/* * Copyright © 2006-2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "intel_drv.h" struct intel_shared_dpll * intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv, enum intel_dpll_id id) { return &dev_priv->shared_dplls[id]; } enum intel_dpll_id intel_get_shared_dpll_id(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { if (WARN_ON(pll < dev_priv->shared_dplls|| pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll])) return -1; return (enum intel_dpll_id) (pll - dev_priv->shared_dplls); } void intel_shared_dpll_config_get(struct intel_shared_dpll_config *config, struct intel_shared_dpll *pll, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll); config[id].crtc_mask |= 1 << crtc->pipe; } void intel_shared_dpll_config_put(struct intel_shared_dpll_config *config, struct intel_shared_dpll *pll, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll); config[id].crtc_mask &= ~(1 << crtc->pipe); } /* For ILK+ */ void assert_shared_dpll(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, bool state) { bool cur_state; struct intel_dpll_hw_state hw_state; if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state))) return; cur_state = pll->funcs.get_hw_state(dev_priv, pll, &hw_state); I915_STATE_WARN(cur_state != state, "%s assertion failure (expected %s, current %s)\n", pll->name, onoff(state), onoff(cur_state)); } void intel_prepare_shared_dpll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_shared_dpll *pll = crtc->config->shared_dpll; if (WARN_ON(pll == NULL)) return; mutex_lock(&dev_priv->dpll_lock); WARN_ON(!pll->config.crtc_mask); if (!pll->active_mask) { DRM_DEBUG_DRIVER("setting up %s\n", pll->name); WARN_ON(pll->on); assert_shared_dpll_disabled(dev_priv, pll); pll->funcs.mode_set(dev_priv, pll); } mutex_unlock(&dev_priv->dpll_lock); } /** * intel_enable_shared_dpll - enable PCH PLL * @dev_priv: i915 private structure * @pipe: pipe PLL to enable * * The PCH PLL needs to be enabled before the PCH transcoder, since it * drives the transcoder clock. */ void intel_enable_shared_dpll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_shared_dpll *pll = crtc->config->shared_dpll; unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base); unsigned old_mask; if (WARN_ON(pll == NULL)) return; mutex_lock(&dev_priv->dpll_lock); old_mask = pll->active_mask; if (WARN_ON(!(pll->config.crtc_mask & crtc_mask)) || WARN_ON(pll->active_mask & crtc_mask)) goto out; pll->active_mask |= crtc_mask; DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n", pll->name, pll->active_mask, pll->on, crtc->base.base.id); if (old_mask) { WARN_ON(!pll->on); assert_shared_dpll_enabled(dev_priv, pll); goto out; } WARN_ON(pll->on); DRM_DEBUG_KMS("enabling %s\n", pll->name); pll->funcs.enable(dev_priv, pll); pll->on = true; out: mutex_unlock(&dev_priv->dpll_lock); } void intel_disable_shared_dpll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_shared_dpll *pll = crtc->config->shared_dpll; unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base); /* PCH only available on ILK+ */ if (INTEL_INFO(dev)->gen < 5) return; if (pll == NULL) return; mutex_lock(&dev_priv->dpll_lock); if (WARN_ON(!(pll->active_mask & crtc_mask))) goto out; DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n", pll->name, pll->active_mask, pll->on, crtc->base.base.id); assert_shared_dpll_enabled(dev_priv, pll); WARN_ON(!pll->on); pll->active_mask &= ~crtc_mask; if (pll->active_mask) goto out; DRM_DEBUG_KMS("disabling %s\n", pll->name); pll->funcs.disable(dev_priv, pll); pll->on = false; out: mutex_unlock(&dev_priv->dpll_lock); } static struct intel_shared_dpll * intel_find_shared_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, enum intel_dpll_id range_min, enum intel_dpll_id range_max) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; struct intel_shared_dpll *pll; struct intel_shared_dpll_config *shared_dpll; enum intel_dpll_id i; shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state); for (i = range_min; i <= range_max; i++) { pll = &dev_priv->shared_dplls[i]; /* Only want to check enabled timings first */ if (shared_dpll[i].crtc_mask == 0) continue; if (memcmp(&crtc_state->dpll_hw_state, &shared_dpll[i].hw_state, sizeof(crtc_state->dpll_hw_state)) == 0) { DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, active %x)\n", crtc->base.base.id, pll->name, shared_dpll[i].crtc_mask, pll->active_mask); return pll; } } /* Ok no matching timings, maybe there's a free one? */ for (i = range_min; i <= range_max; i++) { pll = &dev_priv->shared_dplls[i]; if (shared_dpll[i].crtc_mask == 0) { DRM_DEBUG_KMS("CRTC:%d allocated %s\n", crtc->base.base.id, pll->name); return pll; } } return NULL; } static void intel_reference_shared_dpll(struct intel_shared_dpll *pll, struct intel_crtc_state *crtc_state) { struct intel_shared_dpll_config *shared_dpll; struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); enum intel_dpll_id i = pll->id; shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state); if (shared_dpll[i].crtc_mask == 0) shared_dpll[i].hw_state = crtc_state->dpll_hw_state; crtc_state->shared_dpll = pll; DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name, pipe_name(crtc->pipe)); intel_shared_dpll_config_get(shared_dpll, pll, crtc); } void intel_shared_dpll_commit(struct drm_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->dev); struct intel_shared_dpll_config *shared_dpll; struct intel_shared_dpll *pll; enum intel_dpll_id i; if (!to_intel_atomic_state(state)->dpll_set) return; shared_dpll = to_intel_atomic_state(state)->shared_dpll; for (i = 0; i < dev_priv->num_shared_dpll; i++) { pll = &dev_priv->shared_dplls[i]; pll->config = shared_dpll[i]; } } static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { uint32_t val; if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; val = I915_READ(PCH_DPLL(pll->id)); hw_state->dpll = val; hw_state->fp0 = I915_READ(PCH_FP0(pll->id)); hw_state->fp1 = I915_READ(PCH_FP1(pll->id)); intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return val & DPLL_VCO_ENABLE; } static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0); I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1); } static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv) { u32 val; bool enabled; I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); val = I915_READ(PCH_DREF_CONTROL); enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK | DREF_SUPERSPREAD_SOURCE_MASK)); I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n"); } static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { /* PCH refclock must be enabled first */ ibx_assert_pch_refclk_enabled(dev_priv); I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll); /* Wait for the clocks to stabilize. */ POSTING_READ(PCH_DPLL(pll->id)); udelay(150); /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll); POSTING_READ(PCH_DPLL(pll->id)); udelay(200); } static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { struct drm_device *dev = dev_priv->dev; struct intel_crtc *crtc; /* Make sure no transcoder isn't still depending on us. */ for_each_intel_crtc(dev, crtc) { if (crtc->config->shared_dpll == pll) assert_pch_transcoder_disabled(dev_priv, crtc->pipe); } I915_WRITE(PCH_DPLL(pll->id), 0); POSTING_READ(PCH_DPLL(pll->id)); udelay(200); } static struct intel_shared_dpll * ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_shared_dpll *pll; enum intel_dpll_id i; if (HAS_PCH_IBX(dev_priv)) { /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */ i = (enum intel_dpll_id) crtc->pipe; pll = &dev_priv->shared_dplls[i]; DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n", crtc->base.base.id, pll->name); } else { pll = intel_find_shared_dpll(crtc, crtc_state, DPLL_ID_PCH_PLL_A, DPLL_ID_PCH_PLL_B); } /* reference the pll */ intel_reference_shared_dpll(pll, crtc_state); return pll; } static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = { .mode_set = ibx_pch_dpll_mode_set, .enable = ibx_pch_dpll_enable, .disable = ibx_pch_dpll_disable, .get_hw_state = ibx_pch_dpll_get_hw_state, }; static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll); POSTING_READ(WRPLL_CTL(pll->id)); udelay(20); } static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { I915_WRITE(SPLL_CTL, pll->config.hw_state.spll); POSTING_READ(SPLL_CTL); udelay(20); } static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { uint32_t val; val = I915_READ(WRPLL_CTL(pll->id)); I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE); POSTING_READ(WRPLL_CTL(pll->id)); } static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { uint32_t val; val = I915_READ(SPLL_CTL); I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE); POSTING_READ(SPLL_CTL); } static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { uint32_t val; if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; val = I915_READ(WRPLL_CTL(pll->id)); hw_state->wrpll = val; intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return val & WRPLL_PLL_ENABLE; } static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { uint32_t val; if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; val = I915_READ(SPLL_CTL); hw_state->spll = val; intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return val & SPLL_PLL_ENABLE; } static uint32_t hsw_pll_to_ddi_pll_sel(struct intel_shared_dpll *pll) { switch (pll->id) { case DPLL_ID_WRPLL1: return PORT_CLK_SEL_WRPLL1; case DPLL_ID_WRPLL2: return PORT_CLK_SEL_WRPLL2; case DPLL_ID_SPLL: return PORT_CLK_SEL_SPLL; case DPLL_ID_LCPLL_810: return PORT_CLK_SEL_LCPLL_810; case DPLL_ID_LCPLL_1350: return PORT_CLK_SEL_LCPLL_1350; case DPLL_ID_LCPLL_2700: return PORT_CLK_SEL_LCPLL_2700; default: return PORT_CLK_SEL_NONE; } } #define LC_FREQ 2700 #define LC_FREQ_2K U64_C(LC_FREQ * 2000) #define P_MIN 2 #define P_MAX 64 #define P_INC 2 /* Constraints for PLL good behavior */ #define REF_MIN 48 #define REF_MAX 400 #define VCO_MIN 2400 #define VCO_MAX 4800 struct hsw_wrpll_rnp { unsigned p, n2, r2; }; static