/* * Copyright © 2006-2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "display/intel_crt.h" #include "display/intel_ddi.h" #include "display/intel_display_debugfs.h" #include "display/intel_dp.h" #include "display/intel_dp_mst.h" #include "display/intel_dpll.h" #include "display/intel_dpll_mgr.h" #include "display/intel_dsi.h" #include "display/intel_dvo.h" #include "display/intel_gmbus.h" #include "display/intel_hdmi.h" #include "display/intel_lvds.h" #include "display/intel_sdvo.h" #include "display/intel_tv.h" #include "display/intel_vdsc.h" #include "display/intel_vrr.h" #include "gem/i915_gem_object.h" #include "gt/intel_rps.h" #include "i915_drv.h" #include "i915_trace.h" #include "intel_acpi.h" #include "intel_atomic.h" #include "intel_atomic_plane.h" #include "intel_bw.h" #include "intel_cdclk.h" #include "intel_color.h" #include "intel_crtc.h" #include "intel_csr.h" #include "intel_display_types.h" #include "intel_dp_link_training.h" #include "intel_fbc.h" #include "intel_fdi.h" #include "intel_fbdev.h" #include "intel_fifo_underrun.h" #include "intel_frontbuffer.h" #include "intel_hdcp.h" #include "intel_hotplug.h" #include "intel_overlay.h" #include "intel_pipe_crc.h" #include "intel_pm.h" #include "intel_pps.h" #include "intel_psr.h" #include "intel_quirks.h" #include "intel_sideband.h" #include "intel_sprite.h" #include "intel_tc.h" #include "intel_vga.h" #include "i9xx_plane.h" static void i9xx_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config); static void ilk_pch_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config); static int intel_framebuffer_init(struct intel_framebuffer *ifb, struct drm_i915_gem_object *obj, struct drm_mode_fb_cmd2 *mode_cmd); static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state); static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, const struct intel_link_m_n *m_n, const struct intel_link_m_n *m2_n2); static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); static void vlv_prepare_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config); static void chv_prepare_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config); static void skl_pfit_enable(const struct intel_crtc_state *crtc_state); static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); static void intel_modeset_setup_hw_state(struct drm_device *dev, struct drm_modeset_acquire_ctx *ctx); /* returns HPLL frequency in kHz */ int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) { int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; /* Obtain SKU information */ hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & CCK_FUSE_HPLL_FREQ_MASK; return vco_freq[hpll_freq] * 1000; } int vlv_get_cck_clock(struct drm_i915_private *dev_priv, const char *name, u32 reg, int ref_freq) { u32 val; int divider; val = vlv_cck_read(dev_priv, reg); divider = val & CCK_FREQUENCY_VALUES; drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != (divider << CCK_FREQUENCY_STATUS_SHIFT), "%s change in progress\n", name); return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); } int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, const char *name, u32 reg) { int hpll; vlv_cck_get(dev_priv); if (dev_priv->hpll_freq == 0) dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); vlv_cck_put(dev_priv); return hpll; } static void intel_update_czclk(struct drm_i915_private *dev_priv) { if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) return; dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", CCK_CZ_CLOCK_CONTROL); drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", dev_priv->czclk_freq); } /* WA Display #0827: Gen9:all */ static void skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) { if (enable) intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); else intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); } /* Wa_2006604312:icl,ehl */ static void icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) { if (enable) intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); else intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); } static bool is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) { return crtc_state->master_transcoder != INVALID_TRANSCODER; } static bool is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) { return crtc_state->sync_mode_slaves_mask != 0; } bool is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) { return is_trans_port_sync_master(crtc_state) || is_trans_port_sync_slave(crtc_state); } static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, enum pipe pipe) { i915_reg_t reg = PIPEDSL(pipe); u32 line1, line2; u32 line_mask; if (IS_GEN(dev_priv, 2)) line_mask = DSL_LINEMASK_GEN2; else line_mask = DSL_LINEMASK_GEN3; line1 = intel_de_read(dev_priv, reg) & line_mask; msleep(5); line2 = intel_de_read(dev_priv, reg) & line_mask; return line1 != line2; } static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* Wait for the display line to settle/start moving */ if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) drm_err(&dev_priv->drm, "pipe %c scanline %s wait timed out\n", pipe_name(pipe), onoff(state)); } static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) { wait_for_pipe_scanline_moving(crtc, false); } static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) { wait_for_pipe_scanline_moving(crtc, true); } static void intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (INTEL_GEN(dev_priv) >= 4) { enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; i915_reg_t reg = PIPECONF(cpu_transcoder); /* Wait for the Pipe State to go off */ if (intel_de_wait_for_clear(dev_priv, reg, I965_PIPECONF_ACTIVE, 100)) drm_WARN(&dev_priv->drm, 1, "pipe_off wait timed out\n"); } else { intel_wait_for_pipe_scanline_stopped(crtc); } } /* Only for pre-ILK configs */ void assert_pll(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { u32 val; bool cur_state; val = intel_de_read(dev_priv, DPLL(pipe)); cur_state = !!(val & DPLL_VCO_ENABLE); I915_STATE_WARN(cur_state != state, "PLL state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } /* XXX: the dsi pll is shared between MIPI DSI ports */ void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) { u32 val; bool cur_state; vlv_cck_get(dev_priv); val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); vlv_cck_put(dev_priv); cur_state = val & DSI_PLL_VCO_EN; I915_STATE_WARN(cur_state != state, "DSI PLL state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } static void assert_fdi_tx(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { bool cur_state; if (HAS_DDI(dev_priv)) { /* * DDI does not have a specific FDI_TX register. * * FDI is never fed from EDP transcoder * so pipe->transcoder cast is fine here. */ enum transcoder cpu_transcoder = (enum transcoder)pipe; u32 val = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)); cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); } else { u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); cur_state = !!(val & FDI_TX_ENABLE); } I915_STATE_WARN(cur_state != state, "FDI TX state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) static void assert_fdi_rx(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { u32 val; bool cur_state; val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); cur_state = !!(val & FDI_RX_ENABLE); I915_STATE_WARN(cur_state != state, "FDI RX state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 val; /* ILK FDI PLL is always enabled */ if (IS_GEN(dev_priv, 5)) return; /* On Haswell, DDI ports are responsible for the FDI PLL setup */ if (HAS_DDI(dev_priv)) return; val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); } void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { u32 val; bool cur_state; val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); cur_state = !!(val & FDI_RX_PLL_ENABLE); I915_STATE_WARN(cur_state != state, "FDI RX PLL assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) { i915_reg_t pp_reg; u32 val; enum pipe panel_pipe = INVALID_PIPE; bool locked = true; if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) return; if (HAS_PCH_SPLIT(dev_priv)) { u32 port_sel; pp_reg = PP_CONTROL(0); port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; switch (port_sel) { case PANEL_PORT_SELECT_LVDS: intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); break; case PANEL_PORT_SELECT_DPA: intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); break; case PANEL_PORT_SELECT_DPC: intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); break; case PANEL_PORT_SELECT_DPD: intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); break; default: MISSING_CASE(port_sel); break; } } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { /* presumably write lock depends on pipe, not port select */ pp_reg = PP_CONTROL(pipe); panel_pipe = pipe; } else { u32 port_sel; pp_reg = PP_CONTROL(0); port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; drm_WARN_ON(&dev_priv->drm, port_sel != PANEL_PORT_SELECT_LVDS); intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); } val = intel_de_read(dev_priv, pp_reg); if (!(val & PANEL_POWER_ON) || ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) locked = false; I915_STATE_WARN(panel_pipe == pipe && locked, "panel assertion failure, pipe %c regs locked\n", pipe_name(pipe)); } void assert_pipe(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder, bool state) { bool cur_state; enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; /* we keep both pipes enabled on 830 */ if (IS_I830(dev_priv)) state = true; power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (wakeref) { u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); cur_state = !!(val & PIPECONF_ENABLE); intel_display_power_put(dev_priv, power_domain, wakeref); } else { cur_state = false; } I915_STATE_WARN(cur_state != state, "transcoder %s assertion failure (expected %s, current %s)\n", transcoder_name(cpu_transcoder), onoff(state), onoff(cur_state)); } static void assert_plane(struct intel_plane *plane, bool state) { enum pipe pipe; bool cur_state; cur_state = plane->get_hw_state(plane, &pipe); I915_STATE_WARN(cur_state != state, "%s assertion failure (expected %s, current %s)\n", plane->base.name, onoff(state), onoff(cur_state)); } #define assert_plane_enabled(p) assert_plane(p, true) #define assert_plane_disabled(p) assert_plane(p, false) static void assert_planes_disabled(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_plane *plane; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) assert_plane_disabled(plane); } void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 val; bool enabled; val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); enabled = !!(val & TRANS_ENABLE); I915_STATE_WARN(enabled, "transcoder assertion failed, should be off on pipe %c but is still active\n", pipe_name(pipe)); } static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, enum pipe pipe, enum port port, i915_reg_t dp_reg) { enum pipe port_pipe; bool state; state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); I915_STATE_WARN(state && port_pipe == pipe, "PCH DP %c enabled on transcoder %c, should be disabled\n", port_name(port), pipe_name(pipe)); I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, "IBX PCH DP %c still using transcoder B\n", port_name(port)); } static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, enum pipe pipe, enum port port, i915_reg_t hdmi_reg) { enum pipe port_pipe; bool state; state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); I915_STATE_WARN(state && port_pipe == pipe, "PCH HDMI %c enabled on transcoder %c, should be disabled\n", port_name(port), pipe_name(pipe)); I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, "IBX PCH HDMI %c still using transcoder B\n", port_name(port)); } static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { enum pipe port_pipe; assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && port_pipe == pipe, "PCH VGA enabled on transcoder %c, should be disabled\n", pipe_name(pipe)); I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && port_pipe == pipe, "PCH LVDS enabled on transcoder %c, should be disabled\n", pipe_name(pipe)); /* PCH SDVOB multiplex with HDMIB */ assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); } static void _vlv_enable_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); intel_de_posting_read(dev_priv, DPLL(pipe)); udelay(150); if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe); } static void vlv_enable_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); /* PLL is protected by panel, make sure we can write it */ assert_panel_unlocked(dev_priv, pipe); if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) _vlv_enable_pll(crtc, pipe_config); intel_de_write(dev_priv, DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); intel_de_posting_read(dev_priv, DPLL_MD(pipe)); } static void _chv_enable_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; enum dpio_channel port = vlv_pipe_to_channel(pipe); u32 tmp; vlv_dpio_get(dev_priv); /* Enable back the 10bit clock to display controller */ tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); tmp |= DPIO_DCLKP_EN; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); vlv_dpio_put(dev_priv); /* * Need to wait > 100ns between dclkp clock enable bit and PLL enable. */ udelay(1); /* Enable PLL */ intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); /* Check PLL is locked */ if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe); } static void chv_enable_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); /* PLL is protected by panel, make sure we can write it */ assert_panel_unlocked(dev_priv, pipe); if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) _chv_enable_pll(crtc, pipe_config); if (pipe != PIPE_A) { /* * WaPixelRepeatModeFixForC0:chv * * DPLLCMD is AWOL. Use chicken bits to propagate * the value from DPLLBMD to either pipe B or C. */ intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); intel_de_write(dev_priv, DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md); intel_de_write(dev_priv, CBR4_VLV, 0); dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; /* * DPLLB VGA mode also seems to cause problems. * We should always have it disabled. */ drm_WARN_ON(&dev_priv->drm, (intel_de_read(dev_priv, DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0); } else { intel_de_write(dev_priv, DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); intel_de_posting_read(dev_priv, DPLL_MD(pipe)); } } static bool i9xx_has_pps(struct drm_i915_private *dev_priv) { if (IS_I830(dev_priv)) return false; return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); } static void i9xx_enable_pll(struct intel_crtc *crtc, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); i915_reg_t reg = DPLL(crtc->pipe); u32 dpll = crtc_state->dpll_hw_state.dpll; int i; assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); /* PLL is protected by panel, make sure we can write it */ if (i9xx_has_pps(dev_priv)) assert_panel_unlocked(dev_priv, crtc->pipe); /* * Apparently we need to have VGA mode enabled prior to changing * the P1/P2 dividers. Otherwise the DPLL will keep using the old * dividers, even though the register value does change. */ intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS); intel_de_write(dev_priv, reg, dpll); /* Wait for the clocks to stabilize. */ intel_de_posting_read(dev_priv, reg); udelay(150); if (INTEL_GEN(dev_priv) >= 4) { intel_de_write(dev_priv, DPLL_MD(crtc->pipe), crtc_state->dpll_hw_state.dpll_md); } else { /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ intel_de_write(dev_priv, reg, dpll); } /* We do this three times for luck */ for (i = 0; i < 3; i++) { intel_de_write(dev_priv, reg, dpll); intel_de_posting_read(dev_priv, reg); udelay(150); /* wait for warmup */ } } static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* Don't disable pipe or pipe PLLs if needed */ if (IS_I830(dev_priv)) return; /* Make sure the pipe isn't still relying on us */ assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); intel_de_posting_read(dev_priv, DPLL(pipe)); } static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 val; /* Make sure the pipe isn't still relying on us */ assert_pipe_disabled(dev_priv, (enum transcoder)pipe); val = DPLL_INTEGRATED_REF_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; if (pipe != PIPE_A) val |= DPLL_INTEGRATED_CRI_CLK_VLV; intel_de_write(dev_priv, DPLL(pipe), val); intel_de_posting_read(dev_priv, DPLL(pipe)); } static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) { enum dpio_channel port = vlv_pipe_to_channel(pipe); u32 val; /* Make sure the pipe isn't still relying on us */ assert_pipe_disabled(dev_priv, (enum transcoder)pipe); val = DPLL_SSC_REF_CLK_CHV | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; if (pipe != PIPE_A) val |= DPLL_INTEGRATED_CRI_CLK_VLV; intel_de_write(dev_priv, DPLL(pipe), val); intel_de_posting_read(dev_priv, DPLL(pipe)); vlv_dpio_get(dev_priv); /* Disable 10bit clock to display controller */ val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); val &= ~DPIO_DCLKP_EN; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); vlv_dpio_put(dev_priv); } void vlv_wait_port_ready(struct drm_i915_private *dev_priv, struct intel_digital_port *dig_port, unsigned int expected_mask) { u32 port_mask; i915_reg_t dpll_reg; switch (dig_port->base.port) { case PORT_B: port_mask = DPLL_PORTB_READY_MASK; dpll_reg = DPLL(0); break; case PORT_C: port_mask = DPLL_PORTC_READY_MASK; dpll_reg = DPLL(0); expected_mask <<= 4; break; case PORT_D: port_mask = DPLL_PORTD_READY_MASK; dpll_reg = DPIO_PHY_STATUS; break; default: BUG(); } if (intel_de_wait_for_register(dev_priv, dpll_reg, port_mask, expected_mask, 1000)) drm_WARN(&dev_priv->drm, 1, "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", dig_port->base.base.base.id, dig_port->base.base.name, intel_de_read(dev_priv, dpll_reg) & port_mask, expected_mask); } static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; i915_reg_t reg; u32 val, pipeconf_val; /* Make sure PCH DPLL is enabled */ assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); /* FDI must be feeding us bits for PCH ports */ assert_fdi_tx_enabled(dev_priv, pipe); assert_fdi_rx_enabled(dev_priv, pipe); if (HAS_PCH_CPT(dev_priv)) { reg = TRANS_CHICKEN2(pipe); val = intel_de_read(dev_priv, reg); /* * Workaround: Set the timing override bit * before enabling the pch transcoder. */ val |= TRANS_CHICKEN2_TIMING_OVERRIDE; /* Configure frame start delay to match the CPU */ val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); intel_de_write(dev_priv, reg, val); } reg = PCH_TRANSCONF(pipe); val = intel_de_read(dev_priv, reg); pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); if (HAS_PCH_IBX(dev_priv)) { /* Configure frame start delay to match the CPU */ val &= ~TRANS_FRAME_START_DELAY_MASK; val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); /* * Make the BPC in transcoder be consistent with * that in pipeconf reg. For HDMI we must use 8bpc * here for both 8bpc and 12bpc. */ val &= ~PIPECONF_BPC_MASK; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) val |= PIPECONF_8BPC; else val |= pipeconf_val & PIPECONF_BPC_MASK; } val &= ~TRANS_INTERLACE_MASK; if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { if (HAS_PCH_IBX(dev_priv) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) val |= TRANS_LEGACY_INTERLACED_ILK; else val |= TRANS_INTERLACED; } else { val |= TRANS_PROGRESSIVE; } intel_de_write(dev_priv, reg, val | TRANS_ENABLE); if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", pipe_name(pipe)); } static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { u32 val, pipeconf_val; /* FDI must be feeding us bits for PCH ports */ assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); assert_fdi_rx_enabled(dev_priv, PIPE_A); val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); /* Workaround: set timing override bit. */ val |= TRANS_CHICKEN2_TIMING_OVERRIDE; /* Configure frame start delay to match the CPU */ val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); val = TRANS_ENABLE; pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == PIPECONF_INTERLACED_ILK) val |= TRANS_INTERLACED; else val |= TRANS_PROGRESSIVE; intel_de_write(dev_priv, LPT_TRANSCONF, val); if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, TRANS_STATE_ENABLE, 100)) drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); } static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, enum pipe pipe) { i915_reg_t reg; u32 val; /* FDI relies on the transcoder */ assert_fdi_tx_disabled(dev_priv, pipe); assert_fdi_rx_disabled(dev_priv, pipe); /* Ports must be off as well */ assert_pch_ports_disabled(dev_priv, pipe); reg = PCH_TRANSCONF(pipe); val = intel_de_read(dev_priv, reg); val &= ~TRANS_ENABLE; intel_de_write(dev_priv, reg, val); /* wait for PCH transcoder off, transcoder state */ if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", pipe_name(pipe)); if (HAS_PCH_CPT(dev_priv)) { /* Workaround: Clear the timing override chicken bit again. */ reg = TRANS_CHICKEN2(pipe); val = intel_de_read(dev_priv, reg); val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; intel_de_write(dev_priv, reg, val); } } void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) { u32 val; val = intel_de_read(dev_priv, LPT_TRANSCONF); val &= ~TRANS_ENABLE; intel_de_write(dev_priv, LPT_TRANSCONF, val); /* wait for PCH transcoder off, transcoder state */ if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, TRANS_STATE_ENABLE, 50)) drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); /* Workaround: clear timing override bit. */ val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); } enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (HAS_PCH_LPT(dev_priv)) return PIPE_A; else return crtc->pipe; } void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; enum pipe pipe = crtc->pipe; i915_reg_t reg; u32 val; drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); assert_planes_disabled(crtc); /* * A pipe without a PLL won't actually be able to drive bits from * a plane. On ILK+ the pipe PLLs are integrated, so we don't * need the check. */ if (HAS_GMCH(dev_priv)) { if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) assert_dsi_pll_enabled(dev_priv); else assert_pll_enabled(dev_priv, pipe); } else { if (new_crtc_state->has_pch_encoder) { /* if driving the PCH, we need FDI enabled */ assert_fdi_rx_pll_enabled(dev_priv, intel_crtc_pch_transcoder(crtc)); assert_fdi_tx_pll_enabled(dev_priv, (enum pipe) cpu_transcoder); } /* FIXME: assert CPU port conditions for SNB+ */ } trace_intel_pipe_enable(crtc); reg = PIPECONF(cpu_transcoder); val = intel_de_read(dev_priv, reg); if (val & PIPECONF_ENABLE) { /* we keep both pipes enabled on 830 */ drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); return; } intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); intel_de_posting_read(dev_priv, reg); /* * Until the pipe starts PIPEDSL reads will return a stale value, * which causes an apparent vblank timestamp jump when PIPEDSL * resets to its proper value. That also messes up the frame count * when it's derived from the timestamps. So let's wait for the * pipe to start properly before we call drm_crtc_vblank_on() */ if (intel_crtc_max_vblank_count(new_crtc_state) == 0) intel_wait_for_pipe_scanline_moving(crtc); } void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; enum pipe pipe = crtc->pipe; i915_reg_t reg; u32 val; drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); /* * Make sure planes won't keep trying to pump pixels to us, * or we might hang the display. */ assert_planes_disabled(crtc); trace_intel_pipe_disable(crtc); reg = PIPECONF(cpu_transcoder); val = intel_de_read(dev_priv, reg); if ((val & PIPECONF_ENABLE) == 0) return; /* * Double wide has implications for planes * so best keep it disabled when not needed. */ if (old_crtc_state->double_wide) val &= ~PIPECONF_DOUBLE_WIDE; /* Don't disable pipe or pipe PLLs if needed */ if (!IS_I830(dev_priv)) val &= ~PIPECONF_ENABLE; intel_de_write(dev_priv, reg, val); if ((val & PIPECONF_ENABLE) == 0) intel_wait_for_pipe_off(old_crtc_state); } static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) { return IS_GEN(dev_priv, 2) ? 2048 : 4096; } static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane) { if (!is_ccs_modifier(fb->modifier)) return false; return plane >= fb->format->num_planes / 2; } static bool is_gen12_ccs_modifier(u64 modifier) { return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC || modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; } static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane) { return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane); } static bool is_gen12_ccs_cc_plane(const struct drm_framebuffer *fb, int plane) { return fb->modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC && plane == 2; } static bool is_aux_plane(const struct drm_framebuffer *fb, int plane) { if (is_ccs_modifier(fb->modifier)) return is_ccs_plane(fb, plane); return plane == 1; } static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane) { drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) || (main_plane && main_plane >= fb->format->num_planes / 2)); return fb->format->num_planes / 2 + main_plane; } static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane) { drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) || ccs_plane < fb->format->num_planes / 2); if (is_gen12_ccs_cc_plane(fb, ccs_plane)) return 0; return ccs_plane - fb->format->num_planes / 2; } int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane) { struct drm_i915_private *i915 = to_i915(fb->dev); if (is_ccs_modifier(fb->modifier)) return main_to_ccs_plane(fb, main_plane); else if (INTEL_GEN(i915) < 11 && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) return 1; else return 0; } bool intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, u64 modifier) { return info->is_yuv && info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); } static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb, int color_plane) { return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) && color_plane == 1; } static unsigned int intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) { struct drm_i915_private *dev_priv = to_i915(fb->dev); unsigned int cpp = fb->format->cpp[color_plane]; switch (fb->modifier) { case DRM_FORMAT_MOD_LINEAR: return intel_tile_size(dev_priv); case I915_FORMAT_MOD_X_TILED: if (IS_GEN(dev_priv, 2)) return 128; else return 512; case I915_FORMAT_MOD_Y_TILED_CCS: if (is_ccs_plane(fb, color_plane)) return 128; fallthrough; case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: if (is_ccs_plane(fb, color_plane)) return 64; fallthrough; case I915_FORMAT_MOD_Y_TILED: if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv)) return 128; else return 512; case I915_FORMAT_MOD_Yf_TILED_CCS: if (is_ccs_plane(fb, color_plane)) return 128; fallthrough; case I915_FORMAT_MOD_Yf_TILED: switch (cpp) { case 1: return 64; case 2: case 4: return 128; case 8: case 16: return 256; default: MISSING_CASE(cpp); return cpp; } break; default: MISSING_CASE(fb->modifier); return cpp; } } static unsigned int intel_tile_height(const struct drm_framebuffer *fb, int color_plane) { if (is_gen12_ccs_plane(fb, color_plane)) return 1; return intel_tile_size(to_i915(fb->dev)) / intel_tile_width_bytes(fb, color_plane); } /* Return the tile dimensions in pixel units */ static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, unsigned int *tile_width, unsigned int *tile_height) { unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); unsigned int cpp = fb->format->cpp[color_plane]; *tile_width = tile_width_bytes / cpp; *tile_height = intel_tile_height(fb, color_plane); } static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb, int color_plane) { unsigned int tile_width, tile_height; intel_tile_dims(fb, color_plane, &tile_width, &tile_height); return fb->pitches[color_plane] * tile_height; } unsigned int intel_fb_align_height(const struct drm_framebuffer *fb, int color_plane, unsigned int height) { unsigned int tile_height = intel_tile_height(fb, color_plane); return ALIGN(height, tile_height); } unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) { unsigned int size = 0; int i; for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) size += rot_info->plane[i].width * rot_info->plane[i].height; return size; } unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) { unsigned int size = 0; int i; for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) size += rem_info->plane[i].width * rem_info->plane[i].height; return size; } static void intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, const struct drm_framebuffer *fb, unsigned int rotation) { view->type = I915_GGTT_VIEW_NORMAL; if (drm_rotation_90_or_270(rotation)) { view->type = I915_GGTT_VIEW_ROTATED; view->rotated = to_intel_framebuffer(fb)->rot_info; } } static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv) { if (IS_I830(dev_priv)) return 16 * 1024; else if (IS_I85X(dev_priv)) return 256; else if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) return 32; else return 4 * 1024; } static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) >= 9) return 256 * 1024; else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) return 128 * 1024; else if (INTEL_GEN(dev_priv) >= 4) return 4 * 1024; else return 0; } static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, int color_plane) { struct drm_i915_private *dev_priv = to_i915(fb->dev); /* AUX_DIST needs only 4K alignment */ if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) || is_ccs_plane(fb, color_plane)) return 4096; switch (fb->modifier) { case DRM_FORMAT_MOD_LINEAR: return intel_linear_alignment(dev_priv); case I915_FORMAT_MOD_X_TILED: if (INTEL_GEN(dev_priv) >= 9) return 256 * 1024; return 0; case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: if (is_semiplanar_uv_plane(fb, color_plane)) return intel_tile_row_size(fb, color_plane); fallthrough; case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: return 16 * 1024; case I915_FORMAT_MOD_Y_TILED_CCS: case I915_FORMAT_MOD_Yf_TILED_CCS: case I915_FORMAT_MOD_Y_TILED: if (INTEL_GEN(dev_priv) >= 12 && is_semiplanar_uv_plane(fb, color_plane)) return intel_tile_row_size(fb, color_plane); fallthrough; case I915_FORMAT_MOD_Yf_TILED: return 1 * 1024 * 1024; default: MISSING_CASE(fb->modifier); return 0; } } static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); return INTEL_GEN(dev_priv) < 4 || (plane->has_fbc && plane_state->view.type == I915_GGTT_VIEW_NORMAL); } struct i915_vma * intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, const struct i915_ggtt_view *view, bool uses_fence, unsigned long *out_flags) { struct drm_device *dev = fb->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_gem_object *obj = intel_fb_obj(fb); intel_wakeref_t wakeref; struct i915_vma *vma; unsigned int pinctl; u32 alignment; if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) return ERR_PTR(-EINVAL); alignment = intel_surf_alignment(fb, 0); if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) return ERR_PTR(-EINVAL); /* Note that the w/a also requires 64 PTE of padding following the * bo. We currently fill all unused PTE with the shadow page and so * we should always have valid PTE following the scanout preventing * the VT-d warning. */ if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) alignment = 256 * 1024; /* * Global gtt pte registers are special registers which actually forward * writes to a chunk of system memory. Which means that there is no risk * that the register values disappear as soon as we call * intel_runtime_pm_put(), so it is correct to wrap only the * pin/unpin/fence and not more. */ wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); atomic_inc(&dev_priv->gpu_error.pending_fb_pin); /* * Valleyview is definitely limited to scanning out the first * 512MiB. Lets presume this behaviour was inherited from the * g4x display engine and that all earlier gen are similarly * limited. Testing suggests that it is a little more * complicated than this. For example, Cherryview appears quite * happy to scanout from anywhere within its global aperture. */ pinctl = 0; if (HAS_GMCH(dev_priv)) pinctl |= PIN_MAPPABLE; vma = i915_gem_object_pin_to_display_plane(obj, alignment, view, pinctl); if (IS_ERR(vma)) goto err; if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { int ret; /* * Install a fence for tiled scan-out. Pre-i965 always needs a * fence, whereas 965+ only requires a fence if using * framebuffer compression. For simplicity, we always, when * possible, install a fence as the cost is not that onerous. * * If we fail to fence the tiled scanout, then either the * modeset will reject the change (which is highly unlikely as * the affected systems, all but one, do not have unmappable * space) or we will not be able to enable full powersaving * techniques (also likely not to apply due to various limits * FBC and the like impose on the size of the buffer, which * presumably we violated anyway with this unmappable buffer). * Anyway, it is presumably better to stumble onwards with * something and try to run the system in a "less than optimal" * mode that matches the user configuration. */ ret = i915_vma_pin_fence(vma); if (ret != 0 && INTEL_GEN(dev_priv) < 4) { i915_gem_object_unpin_from_display_plane(vma); vma = ERR_PTR(ret); goto err; } if (ret == 0 && vma->fence) *out_flags |= PLANE_HAS_FENCE; } i915_vma_get(vma); err: atomic_dec(&dev_priv->gpu_error.pending_fb_pin); intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return vma; } void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) { i915_gem_object_lock(vma->obj, NULL); if (flags & PLANE_HAS_FENCE) i915_vma_unpin_fence(vma); i915_gem_object_unpin_from_display_plane(vma); i915_gem_object_unlock(vma->obj); i915_vma_put(vma); } static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane, unsigned int rotation) { if (drm_rotation_90_or_270(rotation)) return to_intel_framebuffer(fb)->rotated[color_plane].pitch; else return fb->pitches[color_plane]; } /* * Convert the x/y offsets into a linear offset. * Only valid with 0/180 degree rotation, which is fine since linear * offset is only used with linear buffers on pre-hsw and tiled buffers * with gen2/3, and 90/270 degree rotations isn't supported on any of them. */ u32 intel_fb_xy_to_linear(int x, int y, const struct intel_plane_state *state, int color_plane) { const struct drm_framebuffer *fb = state->hw.fb; unsigned int cpp = fb->format->cpp[color_plane]; unsigned int pitch = state->color_plane[color_plane].stride; return y * pitch + x * cpp; } /* * Add the x/y offsets derived from fb->offsets[] to the user * specified plane src x/y offsets. The resulting x/y offsets * specify the start of scanout from the beginning of the gtt mapping. */ void intel_add_fb_offsets(int *x, int *y, const struct intel_plane_state *state, int color_plane) { *x += state->color_plane[color_plane].x; *y += state->color_plane[color_plane].y; } static u32 intel_adjust_tile_offset(int *x, int *y, unsigned int tile_width, unsigned int tile_height, unsigned int tile_size, unsigned int pitch_tiles, u32 old_offset, u32 new_offset) { unsigned int pitch_pixels = pitch_tiles * tile_width; unsigned int tiles; WARN_ON(old_offset & (tile_size - 1)); WARN_ON(new_offset & (tile_size - 1)); WARN_ON(new_offset > old_offset); tiles = (old_offset - new_offset) / tile_size; *y += tiles / pitch_tiles * tile_height; *x += tiles % pitch_tiles * tile_width; /* minimize x in case it got needlessly big */ *y += *x / pitch_pixels * tile_height; *x %= pitch_pixels; return new_offset; } static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane) { return fb->modifier == DRM_FORMAT_MOD_LINEAR || is_gen12_ccs_plane(fb, color_plane); } static u32 intel_adjust_aligned_offset(int *x, int *y, const struct drm_framebuffer *fb, int color_plane, unsigned int rotation, unsigned int pitch, u32 old_offset, u32 new_offset) { struct drm_i915_private *dev_priv = to_i915(fb->dev); unsigned int cpp = fb->format->cpp[color_plane]; drm_WARN_ON(&dev_priv->drm, new_offset > old_offset); if (!is_surface_linear(fb, color_plane)) { unsigned int tile_size, tile_width, tile_height; unsigned int pitch_tiles; tile_size = intel_tile_size(dev_priv); intel_tile_dims(fb, color_plane, &tile_width, &tile_height); if (drm_rotation_90_or_270(rotation)) { pitch_tiles = pitch / tile_height; swap(tile_width, tile_height); } else { pitch_tiles = pitch / (tile_width * cpp); } intel_adjust_tile_offset(x, y, tile_width, tile_height, tile_size, pitch_tiles, old_offset, new_offset); } else { old_offset += *y * pitch + *x * cpp; *y = (old_offset - new_offset) / pitch; *x = ((old_offset - new_offset) - *y * pitch) / cpp; } return new_offset; } /* * Adjust the tile offset by moving the difference into * the x/y offsets. */ static u32 intel_plane_adjust_aligned_offset(int *x, int *y, const struct intel_plane_state *state, int color_plane, u32 old_offset, u32 new_offset) { return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane, state->hw.rotation, state->color_plane[color_plane].stride, old_offset, new_offset); } /* * Computes the aligned offset to the base tile and adjusts * x, y. bytes per pixel is assumed to be a power-of-two. * * In the 90/270 rotated case, x and y are assumed * to be already rotated to match the rotated GTT view, and * pitch is the tile_height aligned framebuffer height. * * This function is used when computing the derived information * under intel_framebuffer, so using any of that information * here is not allowed. Anything under drm_framebuffer can be * used. This is why the user has to pass in the pitch since it * is specified in the rotated orientation. */ static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv, int *x, int *y, const struct drm_framebuffer *fb, int color_plane, unsigned int pitch, unsigned int rotation, u32 alignment) { unsigned int cpp = fb->format->cpp[color_plane]; u32 offset, offset_aligned; if (!is_surface_linear(fb, color_plane)) { unsigned int tile_size, tile_width, tile_height; unsigned int tile_rows, tiles, pitch_tiles; tile_size = intel_tile_size(dev_priv); intel_tile_dims(fb, color_plane, &tile_width, &tile_height); if (drm_rotation_90_or_270(rotation)) { pitch_tiles = pitch / tile_height; swap(tile_width, tile_height); } else { pitch_tiles = pitch / (tile_width * cpp); } tile_rows = *y / tile_height; *y %= tile_height; tiles = *x / tile_width; *x %= tile_width; offset = (tile_rows * pitch_tiles + tiles) * tile_size; offset_aligned = offset; if (alignment) offset_aligned = rounddown(offset_aligned, alignment); intel_adjust_tile_offset(x, y, tile_width, tile_height, tile_size, pitch_tiles, offset, offset_aligned); } else { offset = *y * pitch + *x * cpp; offset_aligned = offset; if (alignment) { offset_aligned = rounddown(offset_aligned, alignment); *y = (offset % alignment) / pitch; *x = ((offset % alignment) - *y * pitch) / cpp; } else { *y = *x = 0; } } return offset_aligned; } u32 intel_plane_compute_aligned_offset(int *x, int *y, const