/* * drivers/mtd/nand/pxa3xx_nand.c * * Copyright © 2005 Intel Corporation * Copyright © 2006 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CHIP_DELAY_TIMEOUT (2 * HZ/10) #define NAND_STOP_DELAY (2 * HZ/50) #define PAGE_CHUNK_SIZE (2048) /* registers and bit definitions */ #define NDCR (0x00) /* Control register */ #define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */ #define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */ #define NDSR (0x14) /* Status Register */ #define NDPCR (0x18) /* Page Count Register */ #define NDBDR0 (0x1C) /* Bad Block Register 0 */ #define NDBDR1 (0x20) /* Bad Block Register 1 */ #define NDDB (0x40) /* Data Buffer */ #define NDCB0 (0x48) /* Command Buffer0 */ #define NDCB1 (0x4C) /* Command Buffer1 */ #define NDCB2 (0x50) /* Command Buffer2 */ #define NDCR_SPARE_EN (0x1 << 31) #define NDCR_ECC_EN (0x1 << 30) #define NDCR_DMA_EN (0x1 << 29) #define NDCR_ND_RUN (0x1 << 28) #define NDCR_DWIDTH_C (0x1 << 27) #define NDCR_DWIDTH_M (0x1 << 26) #define NDCR_PAGE_SZ (0x1 << 24) #define NDCR_NCSX (0x1 << 23) #define NDCR_ND_MODE (0x3 << 21) #define NDCR_NAND_MODE (0x0) #define NDCR_CLR_PG_CNT (0x1 << 20) #define NDCR_STOP_ON_UNCOR (0x1 << 19) #define NDCR_RD_ID_CNT_MASK (0x7 << 16) #define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK) #define NDCR_RA_START (0x1 << 15) #define NDCR_PG_PER_BLK (0x1 << 14) #define NDCR_ND_ARB_EN (0x1 << 12) #define NDCR_INT_MASK (0xFFF) #define NDSR_MASK (0xfff) #define NDSR_RDY (0x1 << 12) #define NDSR_FLASH_RDY (0x1 << 11) #define NDSR_CS0_PAGED (0x1 << 10) #define NDSR_CS1_PAGED (0x1 << 9) #define NDSR_CS0_CMDD (0x1 << 8) #define NDSR_CS1_CMDD (0x1 << 7) #define NDSR_CS0_BBD (0x1 << 6) #define NDSR_CS1_BBD (0x1 << 5) #define NDSR_DBERR (0x1 << 4) #define NDSR_SBERR (0x1 << 3) #define NDSR_WRDREQ (0x1 << 2) #define NDSR_RDDREQ (0x1 << 1) #define NDSR_WRCMDREQ (0x1) #define NDCB0_ST_ROW_EN (0x1 << 26) #define NDCB0_AUTO_RS (0x1 << 25) #define NDCB0_CSEL (0x1 << 24) #define NDCB0_CMD_TYPE_MASK (0x7 << 21) #define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK) #define NDCB0_NC (0x1 << 20) #define NDCB0_DBC (0x1 << 19) #define NDCB0_ADDR_CYC_MASK (0x7 << 16) #define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK) #define NDCB0_CMD2_MASK (0xff << 8) #define NDCB0_CMD1_MASK (0xff) #define NDCB0_ADDR_CYC_SHIFT (16) /* macros for registers read/write */ #define nand_writel(info, off, val) \ __raw_writel((val), (info)->mmio_base + (off)) #define nand_readl(info, off) \ __raw_readl((info)->mmio_base + (off)) /* error code and state */ enum { ERR_NONE = 0, ERR_DMABUSERR = -1, ERR_SENDCMD = -2, ERR_DBERR = -3, ERR_BBERR = -4, ERR_SBERR = -5, }; enum { STATE_IDLE = 0, STATE_CMD_HANDLE, STATE_DMA_READING, STATE_DMA_WRITING, STATE_DMA_DONE, STATE_PIO_READING, STATE_PIO_WRITING, STATE_CMD_DONE, STATE_READY, }; struct pxa3xx_nand_info { struct nand_chip nand_chip; struct nand_hw_control controller; struct platform_device *pdev; struct pxa3xx_nand_cmdset *cmdset; struct clk *clk; void __iomem *mmio_base; unsigned long mmio_phys; unsigned int buf_start; unsigned int buf_count; struct mtd_info *mtd; /* DMA information */ int drcmr_dat; int drcmr_cmd; unsigned char *data_buff; unsigned char *oob_buff; dma_addr_t data_buff_phys; size_t data_buff_size; int data_dma_ch; struct pxa_dma_desc *data_desc; dma_addr_t data_desc_addr; uint32_t reg_ndcr; /* saved column/page_addr during CMD_SEQIN */ int seqin_column; int seqin_page_addr; /* relate to the command */ unsigned int state; int use_ecc; /* use HW ECC ? */ int use_dma; /* use DMA ? */ int