = true, .he_cap_elem = { .mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE, .mac_cap_info[1] = IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, .mac_cap_info[2] = IEEE80211_HE_MAC_CAP2_ACK_EN, .mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL | IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3, .mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU, .phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G, .phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK | IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD | IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS, .phy_cap_info[2] = 0, /* Leave all the other PHY capability bytes * unset, as DCM, beam forming, RU and PPE * threshold information are not supported */ }, .he_mcs_nss_supp = { .rx_mcs_80 = cpu_to_le16(0xfffa), .tx_mcs_80 = cpu_to_le16(0xfffa), .rx_mcs_160 = cpu_to_le16(0xfffa), .tx_mcs_160 = cpu_to_le16(0xfffa), .rx_mcs_80p80 = cpu_to_le16(0xfffa), .tx_mcs_80p80 = cpu_to_le16(0xfffa), }, }, }, #endif }; static const struct ieee80211_sband_iftype_data sband_capa_6ghz[] = { { /* TODO: should we support other types, e.g., P2P?*/ .types_mask = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP), .he_6ghz_capa = { .capa = cpu_to_le16(IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START | IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP | IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN | IEEE80211_HE_6GHZ_CAP_SM_PS | IEEE80211_HE_6GHZ_CAP_RD_RESPONDER | IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS | IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS), }, .he_cap = { .has_he = true, .he_cap_elem = { .mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE, .mac_cap_info[1] = IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, .mac_cap_info[2] = IEEE80211_HE_MAC_CAP2_BSR | IEEE80211_HE_MAC_CAP2_MU_CASCADING | IEEE80211_HE_MAC_CAP2_ACK_EN, .mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL | IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3, .mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU, .phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G, .phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK | IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD | IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS, .phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US | IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ | IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ | IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO | IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO, /* Leave all the other PHY capability bytes * unset, as DCM, beam forming, RU and PPE * threshold information are not supported */ }, .he_mcs_nss_supp = { .rx_mcs_80 = cpu_to_le16(0xfffa), .tx_mcs_80 = cpu_to_le16(0xfffa), .rx_mcs_160 = cpu_to_le16(0xfffa), .tx_mcs_160 = cpu_to_le16(0xfffa), .rx_mcs_80p80 = cpu_to_le16(0xfffa), .tx_mcs_80p80 = cpu_to_le16(0xfffa), }, }, .eht_cap = { .has_eht = true, .eht_cap_elem = { .mac_cap_info[0] = IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS | IEEE80211_EHT_MAC_CAP0_OM_CONTROL | IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1, .phy_cap_info[0] = IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ | IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ | IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI | IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO | IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER | IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE | IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK, .phy_cap_info[1] = IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK | IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK | IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK, .phy_cap_info[2] = IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK | IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK | IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK, .phy_cap_info[3] = IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK | IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK | IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK | IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK, .phy_cap_info[4] = IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO | IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP | IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP | IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI | IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK, .phy_cap_info[5] = IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK | IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP | IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP | IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT | IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK | IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK, .phy_cap_info[6] = IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK | IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK | IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP, .phy_cap_info[7] = IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW | IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ | IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ | IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ, }, /* For all MCS and bandwidth, set 8 NSS for both Tx and * Rx */ .eht_mcs_nss_supp = { /* * As B1 and B2 are set in the supported * channel width set field in the HE PHY * capabilities information field and 320MHz in * 6GHz is supported include all the following * MCS/NSS. */ .bw._80 = { .rx_tx_mcs9_max_nss = 0x88, .rx_tx_mcs11_max_nss = 0x88, .rx_tx_mcs13_max_nss = 0x88, }, .bw._160 = { .rx_tx_mcs9_max_nss = 0x88, .rx_tx_mcs11_max_nss = 0x88, .rx_tx_mcs13_max_nss = 0x88, }, .bw._320 = { .rx_tx_mcs9_max_nss = 0x88, .rx_tx_mcs11_max_nss = 0x88, .rx_tx_mcs13_max_nss = 0x88, }, }, /* PPE threshold information is not supported */ }, }, #ifdef CONFIG_MAC80211_MESH { /* TODO: should we support other types, e.g., IBSS?