struct intel_plane_state *state, int color_plane) { struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); const struct drm_framebuffer *fb = state->hw.fb; unsigned int rotation = state->hw.rotation; int pitch = state->color_plane[color_plane].stride; u32 alignment; if (intel_plane->id == PLANE_CURSOR) alignment = intel_cursor_alignment(dev_priv); else alignment = intel_surf_alignment(fb, color_plane); return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane, pitch, rotation, alignment); } /* Convert the fb->offset[] into x/y offsets */ static int intel_fb_offset_to_xy(int *x, int *y, const struct drm_framebuffer *fb, int color_plane) { struct drm_i915_private *dev_priv = to_i915(fb->dev); unsigned int height; u32 alignment; if (INTEL_GEN(dev_priv) >= 12 && is_semiplanar_uv_plane(fb, color_plane)) alignment = intel_tile_row_size(fb, color_plane); else if (fb->modifier != DRM_FORMAT_MOD_LINEAR) alignment = intel_tile_size(dev_priv); else alignment = 0; if (alignment != 0 && fb->offsets[color_plane] % alignment) { drm_dbg_kms(&dev_priv->drm, "Misaligned offset 0x%08x for color plane %d\n", fb->offsets[color_plane], color_plane); return -EINVAL; } height = drm_framebuffer_plane_height(fb->height, fb, color_plane); height = ALIGN(height, intel_tile_height(fb, color_plane)); /* Catch potential overflows early */ if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), fb->offsets[color_plane])) { drm_dbg_kms(&dev_priv->drm, "Bad offset 0x%08x or pitch %d for color plane %d\n", fb->offsets[color_plane], fb->pitches[color_plane], color_plane); return -ERANGE; } *x = 0; *y = 0; intel_adjust_aligned_offset(x, y, fb, color_plane, DRM_MODE_ROTATE_0, fb->pitches[color_plane], fb->offsets[color_plane], 0); return 0; } static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) { switch (fb_modifier) { case I915_FORMAT_MOD_X_TILED: return I915_TILING_X; case I915_FORMAT_MOD_Y_TILED: case I915_FORMAT_MOD_Y_TILED_CCS: case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: return I915_TILING_Y; default: return I915_TILING_NONE; } } /* * From the Sky Lake PRM: * "The Color Control Surface (CCS) contains the compression status of * the cache-line pairs. The compression state of the cache-line pair * is specified by 2 bits in the CCS. Each CCS cache-line represents * an area on the main surface of 16 x16 sets of 128 byte Y-tiled * cache-line-pairs. CCS is always Y tiled." * * Since cache line pairs refers to horizontally adjacent cache lines, * each cache line in the CCS corresponds to an area of 32x16 cache * lines on the main surface. Since each pixel is 4 bytes, this gives * us a ratio of one byte in the CCS for each 8x16 pixels in the * main surface. */ static const struct drm_format_info skl_ccs_formats[] = { { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, }; /* * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles * in the main surface. With 4 byte pixels and each Y-tile having dimensions of * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in * the main surface. */ static const struct drm_format_info gen12_ccs_formats[] = { { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 1, .vsub = 1, }, { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 1, .vsub = 1, }, { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 1, .vsub = 1, .has_alpha = true }, { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 1, .vsub = 1, .has_alpha = true }, { .format = DRM_FORMAT_YUYV, .num_planes = 2, .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 2, .vsub = 1, .is_yuv = true }, { .format = DRM_FORMAT_YVYU, .num_planes = 2, .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 2, .vsub = 1, .is_yuv = true }, { .format = DRM_FORMAT_UYVY, .num_planes = 2, .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 2, .vsub = 1, .is_yuv = true }, { .format = DRM_FORMAT_VYUY, .num_planes = 2, .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 2, .vsub = 1, .is_yuv = true }, { .format = DRM_FORMAT_NV12, .num_planes = 4, .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, .hsub = 2, .vsub = 2, .is_yuv = true }, { .format = DRM_FORMAT_P010, .num_planes = 4, .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, .hsub = 2, .vsub = 2, .is_yuv = true }, { .format = DRM_FORMAT_P012, .num_planes = 4, .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, .hsub = 2, .vsub = 2, .is_yuv = true }, { .format = DRM_FORMAT_P016, .num_planes = 4, .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, .hsub = 2, .vsub = 2, .is_yuv = true }, }; /* * Same as gen12_ccs_formats[] above, but with additional surface used * to pass Clear Color information in plane 2 with 64 bits of data. */ static const struct drm_format_info gen12_ccs_cc_formats[] = { { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 3, .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, .hsub = 1, .vsub = 1, }, { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 3, .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, .hsub = 1, .vsub = 1, }, { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 3, .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, .hsub = 1, .vsub = 1, .has_alpha = true }, { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 3, .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, .hsub = 1, .vsub = 1, .has_alpha = true }, }; static const struct drm_format_info * lookup_format_info(const struct drm_format_info formats[], int num_formats, u32 format) { int i; for (i = 0; i < num_formats; i++) { if (formats[i].format == format) return &formats[i]; } return NULL; } static const struct drm_format_info * intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) { switch (cmd->modifier[0]) { case I915_FORMAT_MOD_Y_TILED_CCS: case I915_FORMAT_MOD_Yf_TILED_CCS: return lookup_format_info(skl_ccs_formats, ARRAY_SIZE(skl_ccs_formats), cmd->pixel_format); case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: return lookup_format_info(gen12_ccs_formats, ARRAY_SIZE(gen12_ccs_formats), cmd->pixel_format); case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: return lookup_format_info(gen12_ccs_cc_formats, ARRAY_SIZE(gen12_ccs_cc_formats), cmd->pixel_format); default: return NULL; } } bool is_ccs_modifier(u64 modifier) { return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC || modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS || modifier == I915_FORMAT_MOD_Y_TILED_CCS || modifier == I915_FORMAT_MOD_Yf_TILED_CCS; } static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) { return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)], 512) * 64; } u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, u32 pixel_format, u64 modifier) { struct intel_crtc *crtc; struct intel_plane *plane; /* * We assume the primary plane for pipe A has * the highest stride limits of them all, * if in case pipe A is disabled, use the first pipe from pipe_mask. */ crtc = intel_get_first_crtc(dev_priv); if (!crtc) return 0; plane = to_intel_plane(crtc->base.primary); return plane->max_stride(plane, pixel_format, modifier, DRM_MODE_ROTATE_0); } static u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, u32 pixel_format, u64 modifier) { /* * Arbitrary limit for gen4+ chosen to match the * render engine max stride. * * The new CCS hash mode makes remapping impossible */ if (!is_ccs_modifier(modifier)) { if (INTEL_GEN(dev_priv) >= 7) return 256*1024; else if (INTEL_GEN(dev_priv) >= 4) return 128*1024; } return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); } static u32 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) { struct drm_i915_private *dev_priv = to_i915(fb->dev); u32 tile_width; if (is_surface_linear(fb, color_plane)) { u32 max_stride = intel_plane_fb_max_stride(dev_priv, fb->format->format, fb->modifier); /* * To make remapping with linear generally feasible * we need the stride to be page aligned. */ if (fb->pitches[color_plane] > max_stride && !is_ccs_modifier(fb->modifier)) return intel_tile_size(dev_priv); else return 64; } tile_width = intel_tile_width_bytes(fb, color_plane); if (is_ccs_modifier(fb->modifier)) { /* * Display WA #0531: skl,bxt,kbl,glk * * Render decompression and plane width > 3840 * combined with horizontal panning requires the * plane stride to be a multiple of 4. We'll just * require the entire fb to accommodate that to avoid * potential runtime errors at plane configuration time. */ if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840) tile_width *= 4; /* * The main surface pitch must be padded to a multiple of four * tile widths. */ else if (INTEL_GEN(dev_priv) >= 12) tile_width *= 4; } return tile_width; } bool intel_plane_can_remap(const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); const struct drm_framebuffer *fb = plane_state->hw.fb; int i; /* We don't want to deal with remapping with cursors */ if (plane->id == PLANE_CURSOR) return false; /* * The display engine limits already match/exceed the * render engine limits, so not much point in remapping. * Would also need to deal with the fence POT alignment * and gen2 2KiB GTT tile size. */ if (INTEL_GEN(dev_priv) < 4) return false; /* * The new CCS hash mode isn't compatible with remapping as * the virtual address of the pages affects the compressed data. */ if (is_ccs_modifier(fb->modifier)) return false; /* Linear needs a page aligned stride for remapping */ if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { unsigned int alignment = intel_tile_size(dev_priv) - 1; for (i = 0; i < fb->format->num_planes; i++) { if (fb->pitches[i] & alignment) return false; } } return true; } static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); const struct drm_framebuffer *fb = plane_state->hw.fb; unsigned int rotation = plane_state->hw.rotation; u32 stride, max_stride; /* * No remapping for invisible planes since we don't have * an actual source viewport to remap. */ if (!plane_state->uapi.visible) return false; if (!intel_plane_can_remap(plane_state)) return false; /* * FIXME: aux plane limits on gen9+ are * unclear in Bspec, for now no checking. */ stride = intel_fb_pitch(fb, 0, rotation); max_stride = plane->max_stride(plane, fb->format->format, fb->modifier, rotation); return stride > max_stride; } static void intel_fb_plane_get_subsampling(int *hsub, int *vsub, const struct drm_framebuffer *fb, int color_plane) { int main_plane; if (color_plane == 0) { *hsub = 1; *vsub = 1; return; } /* * TODO: Deduct the subsampling from the char block for all CCS * formats and planes. */ if (!is_gen12_ccs_plane(fb, color_plane)) { *hsub = fb->format->hsub; *vsub = fb->format->vsub; return; } main_plane = ccs_to_main_plane(fb, color_plane); *hsub = drm_format_info_block_width(fb->format, color_plane) / drm_format_info_block_width(fb->format, main_plane); /* * The min stride check in the core framebuffer_check() function * assumes that format->hsub applies to every plane except for the * first plane. That's incorrect for the CCS AUX plane of the first * plane, but for the above check to pass we must define the block * width with that subsampling applied to it. Adjust the width here * accordingly, so we can calculate the actual subsampling factor. */ if (main_plane == 0) *hsub *= fb->format->hsub; *vsub = 32; } static int intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y) { struct drm_i915_private *i915 = to_i915(fb->dev); struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); int main_plane; int hsub, vsub; int tile_width, tile_height; int ccs_x, ccs_y; int main_x, main_y; if (!is_ccs_plane(fb, ccs_plane) || is_gen12_ccs_cc_plane(fb, ccs_plane)) return 0; intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height); intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); tile_width *= hsub; tile_height *= vsub; ccs_x = (x * hsub) % tile_width; ccs_y = (y * vsub) % tile_height; main_plane = ccs_to_main_plane(fb, ccs_plane); main_x = intel_fb->normal[main_plane].x % tile_width; main_y = intel_fb->normal[main_plane].y % tile_height; /* * CCS doesn't have its own x/y offset register, so the intra CCS tile * x/y offsets must match between CCS and the main surface. */ if (main_x != ccs_x || main_y != ccs_y) { drm_dbg_kms(&i915->drm, "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", main_x, main_y, ccs_x, ccs_y, intel_fb->normal[main_plane].x, intel_fb->normal[main_plane].y, x, y); return -EINVAL; } return 0; } static void intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane) { int main_plane = is_ccs_plane(fb, color_plane) ? ccs_to_main_plane(fb, color_plane) : 0; int main_hsub, main_vsub; int hsub, vsub; intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane); intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane); *w = fb->width / main_hsub / hsub; *h = fb->height / main_vsub / vsub; } /* * Setup the rotated view for an FB plane and return the size the GTT mapping * requires for this view. */ static u32 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info, u32 gtt_offset_rotated, int x, int y, unsigned int width, unsigned int height, unsigned int tile_size, unsigned int tile_width, unsigned int tile_height, struct drm_framebuffer *fb) { struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct intel_rotation_info *rot_info = &intel_fb->rot_info; unsigned int pitch_tiles; struct drm_rect r; /* Y or Yf modifiers required for 90/270 rotation */ if (fb->modifier != I915_FORMAT_MOD_Y_TILED && fb->modifier != I915_FORMAT_MOD_Yf_TILED) return 0; if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane))) return 0; rot_info->plane[plane] = *plane_info; intel_fb->rotated[plane].pitch = plane_info->height * tile_height; /* rotate the x/y offsets to match the GTT view */ drm_rect_init(&r, x, y, width, height); drm_rect_rotate(&r, plane_info->width * tile_width, plane_info->height * tile_height, DRM_MODE_ROTATE_270); x = r.x1; y = r.y1; /* rotate the tile dimensions to match the GTT view */ pitch_tiles = intel_fb->rotated[plane].pitch / tile_height; swap(tile_width, tile_height); /* * We only keep the x/y offsets, so push all of the * gtt offset into the x/y offsets. */ intel_adjust_tile_offset(&x, &y, tile_width, tile_height, tile_size, pitch_tiles, gtt_offset_rotated * tile_size, 0); /* * First pixel of the framebuffer from * the start of the rotated gtt mapping. */ intel_fb->rotated[plane].x = x; intel_fb->rotated[plane].y = y; return plane_info->width * plane_info->height; } static int intel_fill_fb_info(struct drm_i915_private *dev_priv, struct drm_framebuffer *fb) { struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj = intel_fb_obj(fb); u32 gtt_offset_rotated = 0; unsigned int max_size = 0; int i, num_planes = fb->format->num_planes; unsigned int tile_size = intel_tile_size(dev_priv); for (i = 0; i < num_planes; i++) { unsigned int width, height; unsigned int cpp, size; u32 offset; int x, y; int ret; /* * Plane 2 of Render Compression with Clear Color fb modifier * is consumed by the driver and not passed to DE. Skip the * arithmetic related to alignment and offset calculation. */ if (is_gen12_ccs_cc_plane(fb, i)) { if (IS_ALIGNED(fb->offsets[i], PAGE_SIZE)) continue; else return -EINVAL; } cpp = fb->format->cpp[i]; intel_fb_plane_dims(&width, &height, fb, i); ret = intel_fb_offset_to_xy(&x, &y, fb, i); if (ret) { drm_dbg_kms(&dev_priv->drm, "bad fb plane %d offset: 0x%x\n", i, fb->offsets[i]); return ret; } ret = intel_fb_check_ccs_xy(fb, i, x, y); if (ret) return ret; /* * The fence (if used) is aligned to the start of the object * so having the framebuffer wrap around across the edge of the * fenced region doesn't really work. We have no API to configure * the fence start offset within the object (nor could we probably * on gen2/3). So it's just easier if we just require that the * fb layout agrees with the fence layout. We already check that the * fb stride matches the fence stride elsewhere. */ if (i == 0 && i915_gem_object_is_tiled(obj) && (x + width) * cpp > fb->pitches[i]) { drm_dbg_kms(&dev_priv->drm, "bad fb plane %d offset: 0x%x\n", i, fb->offsets[i]); return -EINVAL; } /* * First pixel of the framebuffer from * the start of the normal gtt mapping. */ intel_fb->normal[i].x = x; intel_fb->normal[i].y = y; offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, fb->pitches[i], DRM_MODE_ROTATE_0, tile_size); offset /= tile_size; if (!is_surface_linear(fb, i)) { struct intel_remapped_plane_info plane_info; unsigned int tile_width, tile_height; intel_tile_dims(fb, i, &tile_width, &tile_height); plane_info.offset = offset; plane_info.stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp); plane_info.width = DIV_ROUND_UP(x + width, tile_width); plane_info.height = DIV_ROUND_UP(y + height, tile_height); /* how many tiles does this plane need */ size = plane_info.stride * plane_info.height; /* * If the plane isn't horizontally tile aligned, * we need one more tile. */ if (x != 0) size++; gtt_offset_rotated += setup_fb_rotation(i, &plane_info, gtt_offset_rotated, x, y, width, height, tile_size, tile_width, tile_height, fb); } else { size = DIV_ROUND_UP((y + height) * fb->pitches[i] + x * cpp, tile_size); } /* how many tiles in total needed in the bo */ max_size = max(max_size, offset + size); } if (mul_u32_u32(max_size, tile_size) > obj->base.size) { drm_dbg_kms(&dev_priv->drm, "fb too big for bo (need %llu bytes, have %zu bytes)\n", mul_u32_u32(max_size, tile_size), obj->base.size); return -EINVAL; } return 0; } static void intel_plane_remap_gtt(struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev); struct drm_framebuffer *fb = plane_state->hw.fb; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct intel_rotation_info *info = &plane_state->view.rotated; unsigned int rotation = plane_state->hw.rotation; int i, num_planes = fb->format->num_planes; unsigned int tile_size = intel_tile_size(dev_priv); unsigned int src_x, src_y; unsigned int src_w, src_h; u32 gtt_offset = 0; memset(&plane_state->view, 0, sizeof(plane_state->view)); plane_state->view.type = drm_rotation_90_or_270(rotation) ? I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED; src_x = plane_state->uapi.src.x1 >> 16; src_y = plane_state->uapi.src.y1 >> 16; src_w = drm_rect_width(&plane_state->uapi.src) >> 16; src_h = drm_rect_height(&plane_state->uapi.src) >> 16; drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier)); /* Make src coordinates relative to the viewport */ drm_rect_translate(&plane_state->uapi.src, -(src_x << 16), -(src_y << 16)); /* Rotate src coordinates to match rotated GTT view */ if (drm_rotation_90_or_270(rotation)) drm_rect_rotate(&plane_state->uapi.src, src_w << 16, src_h << 16, DRM_MODE_ROTATE_270); for (i = 0; i < num_planes; i++) { unsigned int hsub = i ? fb->format->hsub : 1; unsigned int vsub = i ? fb->format->vsub : 1; unsigned int cpp = fb->format->cpp[i]; unsigned int tile_width, tile_height; unsigned int width, height; unsigned int pitch_tiles; unsigned int x, y; u32 offset; intel_tile_dims(fb, i, &tile_width, &tile_height); x = src_x / hsub; y = src_y / vsub; width = src_w / hsub; height = src_h / vsub; /* * First pixel of the src viewport from the * start of the normal gtt mapping. */ x += intel_fb->normal[i].x; y += intel_fb->normal[i].y; offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, fb->pitches[i], DRM_MODE_ROTATE_0, tile_size); offset /= tile_size; drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane)); info->plane[i].offset = offset; info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp); info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); if (drm_rotation_90_or_270(rotation)) { struct drm_rect r; /* rotate the x/y offsets to match the GTT view */ drm_rect_init(&r, x, y, width, height); drm_rect_rotate(&r, info->plane[i].width * tile_width, info->plane[i].height * tile_height, DRM_MODE_ROTATE_270); x = r.x1; y = r.y1; pitch_tiles = info->plane[i].height; plane_state->color_plane[i].stride = pitch_tiles * tile_height; /* rotate the tile dimensions to match the GTT view */ swap(tile_width, tile_height); } else { pitch_tiles = info->plane[i].width; plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp; } /* * We only keep the x/y offsets, so push all of the * gtt offset into the x/y offsets. */ intel_adjust_tile_offset(&x, &y, tile_width, tile_height, tile_size, pitch_tiles, gtt_offset * tile_size, 0); gtt_offset += info->plane[i].width * info->plane[i].height; plane_state->color_plane[i].offset = 0; plane_state->color_plane[i].x = x; plane_state->color_plane[i].y = y; } } int intel_plane_compute_gtt(struct intel_plane_state *plane_state) { const struct intel_framebuffer *fb = to_intel_framebuffer(plane_state->hw.fb); unsigned int rotation = plane_state->hw.rotation; int i, num_planes; if (!fb) return 0; num_planes = fb->base.format->num_planes; if (intel_plane_needs_remap(plane_state)) { intel_plane_remap_gtt(plane_state); /* * Sometimes even remapping can't overcome * the stride limitations :( Can happen with * big plane sizes and suitably misaligned * offsets. */ return intel_plane_check_stride(plane_state); } intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation); for (i = 0; i < num_planes; i++) { plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation); plane_state->color_plane[i].offset = 0; if (drm_rotation_90_or_270(rotation)) { plane_state->color_plane[i].x = fb->rotated[i].x; plane_state->color_plane[i].y = fb->rotated[i].y; } else { plane_state->color_plane[i].x = fb->normal[i].x; plane_state->color_plane[i].y = fb->normal[i].y; } } /* Rotate src coordinates to match rotated GTT view */ if (drm_rotation_90_or_270(rotation)) drm_rect_rotate(&plane_state->uapi.src, fb->base.width << 16, fb->base.height << 16, DRM_MODE_ROTATE_270); return intel_plane_check_stride(plane_state); } static int i9xx_format_to_fourcc(int format) { switch (format) { case DISPPLANE_8BPP: return DRM_FORMAT_C8; case DISPPLANE_BGRA555: return DRM_FORMAT_ARGB1555; case DISPPLANE_BGRX555: return DRM_FORMAT_XRGB1555; case DISPPLANE_BGRX565: return DRM_FORMAT_RGB565; default: case DISPPLANE_BGRX888: return DRM_FORMAT_XRGB8888; case DISPPLANE_RGBX888: return DRM_FORMAT_XBGR8888; case DISPPLANE_BGRA888: return DRM_FORMAT_ARGB8888; case DISPPLANE_RGBA888: return DRM_FORMAT_ABGR8888; case DISPPLANE_BGRX101010: return DRM_FORMAT_XRGB2101010; case DISPPLANE_RGBX101010: return DRM_FORMAT_XBGR2101010; case DISPPLANE_BGRA101010: return DRM_FORMAT_ARGB2101010; case DISPPLANE_RGBA101010: return DRM_FORMAT_ABGR2101010; case DISPPLANE_RGBX161616: return DRM_FORMAT_XBGR16161616F; } } int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) { switch (format) { case PLANE_CTL_FORMAT_RGB_565: return DRM_FORMAT_RGB565; case PLANE_CTL_FORMAT_NV12: return DRM_FORMAT_NV12; case PLANE_CTL_FORMAT_XYUV: return DRM_FORMAT_XYUV8888; case PLANE_CTL_FORMAT_P010: return DRM_FORMAT_P010; case PLANE_CTL_FORMAT_P012: return DRM_FORMAT_P012; case PLANE_CTL_FORMAT_P016: return DRM_FORMAT_P016; case PLANE_CTL_FORMAT_Y210: return DRM_FORMAT_Y210; case PLANE_CTL_FORMAT_Y212: return DRM_FORMAT_Y212; case PLANE_CTL_FORMAT_Y216: return DRM_FORMAT_Y216; case PLANE_CTL_FORMAT_Y410: return DRM_FORMAT_XVYU2101010; case PLANE_CTL_FORMAT_Y412: return DRM_FORMAT_XVYU12_16161616; case PLANE_CTL_FORMAT_Y416: return DRM_FORMAT_XVYU16161616; default: case PLANE_CTL_FORMAT_XRGB_8888: if (rgb_order) { if (alpha) return DRM_FORMAT_ABGR8888; else return DRM_FORMAT_XBGR8888; } else { if (alpha) return DRM_FORMAT_ARGB8888; else return DRM_FORMAT_XRGB8888; } case PLANE_CTL_FORMAT_XRGB_2101010: if (rgb_order) { if (alpha) return DRM_FORMAT_ABGR2101010; else return DRM_FORMAT_XBGR2101010; } else { if (alpha) return DRM_FORMAT_ARGB2101010; else return DRM_FORMAT_XRGB2101010; } case PLANE_CTL_FORMAT_XRGB_16161616F: if (rgb_order) { if (alpha) return DRM_FORMAT_ABGR16161616F; else return DRM_FORMAT_XBGR16161616F; } else { if (alpha) return DRM_FORMAT_ARGB16161616F; else return DRM_FORMAT_XRGB16161616F; } } } static struct i915_vma * initial_plane_vma(struct drm_i915_private *i915, struct intel_initial_plane_config *plane_config) { struct drm_i915_gem_object *obj; struct i915_vma *vma; u32 base, size; if (plane_config->size == 0) return NULL; base = round_down(plane_config->base, I915_GTT_MIN_ALIGNMENT); size = round_up(plane_config->base + plane_config->size, I915_GTT_MIN_ALIGNMENT); size -= base; /* * If the FB is too big, just don't use it since fbdev is not very * important and we should probably use that space with FBC or other * features. */ if (size * 2 > i915->stolen_usable_size) return NULL; obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); if (IS_ERR(obj)) return NULL; /* * Mark it WT ahead of time to avoid changing the * cache_level during fbdev initialization. The * unbind there would get stuck waiting for rcu. */ i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE); switch (plane_config->tiling) { case I915_TILING_NONE: break; case I915_TILING_X: case I915_TILING_Y: obj->tiling_and_stride = plane_config->fb->base.pitches[0] | plane_config->tiling; break; default: MISSING_CASE(plane_config->tiling); goto err_obj; } vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); if (IS_ERR(vma)) goto err_obj; if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) goto err_obj; if (i915_gem_object_is_tiled(obj) && !i915_vma_is_map_and_fenceable(vma)) goto err_obj; return vma; err_obj: i915_gem_object_put(obj); return NULL; } static bool intel_alloc_initial_plane_obj(struct intel_crtc *crtc, struct intel_initial_plane_config *plane_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_mode_fb_cmd2 mode_cmd = { 0 }; struct drm_framebuffer *fb = &plane_config->fb->base; struct i915_vma *vma; switch (fb->modifier) { case DRM_FORMAT_MOD_LINEAR: case I915_FORMAT_MOD_X_TILED: case I915_FORMAT_MOD_Y_TILED: break; default: drm_dbg(&dev_priv->drm, "Unsupported modifier for initial FB: 0x%llx\n", fb->modifier); return false; } vma = initial_plane_vma(dev_priv, plane_config); if (!vma) return false; mode_cmd.pixel_format = fb->format->format; mode_cmd.width = fb->width; mode_cmd.height = fb->height; mode_cmd.pitches[0] = fb->pitches[0]; mode_cmd.modifier[0] = fb->modifier; mode_cmd.flags = DRM_MODE_FB_MODIFIERS; if (intel_framebuffer_init(to_intel_framebuffer(fb), vma->obj, &mode_cmd)) { drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); goto err_vma; } plane_config->vma = vma; return true; err_vma: i915_vma_put(vma); return false; } static void intel_set_plane_visible(struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state, bool visible) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); plane_state->uapi.visible = visible; if (visible) crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); else crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); } static void fixup_plane_bitmasks(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); struct drm_plane *plane; /* * Active_planes aliases if multiple "primary" or cursor planes * have been used on the same (or wrong) pipe. plane_mask uses * unique ids, hence we can use that to reconstruct active_planes. */ crtc_state->enabled_planes = 0; crtc_state->active_planes = 0; drm_for_each_plane_mask(plane, &dev_priv->drm, crtc_state->uapi.plane_mask) { crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id); crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); } } static void intel_plane_disable_noatomic(struct intel_crtc *crtc, struct intel_plane *plane) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); drm_dbg_kms(&dev_priv->drm, "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", plane->base.base.id, plane->base.name, crtc->base.base.id, crtc->base.name); intel_set_plane_visible(crtc_state, plane_state, false); fixup_plane_bitmasks(crtc_state); crtc_state->data_rate[plane->id] = 0; crtc_state->min_cdclk[plane->id] = 0; if (plane->id == PLANE_PRIMARY) hsw_disable_ips(crtc_state); /* * Vblank time updates from the shadow to live plane control register * are blocked if the memory self-refresh mode is active at that * moment. So to make sure the plane gets truly disabled, disable * first the self-refresh mode. The self-refresh enable bit in turn * will be checked/applied by the HW only at the next frame start * event which is after the vblank start event, so we need to have a * wait-for-vblank between disabling the plane and the pipe. */ if (HAS_GMCH(dev_priv) && intel_set_memory_cxsr(dev_priv, false)) intel_wait_for_vblank(dev_priv, crtc->pipe); /* * Gen2 reports pipe underruns whenever all planes are disabled. * So disable underrun reporting before all the planes get disabled. */ if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes) intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); intel_disable_plane(plane, crtc_state); } static void intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, struct intel_initial_plane_config *plane_config) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_crtc *c; struct drm_plane *primary = intel_crtc->base.primary; struct drm_plane_state *plane_state = primary->state; struct intel_plane *intel_plane = to_intel_plane(primary); struct intel_plane_state *intel_state = to_intel_plane_state(plane_state); struct intel_crtc_state *crtc_state = to_intel_crtc_state(intel_crtc->base.state); struct drm_framebuffer *fb; struct i915_vma *vma; if (!plane_config->fb) return; if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { fb = &plane_config->fb->base; vma = plane_config->vma; goto valid_fb; } /* * Failed to alloc the obj, check to see if we should share * an fb with another CRTC instead */ for_each_crtc(dev, c) { struct intel_plane_state *state; if (c == &intel_crtc->base) continue; if (!to_intel_crtc_state(c->state)->uapi.active) continue; state = to_intel_plane_state(c->primary->state); if (!state->vma) continue; if (intel_plane_ggtt_offset(state) == plane_config->base) { fb = state->hw.fb; vma = state->vma; goto valid_fb; } } /* * We've failed to reconstruct the BIOS FB. Current display state * indicates that the primary plane is visible, but has a NULL FB, * which will lead to problems later if we don't fix it up. The * simplest solution is to just disable the primary plane now and * pretend the BIOS never had it enabled. */ intel_plane_disable_noatomic(intel_crtc, intel_plane); if (crtc_state->bigjoiner) { struct intel_crtc *slave = crtc_state->bigjoiner_linked_crtc; intel_plane_disable_noatomic(slave, to_intel_plane(slave->base.primary)); } return; valid_fb: intel_state->hw.rotation = plane_config->rotation; intel_fill_fb_ggtt_view(&intel_state->view, fb, intel_state->hw.rotation); intel_state->color_plane[0].stride = intel_fb_pitch(fb, 0, intel_state->hw.rotation); __i915_vma_pin(vma); intel_state->vma = i915_vma_get(vma); if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0) if (vma->fence) intel_state->flags |= PLANE_HAS_FENCE; plane_state->src_x = 0; plane_state->src_y = 0; plane_state->src_w = fb->width << 16; plane_state->src_h = fb->height << 16; plane_state->crtc_x = 0; plane_state->crtc_y = 0; plane_state->crtc_w = fb->width; plane_state->crtc_h = fb->height; intel_state->uapi.src = drm_plane_state_src(plane_state); intel_state->uapi.dst = drm_plane_state_dest(plane_state); if (plane_config->tiling) dev_priv->preserve_bios_swizzle = true; plane_state->fb = fb; drm_framebuffer_get(fb); plane_state->crtc = &intel_crtc->base; intel_plane_copy_uapi_to_hw_state(intel_state, intel_state, intel_crtc); intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); atomic_or(to_intel_plane(primary)->frontbuffer_bit, &to_intel_frontbuffer(fb)->bits); } static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state, int main_x, int main_y, u32 main_offset, int ccs_plane) { const struct drm_framebuffer *fb = plane_state->hw.fb; int aux_x = plane_state->color_plane[ccs_plane].x; int aux_y = plane_state->color_plane[ccs_plane].y; u32 aux_offset = plane_state->color_plane[ccs_plane].offset; u32 alignment = intel_surf_alignment(fb, ccs_plane); int hsub; int vsub; intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); while (aux_offset >= main_offset && aux_y <= main_y) { int x, y; if (aux_x == main_x && aux_y == main_y) break; if (aux_offset == 0) break; x = aux_x / hsub; y = aux_y / vsub; aux_offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, ccs_plane, aux_offset, aux_offset - alignment); aux_x = x * hsub + aux_x % hsub; aux_y = y * vsub + aux_y % vsub; } if (aux_x != main_x || aux_y != main_y) return false; plane_state->color_plane[ccs_plane].offset = aux_offset; plane_state->color_plane[ccs_plane].x = aux_x; plane_state->color_plane[ccs_plane].y = aux_y; return true; } unsigned int intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) { int x = 0, y = 0; intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, plane_state->color_plane[0].offset, 0); return y; } static int intel_plane_min_width(struct intel_plane *plane, const struct drm_framebuffer *fb, int color_plane, unsigned int rotation) { if (plane->min_width) return plane->min_width(fb, color_plane, rotation); else return 1; } static int intel_plane_max_width(struct intel_plane *plane, const struct drm_framebuffer *fb, int color_plane, unsigned int rotation) { if (plane->max_width) return plane->max_width(fb, color_plane, rotation); else return INT_MAX; } static int intel_plane_max_height(struct intel_plane *plane, const struct drm_framebuffer *fb, int color_plane, unsigned int rotation) { if (plane->max_height) return plane->max_height(fb, color_plane, rotation); else return INT_MAX; } int skl_calc_main_surface_offset(const struct intel_plane_state *plane_state, int *x, int *y, u32 *offset) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); const struct drm_framebuffer *fb = plane_state->hw.fb; const int aux_plane = intel_main_to_aux_plane(fb, 0); const u32 aux_offset = plane_state->color_plane[aux_plane].offset; const u32 alignment = intel_surf_alignment(fb, 0); const int w = drm_rect_width(&plane_state->uapi.src) >> 16; intel_add_fb_offsets(x, y, plane_state, 0); *offset = intel_plane_compute_aligned_offset(x, y, plane_state, 0); if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment))) return -EINVAL; /* * AUX surface offset is specified as the distance from the * main surface offset, and it must be non-negative. Make * sure that is what we will get. */ if (aux_plane && *offset > aux_offset) *offset = intel_plane_adjust_aligned_offset(x, y, plane_state, 0, *offset, aux_offset & ~(alignment - 1)); /* * When using an X-tiled surface, the plane blows up * if the x offset + width exceed the stride. * * TODO: linear and Y-tiled seem fine, Yf untested, */ if (fb->modifier == I915_FORMAT_MOD_X_TILED) { int cpp = fb->format->cpp[0]; while ((*x + w) * cpp > plane_state->color_plane[0].stride) { if (*offset == 0) { drm_dbg_kms(&dev_priv->drm, "Unable to find suitable display surface offset due to X-tiling\n"); return -EINVAL; } *offset = intel_plane_adjust_aligned_offset(x, y, plane_state, 0, *offset, *offset - alignment); } } return 0; } static int skl_check_main_surface(struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); const struct drm_framebuffer *fb = plane_state->hw.fb; const unsigned int rotation = plane_state->hw.rotation; int x = plane_state->uapi.src.x1 >> 16; int y = plane_state->uapi.src.y1 >> 16; const int w = drm_rect_width(&plane_state->uapi.src) >> 16; const int h = drm_rect_height(&plane_state->uapi.src) >> 16; const int min_width = intel_plane_min_width(plane, fb, 0, rotation); const int max_width = intel_plane_max_width(plane, fb, 0, rotation); const int max_height = intel_plane_max_height(plane, fb, 0, rotation); const int aux_plane = intel_main_to_aux_plane(fb, 0); const u32 alignment = intel_surf_alignment(fb, 0); u32 offset; int ret; if (w > max_width || w < min_width || h > max_height) { drm_dbg_kms(&dev_priv->drm, "requested Y/RGB source size %dx%d outside limits (min: %dx1 max: %dx%d)\n", w, h, min_width, max_width, max_height); return -EINVAL; } ret = skl_calc_main_surface_offset(plane_state, &x, &y, &offset); if (ret) return ret; /* * CCS AUX surface doesn't have its own x/y offsets, we must make sure * they match with the main surface x/y offsets. */ if (is_ccs_modifier(fb->modifier)) { while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset, aux_plane)) { if (offset == 0) break; offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, offset, offset - alignment); } if (x != plane_state->color_plane[aux_plane].x || y != plane_state->color_plane[aux_plane].y) { drm_dbg_kms(&dev_priv->drm, "Unable to find suitable display surface offset due to CCS\n"); return -EINVAL; } } plane_state->color_plane[0].offset = offset; plane_state->color_plane[0].x = x; plane_state->color_plane[0].y = y; /* * Put the final coordinates back so that the src * coordinate checks will see the right values. */ drm_rect_translate_to(&plane_state->uapi.src, x << 16, y << 16); return 0; } static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *i915 = to_i915(plane->base.dev); const struct drm_framebuffer *fb = plane_state->hw.fb; unsigned int rotation = plane_state->hw.rotation; int uv_plane = 1; int max_width = intel_plane_max_width(plane, fb, uv_plane, rotation); int max_height = intel_plane_max_height(plane, fb, uv_plane, rotation); int x = plane_state->uapi.src.x1 >> 17; int y = plane_state->uapi.src.y1 >> 17; int w = drm_rect_width(&plane_state->uapi.src) >> 17; int h = drm_rect_height(&plane_state->uapi.src) >> 17; u32 offset; /* FIXME not quite sure how/if these apply to the chroma plane */ if (w > max_width || h > max_height) { drm_dbg_kms(&i915->drm, "CbCr source size %dx%d too big (limit %dx%d)\n", w, h, max_width, max_height); return -EINVAL; } intel_add_fb_offsets(&x, &y, plane_state, uv_plane); offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, uv_plane); if (is_ccs_modifier(fb->modifier)) { int ccs_plane = main_to_ccs_plane(fb, uv_plane); u32 aux_offset = plane_state->color_plane[ccs_plane].offset; u32 alignment = intel_surf_alignment(fb, uv_plane); if (offset > aux_offset) offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, uv_plane, offset, aux_offset & ~(alignment - 1)); while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset, ccs_plane)) { if (offset == 0) break; offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, uv_plane, offset, offset - alignment); } if (x != plane_state->color_plane[ccs_plane].x || y != plane_state->color_plane[ccs_plane].y) { drm_dbg_kms(&i915->drm, "Unable to find suitable display surface offset due to CCS\n"); return -EINVAL; } } plane_state->color_plane[uv_plane].offset = offset; plane_state->color_plane[uv_plane].x = x; plane_state->color_plane[uv_plane].y = y; return 0; } static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state) { const struct drm_framebuffer *fb = plane_state->hw.fb; int src_x = plane_state->uapi.src.x1 >> 16; int src_y = plane_state->uapi.src.y1 >> 16; u32 offset; int ccs_plane; for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) { int main_hsub, main_vsub; int hsub, vsub; int x, y; if (!is_ccs_plane(fb, ccs_plane) || is_gen12_ccs_cc_plane(fb, ccs_plane)) continue; intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, ccs_to_main_plane(fb, ccs_plane)); intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); hsub *= main_hsub; vsub *= main_vsub; x = src_x / hsub; y = src_y / vsub; intel_add_fb_offsets(&x, &y, plane_state, ccs_plane); offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, ccs_plane); plane_state->color_plane[ccs_plane].offset = offset; plane_state->color_plane[ccs_plane].x = (x * hsub + src_x % hsub) / main_hsub; plane_state->color_plane[ccs_plane].y = (y * vsub + src_y % vsub) / main_vsub; } return 0; } int skl_check_plane_surface(struct intel_plane_state *plane_state) { const struct drm_framebuffer *fb = plane_state->hw.fb; int ret, i; ret = intel_plane_compute_gtt(plane_state); if (ret) return ret; if (!plane_state->uapi.visible) return 0; /* * Handle the AUX surface first since the main surface setup depends on * it. */ if (is_ccs_modifier(fb->modifier)) { ret = skl_check_ccs_aux_surface(plane_state); if (ret) return ret; } if (intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) { ret = skl_check_nv12_aux_surface(plane_state); if (ret) return ret; } for (i = fb->format->num_planes; i < ARRAY_SIZE(plane_state->color_plane); i++) { plane_state->color_plane[i].offset = 0; plane_state->color_plane[i].x = 0; plane_state->color_plane[i].y = 0; } ret = skl_check_main_surface(plane_state); if (ret) return ret; return 0; } static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); unsigned long irqflags; spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0); intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); } /* * This function detaches (aka. unbinds) unused scalers in hardware */ static void skl_detach_scalers(const struct intel_crtc_state *crtc_state) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; int i; /* loop through and disable scalers that aren't in use */ for (i = 0; i < intel_crtc->num_scalers; i++) { if (!scaler_state->scalers[i].in_use) skl_detach_scaler(intel_crtc, i); } } static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb, int color_plane, unsigned int rotation) { /* * The stride is either expressed as a multiple of 64 bytes chunks for * linear buffers or in number of tiles for tiled buffers. */ if (is_surface_linear(fb, color_plane)) return 64; else if (drm_rotation_90_or_270(rotation)) return intel_tile_height(fb, color_plane); else return intel_tile_width_bytes(fb, color_plane); } u32 skl_plane_stride(const struct intel_plane_state *plane_state, int color_plane) { const struct drm_framebuffer *fb = plane_state->hw.fb; unsigned int rotation = plane_state->hw.rotation; u32 stride = plane_state->color_plane[color_plane].stride; if (color_plane >= fb->format->num_planes) return 0; return stride / skl_plane_stride_mult(fb, color_plane, rotation); } static u32 skl_plane_ctl_format(u32 pixel_format) { switch (pixel_format) { case DRM_FORMAT_C8: return PLANE_CTL_FORMAT_INDEXED; case DRM_FORMAT_RGB565: return PLANE_CTL_FORMAT_RGB_565; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: return PLANE_CTL_FORMAT_XRGB_8888; case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_ABGR2101010: return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX; case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_ARGB2101010: return PLANE_CTL_FORMAT_XRGB_2101010; case DRM_FORMAT_XBGR16161616F: case DRM_FORMAT_ABGR16161616F: return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX; case DRM_FORMAT_XRGB16161616F: case DRM_FORMAT_ARGB16161616F: return PLANE_CTL_FORMAT_XRGB_16161616F; case DRM_FORMAT_XYUV8888: return PLANE_CTL_FORMAT_XYUV; case DRM_FORMAT_YUYV: return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; case DRM_FORMAT_YVYU: return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; case DRM_FORMAT_UYVY: return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; case DRM_FORMAT_VYUY: return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; case DRM_FORMAT_NV12: return PLANE_CTL_FORMAT_NV12; case DRM_FORMAT_P010: return PLANE_CTL_FORMAT_P010; case DRM_FORMAT_P012: return PLANE_CTL_FORMAT_P012; case DRM_FORMAT_P016: return PLANE_CTL_FORMAT_P016; case DRM_FORMAT_Y210: return PLANE_CTL_FORMAT_Y210; case DRM_FORMAT_Y212: return PLANE_CTL_FORMAT_Y212; case DRM_FORMAT_Y216: return PLANE_CTL_FORMAT_Y216; case DRM_FORMAT_XVYU2101010: return PLANE_CTL_FORMAT_Y410; case DRM_FORMAT_XVYU12_16161616: return PLANE_CTL_FORMAT_Y412; case DRM_FORMAT_XVYU16161616: return PLANE_CTL_FORMAT_Y416; default: MISSING_CASE(pixel_format); } return 0; } static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state) { if (!plane_state->hw.fb->format->has_alpha) return PLANE_CTL_ALPHA_DISABLE; switch (plane_state->hw.pixel_blend_mode) { case DRM_MODE_BLEND_PIXEL_NONE: return PLANE_CTL_ALPHA_DISABLE; case DRM_MODE_BLEND_PREMULTI: return PLANE_CTL_ALPHA_SW_PREMULTIPLY; case DRM_MODE_BLEND_COVERAGE: return PLANE_CTL_ALPHA_HW_PREMULTIPLY; default: MISSING_CASE(plane_state->hw.pixel_blend_mode); return PLANE_CTL_ALPHA_DISABLE; } } static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state) { if (!plane_state->hw.fb->format->has_alpha) return PLANE_COLOR_ALPHA_DISABLE; switch (plane_state->hw.pixel_blend_mode) { case DRM_MODE_BLEND_PIXEL_NONE: return PLANE_COLOR_ALPHA_DISABLE; case DRM_MODE_BLEND_PREMULTI: return PLANE_COLOR_ALPHA_SW_PREMULTIPLY; case DRM_MODE_BLEND_COVERAGE: return PLANE_COLOR_ALPHA_HW_PREMULTIPLY; default: MISSING_CASE(plane_state->hw.pixel_blend_mode); return PLANE_COLOR_ALPHA_DISABLE; } } static u32 skl_plane_ctl_tiling(u64 fb_modifier) { switch (fb_modifier) { case DRM_FORMAT_MOD_LINEAR: break; case I915_FORMAT_MOD_X_TILED: return PLANE_CTL_TILED_X; case I915_FORMAT_MOD_Y_TILED: return PLANE_CTL_TILED_Y; case I915_FORMAT_MOD_Y_TILED_CCS: case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE | PLANE_CTL_CLEAR_COLOR_DISABLE; case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE; case I915_FORMAT_MOD_Yf_TILED: return PLANE_CTL_TILED_YF; case I915_FORMAT_MOD_Yf_TILED_CCS: return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; default: MISSING_CASE(fb_modifier); } return 0; } static u32 skl_plane_ctl_rotate(unsigned int rotate) { switch (rotate) { case DRM_MODE_ROTATE_0: break; /* * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr * while i915 HW rotation is clockwise, thats why this swapping. */ case DRM_MODE_ROTATE_90: return PLANE_CTL_ROTATE_270; case DRM_MODE_ROTATE_180: return PLANE_CTL_ROTATE_180; case DRM_MODE_ROTATE_270: return PLANE_CTL_ROTATE_90; default: MISSING_CASE(rotate); } return 0; } static u32 cnl_plane_ctl_flip(unsigned int reflect) { switch (reflect) { case 0: break; case DRM_MODE_REFLECT_X: return PLANE_CTL_FLIP_HORIZONTAL; case DRM_MODE_REFLECT_Y: default: MISSING_CASE(reflect); } return 0; } u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); u32 plane_ctl = 0; if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) return plane_ctl; if (crtc_state->gamma_enable) plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE; if (crtc_state->csc_enable) plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE; return plane_ctl; } u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev); const struct drm_framebuffer *fb = plane_state->hw.fb; unsigned int rotation = plane_state->hw.rotation; const struct drm_intel_sprite_colorkey *key = &plane_state->ckey; u32 plane_ctl; plane_ctl = PLANE_CTL_ENABLE; if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) { plane_ctl |= skl_plane_ctl_alpha(plane_state); plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709) plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709; if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE; } plane_ctl |= skl_plane_ctl_format(fb->format->format); plane_ctl |= skl_plane_ctl_tiling(fb->modifier); plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK); if (INTEL_GEN(dev_priv) >= 10) plane_ctl |= cnl_plane_ctl_flip(rotation & DRM_MODE_REFLECT_MASK); if (key->flags & I915_SET_COLORKEY_DESTINATION) plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION; else if (key->flags & I915_SET_COLORKEY_SOURCE) plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE; return plane_ctl; } u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); u32 plane_color_ctl = 0; if (INTEL_GEN(dev_priv) >= 11) return plane_color_ctl; if (crtc_state->gamma_enable) plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE; if (crtc_state->csc_enable) plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE; return plane_color_ctl; } u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev); const struct drm_framebuffer *fb = plane_state->hw.fb; struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); u32 plane_color_ctl = 0; plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE; plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state); if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) { switch (plane_state->hw.color_encoding) { case DRM_COLOR_YCBCR_BT709: plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709; break; case DRM_COLOR_YCBCR_BT2020: plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV2020_TO_RGB2020; break; default: plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB601; } if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE; } else if (fb->format->is_yuv) { plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE; } return plane_color_ctl; } static int __intel_display_resume(struct drm_device *dev, struct drm_atomic_state *state, struct drm_modeset_acquire_ctx *ctx) { struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; int i, ret; intel_modeset_setup_hw_state(dev, ctx); intel_vga_redisable(to_i915(dev)); if (!state) return 0; /* * We've duplicated the state, pointers to the old state are invalid. * * Don't attempt to use the old state until we commit the duplicated state. */ for_each_new_crtc_in_state(state, crtc, crtc_state, i) { /* * Force recalculation even if we restore * current state. With fast modeset this may not result * in a modeset when the state is compatible. */ crtc_state->mode_changed = true; } /* ignore any reset values/BIOS leftovers in the WM registers */ if (!HAS_GMCH(to_i915(dev))) to_intel_atomic_state(state)->skip_intermediate_wm = true; ret = drm_atomic_helper_commit_duplicated_state(state, ctx); drm_WARN_ON(dev, ret == -EDEADLK); return ret; } static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) { return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && intel_has_gpu_reset(&dev_priv->gt)); } void intel_display_prepare_reset(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; struct drm_atomic_state *state; int ret; if (!HAS_DISPLAY(dev_priv)) return; /* reset doesn't touch the display */ if (!dev_priv->params.force_reset_modeset_test && !gpu_reset_clobbers_display(dev_priv)) return; /* We have a modeset vs reset deadlock, defensively unbreak it. */ set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); smp_mb__after_atomic(); wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { drm_dbg_kms(&dev_priv->drm, "Modeset potentially stuck, unbreaking through wedging\n"); intel_gt_set_wedged(&dev_priv->gt); } /* * Need mode_config.mutex so that we don't * trample ongoing ->detect() and whatnot. */ mutex_lock(&dev->mode_config.mutex); drm_modeset_acquire_init(ctx, 0); while (1) { ret = drm_modeset_lock_all_ctx(dev, ctx); if (ret != -EDEADLK) break; drm_modeset_backoff(ctx); } /* * Disabling the crtcs gracefully seems nicer. Also the * g33 docs say we should at least disable all the planes. */ state = drm_atomic_helper_duplicate_state(dev, ctx); if (IS_ERR(state)) { ret = PTR_ERR(state); drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", ret); return; } ret = drm_atomic_helper_disable_all(dev, ctx); if (ret) { drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", ret); drm_atomic_state_put(state); return; } dev_priv->modeset_restore_state = state; state->acquire_ctx = ctx; } void intel_display_finish_reset(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; struct drm_atomic_state *state; int ret; if (!HAS_DISPLAY(dev_priv)) return; /* reset doesn't touch the display */ if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) return; state = fetch_and_zero(&dev_priv->modeset_restore_state); if (!state) goto unlock; /* reset doesn't touch the display */ if (!gpu_reset_clobbers_display(dev_priv)) { /* for testing only restore the display */ ret = __intel_display_resume(dev, state, ctx); if (ret) drm_err(&dev_priv->drm, "Restoring old state failed with %i\n", ret); } else { /* * The display has been reset as well, * so need a full re-initialization. */ intel_pps_unlock_regs_wa(dev_priv); intel_modeset_init_hw(dev_priv); intel_init_clock_gating(dev_priv); intel_hpd_init(dev_priv); ret = __intel_display_resume(dev, state, ctx); if (ret) drm_err(&dev_priv->drm, "Restoring old state failed with %i\n", ret); intel_hpd_poll_disable(dev_priv); } drm_atomic_state_put(state); unlock: drm_modeset_drop_locks(ctx); drm_modeset_acquire_fini(ctx); mutex_unlock(&dev->mode_config.mutex); clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); } static void icl_set_pipe_chicken(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 tmp; tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); /* * Display WA #1153: icl * enable hardware to bypass the alpha math * and rounding for per-pixel values 00 and 0xff */ tmp |= PER_PIXEL_ALPHA_BYPASS_EN; /* * Display WA # 1605353570: icl * Set the pixel rounding bit to 1 for allowing * passthrough of Frame buffer pixels unmodified * across pipe */ tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); } bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) { struct drm_crtc *crtc; bool cleanup_done; drm_for_each_crtc(crtc, &dev_priv->drm) { struct drm_crtc_commit *commit; spin_lock(&crtc->commit_lock); commit = list_first_entry_or_null(&crtc->commit_list, struct drm_crtc_commit, commit_entry); cleanup_done = commit ? try_wait_for_completion(&commit->cleanup_done) : true; spin_unlock(&crtc->commit_lock); if (cleanup_done) continue; drm_crtc_wait_one_vblank(crtc); return true; } return false; } void lpt_disable_iclkip(struct drm_i915_private *dev_priv) { u32 temp; intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); mutex_lock(&dev_priv->sb_lock); temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); temp |= SBI_SSCCTL_DISABLE; intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); mutex_unlock(&dev_priv->sb_lock); } /* Program iCLKIP clock to the desired frequency */ static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int clock = crtc_state->hw.adjusted_mode.crtc_clock; u32 divsel, phaseinc, auxdiv, phasedir = 0; u32 temp; lpt_disable_iclkip(dev_priv); /* The iCLK virtual clock root frequency is in MHz, * but the adjusted_mode->crtc_clock in in KHz. To get the * divisors, it is necessary to divide one by another, so we * convert the virtual clock precision to KHz here for higher * precision. */ for (auxdiv = 0; auxdiv < 2; auxdiv++) { u32 iclk_virtual_root_freq = 172800 * 1000; u32 iclk_pi_range = 64; u32 desired_divisor; desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, clock << auxdiv); divsel = (desired_divisor / iclk_pi_range) - 2; phaseinc = desired_divisor % iclk_pi_range; /* * Near 20MHz is a corner case which is * out of range for the 7-bit divisor */ if (divsel <= 0x7f) break; } /* This should not happen with any sane values */ drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & ~SBI_SSCDIVINTPHASE_INCVAL_MASK); drm_dbg_kms(&dev_priv->drm, "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", clock, auxdiv, divsel, phasedir, phaseinc); mutex_lock(&dev_priv->sb_lock); /* Program SSCDIVINTPHASE6 */ temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); temp |= SBI_SSCDIVINTPHASE_PROPAGATE; intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); /* Program SSCAUXDIV */ temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); /* Enable modulator and associated divider */ temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); temp &= ~SBI_SSCCTL_DISABLE; intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); mutex_unlock(&dev_priv->sb_lock); /* Wait for initialization time */ udelay(24); intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); } int lpt_get_iclkip(struct drm_i915_private *dev_priv) { u32 divsel, phaseinc, auxdiv; u32 iclk_virtual_root_freq = 172800 * 1000; u32 iclk_pi_range = 64; u32 desired_divisor; u32 temp; if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) return 0; mutex_lock(&dev_priv->sb_lock); temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); if (temp & SBI_SSCCTL_DISABLE) { mutex_unlock(&dev_priv->sb_lock); return 0; } temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> SBI_SSCDIVINTPHASE_INCVAL_SHIFT; temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; mutex_unlock(&dev_priv->sb_lock); desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, desired_divisor << auxdiv); } static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, enum pipe pch_transcoder) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), intel_de_read(dev_priv, HBLANK(cpu_transcoder))); intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), intel_de_read(dev_priv, HSYNC(cpu_transcoder))); intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), intel_de_read(dev_priv, VBLANK(cpu_transcoder))); intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), intel_de_read(dev_priv, VSYNC(cpu_transcoder))); intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); } static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) { u32 temp; temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) return; drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); temp &= ~FDI_BC_BIFURCATION_SELECT; if (enable) temp |= FDI_BC_BIFURCATION_SELECT; drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", enable ? "en" : "dis"); intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); } static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); switch (crtc->pipe) { case PIPE_A: break; case PIPE_B: if (crtc_state->fdi_lanes > 2) cpt_set_fdi_bc_bifurcation(dev_priv, false); else cpt_set_fdi_bc_bifurcation(dev_priv, true); break; case PIPE_C: cpt_set_fdi_bc_bifurcation(dev_priv, true); break; default: BUG(); } } /* * Finds the encoder associated with the given CRTC. This can only be * used when we know that the CRTC isn't feeding multiple encoders! */ struct intel_encoder * intel_get_crtc_new_encoder(const struct intel_atomic_state *state, const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_connector_state *connector_state; const struct drm_connector *connector; struct intel_encoder *encoder = NULL; int num_encoders = 0; int i; for_each_new_connector_in_state(&state->base, connector, connector_state, i) { if (connector_state->crtc != &crtc->base) continue; encoder = to_intel_encoder(connector_state->best_encoder); num_encoders++; } drm_WARN(encoder->base.dev, num_encoders != 1, "%d encoders for pipe %c\n", num_encoders, pipe_name(crtc->pipe)); return encoder; } /* * Enable PCH resources required for PCH ports: * - PCH PLLs * - FDI training & RX/TX * - update transcoder timings * - DP transcoding bits * - transcoder */ static void ilk_pch_enable(const struct intel_atomic_state *state, const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = crtc->pipe; u32 temp; assert_pch_transcoder_disabled(dev_priv, pipe); if (IS_IVYBRIDGE(dev_priv)) ivb_update_fdi_bc_bifurcation(crtc_state); /* Write the TU size bits before fdi link training, so that error * detection works. */ intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); /* For PCH output, training FDI link */ dev_priv->display.fdi_link_train(crtc, crtc_state); /* We need to program the right clock selection before writing the pixel * mutliplier