is_ready; unsigned int page_size; /* page size of attached chip */ unsigned int data_size; /* data size in FIFO */ int retcode; struct completion cmd_complete; /* generated NDCBx register values */ uint32_t ndcb0; uint32_t ndcb1; uint32_t ndcb2; /* timing calcuted from setting */ uint32_t ndtr0cs0; uint32_t ndtr1cs0; /* calculated from pxa3xx_nand_flash data */ size_t oob_size; size_t read_id_bytes; unsigned int col_addr_cycles; unsigned int row_addr_cycles; }; static int use_dma = 1; module_param(use_dma, bool, 0444); MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW"); /* * Default NAND flash controller configuration setup by the * bootloader. This configuration is used only when pdata->keep_config is set */ static struct pxa3xx_nand_cmdset default_cmdset = { .read1 = 0x3000, .read2 = 0x0050, .program = 0x1080, .read_status = 0x0070, .read_id = 0x0090, .erase = 0xD060, .reset = 0x00FF, .lock = 0x002A, .unlock = 0x2423, .lock_status = 0x007A, }; static struct pxa3xx_nand_timing timing[] = { { 40, 80, 60, 100, 80, 100, 90000, 400, 40, }, { 10, 0, 20, 40, 30, 40, 11123, 110, 10, }, { 10, 25, 15, 25, 15, 30, 25000, 60, 10, }, { 10, 35, 15, 25, 15, 25, 25000, 60, 10, }, }; static struct pxa3xx_nand_flash builtin_flash_types[] = { { "DEFAULT FLASH", 0, 0, 2048, 8, 8, 0, &timing[0] }, { "64MiB 16-bit", 0x46ec, 32, 512, 16, 16, 4096, &timing[1] }, { "256MiB 8-bit", 0xdaec, 64, 2048, 8, 8, 2048, &timing[1] }, { "4GiB 8-bit", 0xd7ec, 128, 4096, 8, 8, 8192, &timing[1] }, { "128MiB 8-bit", 0xa12c, 64, 2048, 8, 8, 1024, &timing[2] }, { "128MiB 16-bit", 0xb12c, 64, 2048, 16, 16, 1024, &timing[2] }, { "512MiB 8-bit", 0xdc2c, 64, 2048, 8, 8, 4096, &timing[2] }, { "512MiB 16-bit", 0xcc2c, 64, 2048, 16, 16, 4096, &timing[2] }, { "256MiB 16-bit", 0xba20, 64, 2048, 16, 16, 2048, &timing[3] }, }; /* Define a default flash type setting serve as flash detecting only */ #define DEFAULT_FLASH_TYPE (&builtin_flash_types[0]) const char *mtd_names[] = {"pxa3xx_nand-0", NULL}; #define NDTR0_tCH(c) (min((c), 7) << 19) #define NDTR0_tCS(c) (min((c), 7) << 16) #define NDTR0_tWH(c) (min((c), 7) << 11) #define NDTR0_tWP(c) (min((c), 7) << 8) #define NDTR0_tRH(c) (min((c), 7) << 3) #define NDTR0_tRP(c) (min((c), 7) << 0) #define NDTR1_tR(c) (min((c), 65535) << 16) #define NDTR1_tWHR(c) (min((c), 15) << 4) #define NDTR1_tAR(c) (min((c), 15) << 0) /* convert nano-seconds to nand flash controller clock cycles */ #define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000) static void pxa3xx_nand_set_timing(struct pxa3xx_nand_info *info, const struct pxa3xx_nand_timing *t) { unsigned long nand_clk = clk_get_rate(info->clk); uint32_t ndtr0, ndtr1; ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) | NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) | NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) | NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) | NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) | NDTR0_tRP(ns2cycle(t->tRP, nand_clk)); ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) | NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) | NDTR1_tAR(ns2cycle(t->tAR, nand_clk)); info->ndtr0cs0 = ndtr0; info->ndtr1cs0 = ndtr1; nand_writel(info, NDTR0CS0, ndtr0); nand_writel(info, NDTR1CS0, ndtr1); } static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info) { int oob_enable = info->reg_ndcr & NDCR_SPARE_EN; info->data_size = info->page_size; if (!oob_enable) { info->oob_size = 0; return; } switch (info->page_size) { case 2048: info->oob_size = (info->use_ecc) ? 40 : 64; break; case 512: info->oob_size = (info->use_ecc) ? 