*/ .types_mask = BIT(NL80211_IFTYPE_MESH_POINT), .he_6ghz_capa = { .capa = cpu_to_le16(IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START | IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP | IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN | IEEE80211_HE_6GHZ_CAP_SM_PS | IEEE80211_HE_6GHZ_CAP_RD_RESPONDER | IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS | IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS), }, .he_cap = { .has_he = true, .he_cap_elem = { .mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE, .mac_cap_info[1] = IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, .mac_cap_info[2] = IEEE80211_HE_MAC_CAP2_ACK_EN, .mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL | IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3, .mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU, .phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G, .phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK | IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD | IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS, .phy_cap_info[2] = 0, /* Leave all the other PHY capability bytes * unset, as DCM, beam forming, RU and PPE * threshold information are not supported */ }, .he_mcs_nss_supp = { .rx_mcs_80 = cpu_to_le16(0xfffa), .tx_mcs_80 = cpu_to_le16(0xfffa), .rx_mcs_160 = cpu_to_le16(0xfffa), .tx_mcs_160 = cpu_to_le16(0xfffa), .rx_mcs_80p80 = cpu_to_le16(0xfffa), .tx_mcs_80p80 = cpu_to_le16(0xfffa), }, }, }, #endif }; static void mac80211_hwsim_sband_capab(struct ieee80211_supported_band *sband) { u16 n_iftype_data; if (sband->band == NL80211_BAND_2GHZ) { n_iftype_data = ARRAY_SIZE(sband_capa_2ghz); sband->iftype_data = (struct ieee80211_sband_iftype_data *)sband_capa_2ghz; } else if (sband->band == NL80211_BAND_5GHZ) { n_iftype_data = ARRAY_SIZE(sband_capa_5ghz); sband->iftype_data = (struct ieee80211_sband_iftype_data *)sband_capa_5ghz; } else if (sband->band == NL80211_BAND_6GHZ) { n_iftype_data = ARRAY_SIZE(sband_capa_6ghz); sband->iftype_data = (struct ieee80211_sband_iftype_data *)sband_capa_6ghz; } else { return; } sband->n_iftype_data = n_iftype_data; } #ifdef CONFIG_MAC80211_MESH #define HWSIM_MESH_BIT BIT(NL80211_IFTYPE_MESH_POINT) #else #define HWSIM_MESH_BIT 0 #endif #define HWSIM_DEFAULT_IF_LIMIT \ (BIT(NL80211_IFTYPE_STATION) | \ BIT(NL80211_IFTYPE_P2P_CLIENT) | \ BIT(NL80211_IFTYPE_AP) | \ BIT(NL80211_IFTYPE_P2P_GO) | \ HWSIM_MESH_BIT) #define HWSIM_IFTYPE_SUPPORT_MASK \ (BIT(NL80211_IFTYPE_STATION) | \ BIT(NL80211_IFTYPE_AP) | \ BIT(NL80211_IFTYPE_P2P_CLIENT) | \ BIT(NL80211_IFTYPE_P2P_GO) | \ BIT(NL80211_IFTYPE_ADHOC) | \ BIT(NL80211_IFTYPE_MESH_POINT) | \ BIT(NL80211_IFTYPE_OCB)) static int mac80211_hwsim_new_radio(struct genl_info *info, struct hwsim_new_radio_params *param) { int err; u8 addr[ETH_ALEN]; struct mac80211_hwsim_data *data; struct ieee80211_hw *hw; enum nl80211_band band; const struct ieee80211_ops *ops = &mac80211_hwsim_ops; struct net *net; int idx, i; int n_limits = 0; if (WARN_ON(param->channels > 1 && !param->use_chanctx)) return -EINVAL; spin_lock_bh(&hwsim_radio_lock); idx = hwsim_radio_idx++; spin_unlock_bh(&hwsim_radio_lock); if (param->mlo) ops = &mac80211_hwsim_mlo_ops; else if (param->use_chanctx) ops = &mac80211_hwsim_mchan_ops; hw = ieee80211_alloc_hw_nm(sizeof(*data), ops, param->hwname); if (!hw) { pr_debug("mac80211_hwsim: ieee80211_alloc_hw failed\n"); err = -ENOMEM; goto failed; } /* ieee80211_alloc_hw_nm may have used a default name */ param->hwname = wiphy_name(hw->wiphy); if (info) net = genl_info_net(info); else net = &init_net; wiphy_net_set(hw->wiphy, net); data = hw->priv; data->hw = hw; data->dev = device_create(hwsim_class, NULL, 0, hw, "hwsim%d", idx); if (IS_ERR(data->dev)) { printk(KERN_DEBUG "mac80211_hwsim: device_create failed (%ld)\n", PTR_ERR(data->dev)); err = -ENOMEM; goto failed_drvdata; } data->dev->driver = &mac80211_hwsim_driver.driver; err = device_bind_driver(data->dev); if (err != 0) { pr_debug("mac80211_hwsim: device_bind_driver failed (%d)\n", err); goto failed_bind; } skb_queue_head_init(&data->pending); SET_IEEE80211_DEV(hw, data->dev); if (!param->perm_addr) { eth_zero_addr(addr); addr[0] = 0x02; addr[3] = idx >> 8; addr[4] = idx; memcpy(data->addresses[0].addr, addr, ETH_ALEN); /* Why need here second address ? */ memcpy(data->addresses[1].addr, addr, ETH_ALEN); data->addresses[1].addr[0] |= 0x40; hw->wiphy->n_addresses = 2; hw->wiphy->addresses = data->addresses; /* possible address clash is checked at hash table insertion */ } else { memcpy(data->addresses[0].addr, param->perm_addr, ETH_ALEN); /* compatibility with automatically generated mac addr */ memcpy(data->addresses[1].addr, param->perm_addr, ETH_ALEN); hw->wiphy->n_addresses = 2; hw->wiphy->addresses = data->addresses; } data->channels = param->channels; data->use_chanctx = param->use_chanctx; data->idx = idx; data->destroy_on_close = param->destroy_on_close; if (info) data->portid = info->snd_portid; /* setup interface limits, only on interface types we support */ if (param->iftypes & BIT(NL80211_IFTYPE_ADHOC)) { data->if_limits[n_limits].max = 1; data->if_limits[n_limits].types = BIT(NL80211_IFTYPE_ADHOC); n_limits++; } if (param->iftypes & HWSIM_DEFAULT_IF_LIMIT) { data->if_limits[n_limits].max = 2048; /* * For this case, we may only support a subset of * HWSIM_DEFAULT_IF_LIMIT, therefore we only want to add the * bits that both param->iftype & HWSIM_DEFAULT_IF_LIMIT have. */ data->if_limits[n_limits].types = HWSIM_DEFAULT_IF_LIMIT & param->iftypes; n_limits++; } if (param->iftypes & BIT(NL80211_IFTYPE_P2P_DEVICE)) { data->if_limits[n_limits].max = 1; data->if_limits[n_limits].types = BIT(NL80211_IFTYPE_P2P_DEVICE); n_limits++; } if (data->use_chanctx) { hw->wiphy->max_scan_ssids = 255; hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN; hw->wiphy->max_remain_on_channel_duration = 1000; data->if_combination.radar_detect_widths = 0; data->if_combination.num_different_channels = data->channels; data->chanctx = NULL; } else { data->if_combination.num_different_channels = 1; data->if_combination.