unsigned hsw_wrpll_get_budget_for_freq(int clock) { unsigned budget; switch (clock) { case 25175000: case 25200000: case 27000000: case 27027000: case 37762500: case 37800000: case 40500000: case 40541000: case 54000000: case 54054000: case 59341000: case 59400000: case 72000000: case 74176000: case 74250000: case 81000000: case 81081000: case 89012000: case 89100000: case 108000000: case 108108000: case 111264000: case 111375000: case 148352000: case 148500000: case 162000000: case 162162000: case 222525000: case 222750000: case 296703000: case 297000000: budget = 0; break; case 233500000: case 245250000: case 247750000: case 253250000: case 298000000: budget = 1500; break; case 169128000: case 169500000: case 179500000: case 202000000: budget = 2000; break; case 256250000: case 262500000: case 270000000: case 272500000: case 273750000: case 280750000: case 281250000: case 286000000: case 291750000: budget = 4000; break; case 267250000: case 268500000: budget = 5000; break; default: budget = 1000; break; } return budget; } static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget, unsigned r2, unsigned n2, unsigned p, struct hsw_wrpll_rnp *best) { uint64_t a, b, c, d, diff, diff_best; /* No best (r,n,p) yet */ if (best->p == 0) { best->p = p; best->n2 = n2; best->r2 = r2; return; } /* * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to * freq2k. * * delta = 1e6 * * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) / * freq2k; * * and we would like delta <= budget. * * If the discrepancy is above the PPM-based budget, always prefer to * improve upon the previous solution. However, if you're within the * budget, try to maximize Ref * VCO, that is N / (P * R^2). */ a = freq2k * budget * p * r2; b = freq2k * budget * best->p * best->r2; diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2); diff_best = abs_diff(freq2k * best->p * best->r2, LC_FREQ_2K * best->n2); c = 1000000 * diff; d = 1000000 * diff_best; if (a < c && b < d) { /* If both are above the budget, pick the closer */ if (best->p * best->r2 * diff < p * r2 * diff_best) { best->p = p; best->n2 = n2; best->r2 = r2; } } else if (a >= c && b < d) { /* If A is below the threshold but B is above it? Update. */ best->p = p; best->n2 = n2; best->r2 = r2; } else if (a >= c && b >= d) { /* Both are below the limit, so pick the higher n2/(r2*r2) */ if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) { best->p = p; best->n2 = n2; best->r2 = r2; } } /* Otherwise a < c && b >= d, do nothing */ } static void hsw_ddi_calculate_wrpll(int clock /* in Hz */, unsigned *r2_out, unsigned *n2_out, unsigned *p_out) { uint64_t freq2k; unsigned p, n2, r2; struct hsw_wrpll_rnp best = { 0, 0, 0 }; unsigned budget; freq2k = clock / 100; budget = hsw_wrpll_get_budget_for_freq(clock); /* Special case handling for 540 pixel clock: bypass WR PLL entirely * and directly pass the LC PLL to it. */ if (freq2k == 5400000) { *n2_out = 2; *p_out = 1; *r2_out = 2; return; } /* * Ref = LC_FREQ / R, where Ref is the actual reference input seen by * the WR PLL. * * We want R so that REF_MIN <= Ref <= REF_MAX. * Injecting R2 = 2 * R gives: * REF_MAX * r2 > LC_FREQ * 2 and * REF_MIN * r2 < LC_FREQ * 2 * * Which means the desired boundaries for r2 are: * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN * */ for (r2 = LC_FREQ * 2 / REF_MAX + 1; r2 <= LC_FREQ * 2 / REF_MIN; r2++) { /* * VCO = N * Ref, that is: VCO = N * LC_FREQ / R * * Once again we want VCO_MIN <= VCO <= VCO_MAX. * Injecting R2 = 2 * R and N2 = 2 * N, we get: * VCO_MAX * r2 > n2 * LC_FREQ and * VCO_MIN * r2 < n2 * LC_FREQ) * * Which means the desired boundaries for n2 are: * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ */ for (n2 = VCO_MIN * r2 / LC_FREQ + 1; n2 <= VCO_MAX * r2 / LC_FREQ; n2++) { for (p = P_MIN; p <= P_MAX; p += P_INC) hsw_wrpll_update_rnp(freq2k, budget, r2, n2, p, &best); } } *n2_out = best.n2; *p_out = best.p; *r2_out = best.r2; } static struct intel_shared_dpll * hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_shared_dpll *pll; int clock = crtc_state->port_clock; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (encoder->type == INTEL_OUTPUT_HDMI) { uint32_t val; unsigned p, n2, r2; hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p); val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL | WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) | WRPLL_DIVIDER_POST(p); crtc_state->dpll_hw_state.wrpll = val; pll = intel_find_shared_dpll(crtc, crtc_state, DPLL_ID_WRPLL1, DPLL_ID_WRPLL2); } else if (encoder->type == INTEL_OUTPUT_DISPLAYPORT || encoder->type == INTEL_OUTPUT_DP_MST || encoder->type == INTEL_OUTPUT_EDP) { enum intel_dpll_id pll_id; switch (clock / 2) { case 81000: pll_id = DPLL_ID_LCPLL_810; break; case 135000: pll_id = DPLL_ID_LCPLL_1350; break; case 270000: pll_id = DPLL_ID_LCPLL_2700; break; default: DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock); return NULL; } pll = intel_get_shared_dpll_by_id(dev_priv, pll_id); } else