into the DPLL. */ if (HAS_PCH_CPT(dev_priv)) { u32 sel; temp = intel_de_read(dev_priv, PCH_DPLL_SEL); temp |= TRANS_DPLL_ENABLE(pipe); sel = TRANS_DPLLB_SEL(pipe); if (crtc_state->shared_dpll == intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) temp |= sel; else temp &= ~sel; intel_de_write(dev_priv, PCH_DPLL_SEL, temp); } /* XXX: pch pll's can be enabled any time before we enable the PCH * transcoder, and we actually should do this to not upset any PCH * transcoder that already use the clock when we share it. * * Note that enable_shared_dpll tries to do the right thing, but * get_shared_dpll unconditionally resets the pll - we need that to have * the right LVDS enable sequence. */ intel_enable_shared_dpll(crtc_state); /* set transcoder timing, panel must allow it */ assert_panel_unlocked(dev_priv, pipe); ilk_pch_transcoder_set_timings(crtc_state, pipe); intel_fdi_normal_train(crtc); /* For PCH DP, enable TRANS_DP_CTL */ if (HAS_PCH_CPT(dev_priv) && intel_crtc_has_dp_encoder(crtc_state)) { const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; i915_reg_t reg = TRANS_DP_CTL(pipe); enum port port; temp = intel_de_read(dev_priv, reg); temp &= ~(TRANS_DP_PORT_SEL_MASK | TRANS_DP_SYNC_MASK | TRANS_DP_BPC_MASK); temp |= TRANS_DP_OUTPUT_ENABLE; temp |= bpc << 9; /* same format but at 11:9 */ if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; port = intel_get_crtc_new_encoder(state, crtc_state)->port; drm_WARN_ON(dev, port < PORT_B || port > PORT_D); temp |= TRANS_DP_PORT_SEL(port); intel_de_write(dev_priv, reg, temp); } ilk_enable_pch_transcoder(crtc_state); } void lpt_pch_enable(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; assert_pch_transcoder_disabled(dev_priv, PIPE_A); lpt_program_iclkip(crtc_state); /* Set transcoder timing. */ ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); } static void cpt_verify_modeset(struct drm_i915_private *dev_priv, enum pipe pipe) { i915_reg_t dslreg = PIPEDSL(pipe); u32 temp; temp = intel_de_read(dev_priv, dslreg); udelay(500); if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) drm_err(&dev_priv->drm, "mode set failed: pipe %c stuck\n", pipe_name(pipe)); } } /* * The hardware phase 0.0 refers to the center of the pixel. * We want to start from the top/left edge which is phase * -0.5. That matches how the hardware calculates the scaling * factors (from top-left of the first pixel to bottom-right * of the last pixel, as opposed to the pixel centers). * * For 4:2:0 subsampled chroma planes we obviously have to * adjust that so that the chroma sample position lands in * the right spot. * * Note that for packed YCbCr 4:2:2 formats there is no way to * control chroma siting. The hardware simply replicates the * chroma samples for both of the luma samples, and thus we don't * actually get the expected MPEG2 chroma siting convention :( * The same behaviour is observed on pre-SKL platforms as well. * * Theory behind the formula (note that we ignore sub-pixel * source coordinates): * s = source sample position * d = destination sample position * * Downscaling 4:1: * -0.5 * | 0.0 * | | 1.5 (initial phase) * | | | * v v v * | s | s | s | s | * | d | * * Upscaling 1:4: * -0.5 * | -0.375 (initial phase) * | | 0.0 * | | | * v v v * | s | * | d | d | d | d | */ u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited) { int phase = -0x8000; u16 trip = 0; if (chroma_cosited) phase += (sub - 1) * 0x8000 / sub; phase += scale / (2 * sub); /* * Hardware initial phase limited to [-0.5:1.5]. * Since the max hardware scale factor is 3.0, we * should never actually excdeed 1.0 here. */ WARN_ON(phase < -0x8000 || phase > 0x18000); if (phase < 0) phase = 0x10000 + phase; else trip = PS_PHASE_TRIP; return ((phase >> 2) & PS_PHASE_MASK) | trip; } #define SKL_MIN_SRC_W 8 #define SKL_MAX_SRC_W 4096 #define SKL_MIN_SRC_H 8 #define SKL_MAX_SRC_H 4096 #define SKL_MIN_DST_W 8 #define SKL_MAX_DST_W 4096 #define SKL_MIN_DST_H 8 #define SKL_MAX_DST_H 4096 #define ICL_MAX_SRC_W 5120 #define ICL_MAX_SRC_H 4096 #define ICL_MAX_DST_W 5120 #define ICL_MAX_DST_H 4096 #define SKL_MIN_YUV_420_SRC_W 16 #define SKL_MIN_YUV_420_SRC_H 16 static int skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, unsigned int scaler_user, int *scaler_id, int src_w, int src_h, int dst_w, int dst_h, const struct drm_format_info *format, u64 modifier, bool need_scaler) { struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; /* * Src coordinates are already rotated by 270 degrees for * the 90/270 degree plane rotation cases (to match the * GTT mapping), hence no need to account for rotation here. */ if (src_w != dst_w || src_h != dst_h) need_scaler = true; /* * Scaling/fitting not supported in IF-ID mode in GEN9+ * TODO: Interlace fetch mode doesn't support YUV420 planar formats. * Once NV12 is enabled, handle it here while allocating scaler * for NV12. */ if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable && need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { drm_dbg_kms(&dev_priv->drm, "Pipe/Plane scaling not supported with IF-ID mode\n"); return -EINVAL; } /* * if plane is being disabled or scaler is no more required or force detach * - free scaler binded to this plane/crtc * - in order to do this, update crtc->scaler_usage * * Here scaler state in crtc_state is set free so that * scaler can be assigned to other user. Actual register * update to free the scaler is done in plane/panel-fit programming. * For this purpose crtc/plane_state->scaler_id isn't reset here. */ if (force_detach || !need_scaler) { if (*scaler_id >= 0) { scaler_state->scaler_users &= ~(1 << scaler_user); scaler_state->scalers[*scaler_id].in_use = 0; drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: " "Staged freeing scaler id %d scaler_users = 0x%x\n", intel_crtc->pipe, scaler_user, *scaler_id, scaler_state->scaler_users); *scaler_id = -1; } return 0; } if (format && intel_format_info_is_yuv_semiplanar(format, modifier) && (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) { drm_dbg_kms(&dev_priv->drm, "Planar YUV: src dimensions not met\n"); return -EINVAL; } /* range checks */ if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || (INTEL_GEN(dev_priv) >= 11 && (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H || dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) || (INTEL_GEN(dev_priv) < 11 && (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) { drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: src %ux%u dst %ux%u " "size is out of scaler range\n", intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h); return -EINVAL; } /* mark this plane as a scaler user in crtc_state */ scaler_state->scaler_users |= (1 << scaler_user); drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: " "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, scaler_state->scaler_users); return 0; } static int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state) { const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; int width, height; if (crtc_state->pch_pfit.enabled) { width = drm_rect_width(&crtc_state->pch_pfit.dst); height = drm_rect_height(&crtc_state->pch_pfit.dst); } else { width = pipe_mode->crtc_hdisplay; height = pipe_mode->crtc_vdisplay; } return skl_update_scaler(crtc_state, !crtc_state->hw.active, SKL_CRTC_INDEX, &crtc_state->scaler_state.scaler_id, crtc_state->pipe_src_w, crtc_state->pipe_src_h, width, height, NULL, 0, crtc_state->pch_pfit.enabled); } /** * skl_update_scaler_plane - Stages update to scaler state for a given plane. * @crtc_state: crtc's scaler state * @plane_state: atomic plane state to update * * Return * 0 - scaler_usage updated successfully * error - requested scaling cannot be supported or other error condition */ static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state) { struct intel_plane *intel_plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); struct drm_framebuffer *fb = plane_state->hw.fb; int ret; bool force_detach = !fb || !plane_state->uapi.visible; bool need_scaler = false; /* Pre-gen11 and SDR planes always need a scaler for planar formats. */ if (!icl_is_hdr_plane(dev_priv, intel_plane->id) && fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) need_scaler = true; ret = skl_update_scaler(crtc_state, force_detach, drm_plane_index(&intel_plane->base), &plane_state->scaler_id, drm_rect_width(&plane_state->uapi.src) >> 16, drm_rect_height(&plane_state->uapi.src) >> 16, drm_rect_width(&plane_state->uapi.dst), drm_rect_height(&plane_state->uapi.dst), fb ? fb->format : NULL, fb ? fb->modifier : 0, need_scaler); if (ret || plane_state->scaler_id < 0) return ret; /* check colorkey */ if (plane_state->ckey.flags) { drm_dbg_kms(&dev_priv->drm, "[PLANE:%d:%s] scaling with color key not allowed", intel_plane->base.base.id, intel_plane->base.name); return -EINVAL; } /* Check src format */ switch (fb->format->format) { case DRM_FORMAT_RGB565: case DRM_FORMAT_XBGR8888: case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ABGR8888: case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_ARGB2101010: case DRM_FORMAT_ABGR2101010: case DRM_FORMAT_YUYV: case DRM_FORMAT_YVYU: case DRM_FORMAT_UYVY: case DRM_FORMAT_VYUY: case DRM_FORMAT_NV12: case DRM_FORMAT_XYUV8888: case DRM_FORMAT_P010: case DRM_FORMAT_P012: case DRM_FORMAT_P016: case DRM_FORMAT_Y210: case DRM_FORMAT_Y212: case DRM_FORMAT_Y216: case DRM_FORMAT_XVYU2101010: case DRM_FORMAT_XVYU12_16161616: case DRM_FORMAT_XVYU16161616: break; case DRM_FORMAT_XBGR16161616F: case DRM_FORMAT_ABGR16161616F: case DRM_FORMAT_XRGB16161616F: case DRM_FORMAT_ARGB16161616F: if (INTEL_GEN(dev_priv) >= 11) break; fallthrough; default: drm_dbg_kms(&dev_priv->drm, "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n", intel_plane->base.base.id, intel_plane->base.name, fb->base.id, fb->format->format); return -EINVAL; } return 0; } void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); int i; for (i = 0; i < crtc->num_scalers; i++) skl_detach_scaler(crtc, i); } static int cnl_coef_tap(int i) { return i % 7; } static u16 cnl_nearest_filter_coef(int t) { return t == 3 ? 0x0800 : 0x3000; } /* * Theory behind setting nearest-neighbor integer scaling: * * 17 phase of 7 taps requires 119 coefficients in 60 dwords per set. * The letter represents the filter tap (D is the center tap) and the number * represents the coefficient set for a phase (0-16). * * +------------+------------------------+------------------------+ * |Index value | Data value coeffient 1 | Data value coeffient 2 | * +------------+------------------------+------------------------+ * | 00h | B0 | A0 | * +------------+------------------------+------------------------+ * | 01h | D0 | C0 | * +------------+------------------------+------------------------+ * | 02h | F0 | E0 | * +------------+------------------------+------------------------+ * | 03h | A1 | G0 | * +------------+------------------------+------------------------+ * | 04h | C1 | B1 | * +------------+------------------------+------------------------+ * | ... | ... | ... | * +------------+------------------------+------------------------+ * | 38h | B16 | A16 | * +------------+------------------------+------------------------+ * | 39h | D16 | C16 | * +------------+------------------------+------------------------+ * | 3Ah | F16 | C16 | * +------------+------------------------+------------------------+ * | 3Bh | Reserved | G16 | * +------------+------------------------+------------------------+ * * To enable nearest-neighbor scaling: program scaler coefficents with * the center tap (Dxx) values set to 1 and all other values set to 0 as per * SCALER_COEFFICIENT_FORMAT * */ static void cnl_program_nearest_filter_coefs(struct drm_i915_private *dev_priv, enum pipe pipe, int id, int set) { int i; intel_de_write_fw(dev_priv, CNL_PS_COEF_INDEX_SET(pipe, id, set), PS_COEE_INDEX_AUTO_INC); for (i = 0; i < 17 * 7; i += 2) { u32 tmp; int t; t = cnl_coef_tap(i); tmp = cnl_nearest_filter_coef(t); t = cnl_coef_tap(i + 1); tmp |= cnl_nearest_filter_coef(t) << 16; intel_de_write_fw(dev_priv, CNL_PS_COEF_DATA_SET(pipe, id, set), tmp); } intel_de_write_fw(dev_priv, CNL_PS_COEF_INDEX_SET(pipe, id, set), 0); } u32 skl_scaler_get_filter_select(enum drm_scaling_filter filter, int set) { if (filter == DRM_SCALING_FILTER_NEAREST_NEIGHBOR) { return (PS_FILTER_PROGRAMMED | PS_Y_VERT_FILTER_SELECT(set) | PS_Y_HORZ_FILTER_SELECT(set) | PS_UV_VERT_FILTER_SELECT(set) | PS_UV_HORZ_FILTER_SELECT(set)); } return PS_FILTER_MEDIUM; } void skl_scaler_setup_filter(struct drm_i915_private *dev_priv, enum pipe pipe, int id, int set, enum drm_scaling_filter filter) { switch (filter) { case DRM_SCALING_FILTER_DEFAULT: break; case DRM_SCALING_FILTER_NEAREST_NEIGHBOR: cnl_program_nearest_filter_coefs(dev_priv, pipe, id, set); break; default: MISSING_CASE(filter); } } static void skl_pfit_enable(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; struct drm_rect src = { .x2 = crtc_state->pipe_src_w << 16, .y2 = crtc_state->pipe_src_h << 16, }; const struct drm_rect *dst = &crtc_state->pch_pfit.dst; u16 uv_rgb_hphase, uv_rgb_vphase; enum pipe pipe = crtc->pipe; int width = drm_rect_width(dst); int height = drm_rect_height(dst); int x = dst->x1; int y = dst->y1; int hscale, vscale; unsigned long irqflags; int id; u32 ps_ctrl; if (!crtc_state->pch_pfit.enabled) return; if (drm_WARN_ON(&dev_priv->drm, crtc_state->scaler_state.scaler_id < 0)) return; hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX); vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX); uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false); uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false); id = scaler_state->scaler_id; ps_ctrl = skl_scaler_get_filter_select(crtc_state->hw.scaling_filter, 0); ps_ctrl |= PS_SCALER_EN | scaler_state->scalers[id].mode; spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); skl_scaler_setup_filter(dev_priv, pipe, id, 0, crtc_state->hw.scaling_filter); intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), ps_ctrl); intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id), PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase)); intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id), PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase)); intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id), x << 16 | y); intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id), width << 16 | height); spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); } static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_rect *dst = &crtc_state->pch_pfit.dst; enum pipe pipe = crtc->pipe; int width = drm_rect_width(dst); int height = drm_rect_height(dst); int x = dst->x1; int y = dst->y1; if (!crtc_state->pch_pfit.enabled) return; /* Force use of hard-coded filter coefficients * as some pre-programmed values are broken, * e.g. x201. */ if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); else intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); } void hsw_enable_ips(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); if (!crtc_state->ips_enabled) return; /* * We can only enable IPS after we enable a plane and wait for a vblank * This function is called from post_plane_update, which is run after * a vblank wait. */ drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); if (IS_BROADWELL(dev_priv)) { drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, IPS_ENABLE | IPS_PCODE_CONTROL)); /* Quoting Art Runyan: "its not safe to expect any particular * value in IPS_CTL bit 31 after enabling IPS through the * mailbox." Moreover, the mailbox may return a bogus state, * so we need to just enable it and continue on. */ } else { intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); /* The bit only becomes 1 in the next vblank, so this wait here * is essentially intel_wait_for_vblank. If we don't have this * and don't wait for vblanks until the end of crtc_enable, then * the HW state readout code will complain that the expected * IPS_CTL value is not the one we read. */ if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) drm_err(&dev_priv->drm, "Timed out waiting for IPS enable\n"); } } void hsw_disable_ips(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); if (!crtc_state->ips_enabled) return; if (IS_BROADWELL(dev_priv)) { drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); /* * Wait for PCODE to finish disabling IPS. The BSpec specified * 42ms timeout value leads to occasional timeouts so use 100ms * instead. */ if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) drm_err(&dev_priv->drm, "Timed out waiting for IPS disable\n"); } else { intel_de_write(dev_priv, IPS_CTL, 0); intel_de_posting_read(dev_priv, IPS_CTL); } /* We need to wait for a vblank before we can disable the plane. */ intel_wait_for_vblank(dev_priv, crtc->pipe); } static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) { if (intel_crtc->overlay) (void) intel_overlay_switch_off(intel_crtc->overlay); /* Let userspace switch the overlay on again. In most cases userspace * has to recompute where to put it anyway. */ } static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!old_crtc_state->ips_enabled) return false; if (intel_crtc_needs_modeset(new_crtc_state)) return true; /* * Workaround : Do not read or write the pipe palette/gamma data while * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. * * Disable IPS before we program the LUT. */ if (IS_HASWELL(dev_priv) && (new_crtc_state->uapi.color_mgmt_changed || new_crtc_state->update_pipe) && new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) return true; return !new_crtc_state->ips_enabled; } static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!new_crtc_state->ips_enabled) return false; if (intel_crtc_needs_modeset(new_crtc_state)) return true; /* * Workaround : Do not read or write the pipe palette/gamma data while * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. * * Re-enable IPS after the LUT has been programmed. */ if (IS_HASWELL(dev_priv) && (new_crtc_state->uapi.color_mgmt_changed || new_crtc_state->update_pipe) && new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) return true; /* * We can't read out IPS on broadwell, assume the worst and * forcibly enable IPS on the first fastset. */ if (new_crtc_state->update_pipe && old_crtc_state->inherited) return true; return !old_crtc_state->ips_enabled; } static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); if (!crtc_state->nv12_planes) return false; /* WA Display #0827: Gen9:all */ if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) return true; return false; } static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); /* Wa_2006604312:icl,ehl */ if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11)) return true; return false; } static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, const struct intel_crtc_state *new_crtc_state) { return (!old_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)) && new_crtc_state->active_planes; } static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, const struct intel_crtc_state *new_crtc_state) { return old_crtc_state->active_planes && (!new_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)); } static void intel_post_plane_update(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); enum pipe pipe = crtc->pipe; intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) intel_update_watermarks(crtc); if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) hsw_enable_ips(new_crtc_state); intel_fbc_post_update(state, crtc); if (needs_nv12_wa(old_crtc_state) && !needs_nv12_wa(new_crtc_state)) skl_wa_827(dev_priv, pipe, false); if (needs_scalerclk_wa(old_crtc_state) && !needs_scalerclk_wa(new_crtc_state)) icl_wa_scalerclkgating(dev_priv, pipe, false); } static void intel_crtc_enable_flip_done(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); u8 update_planes = crtc_state->update_planes; const struct intel_plane_state *plane_state; struct intel_plane *plane; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { if (plane->enable_flip_done && plane->pipe == crtc->pipe && update_planes & BIT(plane->id)) plane->enable_flip_done(plane); } } static void intel_crtc_disable_flip_done(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); u8 update_planes = crtc_state->update_planes; const struct intel_plane_state *plane_state; struct intel_plane *plane; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { if (plane->disable_flip_done && plane->pipe == crtc->pipe && update_planes & BIT(plane->id)) plane->disable_flip_done(plane); } } static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); u8 update_planes = new_crtc_state->update_planes; const struct intel_plane_state *old_plane_state; struct intel_plane *plane; bool need_vbl_wait = false; int i; for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { if (plane->need_async_flip_disable_wa && plane->pipe == crtc->pipe && update_planes & BIT(plane->id)) { /* * Apart from the async flip bit we want to * preserve the old state for the plane. */ plane->async_flip(plane, old_crtc_state, old_plane_state, false); need_vbl_wait = true; } } if (need_vbl_wait) intel_wait_for_vblank(i915, crtc->pipe); } static void intel_pre_plane_update(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); enum pipe pipe = crtc->pipe; if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) hsw_disable_ips(old_crtc_state); if (intel_fbc_pre_update(state, crtc)) intel_wait_for_vblank(dev_priv, pipe); /* Display WA 827 */ if (!needs_nv12_wa(old_crtc_state) && needs_nv12_wa(new_crtc_state)) skl_wa_827(dev_priv, pipe, true); /* Wa_2006604312:icl,ehl */ if (!needs_scalerclk_wa(old_crtc_state) && needs_scalerclk_wa(new_crtc_state)) icl_wa_scalerclkgating(dev_priv, pipe, true); /* * Vblank time updates from the shadow to live plane control register * are blocked if the memory self-refresh mode is active at that * moment. So to make sure the plane gets truly disabled, disable * first the self-refresh mode. The self-refresh enable bit in turn * will be checked/applied by the HW only at the next frame start * event which is after the vblank start event, so we need to have a * wait-for-vblank between disabling the plane and the pipe. */ if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) intel_wait_for_vblank(dev_priv, pipe); /* * IVB workaround: must disable low power watermarks for at least * one frame before enabling scaling. LP watermarks can be re-enabled * when scaling is disabled. * * WaCxSRDisabledForSpriteScaling:ivb */ if (old_crtc_state->hw.active && new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) intel_wait_for_vblank(dev_priv, pipe); /* * If we're doing a modeset we don't need to do any * pre-vblank watermark programming here. */ if (!intel_crtc_needs_modeset(new_crtc_state)) { /* * For platforms that support atomic watermarks, program the * 'intermediate' watermarks immediately. On pre-gen9 platforms, these * will be the intermediate values that are safe for both pre- and * post- vblank; when vblank happens, the 'active' values will be set * to the final 'target' values and we'll do this again to get the * optimal watermarks. For gen9+ platforms, the values we program here * will be the final target values which will get automatically latched * at vblank time; no further programming will be necessary. * * If a platform hasn't been transitioned to atomic watermarks yet, * we'll continue to update watermarks the old way, if flags tell * us to. */ if (dev_priv->display.initial_watermarks) dev_priv->display.initial_watermarks(state, crtc); else if (new_crtc_state->update_wm_pre) intel_update_watermarks(crtc); } /* * Gen2 reports pipe underruns whenever all planes are disabled. * So disable underrun reporting before all the planes get disabled. * * We do this after .initial_watermarks() so that we have a * chance of catching underruns with the intermediate watermarks * vs. the old plane configuration. */ if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state)) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); /* * WA for platforms where async address update enable bit * is double buffered and only latched at start of vblank. */ if (old_crtc_state->uapi.async_flip && !new_crtc_state->uapi.async_flip) intel_crtc_async_flip_disable_wa(state, crtc); } static void intel_crtc_disable_planes(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); unsigned int update_mask = new_crtc_state->update_planes; const struct intel_plane_state *old_plane_state; struct intel_plane *plane; unsigned fb_bits = 0; int i; intel_crtc_dpms_overlay_disable(crtc); for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { if (crtc->pipe != plane->pipe || !(update_mask & BIT(plane->id))) continue; intel_disable_plane(plane, new_crtc_state); if (old_plane_state->uapi.visible) fb_bits |= plane->frontbuffer_bit; } intel_frontbuffer_flip(dev_priv, fb_bits); } /* * intel_connector_primary_encoder - get the primary encoder for a connector * @connector: connector for which to return the encoder * * Returns the primary encoder for a connector. There is a 1:1 mapping from * all connectors to their encoder, except for DP-MST connectors which have * both a virtual and a primary encoder. These DP-MST primary encoders can be * pointed to by as many DP-MST connectors as there are pipes. */ static struct intel_encoder * intel_connector_primary_encoder(struct intel_connector *connector) { struct intel_encoder *encoder; if (connector->mst_port) return &dp_to_dig_port(connector->mst_port)->base; encoder = intel_attached_encoder(connector); drm_WARN_ON(connector->base.dev, !encoder); return encoder; } static void intel_encoders_update_prepare(struct intel_atomic_state *state) { struct drm_connector_state *new_conn_state; struct drm_connector *connector; int i; for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { struct intel_connector *intel_connector; struct intel_encoder *encoder; struct intel_crtc *crtc; if (!intel_connector_needs_modeset(state, connector)) continue; intel_connector = to_intel_connector(connector); encoder = intel_connector_primary_encoder(intel_connector); if (!encoder->update_prepare) continue; crtc = new_conn_state->crtc ? to_intel_crtc(new_conn_state->crtc) : NULL; encoder->update_prepare(state, encoder, crtc); } } static void intel_encoders_update_complete(struct intel_atomic_state *state) { struct drm_connector_state *new_conn_state; struct drm_connector *connector; int i; for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { struct intel_connector *intel_connector; struct intel_encoder *encoder; struct intel_crtc *crtc; if (!intel_connector_needs_modeset(state, connector)) continue; intel_connector = to_intel_connector(connector); encoder = intel_connector_primary_encoder(intel_connector); if (!encoder->update_complete) continue; crtc = new_conn_state->crtc ? to_intel_crtc(new_conn_state->crtc) : NULL; encoder->update_complete(state, encoder, crtc); } } static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct drm_connector_state *conn_state; struct drm_connector *conn; int i; for_each_new_connector_in_state(&state->base, conn, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); if (conn_state->crtc != &crtc->base) continue; if (encoder->pre_pll_enable) encoder->pre_pll_enable(state, encoder, crtc_state, conn_state); } } static void intel_encoders_pre_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct drm_connector_state *conn_state; struct drm_connector *conn; int i; for_each_new_connector_in_state(&state->base, conn, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); if (conn_state->crtc != &crtc->base) continue; if (encoder->pre_enable) encoder->pre_enable(state, encoder, crtc_state, conn_state); } } static void intel_encoders_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct drm_connector_state *conn_state; struct drm_connector *conn; int i; for_each_new_connector_in_state(&state->base, conn, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); if (conn_state->crtc != &crtc->base) continue; if (encoder->enable) encoder->enable(state, encoder, crtc_state, conn_state); intel_opregion_notify_encoder(encoder, true); } } static void intel_encoders_disable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct drm_connector_state *old_conn_state; struct drm_connector *conn; int i; for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(old_conn_state->best_encoder); if (old_conn_state->crtc != &crtc->base) continue; intel_opregion_notify_encoder(encoder, false); if (encoder->disable) encoder->disable(state, encoder, old_crtc_state, old_conn_state); } } static void intel_encoders_post_disable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct drm_connector_state *old_conn_state; struct drm_connector *conn; int i; for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(old_conn_state->best_encoder); if (old_conn_state->crtc != &crtc->base) continue; if (encoder->post_disable) encoder->post_disable(state, encoder, old_crtc_state, old_conn_state); } } static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct drm_connector_state *old_conn_state; struct drm_connector *conn; int i; for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(old_conn_state->best_encoder); if (old_conn_state->crtc != &crtc->base) continue; if (encoder->post_pll_disable) encoder->post_pll_disable(state, encoder, old_crtc_state, old_conn_state); } } static void intel_encoders_update_pipe(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct drm_connector_state *conn_state; struct drm_connector *conn; int i; for_each_new_connector_in_state(&state->base, conn, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); if (conn_state->crtc != &crtc->base) continue; if (encoder->update_pipe) encoder->update_pipe(state, encoder, crtc_state, conn_state); } } static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_plane *plane = to_intel_plane(crtc->base.primary); plane->disable_plane(plane, crtc_state); } static void ilk_crtc_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; if (drm_WARN_ON(&dev_priv->drm, crtc->active)) return; /* * Sometimes spurious CPU pipe underruns happen during FDI * training, at least with VGA+HDMI cloning. Suppress them. * * On ILK we get an occasional spurious CPU pipe underruns * between eDP port A enable and vdd enable. Also PCH port * enable seems to result in the occasional CPU pipe underrun. * * Spurious PCH underruns also occur during PCH enabling. */ intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); if (new_crtc_state->has_pch_encoder) intel_prepare_shared_dpll(new_crtc_state); if (intel_crtc_has_dp_encoder(new_crtc_state)) intel_dp_set_m_n(new_crtc_state, M1_N1); intel_set_transcoder_timings(new_crtc_state); intel_set_pipe_src_size(new_crtc_state); if (new_crtc_state->has_pch_encoder) intel_cpu_transcoder_set_m_n(new_crtc_state, &new_crtc_state->fdi_m_n, NULL); ilk_set_pipeconf(new_crtc_state); crtc->active = true; intel_encoders_pre_enable(state, crtc); if (new_crtc_state->has_pch_encoder) { /* Note: FDI PLL enabling _must_ be done before we enable the * cpu pipes, hence this is separate from all the other fdi/pch * enabling. */ ilk_fdi_pll_enable(new_crtc_state); } else { assert_fdi_tx_disabled(dev_priv, pipe); assert_fdi_rx_disabled(dev_priv, pipe); } ilk_pfit_enable(new_crtc_state); /* * On ILK+ LUT must be loaded before the pipe is running but with * clocks enabled */ intel_color_load_luts(new_crtc_state); intel_color_commit(new_crtc_state); /* update DSPCNTR to configure gamma for pipe bottom color */ intel_disable_primary_plane(new_crtc_state); if (dev_priv->display.initial_watermarks) dev_priv->display.initial_watermarks(state, crtc); intel_enable_pipe(new_crtc_state); if (new_crtc_state->has_pch_encoder) ilk_pch_enable(state, new_crtc_state); intel_crtc_vblank_on(new_crtc_state); intel_encoders_enable(state, crtc); if (HAS_PCH_CPT(dev_priv)) cpt_verify_modeset(dev_priv, pipe); /* * Must wait for vblank to avoid spurious PCH FIFO underruns. * And a second vblank wait is needed at least on ILK with * some interlaced HDMI modes. Let's do the double wait always * in case there are more corner cases we don't know about. */ if (new_crtc_state->has_pch_encoder) { intel_wait_for_vblank(dev_priv, pipe); intel_wait_for_vblank(dev_priv, pipe); } intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); } /* IPS only exists on ULT machines and is tied to pipe A. */ static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) { return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; } static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, enum pipe pipe, bool apply) { u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; if (apply) val |= mask; else val &= ~mask; intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); } static void icl_pipe_mbus_enable(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 val; val = MBUS_DBOX_A_CREDIT(2); if (INTEL_GEN(dev_priv) >= 12) { val |= MBUS_DBOX_BW_CREDIT(2); val |= MBUS_DBOX_B_CREDIT(12); } else { val |= MBUS_DBOX_BW_CREDIT(1); val |= MBUS_DBOX_B_CREDIT(8); } intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); } static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), HSW_LINETIME(crtc_state->linetime) | HSW_IPS_LINETIME(crtc_state->ips_linetime)); } static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); u32 val; val = intel_de_read(dev_priv, reg); val &= ~HSW_FRAME_START_DELAY_MASK; val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); intel_de_write(dev_priv, reg, val); } static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state, const struct intel_crtc_state *crtc_state) { struct intel_crtc *master = to_intel_crtc(crtc_state->uapi.crtc); struct intel_crtc_state *master_crtc_state; struct drm_connector_state *conn_state; struct drm_connector *conn; struct intel_encoder *encoder = NULL; int i; if (crtc_state->bigjoiner_slave) master = crtc_state->bigjoiner_linked_crtc; master_crtc_state = intel_atomic_get_new_crtc_state(state, master); for_each_new_connector_in_state(&state->base, conn, conn_state, i) { if (conn_state->crtc != &master->base) continue; encoder = to_intel_encoder(conn_state->best_encoder); break; } if (!crtc_state->bigjoiner_slave) { /* need to enable VDSC, which we skipped in pre-enable */ intel_dsc_enable(encoder, crtc_state); } else { /* * Enable sequence steps 1-7 on bigjoiner master */ intel_encoders_pre_pll_enable(state, master); intel_enable_shared_dpll(master_crtc_state); intel_encoders_pre_enable(state, master); /* and DSC on slave */ intel_dsc_enable(NULL, crtc_state); } } static void hsw_crtc_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe, hsw_workaround_pipe; enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; bool psl_clkgate_wa; if (drm_WARN_ON(&dev_priv->drm, crtc->active)) return; if (!new_crtc_state->bigjoiner) { intel_encoders_pre_pll_enable(state, crtc); if (new_crtc_state->shared_dpll) intel_enable_shared_dpll(new_crtc_state); intel_encoders_pre_enable(state, crtc); } else { icl_ddi_bigjoiner_pre_enable(state, new_crtc_state); } intel_set_pipe_src_size(new_crtc_state); if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) bdw_set_pipemisc(new_crtc_state); if (!new_crtc_state->bigjoiner_slave && !transcoder_is_dsi(cpu_transcoder)) { intel_set_transcoder_timings(new_crtc_state); if (cpu_transcoder != TRANSCODER_EDP) intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), new_crtc_state->pixel_multiplier - 1); if (new_crtc_state->has_pch_encoder) intel_cpu_transcoder_set_m_n(new_crtc_state, &new_crtc_state->fdi_m_n, NULL); hsw_set_frame_start_delay(new_crtc_state); } if (!transcoder_is_dsi(cpu_transcoder)) hsw_set_pipeconf(new_crtc_state); crtc->active = true; /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) && new_crtc_state->pch_pfit.enabled; if (psl_clkgate_wa) glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); if (INTEL_GEN(dev_priv) >= 9) skl_pfit_enable(new_crtc_state); else ilk_pfit_enable(new_crtc_state); /* * On ILK+ LUT must be loaded before the pipe is running but with * clocks enabled */ intel_color_load_luts(new_crtc_state); intel_color_commit(new_crtc_state); /* update DSPCNTR to configure gamma/csc for pipe bottom color */ if (INTEL_GEN(dev_priv) < 9) intel_disable_primary_plane(new_crtc_state); hsw_set_linetime_wm(new_crtc_state); if (INTEL_GEN(dev_priv) >= 11) icl_set_pipe_chicken(crtc); if (dev_priv->display.initial_watermarks) dev_priv->display.initial_watermarks(state, crtc); if (INTEL_GEN(dev_priv) >= 11) icl_pipe_mbus_enable(crtc); if (new_crtc_state->bigjoiner_slave) { trace_intel_pipe_enable(crtc); intel_crtc_vblank_on(new_crtc_state); } intel_encoders_enable(state, crtc); if (psl_clkgate_wa) { intel_wait_for_vblank(dev_priv, pipe); glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); } /* If we change the relative order between pipe/planes enabling, we need * to change the workaround. */ hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); } } void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* To avoid upsetting the power well on haswell only disable the pfit if * it's in use. The hw state code will make sure we get this right. */ if (!old_crtc_state->pch_pfit.enabled) return; intel_de_write(dev_priv, PF_CTL(pipe), 0); intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); } static void ilk_crtc_disable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* * Sometimes spurious CPU pipe underruns happen when the * pipe is already disabled, but FDI RX/TX is still enabled. * Happens at least with VGA+HDMI cloning. Suppress them. */ intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); intel_encoders_disable(state, crtc); intel_crtc_vblank_off(old_crtc_state); intel_disable_pipe(old_crtc_state); ilk_pfit_disable(old_crtc_state); if (old_crtc_state->has_pch_encoder) ilk_fdi_disable(crtc); intel_encoders_post_disable(state, crtc); if (old_crtc_state->has_pch_encoder) { ilk_disable_pch_transcoder(dev_priv, pipe); if (HAS_PCH_CPT(dev_priv)) { i915_reg_t reg; u32 temp; /* disable TRANS_DP_CTL */ reg = TRANS_DP_CTL(pipe); temp = intel_de_read(dev_priv, reg); temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK); temp |= TRANS_DP_PORT_SEL_NONE; intel_de_write(dev_priv, reg, temp); /* disable DPLL_SEL */ temp = intel_de_read(dev_priv, PCH_DPLL_SEL); temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); intel_de_write(dev_priv, PCH_DPLL_SEL, temp); } ilk_fdi_pll_disable(crtc); } intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); } static void hsw_crtc_disable(struct intel_atomic_state *state, struct intel_crtc *crtc) { /* * FIXME collapse everything to one hook. * Need care with mst->ddi interactions. */ intel_encoders_disable(state, crtc); intel_encoders_post_disable(state, crtc); } static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!crtc_state->gmch_pfit.control) return; /* * The panel fitter should only be adjusted whilst the pipe is disabled, * according to register description and PRM. */ drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); intel_de_write(dev_priv, PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios); intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); /* Border color in case we don't scale up to the full screen. Black