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_5) | BIT(NL80211_CHAN_WIDTH_10) | BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40) | BIT(NL80211_CHAN_WIDTH_80) | BIT(NL80211_CHAN_WIDTH_160); } if (!n_limits) { err = -EINVAL; goto failed_hw; } data->if_combination.max_interfaces = 0; for (i = 0; i < n_limits; i++) data->if_combination.max_interfaces += data->if_limits[i].max; data->if_combination.n_limits = n_limits; data->if_combination.limits = data->if_limits; /* * If we actually were asked to support combinations, * advertise them - if there's only a single thing like * only IBSS then don't advertise it as combinations. */ if (data->if_combination.max_interfaces > 1) { hw->wiphy->iface_combinations = &data->if_combination; hw->wiphy->n_iface_combinations = 1; } if (param->ciphers) { memcpy(data->ciphers, param->ciphers, param->n_ciphers * sizeof(u32)); hw->wiphy->cipher_suites = data->ciphers; hw->wiphy->n_cipher_suites = param->n_ciphers; } data->rx_rssi = DEFAULT_RX_RSSI; INIT_DELAYED_WORK(&data->roc_start, hw_roc_start); INIT_DELAYED_WORK(&data->roc_done, hw_roc_done); INIT_DELAYED_WORK(&data->hw_scan, hw_scan_work); hw->queues = 5; hw->offchannel_tx_hw_queue = 4; ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); ieee80211_hw_set(hw, CHANCTX_STA_CSA); ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES); ieee80211_hw_set(hw, QUEUE_CONTROL); ieee80211_hw_set(hw, WANT_MONITOR_VIF); ieee80211_hw_set(hw, AMPDU_AGGREGATION); ieee80211_hw_set(hw, MFP_CAPABLE); ieee80211_hw_set(hw, SIGNAL_DBM); ieee80211_hw_set(hw, SUPPORTS_PS); ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); ieee80211_hw_set(hw, TDLS_WIDER_BW); ieee80211_hw_set(hw, SUPPORTS_MULTI_BSSID); if (param->mlo) { hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_MLO; ieee80211_hw_set(hw, HAS_RATE_CONTROL); ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS); ieee80211_hw_set(hw, CONNECTION_MONITOR); ieee80211_hw_set(hw, AP_LINK_PS); } else { ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING); ieee80211_hw_set(hw, PS_NULLFUNC_STACK); if (rctbl) ieee80211_hw_set(hw, SUPPORTS_RC_TABLE); } hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS | WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL | WIPHY_FLAG_AP_UAPSD | WIPHY_FLAG_SUPPORTS_5_10_MHZ | WIPHY_FLAG_HAS_CHANNEL_SWITCH; hw->wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR | NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE | NL80211_FEATURE_STATIC_SMPS | NL80211_FEATURE_DYNAMIC_SMPS | NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR; wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_VHT_IBSS); wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_BEACON_PROTECTION); wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_MULTICAST_REGISTRATIONS); wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_BEACON_RATE_LEGACY); hw->wiphy->interface_modes = param->iftypes; /* ask mac80211 to reserve space for magic */ hw->vif_data_size = sizeof(struct hwsim_vif_priv); hw->sta_data_size = sizeof(struct hwsim_sta_priv); hw->chanctx_data_size = sizeof(struct hwsim_chanctx_priv); memcpy(data->channels_2ghz, hwsim_channels_2ghz, sizeof(hwsim_channels_2ghz)); memcpy(data->channels_5ghz, hwsim_channels_5ghz, sizeof(hwsim_channels_5ghz)); memcpy(data->channels_6ghz, hwsim_channels_6ghz, sizeof(hwsim_channels_6ghz)); memcpy(data->channels_s1g, hwsim_channels_s1g, sizeof(hwsim_channels_s1g)); memcpy(data->rates, hwsim_rates, sizeof(hwsim_rates)); for (band = NL80211_BAND_2GHZ; band < NUM_NL80211_BANDS; band++) { struct ieee80211_supported_band *sband = &data->bands[band]; sband->band = band; switch (band) { case NL80211_BAND_2GHZ: sband->channels = data->channels_2ghz; sband->n_channels = ARRAY_SIZE(hwsim_channels_2ghz); sband->bitrates = data->rates; sband->n_bitrates = ARRAY_SIZE(hwsim_rates); break; case NL80211_BAND_5GHZ: sband->channels = data->channels_5ghz; sband->n_channels = ARRAY_SIZE(hwsim_channels_5ghz); sband->bitrates = data->rates + 4; sband->n_bitrates = ARRAY_SIZE(hwsim_rates) - 4; sband->vht_cap.vht_supported = true; sband->vht_cap.cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ | IEEE80211_VHT_CAP_RXLDPC | IEEE80211_VHT_CAP_SHORT_GI_80 | IEEE80211_VHT_CAP_SHORT_GI_160 | IEEE80211_VHT_CAP_TXSTBC | IEEE80211_VHT_CAP_RXSTBC_4 | IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK; sband->vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | IEEE80211_VHT_MCS_SUPPORT_0_9 << 4 | IEEE80211_VHT_MCS_SUPPORT_0_9 << 6 | IEEE80211_VHT_MCS_SUPPORT_0_9 << 8 | IEEE80211_VHT_MCS_SUPPORT_0_9 << 10 | IEEE80211_VHT_MCS_SUPPORT_0_9 << 12 | IEEE80211_VHT_MCS_SUPPORT_0_9 << 14); sband->vht_cap.vht_mcs.tx_mcs_map = sband->vht_cap.vht_mcs.rx_mcs_map; break; case NL80211_BAND_6GHZ: sband->channels = data->channels_6ghz; sband->n_channels = ARRAY_SIZE(hwsim_channels_6ghz); sband->bitrates = data->rates + 4; sband->n_bitrates = ARRAY_SIZE(hwsim_rates) - 4; break; case NL80211_BAND_S1GHZ: memcpy(&sband->s1g_cap, &hwsim_s1g_cap, sizeof(sband->s1g_cap)); sband->channels = data->channels_s1g; sband->n_channels = ARRAY_SIZE(hwsim_channels_s1g); break; default: continue; } if (band != NL80211_BAND_6GHZ){ sband->ht_cap.ht_supported = true; sband->ht_cap.cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_GRN_FLD | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_DSSSCCK40; sband->ht_cap.ampdu_factor = 0x3; sband->ht_cap.ampdu_density = 0x6; memset(&sband->ht_cap.mcs, 0, sizeof(sband->ht_cap.mcs)); sband->ht_cap.mcs.rx_mask[0] = 0xff; sband->ht_cap.mcs.rx_mask[1] = 0xff; sband->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; } mac80211_hwsim_sband_capab(sband); hw->wiphy->bands[band] = sband; } /* By default all radios belong to the first group */ data->group = 1; mutex_init(&data->mutex); data->netgroup = hwsim_net_get_netgroup(net); data->wmediumd = hwsim_net_get_wmediumd(net); /* Enable frame retransmissions for lossy channels */ hw->max_rates = 4; hw->max_rate_tries = 11; hw->wiphy->vendor_commands = mac80211_hwsim_vendor_commands; hw->wiphy->n_vendor_commands = ARRAY_SIZE(mac80211_hwsim_vendor_commands); hw->wiphy->vendor_events = mac80211_hwsim_vendor_events; hw->wiphy->n_vendor_events = ARRAY_SIZE(mac80211_hwsim_vendor_events); if (param->reg_strict) hw->wiphy->regulatory_flags |= REGULATORY_STRICT_REG; if (param->regd) { data->regd = param->regd; hw->wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; wiphy_apply_custom_regulatory(hw->wiphy, param->regd); /* give the regulatory workqueue a chance to run */ schedule_timeout_interruptible(1); } if (param->no_vif) ieee80211_hw_set(hw, NO_AUTO_VIF); wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); for (i = 0; i < ARRAY_SIZE(data->link_data); i++) { hrtimer_init(&data->link_data[i].beacon_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_SOFT); data->link_data[i].beacon_timer.function = mac80211_hwsim_beacon; data->link_data[i].link_id = i; } err = ieee80211_register_hw(hw); if (err < 0) { pr_debug("mac80211_hwsim: ieee80211_register_hw failed (%d)\n", err); goto failed_hw; } wiphy_dbg(hw->wiphy, "hwaddr %pM registered\n", hw->wiphy->perm_addr); if (param->reg_alpha2) { data->alpha2[0] = param->reg_alpha2[0]; data->alpha2[1] = param->reg_alpha2[1]; regulatory_hint(hw->wiphy, param->reg_alpha2); } data->debugfs = debugfs_create_dir("hwsim", hw->wiphy->debugfsdir); debugfs_create_file("ps", 0666, data->debugfs, data, &hwsim_fops_ps); debugfs_create_file("group", 0666, data->debugfs, data, &hwsim_fops_group); debugfs_create_file("rx_rssi", 0666, data->debugfs, data, &hwsim_fops_rx_rssi); if (!data->use_chanctx) debugfs_create_file("dfs_simulate_radar", 0222, data->debugfs, data, &hwsim_simulate_radar); spin_lock_bh(&hwsim_radio_lock); err = rhashtable_insert_fast(&hwsim_radios_rht, &data->rht, hwsim_rht_params); if (err < 0) { if (info) { GENL_SET_ERR_MSG(info, "perm addr already present"); NL_SET_BAD_ATTR(info->extack, info->attrs[HWSIM_ATTR_PERM_ADDR]); } spin_unlock_bh(&hwsim_radio_lock); goto failed_final_insert; } list_add_tail(&data->list, &hwsim_radios); hwsim_radios_generation++; spin_unlock_bh(&hwsim_radio_lock); hwsim_mcast_new_radio(idx, info, param); return idx; failed_final_insert: debugfs_remove_recursive(data->debugfs); ieee80211_unregister_hw(data->hw); failed_hw: device_release_driver(data->dev); failed_bind: device_unregister(data->dev); failed_drvdata: ieee80211_free_hw(hw); failed: return err; } static void hwsim_mcast_del_radio(int id, const char *hwname, struct genl_info *info) { struct sk_buff *skb; void *data; int ret; skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return; data = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0, HWSIM_CMD_DEL_RADIO); if (!data) goto error; ret = nla_put_u32(skb, HWSIM_ATTR_RADIO_ID, id); if (ret < 0) goto error; ret = nla_put(skb, HWSIM_ATTR_RADIO_NAME, strlen(hwname), hwname); if (ret < 0) goto error; genlmsg_end(skb, data); hwsim_mcast_config_msg(skb, info); return; error: nlmsg_free(skb); } static void mac80211_hwsim_del_radio(struct mac80211_hwsim_data *data, const char *hwname, struct genl_info *info) { hwsim_mcast_del_radio(data->idx, hwname, info); debugfs_remove_recursive(data->debugfs); ieee80211_unregister_hw(data->hw); device_release_driver(data->dev); device_unregister(data->dev); ieee80211_free_hw(data->hw); } static int mac80211_hwsim_get_radio(struct sk_buff *skb, struct mac80211_hwsim_data *data, u32 portid, u32 seq, struct netlink_callback *cb, int flags) { void *hdr; struct hwsim_new_radio_params param = { }; int res = -EMSGSIZE; hdr = genlmsg_put(skb, portid, seq, &hwsim_genl_family, flags, HWSIM_CMD_GET_RADIO); if (!hdr) return -EMSGSIZE; if (cb) genl_dump_check_consistent(cb, hdr); if (data->alpha2[0] && data->alpha2[1]) param.reg_alpha2 = data->alpha2; param.reg_strict = !!(data->hw->wiphy->regulatory_flags & REGULATORY_STRICT_REG); param.p2p_device = !!(data->hw->wiphy->interface_modes & BIT(NL80211_IFTYPE_P2P_DEVICE)); param.use_chanctx = data->use_chanctx; param.regd = data->regd; param.channels = data->channels; param.hwname = wiphy_name(data->hw->wiphy); res = append_radio_msg(skb, data->idx, ¶m); if (res < 0) goto out_err; genlmsg_end(skb, hdr); return 0; out_err: genlmsg_cancel(skb, hdr); return res; } static void mac80211_hwsim_free(void) { struct mac80211_hwsim_data *data; spin_lock_bh(&hwsim_radio_lock); while ((data = list_first_entry_or_null(&hwsim_radios, struct mac80211_hwsim_data, list))) { list_del(&data->list); spin_unlock_bh(&hwsim_radio_lock); mac80211_hwsim_del_radio(data, wiphy_name(data->hw->wiphy), NULL); spin_lock_bh(&hwsim_radio_lock); } spin_unlock_bh(&hwsim_radio_lock); class_destroy(hwsim_class); } static const struct net_device_ops hwsim_netdev_ops = { .ndo_start_xmit = hwsim_mon_xmit, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static void hwsim_mon_setup(struct net_device *dev) { u8 addr[ETH_ALEN]; dev->netdev_ops = &hwsim_netdev_ops; dev->needs_free_netdev = true; ether_setup(dev); dev->priv_flags |= IFF_NO_QUEUE; dev->type = ARPHRD_IEEE80211_RADIOTAP; eth_zero_addr(addr); addr[0] = 0x12; eth_hw_addr_set(dev, addr); } static struct mac80211_hwsim_data *get_hwsim_data_ref_from_addr(const u8 *addr) { return rhashtable_lookup_fast(&hwsim_radios_rht, addr, hwsim_rht_params); } static void hwsim_register_wmediumd(struct net *net, u32 portid) { struct mac80211_hwsim_data *data; hwsim_net_set_wmediumd(net, portid); spin_lock_bh(&hwsim_radio_lock); list_for_each_entry(data, &hwsim_radios, list) { if (data->netgroup == hwsim_net_get_netgroup(net)) data->wmediumd = portid; } spin_unlock_bh(&hwsim_radio_lock); } static int hwsim_tx_info_frame_received_nl(struct sk_buff *skb_2, struct genl_info *info) { struct ieee80211_hdr *hdr; struct mac80211_hwsim_data *data2; struct ieee80211_tx_info *txi; struct hwsim_tx_rate *tx_attempts; u64 ret_skb_cookie; struct sk_buff *skb, *tmp; const