if (encoder->type == INTEL_OUTPUT_ANALOG) { if (WARN_ON(crtc_state->port_clock / 2 != 135000)) return NULL; crtc_state->dpll_hw_state.spll = SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC; pll = intel_find_shared_dpll(crtc, crtc_state, DPLL_ID_SPLL, DPLL_ID_SPLL); } else { return NULL; } if (!pll) return NULL; crtc_state->ddi_pll_sel = hsw_pll_to_ddi_pll_sel(pll); intel_reference_shared_dpll(pll, crtc_state); return pll; } static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = { .enable = hsw_ddi_wrpll_enable, .disable = hsw_ddi_wrpll_disable, .get_hw_state = hsw_ddi_wrpll_get_hw_state, }; static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = { .enable = hsw_ddi_spll_enable, .disable = hsw_ddi_spll_disable, .get_hw_state = hsw_ddi_spll_get_hw_state, }; static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { } static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { } static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { return true; } static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = { .enable = hsw_ddi_lcpll_enable, .disable = hsw_ddi_lcpll_disable, .get_hw_state = hsw_ddi_lcpll_get_hw_state, }; struct skl_dpll_regs { i915_reg_t ctl, cfgcr1, cfgcr2; }; /* this array is indexed by the *shared* pll id */ static const struct skl_dpll_regs skl_dpll_regs[4] = { { /* DPLL 0 */ .ctl = LCPLL1_CTL, /* DPLL 0 doesn't support HDMI mode */ }, { /* DPLL 1 */ .ctl = LCPLL2_CTL, .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1), .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1), }, { /* DPLL 2 */ .ctl = WRPLL_CTL(0), .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2), .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2), }, { /* DPLL 3 */ .ctl = WRPLL_CTL(1), .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3), .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3), }, }; static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { uint32_t val; val = I915_READ(DPLL_CTRL1); val &= ~(DPLL_CTRL1_HDMI_MODE(pll->id) | DPLL_CTRL1_SSC(pll->id) | DPLL_CTRL1_LINK_RATE_MASK(pll->id)); val |= pll->config.hw_state.ctrl1 << (pll->id * 6); I915_WRITE(DPLL_CTRL1, val); POSTING_READ(DPLL_CTRL1); } static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const struct skl_dpll_regs *regs = skl_dpll_regs; skl_ddi_pll_write_ctrl1(dev_priv, pll); I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1); I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2); POSTING_READ(regs[pll->id].cfgcr1); POSTING_READ(regs[pll->id].cfgcr2); /* the enable bit is always bit 31 */ I915_WRITE(regs[pll->id].ctl, I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE); if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(pll->id), 5)) DRM_ERROR("DPLL %d not locked\n", pll->id); } static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { skl_ddi_pll_write_ctrl1(dev_priv, pll); } static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const struct skl_dpll_regs *regs = skl_dpll_regs; /* the enable bit is always bit 31 */ I915_WRITE(regs[pll->id].ctl, I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE); POSTING_READ(regs[pll->id].ctl); } static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { } static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { uint32_t val; const struct skl_dpll_regs *regs = skl_dpll_regs; bool ret; if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; ret = false; val = I915_READ(regs[pll->id].ctl); if (!(val & LCPLL_PLL_ENABLE)) goto out; val = I915_READ(DPLL_CTRL1); hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f; /* avoid reading back stale values if HDMI mode is not enabled */ if (val & DPLL_CTRL1_HDMI_MODE(pll->id)) { hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1); hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2); } ret = true; out: intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return ret; } static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { uint32_t val; const struct skl_dpll_regs *regs = skl_dpll_regs; bool ret; if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; ret = false; /* DPLL0 is always enabled since it drives CDCLK */ val = I915_READ(regs[pll->id].ctl); if (WARN_ON(!(val & LCPLL_PLL_ENABLE))) goto out; val = I915_READ(DPLL_CTRL1); hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f; ret = true; out: intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return ret; } struct skl_wrpll_context { uint64_t min_deviation; /* current minimal deviation */ uint64_t central_freq; /* chosen central freq */ uint64_t dco_freq; /* chosen dco freq */ unsigned int p; /* chosen divider */ }; static void skl_wrpll_context_init(struct skl_wrpll_context *ctx) { memset(ctx, 0, sizeof(*ctx)); ctx->min_deviation = U64_MAX; } /* DCO freq must be within +1%/-6% of the DCO central freq */ #define SKL_DCO_MAX_PDEVIATION 100 #define SKL_DCO_MAX_NDEVIATION 600 static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx, uint64_t central_freq, uint64_t dco_freq, unsigned