8 : 16; break; } } /** * NOTE: it is a must to set ND_RUN firstly, then write * command buffer, otherwise, it does not work. * We enable all the interrupt at the same time, and * let pxa3xx_nand_irq to handle all logic. */ static void pxa3xx_nand_start(struct pxa3xx_nand_info *info) { uint32_t ndcr; ndcr = info->reg_ndcr; ndcr |= info->use_ecc ? NDCR_ECC_EN : 0; ndcr |= info->use_dma ? NDCR_DMA_EN : 0; ndcr |= NDCR_ND_RUN; /* clear status bits and run */ nand_writel(info, NDCR, 0); nand_writel(info, NDSR, NDSR_MASK); nand_writel(info, NDCR, ndcr); } static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info) { uint32_t ndcr; int timeout = NAND_STOP_DELAY; /* wait RUN bit in NDCR become 0 */ ndcr = nand_readl(info, NDCR); while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) { ndcr = nand_readl(info, NDCR); udelay(1); } if (timeout <= 0) { ndcr &= ~NDCR_ND_RUN; nand_writel(info, NDCR, ndcr); } /* clear status bits */ nand_writel(info, NDSR, NDSR_MASK); } static void enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) { uint32_t ndcr; ndcr = nand_readl(info, NDCR); nand_writel(info, NDCR, ndcr & ~int_mask); } static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) { uint32_t ndcr; ndcr = nand_readl(info, NDCR); nand_writel(info, NDCR, ndcr | int_mask); } static void handle_data_pio(struct pxa3xx_nand_info *info) { switch (info->state) { case STATE_PIO_WRITING: __raw_writesl(info->mmio_base + NDDB, info->data_buff, DIV_ROUND_UP(info->data_size, 4)); if (info->oob_size > 0) __raw_writesl(info->mmio_base + NDDB, info->oob_buff, DIV_ROUND_UP(info->oob_size, 4)); break; case STATE_PIO_READING: __raw_readsl(info->mmio_base + NDDB, info->data_buff, DIV_ROUND_UP(info->data_size, 4)); if (info->oob_size > 0) __raw_readsl(info->mmio_base + NDDB, info->oob_buff, DIV_ROUND_UP(info->oob_size, 4)); break; default: printk(KERN_ERR "%s: invalid state %d\n", __func__, info->state); BUG(); } } static void start_data_dma(struct pxa3xx_nand_info *info) { struct pxa_dma_desc *desc = info->data_desc; int dma_len = ALIGN(info->data_size + info->oob_size, 32); desc->ddadr = DDADR_STOP; desc->dcmd = DCMD_ENDIRQEN | DCMD_WIDTH4 | DCMD_BURST32 | dma_len; switch (info->state) { case STATE_DMA_WRITING: desc->dsadr = info->data_buff_phys; desc->dtadr = info->mmio_phys + NDDB; desc->dcmd |= DCMD_INCSRCADDR | DCMD_FLOWTRG; break; case STATE_DMA_READING: desc->dtadr = info->data_buff_phys; desc->dsadr = info->mmio_phys + NDDB; desc->dcmd |= DCMD_INCTRGADDR | DCMD_FLOWSRC; break; default: printk(KERN_ERR "%s: invalid state %d\n", __func__, info->state); BUG(); } DRCMR(info->drcmr_dat) = DRCMR_MAPVLD | info->data_dma_ch; DDADR(info->data_dma_ch) = info->data_desc_addr; DCSR(info->data_dma_ch) |= DCSR_RUN; } static void pxa3xx_nand_data_dma_irq(int channel, void *data) { struct pxa3xx_nand_info *info = data; uint32_t dcsr; dcsr = DCSR(channel); DCSR(channel) = dcsr; if (dcsr & DCSR_BUSERR) { info->retcode = ERR_DMABUSERR; } info->state = STATE_DMA_DONE; enable_int(info, NDCR_INT_MASK); nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ); } static irqreturn_t pxa3xx_nand_irq(int irq, void *devid) { struct pxa3xx_nand_info *info = devid; unsigned int status, is_completed = 0; status = nand_readl(info, NDSR); if (status & NDSR_DBERR) info->retcode = ERR_DBERR; if (status & NDSR_SBERR) info->retcode = ERR_SBERR; if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) { /* whether use dma to transfer data */ if (info->use_dma) { disable_int(info, NDCR_INT_MASK); info->state = (status & NDSR_RDDREQ) ? STATE_DMA_READING : STATE_DMA_WRITING; start_data_dma(info); goto NORMAL_IRQ_EXIT; } else { info->state = (status & NDSR_RDDREQ) ? STATE_PIO_READING : STATE_PIO_WRITING; handle_data_pio(info); } } if (status & NDSR_CS0_CMDD) { info->state = STATE_CMD_DONE; is_completed = 1; } if (status & NDSR_FLASH_RDY) { info->is_ready = 1; info->state = STATE_READY; } if (status & NDSR_WRCMDREQ) { nand_writel(info, NDSR, NDSR_WRCMDREQ); status &= ~NDSR_WRCMDREQ; info->state = STATE_CMD_HANDLE; nand_writel(info, NDCB0, info->ndcb0); nand_writel(info, NDCB0, info->ndcb1); nand_writel(info, NDCB0, info->ndcb2); } /* clear NDSR to let the controller exit the IRQ */ nand_writel(info, NDSR, status); if (is_completed) complete(&info->cmd_complete); NORMAL_IRQ_EXIT: return IRQ_HANDLED; } static int pxa3xx_nand_dev_ready(struct mtd_info *mtd) { struct pxa3xx_nand_info *info = mtd->priv; return (nand_readl(info, NDSR) & NDSR_RDY) ? 1 : 0; } static inline int is_buf_blank(uint8_t *buf, size_t len) { for (; len > 0; len--) if (*buf++ != 0xff) return 0; return 1; } static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, uint16_t column, int page_addr) { uint16_t cmd; int addr_cycle, exec_cmd, ndcb0; struct mtd_info *mtd = info->mtd; ndcb0 = 0; addr_cycle = 0; exec_cmd = 1; /* reset data and oob column point to handle data */ info->buf_start = 0; info->buf_count = 0; info->oob_size = 0; info->use_ecc = 0; info->is_ready = 0; info->retcode = ERR_NONE; switch (command) { case NAND_CMD_READ0: case NAND_CMD_PAGEPROG: info->use_ecc = 1; case NAND_CMD_READOOB: pxa3xx_set_datasize(info); break; case NAND_CMD_SEQIN: exec_cmd = 0; break; default: info->ndcb1 = 0; info->ndcb2 = 0; break; } info->ndcb0 = ndcb0; addr_cycle = NDCB0_ADDR_CYC(info->row_addr_cycles + info->col_addr_cycles); switch (command) { case NAND_CMD_READOOB: case NAND_CMD_READ0: cmd = info->cmdset->read1; if (command == NAND_CMD_READOOB) info->buf_start = mtd->writesize + column; else info->buf_start = column; if (unlikely(info->page_size < PAGE_CHUNK_SIZE)) info->ndcb0 |= NDCB0_CMD_TYPE(0) | addr_cycle | (cmd & NDCB0_CMD1_MASK); else info->ndcb0 |= NDCB0_CMD_TYPE(0) | NDCB0_DBC | addr_cycle | cmd; case NAND_CMD_SEQIN: /* small page addr setting */ if (unlikely(info->page_size < PAGE_CHUNK_SIZE)) { info->ndcb1 = ((page_addr & 0xFFFFFF) << 8) | (column & 0xFF); info->ndcb2 = 0; } else { info->ndcb1 = ((page_addr & 0xFFFF) << 16) | (column & 0xFFFF); if (page_addr & 0xFF0000) info->ndcb2 = (page_addr & 0xFF0000) >> 16; else info->ndcb2 = 0; } info->buf_count = mtd->writesize + mtd->oobsize; memset(info->data_buff, 0xFF, info->buf_count); break; case NAND_CMD_PAGEPROG: if (is_buf_blank(info->data_buff, (mtd->writesize + mtd->oobsize))) { exec_cmd = 0; break; } cmd = info->cmdset->program; info->ndcb0 |= NDCB0_CMD_TYPE(0x1) | NDCB0_AUTO_RS | NDCB0_ST_ROW_EN | NDCB0_DBC | cmd | addr_cycle; break; case NAND_CMD_READID: cmd = info->cmdset->read_id; info->buf_count = info->read_id_bytes; info->ndcb0 |= NDCB0_CMD_TYPE(3) | NDCB0_ADDR_CYC(1) | cmd; info->data_size = 8; break; case NAND_CMD_STATUS: cmd = info->cmdset->read_status; info->buf_count = 1; info->ndcb0 |= NDCB0_CMD_TYPE(4) | NDCB0_ADDR_CYC(1) | cmd; info->data_size = 8; break; case NAND_CMD_ERASE1: cmd = info->cmdset->erase; info->ndcb0 |= NDCB0_CMD_TYPE(2) | NDCB0_AUTO_RS | NDCB0_ADDR_CYC(3) | NDCB0_DBC | cmd; info->ndcb1 = page_addr; info->ndcb2 = 0; break; case NAND_CMD_RESET: cmd = info->cmdset->reset; info->ndcb0 |= NDCB0_CMD_TYPE(5) | cmd; break; case NAND_CMD_ERASE2: exec_cmd = 0; break; default: exec_cmd = 0; printk(KERN_ERR "pxa3xx-nand: non-supported" " command %x\n", command); break; } return exec_cmd; } static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct pxa3xx_nand_info *info = mtd->priv; int ret, exec_cmd; /* * if this is a x16 device ,then convert the input * "byte" address into a "word" address appropriate * for indexing a word-oriented device */ if (info->reg_ndcr & NDCR_DWIDTH_M) column /= 2; exec_cmd = prepare_command_pool(info, command, column, page_addr); if (exec_cmd) { init_completion(&info->cmd_complete); pxa3xx_nand_start(info); ret = wait_for_completion_timeout(&info->cmd_complete, CHIP_DELAY_TIMEOUT); if (!ret) { printk(KERN_ERR "Wait time out!!!\n"); /* Stop State Machine for next command cycle */ pxa3xx_nand_stop(info); } info->state = STATE_IDLE; } } static void pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { chip->write_buf(mtd, buf, mtd->writesize); chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); } static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { struct pxa3xx_nand_info *info = mtd->priv; chip->read_buf(mtd, buf, mtd->writesize); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); if (info->retcode == ERR_SBERR) { switch (info->use_ecc) { case 1: mtd->ecc_stats.corrected++; break; case 0: default: break; } } else if (info->retcode == ERR_DBERR) { /* * for blank page (all 0xff), HW will calculate its ECC as * 0, which is different from the ECC information within * OOB, ignore such double bit errors */ if (is_buf_blank(buf, mtd->writesize)) mtd->ecc_stats.failed++; } return 0; } static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd) { struct pxa3xx_nand_info *info = mtd->priv; char retval = 0xFF; if (info->buf_start < info->buf_count) /* Has just send a new command? */ retval = info->data_buff[info->buf_start++]; return retval; } static u16 pxa3xx_nand_read_word(struct mtd_info *mtd) { struct pxa3xx_nand_info *info = mtd->priv; u16 retval = 0xFFFF; if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) { retval = *((u16 *)(info->data_buff+info->buf_start)); info->buf_start += 2; } return retval; } static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct pxa3xx_nand_info *info = mtd->priv; int real_len = min_t(size_t, len, info->buf_count - info->buf_start); memcpy(buf, info->data_buff + info->buf_start, real_len); info->buf_start += real_len; } static void pxa3xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct pxa3xx_nand_info *info = mtd->priv; int real_len = min_t(size_t, len, info->buf_count - info->buf_start); memcpy(info->data_buff + info->buf_start, buf, real_len); info->buf_start += real_len; } static int pxa3xx_nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { return 0; } static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip) { return; } static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this) { struct pxa3xx_nand_info *info = mtd->priv; /* pxa3xx_nand_send_command has waited for command complete */ if (this->state == FL_WRITING || this->state == FL_ERASING) { if (info->retcode == ERR_NONE) return 0; else { /* * any error make it return 0x01 which will tell * the caller the erase and write fail */ return 0x01; } } return 0; } static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, const struct pxa3xx_nand_flash *f) { struct platform_device *pdev = info->pdev; struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data; uint32_t ndcr = 0x0; /* enable all interrupts */ if (f->page_size != 2048 && f->page_size != 512) return -EINVAL; if (f->flash_width != 16 && f->flash_width != 8) return -EINVAL; /* calculate flash information */ info->cmdset = &default_cmdset; info->page_size = f->page_size; info->read_id_bytes = (f->page_size == 2048) ? 