u8 *src; unsigned int hwsim_flags; int i; unsigned long flags; bool found = false; if (!info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER] || !info->attrs[HWSIM_ATTR_FLAGS] || !info->attrs[HWSIM_ATTR_COOKIE] || !info->attrs[HWSIM_ATTR_SIGNAL] || !info->attrs[HWSIM_ATTR_TX_INFO]) goto out; src = (void *)nla_data(info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER]); hwsim_flags = nla_get_u32(info->attrs[HWSIM_ATTR_FLAGS]); ret_skb_cookie = nla_get_u64(info->attrs[HWSIM_ATTR_COOKIE]); data2 = get_hwsim_data_ref_from_addr(src); if (!data2) goto out; if (!hwsim_virtio_enabled) { if (hwsim_net_get_netgroup(genl_info_net(info)) != data2->netgroup) goto out; if (info->snd_portid != data2->wmediumd) goto out; } /* look for the skb matching the cookie passed back from user */ spin_lock_irqsave(&data2->pending.lock, flags); skb_queue_walk_safe(&data2->pending, skb, tmp) { uintptr_t skb_cookie; txi = IEEE80211_SKB_CB(skb); skb_cookie = (uintptr_t)txi->rate_driver_data[0]; if (skb_cookie == ret_skb_cookie) { __skb_unlink(skb, &data2->pending); found = true; break; } } spin_unlock_irqrestore(&data2->pending.lock, flags); /* not found */ if (!found) goto out; /* Tx info received because the frame was broadcasted on user space, so we get all the necessary info: tx attempts and skb control buff */ tx_attempts = (struct hwsim_tx_rate *)nla_data( info->attrs[HWSIM_ATTR_TX_INFO]); /* now send back TX status */ txi = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(txi); for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { txi->status.rates[i].idx = tx_attempts[i].idx; txi->status.rates[i].count = tx_attempts[i].count; } txi->status.ack_signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]); if (!(hwsim_flags & HWSIM_TX_CTL_NO_ACK) && (hwsim_flags & HWSIM_TX_STAT_ACK)) { if (skb->len >= 16) { hdr = (struct ieee80211_hdr *) skb->data; mac80211_hwsim_monitor_ack(data2->channel, hdr->addr2); } txi->flags |= IEEE80211_TX_STAT_ACK; } if (hwsim_flags & HWSIM_TX_CTL_NO_ACK) txi->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; ieee80211_tx_status_irqsafe(data2->hw, skb); return 0; out: return -EINVAL; } static int hwsim_cloned_frame_received_nl(struct sk_buff *skb_2, struct genl_info *info) { struct mac80211_hwsim_data *data2; struct ieee80211_rx_status rx_status; struct ieee80211_hdr *hdr; const u8 *dst; int frame_data_len; void *frame_data; struct sk_buff *skb = NULL; struct ieee80211_channel *channel = NULL; if (!info->attrs[HWSIM_ATTR_ADDR_RECEIVER] || !info->attrs[HWSIM_ATTR_FRAME] || !info->attrs[HWSIM_ATTR_RX_RATE] || !info->attrs[HWSIM_ATTR_SIGNAL]) goto out; dst = (void *)nla_data(info->attrs[HWSIM_ATTR_ADDR_RECEIVER]); frame_data_len = nla_len(info->attrs[HWSIM_ATTR_FRAME]); frame_data = (void *)nla_data(info->attrs[HWSIM_ATTR_FRAME]); /* Allocate new skb here */ skb = alloc_skb(frame_data_len, GFP_KERNEL); if (skb == NULL) goto err; if (frame_data_len > IEEE80211_MAX_DATA_LEN) goto err; /* Copy the data */ skb_put_data(skb, frame_data, frame_data_len); data2 = get_hwsim_data_ref_from_addr(dst); if (!data2) goto out; if (data2->use_chanctx) { if (data2->tmp_chan) channel = data2->tmp_chan; else if (data2->chanctx) channel = data2->chanctx->def.chan; } else { channel = data2->channel; } if (!channel) goto out; if (!hwsim_virtio_enabled) { if (hwsim_net_get_netgroup(genl_info_net(info)) != data2->netgroup) goto out; if (info->snd_portid != data2->wmediumd) goto out; } /* check if radio is configured properly */ if ((data2->idle && !data2->tmp_chan) || !data2->started) goto out; /* A frame is received from user space */ memset(&rx_status, 0, sizeof(rx_status)); if (info->attrs[HWSIM_ATTR_FREQ]) { /* throw away off-channel packets, but allow both the temporary * ("hw" scan/remain-on-channel) and regular channel, since the * internal datapath also allows this */ mutex_lock(&data2->mutex); rx_status.freq = nla_get_u32(info->attrs[HWSIM_ATTR_FREQ]); if (rx_status.freq != channel->center_freq) { mutex_unlock(&data2->mutex); goto out; } mutex_unlock(&data2->mutex); } else { rx_status.freq = channel->center_freq; } rx_status.band = channel->band; rx_status.rate_idx = nla_get_u32(info->attrs[HWSIM_ATTR_RX_RATE]); rx_status.signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]); hdr = (void *)skb->data; if (ieee80211_is_beacon(hdr->frame_control) || ieee80211_is_probe_resp(hdr->frame_control)) rx_status.boottime_ns = ktime_get_boottime_ns(); memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); data2->rx_pkts++; data2->rx_bytes += skb->len; ieee80211_rx_irqsafe(data2->hw, skb); return 0; err: pr_debug("mac80211_hwsim: error occurred in %s\n", __func__); out: dev_kfree_skb(skb); return -EINVAL; } static int hwsim_register_received_nl(struct sk_buff *skb_2, struct genl_info *info) { struct net *net = genl_info_net(info); struct mac80211_hwsim_data *data; int chans = 1; spin_lock_bh(&hwsim_radio_lock); list_for_each_entry(data, &hwsim_radios, list) chans = max(chans, data->channels); spin_unlock_bh(&hwsim_radio_lock); /* In the future we should revise the userspace API and allow it * to set a flag that it does support multi-channel, then we can * let this pass conditionally on the flag. * For current userspace, prohibit it since it won't work right. */ if (chans > 1) return -EOPNOTSUPP; if (hwsim_net_get_wmediumd(net)) return -EBUSY; hwsim_register_wmediumd(net, info->snd_portid); pr_debug("mac80211_hwsim: received a REGISTER, " "switching to wmediumd mode with pid %d\n", info->snd_portid); return 0; } /* ensures ciphers only include ciphers listed in 'hwsim_ciphers' array */ static bool hwsim_known_ciphers(const u32 *ciphers, int n_ciphers) { int i; for (i = 0; i < n_ciphers; i++) { int j; int found = 0; for (j = 0; j < ARRAY_SIZE(hwsim_ciphers); j++) { if (ciphers[i] == hwsim_ciphers[j]) { found = 1; break; } } if (!found) return false; } return true; } static int hwsim_new_radio_nl(struct sk_buff *msg, struct genl_info *info) { struct hwsim_new_radio_params param = { 0 }; const char *hwname = NULL; int ret; param.reg_strict = info->attrs[HWSIM_ATTR_REG_STRICT_REG]; param.p2p_device = info->attrs[HWSIM_ATTR_SUPPORT_P2P_DEVICE]; param.channels = channels; param.destroy_on_close = info->attrs[HWSIM_ATTR_DESTROY_RADIO_ON_CLOSE]; if (info->attrs[HWSIM_ATTR_CHANNELS]) param.channels = nla_get_u32(info->attrs[HWSIM_ATTR_CHANNELS]); if (param.channels < 1) { GENL_SET_ERR_MSG(info, "must have at least one channel"); return -EINVAL; } if (info->attrs[HWSIM_ATTR_NO_VIF]) param.no_vif = true; if (info->attrs[HWSIM_ATTR_USE_CHANCTX]) param.use_chanctx = true; else param.use_chanctx = (param.channels > 1); if (info->attrs[HWSIM_ATTR_REG_HINT_ALPHA2]) param.reg_alpha2 = nla_data(info->attrs[HWSIM_ATTR_REG_HINT_ALPHA2]); if (info->attrs[HWSIM_ATTR_REG_CUSTOM_REG]) { u32 idx = nla_get_u32(info->attrs[HWSIM_ATTR_REG_CUSTOM_REG]); if (idx >= ARRAY_SIZE(hwsim_world_regdom_custom)) return -EINVAL; idx = array_index_nospec(idx, ARRAY_SIZE(hwsim_world_regdom_custom)); param.regd = hwsim_world_regdom_custom[idx]; } if (info->attrs[HWSIM_ATTR_PERM_ADDR]) { if (!is_valid_ether_addr( nla_data(info->attrs[HWSIM_ATTR_PERM_ADDR]))) { GENL_SET_ERR_MSG(info,"MAC is no valid source addr"); NL_SET_BAD_ATTR(info->extack, info->attrs[HWSIM_ATTR_PERM_ADDR]); return -EINVAL; } param.perm_addr = nla_data(info->attrs[HWSIM_ATTR_PERM_ADDR]); } if (info->attrs[HWSIM_ATTR_IFTYPE_SUPPORT]) { param.iftypes = nla_get_u32(info->attrs[HWSIM_ATTR_IFTYPE_SUPPORT]); if (param.iftypes & ~HWSIM_IFTYPE_SUPPORT_MASK) { NL_SET_ERR_MSG_ATTR(info->extack, info->attrs[HWSIM_ATTR_IFTYPE_SUPPORT], "cannot support more iftypes than kernel"); return -EINVAL; } } else { param.iftypes = HWSIM_IFTYPE_SUPPORT_MASK; } /* ensure both flag and iftype support is honored */ if (param.p2p_device || param.iftypes & BIT(NL80211_IFTYPE_P2P_DEVICE)) { param.iftypes |= BIT(NL80211_IFTYPE_P2P_DEVICE); param.p2p_device = true; } if (info->attrs[HWSIM_ATTR_CIPHER_SUPPORT]) { u32 len = nla_len(info->attrs[HWSIM_ATTR_CIPHER_SUPPORT]); param.ciphers = nla_data(info->attrs[HWSIM_ATTR_CIPHER_SUPPORT]); if (len % sizeof(u32)) { NL_SET_ERR_MSG_ATTR(info->extack, info->attrs[HWSIM_ATTR_CIPHER_SUPPORT], "bad cipher list length"); return -EINVAL; } param.n_ciphers = len / sizeof(u32); if (param.n_ciphers > ARRAY_SIZE(hwsim_ciphers)) { NL_SET_ERR_MSG_ATTR(info->extack, info->attrs[HWSIM_ATTR_CIPHER_SUPPORT], "too many ciphers specified"); return -EINVAL; } if (!hwsim_known_ciphers(param.ciphers, param.n_ciphers)) { NL_SET_ERR_MSG_ATTR(info->extack, info->attrs[HWSIM_ATTR_CIPHER_SUPPORT], "unsupported ciphers specified"); return -EINVAL; } } param.mlo = info->attrs[HWSIM_ATTR_MLO_SUPPORT]; if (param.mlo) param.use_chanctx = true; if (info->attrs[HWSIM_ATTR_RADIO_NAME]) { hwname = kstrndup((char *)nla_data(info->attrs[HWSIM_ATTR_RADIO_NAME]), nla_len(info->attrs[HWSIM_ATTR_RADIO_NAME]), GFP_KERNEL); if (!hwname) return -ENOMEM; param.hwname = hwname; } ret = mac80211_hwsim_new_radio(info, ¶m); kfree(hwname); return ret; } static int hwsim_del_radio_nl(struct sk_buff *msg, struct genl_info *info) { struct mac80211_hwsim_data *data; s64 idx = -1; const char *hwname = NULL; if (info->attrs[HWSIM_ATTR_RADIO_ID]) { idx = nla_get_u32(info->attrs[HWSIM_ATTR_RADIO_ID]); } else if (info->attrs[HWSIM_ATTR_RADIO_NAME]) { hwname = kstrndup((char *)nla_data(info->attrs[HWSIM_ATTR_RADIO_NAME]), nla_len(info->attrs[HWSIM_ATTR_RADIO_NAME]), GFP_KERNEL); if (!hwname) return -ENOMEM; } else return -EINVAL; spin_lock_bh(&hwsim_radio_lock); list_for_each_entry(data, &hwsim_radios, list) { if (idx >= 0) { if (data->idx != idx) continue; } else { if (!hwname || strcmp(hwname, wiphy_name(data->hw->wiphy))) continue; } if (!net_eq(wiphy_net(data->hw->wiphy), genl_info_net(info))) continue; list_del(&data->list); rhashtable_remove_fast(&hwsim_radios_rht, &data->rht, hwsim_rht_params); hwsim_radios_generation++; spin_unlock_bh(&hwsim_radio_lock); mac80211_hwsim_del_radio(data, wiphy_name(data->hw->wiphy), info); kfree(hwname); return 0; } spin_unlock_bh(&hwsim_radio_lock); kfree(hwname); return -ENODEV; } static int hwsim_get_radio_nl(struct sk_buff *msg, struct genl_info *info) { struct mac80211_hwsim_data *data; struct sk_buff *skb; int idx, res = -ENODEV; if (!info->attrs[HWSIM_ATTR_RADIO_ID]) return -EINVAL; idx = nla_get_u32(info->attrs[HWSIM_ATTR_RADIO_ID]); spin_lock_bh(&hwsim_radio_lock); list_for_each_entry(data, &hwsim_radios, list) { if (data->idx != idx) continue; if (!net_eq(wiphy_net(data->hw->wiphy), genl_info_net(info))) continue; skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (!skb) { res = -ENOMEM; goto out_err; } res = mac80211_hwsim_get_radio(skb, data, info->snd_portid, info->snd_seq, NULL, 0); if (res < 0) { nlmsg_free(skb); goto out_err; } res = genlmsg_reply(skb, info); break; } out_err: spin_unlock_bh(&hwsim_radio_lock); return res; } static int hwsim_dump_radio_nl(struct sk_buff *skb, struct netlink_callback *cb) { int last_idx = cb->args[0] - 1; struct mac80211_hwsim_data *data = NULL; int res = 0; void *hdr; spin_lock_bh(&hwsim_radio_lock); cb->seq = hwsim_radios_generation; if (last_idx >= hwsim_radio_idx-1) goto done; list_for_each_entry(data, &hwsim_radios, list) { if (data->idx <= last_idx) continue; if (!net_eq(wiphy_net(data->hw->wiphy), sock_net(skb->sk))) continue; res = mac80211_hwsim_get_radio(skb, data, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, cb, NLM_F_MULTI); if (res < 0) break; last_idx = data->idx; } cb->args[0] = last_idx + 1; /* list changed, but no new element sent, set interrupted flag */ if (skb->len == 0 && cb->prev_seq && cb->seq != cb->prev_seq) { hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &hwsim_genl_family, NLM_F_MULTI, HWSIM_CMD_GET_RADIO); if (hdr) { genl_dump_check_consistent(cb, hdr); genlmsg_end(skb, hdr); } else { res = -EMSGSIZE; } } done: spin_unlock_bh(&hwsim_radio_lock); return res ?: skb->len; } /* Generic Netlink operations array */ static const struct genl_small_ops hwsim_ops[] = { { .cmd = HWSIM_CMD_REGISTER, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = hwsim_register_received_nl, .flags = GENL_UNS_ADMIN_PERM, }, { .cmd = HWSIM_CMD_FRAME, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = hwsim_cloned_frame_received_nl, }, { .cmd = HWSIM_CMD_TX_INFO_FRAME, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = hwsim_tx_info_frame_received_nl, }, { .cmd = HWSIM_CMD_NEW_RADIO, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = hwsim_new_radio_nl, .flags = GENL_UNS_ADMIN_PERM, }, { .cmd = HWSIM_CMD_DEL_RADIO, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = hwsim_del_radio_nl, .flags = GENL_UNS_ADMIN_PERM, }, { .cmd = HWSIM_CMD_GET_RADIO, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = hwsim_get_radio_nl, .dumpit = hwsim_dump_radio_nl, }, }; static struct genl_family hwsim_genl_family __ro_after_init = { .name = "MAC80211_HWSIM", .version = 1, .maxattr = HWSIM_ATTR_MAX, .policy = hwsim_genl_policy, .netnsok = true, .module = THIS_MODULE, .small_ops = hwsim_ops, .n_small_ops = ARRAY_SIZE(hwsim_ops), .mcgrps = hwsim_mcgrps, .n_mcgrps = ARRAY_SIZE(hwsim_mcgrps), }; static void remove_user_radios(u32 portid) { struct mac80211_hwsim_data *entry, *tmp; LIST_HEAD(list); spin_lock_bh(&hwsim_radio_lock); list_for_each_entry_safe(entry, tmp, &hwsim_radios, list) { if (entry->destroy_on_close && entry->portid == portid) { list_move(&entry->list, &list); rhashtable_remove_fast(&hwsim_radios_rht, &entry->rht, hwsim_rht_params); hwsim_radios_generation++; } } spin_unlock_bh(&hwsim_radio_lock); list_for_each_entry_safe(entry, tmp, &list, list) { list_del(&entry->list); mac80211_hwsim_del_radio(entry, wiphy_name(entry->hw->wiphy), NULL); } } static int mac80211_hwsim_netlink_notify(struct notifier_block *nb, unsigned long state, void *_notify) { struct netlink_notify *notify = _notify; if (state != NETLINK_URELEASE) return NOTIFY_DONE; remove_user_radios(notify->portid); if (notify->portid == hwsim_net_get_wmediumd(notify->net)) { printk(KERN_INFO "mac80211_hwsim: wmediumd released netlink" " socket, switching to perfect channel medium\n"); hwsim_register_wmediumd(notify->net, 0); } return NOTIFY_DONE; } static struct notifier_block hwsim_netlink_notifier = { .notifier_call = mac80211_hwsim_netlink_notify, }; static int __init hwsim_init_netlink(void) { int rc; printk(KERN_INFO "mac80211_hwsim: initializing netlink\n"); rc = genl_register_family(&hwsim_genl_family); if (rc) goto failure; rc = netlink_register_notifier(&hwsim_netlink_notifier); if (rc) { genl_unregister_family(&hwsim_genl_family); goto failure; } return 0; failure: pr_debug("mac80211_hwsim: error occurred in %s\n", __func__); return -EINVAL; } static __net_init int hwsim_init_net(struct net *net) { return hwsim_net_set_netgroup(net); } static void __net_exit hwsim_exit_net(struct net *net) { struct mac80211_hwsim_data *data, *tmp; LIST_HEAD(list); spin_lock_bh(&hwsim_radio_lock); list_for_each_entry_safe(data, tmp, &hwsim_radios, list) { if (!net_eq(wiphy_net(data->hw->wiphy), net)) continue; /* Radios created in init_net are returned to init_net. */ if (data->netgroup == hwsim_net_get_netgroup(&init_net)) continue; list_move(&data->list, &list); rhashtable_remove_fast(&hwsim_radios_rht, &data->rht, hwsim_rht_params); hwsim_radios_generation++; } spin_unlock_bh(&hwsim_radio_lock); list_for_each_entry_safe(data, tmp, &list, list) { list_del(&data->list); mac80211_hwsim_del_radio(data, wiphy_name(data->hw->wiphy), NULL); } ida_free(&hwsim_netgroup_ida, hwsim_net_get_netgroup(net)); } static struct pernet_operations hwsim_net_ops = { .init = hwsim_init_net, .exit = hwsim_exit_net, .id = &hwsim_net_id, .size = sizeof(struct hwsim_net), }; static void hwsim_exit_netlink(void) { /* unregister the notifier */ netlink_unregister_notifier(&hwsim_netlink_notifier); /* unregister the family */ genl_unregister_family(&hwsim_genl_family); } #if IS_REACHABLE(CONFIG_VIRTIO) static void hwsim_virtio_tx_done(struct virtqueue *vq) { unsigned int len; struct sk_buff *skb; unsigned long flags; spin_lock_irqsave(&hwsim_virtio_lock, flags); while ((skb = virtqueue_get_buf(vq, &len))) nlmsg_free(skb); spin_unlock_irqrestore(&hwsim_virtio_lock, flags); } static int hwsim_virtio_handle_cmd(struct sk_buff *skb) { struct nlmsghdr *nlh; struct genlmsghdr *gnlh; struct nlattr *tb[HWSIM_ATTR_MAX + 1]; struct genl_info info = {}; int err; nlh = nlmsg_hdr(skb); gnlh = nlmsg_data(nlh); err = genlmsg_parse(nlh, &hwsim_genl_family, tb, HWSIM_ATTR_MAX, hwsim_genl_policy, NULL); if (err) { pr_err_ratelimited("hwsim: genlmsg_parse returned %d\n", err); return err; } info.attrs = tb; switch (gnlh->cmd) { case HWSIM_CMD_FRAME: hwsim_cloned_frame_received_nl(skb, &info); break; case HWSIM_CMD_TX_INFO_FRAME: hwsim_tx_info_frame_received_nl(skb, &info); break; default: pr_err_ratelimited("hwsim: invalid cmd: %d\n", gnlh->cmd); return -EPROTO; } return 0; } static void hwsim_virtio_rx_work(struct work_struct *work) { struct virtqueue *vq; unsigned int len; struct sk_buff *skb; struct scatterlist sg[1]; int err; unsigned long flags; spin_lock_irqsave(&hwsim_virtio_lock, flags); if (!hwsim_virtio_enabled) goto out_unlock; skb = virtqueue_get_buf(hwsim_vqs[HWSIM_VQ_RX], &len); if (!skb) goto out_unlock; spin_unlock_irqrestore(&hwsim_virtio_lock, flags); skb->data = skb->head; skb_set_tail_pointer(skb, len); hwsim_virtio_handle_cmd(skb); spin_lock_irqsave(&hwsim_virtio_lock, flags); if (!hwsim_virtio_enabled) { nlmsg_free(skb); goto out_unlock; } vq = hwsim_vqs[HWSIM_VQ_RX]; sg_init_one(sg, skb->head, skb_end_offset(skb)); err = virtqueue_add_inbuf(vq, sg, 1, skb, GFP_ATOMIC); if (WARN(err, "virtqueue_add_inbuf returned %d\n", err)) nlmsg_free(skb); else virtqueue_kick(vq); schedule_work(&hwsim_virtio_rx); out_unlock: spin_unlock_irqrestore(&hwsim_virtio_lock, flags); } static void hwsim_virtio_rx_done(struct virtqueue *vq) { schedule_work(&hwsim_virtio_rx); } static int init_vqs(struct virtio_device *vdev) { vq_callback_t *callbacks[HWSIM_NUM_VQS] = { [HWSIM_VQ_TX] = hwsim_virtio_tx_done, [HWSIM_VQ_RX] = hwsim_virtio_rx_done, }; const