int divider) { uint64_t deviation; deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq), central_freq); /* positive deviation */ if (dco_freq >= central_freq) { if (deviation < SKL_DCO_MAX_PDEVIATION && deviation < ctx->min_deviation) { ctx->min_deviation = deviation; ctx->central_freq = central_freq; ctx->dco_freq = dco_freq; ctx->p = divider; } /* negative deviation */ } else if (deviation < SKL_DCO_MAX_NDEVIATION && deviation < ctx->min_deviation) { ctx->min_deviation = deviation; ctx->central_freq = central_freq; ctx->dco_freq = dco_freq; ctx->p = divider; } } static void skl_wrpll_get_multipliers(unsigned int p, unsigned int *p0 /* out */, unsigned int *p1 /* out */, unsigned int *p2 /* out */) { /* even dividers */ if (p % 2 == 0) { unsigned int half = p / 2; if (half == 1 || half == 2 || half == 3 || half == 5) { *p0 = 2; *p1 = 1; *p2 = half; } else if (half % 2 == 0) { *p0 = 2; *p1 = half / 2; *p2 = 2; } else if (half % 3 == 0) { *p0 = 3; *p1 = half / 3; *p2 = 2; } else if (half % 7 == 0) { *p0 = 7; *p1 = half / 7; *p2 = 2; } } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */ *p0 = 3; *p1 = 1; *p2 = p / 3; } else if (p == 5 || p == 7) { *p0 = p; *p1 = 1; *p2 = 1; } else if (p == 15) { *p0 = 3; *p1 = 1; *p2 = 5; } else if (p == 21) { *p0 = 7; *p1 = 1; *p2 = 3; } else if (p == 35) { *p0 = 7; *p1 = 1; *p2 = 5; } } struct skl_wrpll_params { uint32_t dco_fraction; uint32_t dco_integer; uint32_t qdiv_ratio; uint32_t qdiv_mode; uint32_t kdiv; uint32_t pdiv; uint32_t central_freq; }; static void skl_wrpll_params_populate(struct skl_wrpll_params *params, uint64_t afe_clock, uint64_t central_freq, uint32_t p0, uint32_t p1, uint32_t p2) { uint64_t dco_freq; switch (central_freq) { case 9600000000ULL: params->central_freq = 0; break; case 9000000000ULL: params->central_freq = 1; break; case 8400000000ULL: params->central_freq = 3; } switch (p0) { case 1: params->pdiv = 0; break; case 2: params->pdiv = 1; break; case 3: params->pdiv = 2; break; case 7: params->pdiv = 4; break; default: WARN(1, "Incorrect PDiv\n"); } switch (p2) { case 5: params->kdiv = 0; break; case 2: params->kdiv = 1; break; case 3: params->kdiv = 2; break; case 1: params->kdiv = 3; break; default: WARN(1, "Incorrect KDiv\n"); } params->qdiv_ratio = p1; params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1; dco_freq = p0 * p1 * p2 * afe_clock; /* * Intermediate values are in Hz. * Divide by MHz to match bsepc */ params->dco_integer = div_u64(dco_freq, 24 * MHz(1)); params->dco_fraction = div_u64((div_u64(dco_freq, 24) - params->dco_integer * MHz(1)) * 0x8000, MHz(1)); } static bool skl_ddi_calculate_wrpll(int clock /* in Hz */, struct skl_wrpll_params *wrpll_params) { uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */ uint64_t dco_central_freq[3] = {8400000000ULL, 9000000000ULL, 9600000000ULL}; static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 52, 54, 56, 60, 64, 66, 68, 70, 72, 76, 78, 80, 84, 88, 90, 92, 96, 98 }; static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 }; static const struct { const int *list; int n_dividers; } dividers[] = { { even_dividers, ARRAY_SIZE(even_dividers) }, { odd_dividers, ARRAY_SIZE(odd_dividers) }, }; struct skl_wrpll_context ctx; unsigned int dco, d, i; unsigned int p0, p1, p2; skl_wrpll_context_init(&ctx); for (d = 0; d < ARRAY_SIZE(dividers); d++) { for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) { for (i = 0; i < dividers[d].n_dividers; i++) { unsigned int p = dividers[d].list[i]; uint64_t dco_freq = p * afe_clock; skl_wrpll_try_divider(&ctx, dco_central_freq[dco], dco_freq, p); /* * Skip the remaining dividers if we're sure to * have found the definitive divider, we can't * improve a 0 deviation. */ if (ctx.min_deviation == 0) goto skip_remaining_dividers; } } skip_remaining_dividers: /* * If a solution is found with an even divider, prefer * this one. */ if (d == 0 && ctx.p) break; } if (!ctx.p) { DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock); return false; } /* * gcc incorrectly analyses that these can be used without being * initialized. To be fair, it's hard to guess. */ p0 = p1 = p2 = 0; skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2); skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq, p0, p1, p2); return true; } static struct intel_shared_dpll * skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { struct intel_shared_dpll *pll; uint32_t ctrl1, cfgcr1, cfgcr2; int clock = crtc_state->port_clock; /* * See comment in intel_dpll_hw_state to understand why we always use 0 * as the DPLL id in this function. */ ctrl1 = DPLL_CTRL1_OVERRIDE(0); if (encoder->type == INTEL_OUTPUT_HDMI) { struct skl_wrpll_params wrpll_params = { 0, }; ctrl1 |= DPLL_CTRL1_HDMI_MODE(0); if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params)) return NULL; cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE | DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) | wrpll_params.dco_integer; cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) | DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) | DPLL_CFGCR2_KDIV(wrpll_params.kdiv) | DPLL_CFGCR2_PDIV(wrpll_params.pdiv) | wrpll_params.central_freq; } else if (encoder->type == INTEL_OUTPUT_DISPLAYPORT || encoder->type == INTEL_OUTPUT_DP_MST || encoder->type == INTEL_OUTPUT_EDP) { switch (crtc_state->port_clock / 2) { case 81000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0); break; case 135000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0); break; case 270000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0); break; /* eDP 1.4 rates */ case 162000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0); break; case 108000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0); break; case 216000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0); break; } cfgcr1 = cfgcr2 = 0; } else { return NULL; } memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); crtc_state->dpll_hw_state.ctrl1 = ctrl1; crtc_state->dpll_hw_state.cfgcr1 = cfgcr1; crtc_state->dpll_hw_state.cfgcr2 = cfgcr2; if (encoder->type == INTEL_OUTPUT_EDP) pll = intel_find_shared_dpll(crtc, crtc_state, DPLL_ID_SKL_DPLL0, DPLL_ID_SKL_DPLL0); else pll = intel_find_shared_dpll(crtc, crtc_state, DPLL_ID_SKL_DPLL1, DPLL_ID_SKL_DPLL3); if (!pll) return NULL; crtc_state->ddi_pll_sel = pll->id; intel_reference_shared_dpll(pll, crtc_state); return pll; } static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = { .enable = skl_ddi_pll_enable, .disable = skl_ddi_pll_disable, .get_hw_state = skl_ddi_pll_get_hw_state, }; static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = { .enable = skl_ddi_dpll0_enable, .disable = skl_ddi_dpll0_disable, .get_hw_state = skl_ddi_dpll0_get_hw_state, }; static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { uint32_t temp; enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */ /* Non-SSC reference */ temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); temp |= PORT_PLL_REF_SEL; I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); /* Disable 10 bit clock */ temp = I915_READ(BXT_PORT_PLL_EBB_4(port)); temp &= ~PORT_PLL_10BIT_CLK_ENABLE; I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp); /* Write P1 & P2 */ temp = I915_READ(BXT_PORT_PLL_EBB_0(port)); temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK); temp |= pll->config.hw_state.ebb0; I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp); /* Write M2 integer */ temp = I915_READ(BXT_PORT_PLL(port, 0)); temp &= ~PORT_PLL_M2_MASK; temp |= pll->config.hw_state.pll0; I915_WRITE(BXT_PORT_PLL(port, 0), temp); /* Write N */ temp = I915_READ(BXT_PORT_PLL(port, 1)); temp &= ~PORT_PLL_N_MASK; temp |= pll->config.hw_state.pll1; I915_WRITE(BXT_PORT_PLL(port, 1), temp); /* Write M2 fraction */ temp = I915_READ(BXT_PORT_PLL(port, 2)); temp &= ~PORT_PLL_M2_FRAC_MASK; temp |= pll->config.hw_state.pll2; I915_WRITE(BXT_PORT_PLL(port, 2), temp); /* Write M2 fraction enable */ temp = I915_READ(BXT_PORT_PLL(port, 3)); temp &= ~PORT_PLL_M2_FRAC_ENABLE; temp |= pll->config.hw_state.pll3; I915_WRITE(BXT_PORT_PLL(port, 3), temp); /* Write coeff */ temp = I915_READ(BXT_PORT_PLL(port, 6)); temp &= ~PORT_PLL_PROP_COEFF_MASK; temp &= ~PORT_PLL_INT_COEFF_MASK; temp &= ~PORT_PLL_GAIN_CTL_MASK; temp |= pll->config.hw_state.pll6; I915_WRITE(BXT_PORT_PLL(port, 6), temp); /* Write calibration val */ temp = I915_READ(BXT_PORT_PLL(port, 8)); temp &= ~PORT_PLL_TARGET_CNT_MASK; temp |= pll->config.hw_state.pll8; I915_WRITE(BXT_PORT_PLL(port, 8), temp); temp = I915_READ(BXT_PORT_PLL(port, 9)); temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK; temp |= pll->config.hw_state.pll9; I915_WRITE(BXT_PORT_PLL(port, 9), temp); temp = I915_READ(BXT_PORT_PLL(port, 10)); temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H; temp &= ~PORT_PLL_DCO_AMP_MASK; temp |= pll->config.hw_state.pll10; I915_WRITE(BXT_PORT_PLL(port, 10), temp); /* Recalibrate with new settings */ temp = I915_READ(BXT_PORT_PLL_EBB_4(port)); temp |= PORT_PLL_RECALIBRATE; I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp); temp &= ~PORT_PLL_10BIT_CLK_ENABLE; temp |= pll->config.hw_state.ebb4; I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp); /* Enable PLL */ temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); temp |= PORT_PLL_ENABLE; I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); POSTING_READ(BXT_PORT_PLL_ENABLE(port)); if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK), 200)) DRM_ERROR("PLL %d not locked\n", port); /* * While we write to the group register to program all lanes at once we * can read only lane registers and we pick lanes 0/1 for that. */ temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port)); temp &= ~LANE_STAGGER_MASK; temp &= ~LANESTAGGER_STRAP_OVRD; temp |= pll->config.hw_state.pcsdw12; I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp); } static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */ uint32_t temp; temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); temp &= ~PORT_PLL_ENABLE; I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); POSTING_READ(BXT_PORT_PLL_ENABLE(port)); } static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */ uint32_t val; bool ret; if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; ret = false; val = I915_READ(BXT_PORT_PLL_ENABLE(port)); if (!