4 : 2; /* calculate addressing information */ info->col_addr_cycles = (f->page_size == 2048) ? 2 : 1; if (f->num_blocks * f->page_per_block > 65536) info->row_addr_cycles = 3; else info->row_addr_cycles = 2; ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; ndcr |= (info->col_addr_cycles == 2) ? NDCR_RA_START : 0; ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0; ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0; ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0; ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0; ndcr |= NDCR_RD_ID_CNT(info->read_id_bytes); ndcr |= NDCR_SPARE_EN; /* enable spare by default */ info->reg_ndcr = ndcr; pxa3xx_nand_set_timing(info, f->timing); return 0; } static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info) { uint32_t ndcr = nand_readl(info, NDCR); info->page_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512; /* set info fields needed to read id */ info->read_id_bytes = (info->page_size == 2048) ? 4 : 2; info->reg_ndcr = ndcr; info->cmdset = &default_cmdset; info->ndtr0cs0 = nand_readl(info, NDTR0CS0); info->ndtr1cs0 = nand_readl(info, NDTR1CS0); return 0; } /* the maximum possible buffer size for large page with OOB data * is: 2048 + 64 = 2112 bytes, allocate a page here for both the * data buffer and the DMA descriptor */ #define MAX_BUFF_SIZE PAGE_SIZE static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) { struct platform_device *pdev = info->pdev; int data_desc_offset = MAX_BUFF_SIZE - sizeof(struct pxa_dma_desc); if (use_dma == 0) { info->data_buff = kmalloc(MAX_BUFF_SIZE, GFP_KERNEL); if (info->data_buff == NULL) return -ENOMEM; return 0; } info->data_buff = dma_alloc_coherent(&pdev->dev, MAX_BUFF_SIZE, &info->data_buff_phys, GFP_KERNEL); if (info->data_buff == NULL) { dev_err(&pdev->dev, "failed to allocate dma buffer\n"); return -ENOMEM; } info->data_buff_size = MAX_BUFF_SIZE; info->data_desc = (void *)info->data_buff + data_desc_offset; info->data_desc_addr = info->data_buff_phys + data_desc_offset; info->data_dma_ch = pxa_request_dma("nand-data", DMA_PRIO_LOW, pxa3xx_nand_data_dma_irq, info); if (info->data_dma_ch < 0) { dev_err(&pdev->dev, "failed to request data dma\n"); dma_free_coherent(&pdev->dev, info->data_buff_size, info->data_buff, info->data_buff_phys); return info->data_dma_ch; } return 0; } static int pxa3xx_nand_sensing(struct pxa3xx_nand_info *info) { struct mtd_info *mtd = info->mtd; struct nand_chip *chip = mtd->priv; /* use the common timing to make a try */ pxa3xx_nand_config_flash(info, &builtin_flash_types[0]); chip->cmdfunc(mtd, NAND_CMD_RESET, 0, 0); if (info->is_ready) return 1; else return 0; } static int pxa3xx_nand_scan(struct mtd_info *mtd) { struct pxa3xx_nand_info *info = mtd->priv; struct platform_device *pdev = info->pdev; struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data; struct nand_flash_dev pxa3xx_flash_ids[2] = { {NULL,}, {NULL,} }; const struct pxa3xx_nand_flash *f = NULL; struct nand_chip *chip = mtd->priv; uint32_t id = -1; uint64_t chipsize; int i, ret, num; if (pdata->keep_config && !pxa3xx_nand_detect_config(info)) goto KEEP_CONFIG; ret = pxa3xx_nand_sensing(info); if (!ret) { kfree(mtd); info->mtd = NULL; printk(KERN_INFO "There is no nand chip on cs 0!\n"); return -EINVAL; } chip->cmdfunc(mtd, NAND_CMD_READID, 0, 0); id = *((uint16_t *)(info->data_buff)); if (id != 0) printk(KERN_INFO "Detect a flash id %x\n", id); else { kfree(mtd); info->mtd = NULL; printk(KERN_WARNING "Read out ID 0, potential timing set wrong!!