char *names[HWSIM_NUM_VQS] = { [HWSIM_VQ_TX] = "tx", [HWSIM_VQ_RX] = "rx", }; return virtio_find_vqs(vdev, HWSIM_NUM_VQS, hwsim_vqs, callbacks, names, NULL); } static int fill_vq(struct virtqueue *vq) { int i, err; struct sk_buff *skb; struct scatterlist sg[1]; for (i = 0; i < virtqueue_get_vring_size(vq); i++) { skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return -ENOMEM; sg_init_one(sg, skb->head, skb_end_offset(skb)); err = virtqueue_add_inbuf(vq, sg, 1, skb, GFP_KERNEL); if (err) { nlmsg_free(skb); return err; } } virtqueue_kick(vq); return 0; } static void remove_vqs(struct virtio_device *vdev) { int i; virtio_reset_device(vdev); for (i = 0; i < ARRAY_SIZE(hwsim_vqs); i++) { struct virtqueue *vq = hwsim_vqs[i]; struct sk_buff *skb; while ((skb = virtqueue_detach_unused_buf(vq))) nlmsg_free(skb); } vdev->config->del_vqs(vdev); } static int hwsim_virtio_probe(struct virtio_device *vdev) { int err; unsigned long flags; spin_lock_irqsave(&hwsim_virtio_lock, flags); if (hwsim_virtio_enabled) { spin_unlock_irqrestore(&hwsim_virtio_lock, flags); return -EEXIST; } spin_unlock_irqrestore(&hwsim_virtio_lock, flags); err = init_vqs(vdev); if (err) return err; virtio_device_ready(vdev); err = fill_vq(hwsim_vqs[HWSIM_VQ_RX]); if (err) goto out_remove; spin_lock_irqsave(&hwsim_virtio_lock, flags); hwsim_virtio_enabled = true; spin_unlock_irqrestore(&hwsim_virtio_lock, flags); schedule_work(&hwsim_virtio_rx); return 0; out_remove: remove_vqs(vdev); return err; } static void hwsim_virtio_remove(struct virtio_device *vdev) { hwsim_virtio_enabled = false; cancel_work_sync(&hwsim_virtio_rx); remove_vqs(vdev); } /* MAC80211_HWSIM virtio device id table */ static const struct virtio_device_id id_table[] = { { VIRTIO_ID_MAC80211_HWSIM, VIRTIO_DEV_ANY_ID }, { 0 } }; MODULE_DEVICE_TABLE(virtio, id_table); static struct virtio_driver virtio_hwsim = { .driver.name = KBUILD_MODNAME, .driver.owner = THIS_MODULE, .id_table = id_table, .probe = hwsim_virtio_probe, .remove = hwsim_virtio_remove, }; static int hwsim_register_virtio_driver(void) { return register_virtio_driver(&virtio_hwsim); } static void hwsim_unregister_virtio_driver(void) { unregister_virtio_driver(&virtio_hwsim); } #else static inline int hwsim_register_virtio_driver(void) { return 0; } static inline void hwsim_unregister_virtio_driver(void) { } #endif static int __init init_mac80211_hwsim(void) { int i, err; if (radios < 0 || radios > 100) return -EINVAL; if (channels < 1) return -EINVAL; err = rhashtable_init(&hwsim_radios_rht, &hwsim_rht_params); if (err) return err; err = register_pernet_device(&hwsim_net_ops); if (err) goto out_free_rht; err = platform_driver_register(&mac80211_hwsim_driver); if (err) goto out_unregister_pernet; err = hwsim_init_netlink(); if (err) goto out_unregister_driver; err = hwsim_register_virtio_driver(); if (err) goto out_exit_netlink; hwsim_class = class_create(THIS_MODULE, "mac80211_hwsim"); if (IS_ERR(hwsim_class)) { err = PTR_ERR(hwsim_class); goto out_exit_virtio; } hwsim_init_s1g_channels(hwsim_channels_s1g); for (i = 0; i < radios; i++) { struct hwsim_new_radio_params param = { 0 }; param.channels = channels; switch (regtest) { case HWSIM_REGTEST_DIFF_COUNTRY: if (i < ARRAY_SIZE(hwsim_alpha2s)) param.reg_alpha2 = hwsim_alpha2s[i]; break; case HWSIM_REGTEST_DRIVER_REG_FOLLOW: if (!i) param.reg_alpha2 = hwsim_alpha2s[0]; break; case HWSIM_REGTEST_STRICT_ALL: param.reg_strict = true; fallthrough; case HWSIM_REGTEST_DRIVER_REG_ALL: param.reg_alpha2 = hwsim_alpha2s[0]; break; case HWSIM_REGTEST_WORLD_ROAM: if (i == 0) param.regd = &hwsim_world_regdom_custom_01; break; case HWSIM_REGTEST_CUSTOM_WORLD: param.regd = &hwsim_world_regdom_custom_01; break; case HWSIM_REGTEST_CUSTOM_WORLD_2: if (i == 0) param.regd = &hwsim_world_regdom_custom_01; else if (i == 1) param.regd = &hwsim_world_regdom_custom_02; break; case HWSIM_REGTEST_STRICT_FOLLOW: if (i == 0) { param.reg_strict = true; param.reg_alpha2 = hwsim_alpha2s[0]; } break; case HWSIM_REGTEST_STRICT_AND_DRIVER_REG: if (i == 0) { param.reg_strict = true; param.reg_alpha2 = hwsim_alpha2s[0]; } else if (i == 1) { param.reg_alpha2 = hwsim_alpha2s[1]; } break; case HWSIM_REGTEST_ALL: switch (i) { case 0: param.regd = &hwsim_world_regdom_custom_01; break; case 1: param.regd = &hwsim_world_regdom_custom_02; break; case 2: param.reg_alpha2 = hwsim_alpha2s[0]; break; case 3: param.reg_alpha2 = hwsim_alpha2s[1]; break; case 4: param.reg_strict = true; param.reg_alpha2 = hwsim_alpha2s[2]; break; } break; default: break; } param.p2p_device = support_p2p_device; param.mlo = mlo; param.use_chanctx = channels > 1 || mlo; param.iftypes = HWSIM_IFTYPE_SUPPORT_MASK; if (param.p2p_device) param.iftypes |= BIT(NL80211_IFTYPE_P2P_DEVICE); err = mac80211_hwsim_new_radio(NULL, ¶m); if (err < 0) goto out_free_radios; } hwsim_mon = alloc_netdev(0, "hwsim%d", NET_NAME_UNKNOWN, hwsim_mon_setup); if (hwsim_mon == NULL) { err = -ENOMEM; goto out_free_radios; } rtnl_lock(); err = dev_alloc_name(hwsim_mon, hwsim_mon->name); if (err < 0) { rtnl_unlock(); goto out_free_mon; } err = register_netdevice(hwsim_mon); if (err < 0) { rtnl_unlock(); goto out_free_mon; } rtnl_unlock(); return 0; out_free_mon: free_netdev(hwsim_mon); out_free_radios: mac80211_hwsim_free(); out_exit_virtio: hwsim_unregister_virtio_driver(); out_exit_netlink: hwsim_exit_netlink(); out_unregister_driver: platform_driver_unregister(&mac80211_hwsim_driver); out_unregister_pernet: unregister_pernet_device(&hwsim_net_ops); out_free_rht: rhashtable_destroy(&hwsim_radios_rht); return err; } module_init(init_mac80211_hwsim); static void __exit exit_mac80211_hwsim(void) { pr_debug("mac80211_hwsim: unregister radios\n"); hwsim_unregister_virtio_driver(); hwsim_exit_netlink(); mac80211_hwsim_free(); rhashtable_destroy(&hwsim_radios_rht); unregister_netdev(hwsim_mon); platform_driver_unregister(&mac80211_hwsim_driver); unregister_pernet_device(&hwsim_net_ops); } module_exit(exit_mac80211_hwsim);