(val & PORT_PLL_ENABLE)) goto out; hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port)); hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK; hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port)); hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE; hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0)); hw_state->pll0 &= PORT_PLL_M2_MASK; hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1)); hw_state->pll1 &= PORT_PLL_N_MASK; hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2)); hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK; hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3)); hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE; hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6)); hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK | PORT_PLL_INT_COEFF_MASK | PORT_PLL_GAIN_CTL_MASK; hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8)); hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK; hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9)); hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK; hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10)); hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H | PORT_PLL_DCO_AMP_MASK; /* * While we write to the group register to program all lanes at once we * can read only lane registers. We configure all lanes the same way, so * here just read out lanes 0/1 and output a note if lanes 2/3 differ. */ hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port)); if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12) DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n", hw_state->pcsdw12, I915_READ(BXT_PORT_PCS_DW12_LN23(port))); hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD; ret = true; out: intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return ret; } /* bxt clock parameters */ struct bxt_clk_div { int clock; uint32_t p1; uint32_t p2; uint32_t m2_int; uint32_t m2_frac; bool m2_frac_en; uint32_t n; }; /* pre-calculated values for DP linkrates */ static const struct bxt_clk_div bxt_dp_clk_val[] = { {162000, 4, 2, 32, 1677722, 1, 1}, {270000, 4, 1, 27, 0, 0, 1}, {540000, 2, 1, 27, 0, 0, 1}, {216000, 3, 2, 32, 1677722, 1, 1}, {243000, 4, 1, 24, 1258291, 1, 1}, {324000, 4, 1, 32, 1677722, 1, 1}, {432000, 3, 1, 32, 1677722, 1, 1} }; static struct intel_shared_dpll * bxt_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_shared_dpll *pll; enum intel_dpll_id i; struct intel_digital_port *intel_dig_port; struct bxt_clk_div clk_div = {0}; int vco = 0; uint32_t prop_coef, int_coef, gain_ctl, targ_cnt; uint32_t lanestagger; int clock = crtc_state->port_clock; if (encoder->type == INTEL_OUTPUT_HDMI) { struct dpll best_clock; /* Calculate HDMI div */ /* * FIXME: tie the following calculation into * i9xx_crtc_compute_clock */ if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) { DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n", clock, pipe_name(crtc->pipe)); return NULL; } clk_div.p1 = best_clock.p1; clk_div.p2 = best_clock.p2; WARN_ON(best_clock.m1 != 2); clk_div.n = best_clock.n; clk_div.m2_int = best_clock.m2 >> 22; clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1); clk_div.m2_frac_en = clk_div.m2_frac != 0; vco = best_clock.vco; } else if (encoder->type == INTEL_OUTPUT_DISPLAYPORT || encoder->type == INTEL_OUTPUT_EDP) { int i; clk_div = bxt_dp_clk_val[0]; for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) { if (bxt_dp_clk_val[i].clock == clock) { clk_div = bxt_dp_clk_val[i]; break; } } vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2; } if (vco >= 6200000 && vco <= 6700000) { prop_coef = 4; int_coef = 9; gain_ctl = 3; targ_cnt = 8; } else if ((vco > 5400000 && vco < 6200000) || (vco >= 4800000 && vco < 5400000)) { prop_coef = 5; int_coef = 11; gain_ctl = 3; targ_cnt = 9; } else if (vco == 5400000) { prop_coef = 3; int_coef = 8; gain_ctl = 1; targ_cnt = 9; } else { DRM_ERROR("Invalid VCO\n"); return NULL; } memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (clock > 270000) lanestagger = 0x18; else if (clock > 135000) lanestagger = 0x0d; else if (clock > 67000) lanestagger = 0x07; else if (clock > 33000) lanestagger = 0x04; else lanestagger = 0x02; crtc_state->dpll_hw_state.ebb0 = PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2); crtc_state->dpll_hw_state.pll0 = clk_div.m2_int; crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n); crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac; if (clk_div.m2_frac_en) crtc_state->dpll_hw_state.pll3 = PORT_PLL_M2_FRAC_ENABLE; crtc_state->dpll_hw_state.pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef); crtc_state->dpll_hw_state.pll6 |= PORT_PLL_GAIN_CTL(gain_ctl); crtc_state->dpll_hw_state.pll8 = targ_cnt; crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT; crtc_state->dpll_hw_state.pll10 = PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT) | PORT_PLL_DCO_AMP_OVR_EN_H; crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE; crtc_state->dpll_hw_state.pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger; intel_dig_port = enc_to_dig_port(&encoder->base); /* 1:1 mapping between ports and PLLs */ i = (enum intel_dpll_id) intel_dig_port->port; pll = intel_get_shared_dpll_by_id(dev_priv, i); DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n", crtc->base.base.id, pll->name); intel_reference_shared_dpll(pll, crtc_state); /* shared DPLL id 0 is DPLL A */ crtc_state->ddi_pll_sel = pll->id; return pll; } static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = { .enable = bxt_ddi_pll_enable, .disable = bxt_ddi_pll_disable, .get_hw_state = bxt_ddi_pll_get_hw_state, }; static void intel_ddi_pll_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t val = I915_READ(LCPLL_CTL); if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) { int cdclk_freq; cdclk_freq = dev_priv->display.get_display_clock_speed(dev); dev_priv->skl_vco_freq = skl_cdclk_get_vco(cdclk_freq); if (skl_sanitize_cdclk(dev_priv)) DRM_DEBUG_KMS("Sanitized cdclk programmed by pre-os\n"); if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) DRM_ERROR("LCPLL1 is disabled\n"); } else if (!IS_BROXTON(dev_priv)) { /* * The LCPLL register should be turned on by the BIOS. For now * let's just check its state and print errors in case * something is wrong. Don't even try to turn it on. */ if (val & LCPLL_CD_SOURCE_FCLK) DRM_ERROR("CDCLK source is not LCPLL\n"); if (val & LCPLL_PLL_DISABLE) DRM_ERROR("LCPLL is disabled\n"); } } struct dpll_info { const char *name; const int id; const struct intel_shared_dpll_funcs *funcs; uint32_t flags; }; struct intel_dpll_mgr { const struct dpll_info *dpll_info; struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder); }; static const struct dpll_info pch_plls[] = { { "PCH DPLL A", DPLL_ID_PCH_PLL_A, &ibx_pch_dpll_funcs, 0 }, { "PCH DPLL B", DPLL_ID_PCH_PLL_B, &ibx_pch_dpll_funcs, 0 }, { NULL, -1, NULL, 0 }, }; static const struct intel_dpll_mgr pch_pll_mgr = { .dpll_info = pch_plls, .get_dpll = ibx_get_dpll, }; static const struct dpll_info hsw_plls[] = { { "WRPLL 1", DPLL_ID_WRPLL1, &hsw_ddi_wrpll_funcs, 0 }, { "WRPLL 2", DPLL_ID_WRPLL2, &hsw_ddi_wrpll_funcs, 0 }, { "SPLL", DPLL_ID_SPLL, &hsw_ddi_spll_funcs, 0 }, { "LCPLL 810", DPLL_ID_LCPLL_810, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON }, { "LCPLL 1350", DPLL_ID_LCPLL_1350, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON }, { "LCPLL 2700", DPLL_ID_LCPLL_2700, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON }, { NULL, -1, NULL, }, }; static const struct intel_dpll_mgr hsw_pll_mgr = { .dpll_info = hsw_plls, .get_dpll = hsw_get_dpll, }; static const struct dpll_info skl_plls[] = { { "DPLL 0", DPLL_ID_SKL_DPLL0, &skl_ddi_dpll0_funcs, INTEL_DPLL_ALWAYS_ON }, { "DPLL 1", DPLL_ID_SKL_DPLL1, &skl_ddi_pll_funcs, 0 }, { "DPLL 2", DPLL_ID_SKL_DPLL2, &skl_ddi_pll_funcs, 0 }, { "DPLL 3", DPLL_ID_SKL_DPLL3, &skl_ddi_pll_funcs, 0 }, { NULL, -1, NULL, }, }; static const struct intel_dpll_mgr skl_pll_mgr = { .dpll_info = skl_plls, .get_dpll = skl_get_dpll, }; static const struct dpll_info bxt_plls[] = { { "PORT PLL A", DPLL_ID_SKL_DPLL0, &bxt_ddi_pll_funcs, 0 }, { "PORT PLL B", DPLL_ID_SKL_DPLL1, &bxt_ddi_pll_funcs, 0 }, { "PORT PLL C", DPLL_ID_SKL_DPLL2, &bxt_ddi_pll_funcs, 0 }, { NULL, -1, NULL, }, }; static const struct intel_dpll_mgr bxt_pll_mgr = { .dpll_info = bxt_plls, .get_dpll = bxt_get_dpll, }; void intel_shared_dpll_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; const struct intel_dpll_mgr *dpll_mgr = NULL; const struct dpll_info *dpll_info; int i; if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) dpll_mgr = &skl_pll_mgr; else if (IS_BROXTON(dev)) dpll_mgr = &bxt_pll_mgr; else if (HAS_DDI(dev)) dpll_mgr = &hsw_pll_mgr; else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) dpll_mgr = &pch_pll_mgr; if (!dpll_mgr) { dev_priv->num_shared_dpll = 0; return; } dpll_info = dpll_mgr->dpll_info; for (i = 0; dpll_info[i].id >= 0; i++) { WARN_ON(i != dpll_info[i].id); dev_priv->shared_dplls[i].id = dpll_info[i].id; dev_priv->shared_dplls[i].name = dpll_info[i].name; dev_priv->shared_dplls[i].funcs = *dpll_info[i].funcs; dev_priv->shared_dplls[i].flags = dpll_info[i].flags; } dev_priv->dpll_mgr = dpll_mgr; dev_priv->num_shared_dpll = i; mutex_init(&dev_priv->dpll_lock); BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS); /* FIXME: Move this to a more suitable place */ if (HAS_DDI(dev)) intel_ddi_pll_init(dev); } struct intel_shared_dpll * intel_get_shared_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr; if (WARN_ON(!dpll_mgr)) return NULL; return dpll_mgr->get_dpll(crtc, crtc_state, encoder); }