\n"); return -EINVAL; } num = ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1; for (i = 0; i < num; i++) { if (i < pdata->num_flash) f = pdata->flash + i; else f = &builtin_flash_types[i - pdata->num_flash + 1]; /* find the chip in default list */ if (f->chip_id == id) break; } if (i >= (ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1)) { kfree(mtd); info->mtd = NULL; printk(KERN_ERR "ERROR!! flash not defined!!!\n"); return -EINVAL; } pxa3xx_nand_config_flash(info, f); pxa3xx_flash_ids[0].name = f->name; pxa3xx_flash_ids[0].id = (f->chip_id >> 8) & 0xffff; pxa3xx_flash_ids[0].pagesize = f->page_size; chipsize = (uint64_t)f->num_blocks * f->page_per_block * f->page_size; pxa3xx_flash_ids[0].chipsize = chipsize >> 20; pxa3xx_flash_ids[0].erasesize = f->page_size * f->page_per_block; if (f->flash_width == 16) pxa3xx_flash_ids[0].options = NAND_BUSWIDTH_16; KEEP_CONFIG: if (nand_scan_ident(mtd, 1, pxa3xx_flash_ids)) return -ENODEV; /* calculate addressing information */ info->col_addr_cycles = (mtd->writesize >= 2048) ? 2 : 1; info->oob_buff = info->data_buff + mtd->writesize; if ((mtd->size >> chip->page_shift) > 65536) info->row_addr_cycles = 3; else info->row_addr_cycles = 2; mtd->name = mtd_names[0]; chip->ecc.mode = NAND_ECC_HW; chip->ecc.size = f->page_size; chip->options = (f->flash_width == 16) ? NAND_BUSWIDTH_16 : 0; chip->options |= NAND_NO_AUTOINCR; chip->options |= NAND_NO_READRDY; return nand_scan_tail(mtd); } static struct pxa3xx_nand_info *alloc_nand_resource(struct platform_device *pdev) { struct pxa3xx_nand_info *info; struct nand_chip *chip; struct mtd_info *mtd; struct resource *r; int ret, irq; mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct pxa3xx_nand_info), GFP_KERNEL); if (!mtd) { dev_err(&pdev->dev, "failed to allocate memory\n"); return NULL; } info = (struct pxa3xx_nand_info *)(&mtd[1]); chip = (struct nand_chip *)(&mtd[1]); info->pdev = pdev; info->mtd = mtd; mtd->priv = info; mtd->owner = THIS_MODULE; chip->ecc.read_page = pxa3xx_nand_read_page_hwecc; chip->ecc.write_page = pxa3xx_nand_write_page_hwecc; chip->controller = &info->controller; chip->waitfunc = pxa3xx_nand_waitfunc; chip->select_chip = pxa3xx_nand_select_chip; chip->dev_ready = pxa3xx_nand_dev_ready; chip->cmdfunc = pxa3xx_nand_cmdfunc; chip->read_word = pxa3xx_nand_read_word; chip->read_byte = pxa3xx_nand_read_byte; chip->read_buf = pxa3xx_nand_read_buf; chip->write_buf = pxa3xx_nand_write_buf; chip->verify_buf = pxa3xx_nand_verify_buf; spin_lock_init(&chip->controller->lock); init_waitqueue_head(&chip->controller->wq); info->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(info->clk)) { dev_err(&pdev->dev, "failed to get nand clock\n"); ret = PTR_ERR(info->clk); goto fail_free_mtd; } clk_enable(info->clk); r = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (r == NULL) { dev_err(&pdev->dev, "no resource defined for data DMA\n"); ret = -ENXIO; goto fail_put_clk; } info->drcmr_dat = r->start; r = platform_get_resource(pdev, IORESOURCE_DMA, 1); if (r == NULL) { dev_err(&pdev->dev, "no resource defined for command DMA\n"); ret = -ENXIO; goto fail_put_clk; } info->drcmr_cmd = r->start; irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "no IRQ resource defined\n"); ret = -ENXIO; goto fail_put_clk; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (r == NULL) { dev_err(&pdev->dev, "no IO memory resource defined\n"); ret = -ENODEV; goto fail_put_clk; } r = request_mem_region(r->start, resource_size(r), pdev->name); if (r == NULL) { dev_err(&pdev->dev, "failed to request memory resource\n"); ret = -EBUSY; goto fail_put_clk; } info->mmio_base = ioremap(r->start, resource_size(r)); if (info->mmio_base == NULL) { dev_err(&pdev->dev, "ioremap() failed\n"); ret = -ENODEV; goto fail_free_res; } info->mmio_phys = r->start; ret = pxa3xx_nand_init_buff(info); if (ret) goto fail_free_io; /* initialize all interrupts to be disabled */ disable_int(info, NDSR_MASK); ret = request_irq(irq, pxa3xx_nand_irq, IRQF_DISABLED, pdev->name, info); if (ret < 0) { dev_err(&pdev->dev, "failed to request IRQ\n"); goto fail_free_buf; } platform_set_drvdata(pdev, info); return info; fail_free_buf: free_irq(irq, info); if (use_dma) { pxa_free_dma(info->data_dma_ch); dma_free_coherent(&pdev->dev, info->data_buff_size, info->data_buff, info->data_buff_phys); } else kfree(info->data_buff); fail_free_io: iounmap(info->mmio_base); fail_free_res: release_mem_region(r->start, resource_size(r)); fail_put_clk: clk_disable(info->clk); clk_put(info->clk); fail_free_mtd: kfree(mtd); return NULL; } static int pxa3xx_nand_remove(struct platform_device *pdev) { struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); struct mtd_info *mtd = info->mtd; struct resource *r; int irq; platform_set_drvdata(pdev, NULL); irq = platform_get_irq(pdev, 0); if (irq >= 0) free_irq(irq, info); if (use_dma) { pxa_free_dma(info->data_dma_ch); dma_free_writecombine(&pdev->dev, info->data_buff_size, info->data_buff, info->data_buff_phys); } else kfree(info->data_buff); iounmap(info->mmio_base); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(r->start, resource_size(r)); clk_disable(info->clk); clk_put(info->clk); if (mtd) { nand_release(mtd); kfree(mtd); } return 0; } static int pxa3xx_nand_probe(struct platform_device *pdev) { struct pxa3xx_nand_platform_data *pdata; struct pxa3xx_nand_info *info; pdata = pdev->dev.platform_data; if (!pdata) { dev_err(&pdev->dev, "no platform data defined\n"); return -ENODEV; } info = alloc_nand_resource(pdev); if (info == NULL) return -ENOMEM; if (pxa3xx_nand_scan(info->mtd)) { dev_err(&pdev->dev, "failed to scan nand\n"); pxa3xx_nand_remove(pdev); return -ENODEV; } if (mtd_has_cmdlinepart()) { const char *probes[] = { "cmdlinepart", NULL }; struct mtd_partition *parts; int nr_parts; nr_parts = parse_mtd_partitions(info->mtd, probes, &parts, 0); if (nr_parts) return mtd_device_register(info->mtd, parts, nr_parts); } return mtd_device_register(info->mtd, pdata->parts, pdata->nr_parts); } #ifdef CONFIG_PM static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state) { struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); if (info->state) { dev_err(&pdev->dev, "driver busy, state = %d\n", info->state); return -EAGAIN; } return 0; } static int pxa3xx_nand_resume(struct platform_device *pdev) { struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); nand_writel(info, NDTR0CS0, info->ndtr0cs0); nand_writel(info, NDTR1CS0, info->ndtr1cs0); clk_enable(info->clk); return 0; } #else #define pxa3xx_nand_suspend NULL #define pxa3xx_nand_resume NULL #endif static struct platform_driver pxa3xx_nand_driver = { .driver = { .name = "pxa3xx-nand", }, .probe = pxa3xx_nand_probe, .remove = pxa3xx_nand_remove, .suspend = pxa3xx_nand_suspend, .resume = pxa3xx_nand_resume, }; static int __init pxa3xx_nand_init(void) { return platform_driver_register(&pxa3xx_nand_driver); } module_init(pxa3xx_nand_init); static void __exit pxa3xx_nand_exit(void) { platform_driver_unregister(&pxa3xx_nand_driver); } module_exit(pxa3xx_nand_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("PXA3xx NAND controller driver");