by * default, change to something else for debugging. */ intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); } bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) { if (phy == PHY_NONE) return false; else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) return phy <= PHY_D; else if (IS_JSL_EHL(dev_priv)) return phy <= PHY_C; else if (INTEL_GEN(dev_priv) >= 11) return phy <= PHY_B; else return false; } bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) { if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) return false; else if (INTEL_GEN(dev_priv) >= 12) return phy >= PHY_D && phy <= PHY_I; else if (INTEL_GEN(dev_priv) >= 11 && !IS_JSL_EHL(dev_priv)) return phy >= PHY_C && phy <= PHY_F; else return false; } enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) { if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1) return PHY_C + port - PORT_TC1; else if (IS_JSL_EHL(i915) && port == PORT_D) return PHY_A; return PHY_A + port - PORT_A; } enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) { if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) return TC_PORT_NONE; if (INTEL_GEN(dev_priv) >= 12) return TC_PORT_1 + port - PORT_TC1; else return TC_PORT_1 + port - PORT_C; } enum intel_display_power_domain intel_port_to_power_domain(enum port port) { switch (port) { case PORT_A: return POWER_DOMAIN_PORT_DDI_A_LANES; case PORT_B: return POWER_DOMAIN_PORT_DDI_B_LANES; case PORT_C: return POWER_DOMAIN_PORT_DDI_C_LANES; case PORT_D: return POWER_DOMAIN_PORT_DDI_D_LANES; case PORT_E: return POWER_DOMAIN_PORT_DDI_E_LANES; case PORT_F: return POWER_DOMAIN_PORT_DDI_F_LANES; case PORT_G: return POWER_DOMAIN_PORT_DDI_G_LANES; case PORT_H: return POWER_DOMAIN_PORT_DDI_H_LANES; case PORT_I: return POWER_DOMAIN_PORT_DDI_I_LANES; default: MISSING_CASE(port); return POWER_DOMAIN_PORT_OTHER; } } enum intel_display_power_domain intel_aux_power_domain(struct intel_digital_port *dig_port) { struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); if (intel_phy_is_tc(dev_priv, phy) && dig_port->tc_mode == TC_PORT_TBT_ALT) { switch (dig_port->aux_ch) { case AUX_CH_C: return POWER_DOMAIN_AUX_C_TBT; case AUX_CH_D: return POWER_DOMAIN_AUX_D_TBT; case AUX_CH_E: return POWER_DOMAIN_AUX_E_TBT; case AUX_CH_F: return POWER_DOMAIN_AUX_F_TBT; case AUX_CH_G: return POWER_DOMAIN_AUX_G_TBT; case AUX_CH_H: return POWER_DOMAIN_AUX_H_TBT; case AUX_CH_I: return POWER_DOMAIN_AUX_I_TBT; default: MISSING_CASE(dig_port->aux_ch); return POWER_DOMAIN_AUX_C_TBT; } } return intel_legacy_aux_to_power_domain(dig_port->aux_ch); } /* * Converts aux_ch to power_domain without caring about TBT ports for that use * intel_aux_power_domain() */ enum intel_display_power_domain intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) { switch (aux_ch) { case AUX_CH_A: return POWER_DOMAIN_AUX_A; case AUX_CH_B: return POWER_DOMAIN_AUX_B; case AUX_CH_C: return POWER_DOMAIN_AUX_C; case AUX_CH_D: return POWER_DOMAIN_AUX_D; case AUX_CH_E: return POWER_DOMAIN_AUX_E; case AUX_CH_F: return POWER_DOMAIN_AUX_F; case AUX_CH_G: return POWER_DOMAIN_AUX_G; case AUX_CH_H: return POWER_DOMAIN_AUX_H; case AUX_CH_I: return POWER_DOMAIN_AUX_I; default: MISSING_CASE(aux_ch); return POWER_DOMAIN_AUX_A; } } static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct drm_encoder *encoder; enum pipe pipe = crtc->pipe; u64 mask; enum transcoder transcoder = crtc_state->cpu_transcoder; if (!crtc_state->hw.active) return 0; mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); if (crtc_state->pch_pfit.enabled || crtc_state->pch_pfit.force_thru) mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); drm_for_each_encoder_mask(encoder, &dev_priv->drm, crtc_state->uapi.encoder_mask) { struct intel_encoder *intel_encoder = to_intel_encoder(encoder); mask |= BIT_ULL(intel_encoder->power_domain); } if (HAS_DDI(dev_priv) && crtc_state->has_audio) mask |= BIT_ULL(POWER_DOMAIN_AUDIO); if (crtc_state->shared_dpll) mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); if (crtc_state->dsc.compression_enable) mask |= BIT_ULL(intel_dsc_power_domain(crtc_state)); return mask; } static u64 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum intel_display_power_domain domain; u64 domains, new_domains, old_domains; domains = get_crtc_power_domains(crtc_state); new_domains = domains & ~crtc->enabled_power_domains.mask; old_domains = crtc->enabled_power_domains.mask & ~domains; for_each_power_domain(domain, new_domains) intel_display_power_get_in_set(dev_priv, &crtc->enabled_power_domains, domain); return old_domains; } static void modeset_put_crtc_power_domains(struct intel_crtc *crtc, u64 domains) { intel_display_power_put_mask_in_set(to_i915(crtc->base.dev), &crtc->enabled_power_domains, domains); } static void valleyview_crtc_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; if (drm_WARN_ON(&dev_priv->drm, crtc->active)) return; if (intel_crtc_has_dp_encoder(new_crtc_state)) intel_dp_set_m_n(new_crtc_state, M1_N1); intel_set_transcoder_timings(new_crtc_state); intel_set_pipe_src_size(new_crtc_state); if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); } i9xx_set_pipeconf(new_crtc_state); crtc->active = true; intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_encoders_pre_pll_enable(state, crtc); if (IS_CHERRYVIEW(dev_priv)) { chv_prepare_pll(crtc, new_crtc_state); chv_enable_pll(crtc, new_crtc_state); } else { vlv_prepare_pll(crtc, new_crtc_state); vlv_enable_pll(crtc, new_crtc_state); } intel_encoders_pre_enable(state, crtc); i9xx_pfit_enable(new_crtc_state); intel_color_load_luts(new_crtc_state); intel_color_commit(new_crtc_state); /* update DSPCNTR to configure gamma for pipe bottom color */ intel_disable_primary_plane(new_crtc_state); dev_priv->display.initial_watermarks(state, crtc); intel_enable_pipe(new_crtc_state); intel_crtc_vblank_on(new_crtc_state); intel_encoders_enable(state, crtc); } static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); intel_de_write(dev_priv, FP0(crtc->pipe), crtc_state->dpll_hw_state.fp0); intel_de_write(dev_priv, FP1(crtc->pipe), crtc_state->dpll_hw_state.fp1); } static void i9xx_crtc_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; if (drm_WARN_ON(&dev_priv->drm, crtc->active)) return; i9xx_set_pll_dividers(new_crtc_state); if (intel_crtc_has_dp_encoder(new_crtc_state)) intel_dp_set_m_n(new_crtc_state, M1_N1); intel_set_transcoder_timings(new_crtc_state); intel_set_pipe_src_size(new_crtc_state); i9xx_set_pipeconf(new_crtc_state); crtc->active = true; if (!IS_GEN(dev_priv, 2)) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_encoders_pre_enable(state, crtc); i9xx_enable_pll(crtc, new_crtc_state); i9xx_pfit_enable(new_crtc_state); intel_color_load_luts(new_crtc_state); intel_color_commit(new_crtc_state); /* update DSPCNTR to configure gamma for pipe bottom color */ intel_disable_primary_plane(new_crtc_state); if (dev_priv->display.initial_watermarks) dev_priv->display.initial_watermarks(state, crtc); else intel_update_watermarks(crtc); intel_enable_pipe(new_crtc_state); intel_crtc_vblank_on(new_crtc_state); intel_encoders_enable(state, crtc); /* prevents spurious underruns */ if (IS_GEN(dev_priv, 2)) intel_wait_for_vblank(dev_priv, pipe); } static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!old_crtc_state->gmch_pfit.control) return; assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", intel_de_read(dev_priv, PFIT_CONTROL)); intel_de_write(dev_priv, PFIT_CONTROL, 0); } static void i9xx_crtc_disable(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* * On gen2 planes are double buffered but the pipe isn't, so we must * wait for planes to fully turn off before disabling the pipe. */ if (IS_GEN(dev_priv, 2)) intel_wait_for_vblank(dev_priv, pipe); intel_encoders_disable(state, crtc); intel_crtc_vblank_off(old_crtc_state); intel_disable_pipe(old_crtc_state); i9xx_pfit_disable(old_crtc_state); intel_encoders_post_disable(state, crtc); if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { if (IS_CHERRYVIEW(dev_priv)) chv_disable_pll(dev_priv, pipe); else if (IS_VALLEYVIEW(dev_priv)) vlv_disable_pll(dev_priv, pipe); else i9xx_disable_pll(old_crtc_state); } intel_encoders_post_pll_disable(state, crtc); if (!IS_GEN(dev_priv, 2)) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); if (!dev_priv->display.initial_watermarks) intel_update_watermarks(crtc); /* clock the pipe down to 640x480@60 to potentially save power */ if (IS_I830(dev_priv)) i830_enable_pipe(dev_priv, pipe); } static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, struct drm_modeset_acquire_ctx *ctx) { struct intel_encoder *encoder; struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_bw_state *bw_state = to_intel_bw_state(dev_priv->bw_obj.state); struct intel_cdclk_state *cdclk_state = to_intel_cdclk_state(dev_priv->cdclk.obj.state); struct intel_dbuf_state *dbuf_state = to_intel_dbuf_state(dev_priv->dbuf.obj.state); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_plane *plane; struct drm_atomic_state *state; struct intel_crtc_state *temp_crtc_state; enum pipe pipe = crtc->pipe; int ret; if (!crtc_state->hw.active) return; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { const struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); if (plane_state->uapi.visible) intel_plane_disable_noatomic(crtc, plane); } state = drm_atomic_state_alloc(&dev_priv->drm); if (!state) { drm_dbg_kms(&dev_priv->drm, "failed to disable [CRTC:%d:%s], out of memory", crtc->base.base.id, crtc->base.name); return; } state->acquire_ctx = ctx; /* Everything's already locked, -EDEADLK can't happen. */ temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); ret = drm_atomic_add_affected_connectors(state, &crtc->base); drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); drm_atomic_state_put(state); drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", crtc->base.base.id, crtc->base.name); crtc->active = false; crtc->base.enabled = false; drm_WARN_ON(&dev_priv->drm, drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); crtc_state->uapi.active = false; crtc_state->uapi.connector_mask = 0; crtc_state->uapi.encoder_mask = 0; intel_crtc_free_hw_state(crtc_state); memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) encoder->base.crtc = NULL; intel_fbc_disable(crtc); intel_update_watermarks(crtc); intel_disable_shared_dpll(crtc_state); intel_display_power_put_all_in_set(dev_priv, &crtc->enabled_power_domains); dev_priv->active_pipes &= ~BIT(pipe); cdclk_state->min_cdclk[pipe] = 0; cdclk_state->min_voltage_level[pipe] = 0; cdclk_state->active_pipes &= ~BIT(pipe); dbuf_state->active_pipes &= ~BIT(pipe); bw_state->data_rate[pipe] = 0; bw_state->num_active_planes[pipe] = 0; } /* * turn all crtc's off, but do not adjust state * This has to be paired with a call to intel_modeset_setup_hw_state. */ int intel_display_suspend(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_atomic_state *state; int ret; state = drm_atomic_helper_suspend(dev); ret = PTR_ERR_OR_ZERO(state); if (ret) drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", ret); else dev_priv->modeset_restore_state = state; return ret; } void intel_encoder_destroy(struct drm_encoder *encoder) { struct intel_encoder *intel_encoder = to_intel_encoder(encoder); drm_encoder_cleanup(encoder); kfree(intel_encoder); } /* Cross check the actual hw state with our own modeset state tracking (and it's * internal consistency). */ static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct intel_connector *connector = to_intel_connector(conn_state->connector); struct drm_i915_private *i915 = to_i915(connector->base.dev); drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", connector->base.base.id, connector->base.name); if (connector->get_hw_state(connector)) { struct intel_encoder *encoder = intel_attached_encoder(connector); I915_STATE_WARN(!crtc_state, "connector enabled without attached crtc\n"); if (!crtc_state) return; I915_STATE_WARN(!crtc_state->hw.active, "connector is active, but attached crtc isn't\n"); if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) return; I915_STATE_WARN(conn_state->best_encoder != &encoder->base, "atomic encoder doesn't match attached encoder\n"); I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, "attached encoder crtc differs from connector crtc\n"); } else { I915_STATE_WARN(crtc_state && crtc_state->hw.active, "attached crtc is active, but connector isn't\n"); I915_STATE_WARN(!crtc_state && conn_state->best_encoder, "best encoder set without crtc!\n"); } } bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* IPS only exists on ULT machines and is tied to pipe A. */ if (!hsw_crtc_supports_ips(crtc)) return false; if (!dev_priv->params.enable_ips) return false; if (crtc_state->pipe_bpp > 24) return false; /* * We compare against max which means we must take * the increased cdclk requirement into account when * calculating the new cdclk. * * Should measure whether using a lower cdclk w/o IPS */ if (IS_BROADWELL(dev_priv) && crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) return false; return true; } static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); crtc_state->ips_enabled = false; if (!hsw_crtc_state_ips_capable(crtc_state)) return 0; /* * When IPS gets enabled, the pipe CRC changes. Since IPS gets * enabled and disabled dynamically based on package C states, * user space can't make reliable use of the CRCs, so let's just * completely disable it. */ if (crtc_state->crc_enabled) return 0; /* IPS should be fine as long as at least one plane is enabled. */ if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) return 0; if (IS_BROADWELL(dev_priv)) { const struct intel_cdclk_state *cdclk_state; cdclk_state = intel_atomic_get_cdclk_state(state); if (IS_ERR(cdclk_state)) return PTR_ERR(cdclk_state); /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) return 0; } crtc_state->ips_enabled = true; return 0; } static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) { const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* GDG double wide on either pipe, otherwise pipe A only */ return INTEL_GEN(dev_priv) < 4 && (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); } static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) { u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; unsigned int pipe_w, pipe_h, pfit_w, pfit_h; /* * We only use IF-ID interlacing. If we ever use * PF-ID we'll need to adjust the pixel_rate here. */ if (!crtc_state->pch_pfit.enabled) return pixel_rate; pipe_w = crtc_state->pipe_src_w; pipe_h = crtc_state->pipe_src_h; pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst); pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst); if (pipe_w < pfit_w) pipe_w = pfit_w; if (pipe_h < pfit_h) pipe_h = pfit_h; if (drm_WARN_ON(crtc_state->uapi.crtc->dev, !pfit_w || !pfit_h)) return pixel_rate; return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h), pfit_w * pfit_h); } static void intel_mode_from_crtc_timings(struct drm_display_mode *mode, const struct drm_display_mode *timings) { mode->hdisplay = timings->crtc_hdisplay; mode->htotal = timings->crtc_htotal; mode->hsync_start = timings->crtc_hsync_start; mode->hsync_end = timings->crtc_hsync_end; mode->vdisplay = timings->crtc_vdisplay; mode->vtotal = timings->crtc_vtotal; mode->vsync_start = timings->crtc_vsync_start; mode->vsync_end = timings->crtc_vsync_end; mode->flags = timings->flags; mode->type = DRM_MODE_TYPE_DRIVER; mode->clock = timings->crtc_clock; drm_mode_set_name(mode); } static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); if (HAS_GMCH(dev_priv)) /* FIXME calculate proper pipe pixel rate for GMCH pfit */ crtc_state->pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; else crtc_state->pixel_rate = ilk_pipe_pixel_rate(crtc_state); } static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state) { struct drm_display_mode *mode = &crtc_state->hw.mode; struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; drm_mode_copy(pipe_mode, adjusted_mode); if (crtc_state->bigjoiner) { /* * transcoder is programmed to the full mode, * but pipe timings are half of the transcoder mode */ pipe_mode->crtc_hdisplay /= 2; pipe_mode->crtc_hblank_start /= 2; pipe_mode->crtc_hblank_end /= 2; pipe_mode->crtc_hsync_start /= 2; pipe_mode->crtc_hsync_end /= 2; pipe_mode->crtc_htotal /= 2; pipe_mode->crtc_clock /= 2; } intel_mode_from_crtc_timings(pipe_mode, pipe_mode); intel_mode_from_crtc_timings(adjusted_mode, adjusted_mode); intel_crtc_compute_pixel_rate(crtc_state); drm_mode_copy(mode, adjusted_mode); mode->hdisplay = crtc_state->pipe_src_w << crtc_state->bigjoiner; mode->vdisplay = crtc_state->pipe_src_h; } static void intel_encoder_get_config(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { encoder->get_config(encoder, crtc_state); intel_crtc_readout_derived_state(crtc_state); } static int intel_crtc_compute_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct drm_display_mode *pipe_mode = &pipe_config->hw.pipe_mode; int clock_limit = dev_priv->max_dotclk_freq; drm_mode_copy(pipe_mode, &pipe_config->hw.adjusted_mode); /* Adjust pipe_mode for bigjoiner, with half the horizontal mode */ if (pipe_config->bigjoiner) { pipe_mode->crtc_clock /= 2; pipe_mode->crtc_hdisplay /= 2; pipe_mode->crtc_hblank_start /= 2; pipe_mode->crtc_hblank_end /= 2; pipe_mode->crtc_hsync_start /= 2; pipe_mode->crtc_hsync_end /= 2; pipe_mode->crtc_htotal /= 2; pipe_config->pipe_src_w /= 2; } intel_mode_from_crtc_timings(pipe_mode, pipe_mode); if (INTEL_GEN(dev_priv) < 4) { clock_limit = dev_priv->max_cdclk_freq * 9 / 10; /* * Enable double wide mode when the dot clock * is > 90% of the (display) core speed. */ if (intel_crtc_supports_double_wide(crtc) && pipe_mode->crtc_clock > clock_limit) { clock_limit = dev_priv->max_dotclk_freq; pipe_config->double_wide = true; } } if (pipe_mode->crtc_clock > clock_limit) { drm_dbg_kms(&dev_priv->drm, "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", pipe_mode->crtc_clock, clock_limit, yesno(pipe_config->double_wide)); return -EINVAL; } /* * Pipe horizontal size must be even in: * - DVO ganged mode * - LVDS dual channel mode * - Double wide pipe */ if (pipe_config->pipe_src_w & 1) { if (pipe_config->double_wide) { drm_dbg_kms(&dev_priv->drm, "Odd pipe source width not supported with double wide pipe\n"); return -EINVAL; } if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && intel_is_dual_link_lvds(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "Odd pipe source width not supported with dual link LVDS\n"); return -EINVAL; } } /* Cantiga+ cannot handle modes with a hsync front porch of 0. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. */ if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) && pipe_mode->crtc_hsync_start == pipe_mode->crtc_hdisplay) return -EINVAL; intel_crtc_compute_pixel_rate(pipe_config); if (pipe_config->has_pch_encoder) return ilk_fdi_compute_config(crtc, pipe_config); return 0; } static void intel_reduce_m_n_ratio(u32 *num, u32 *den) { while (*num > DATA_LINK_M_N_MASK || *den > DATA_LINK_M_N_MASK) { *num >>= 1; *den >>= 1; } } static void compute_m_n(unsigned int m, unsigned int n, u32 *ret_m, u32 *ret_n, bool constant_n) { /* * Several DP dongles in particular seem to be fussy about * too large link M/N values. Give N value as 0x8000 that * should be acceptable by specific devices. 0x8000 is the * specified fixed N value for asynchronous clock mode, * which the devices expect also in synchronous clock mode. */ if (constant_n) *ret_n = DP_LINK_CONSTANT_N_VALUE; else *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); intel_reduce_m_n_ratio(ret_m, ret_n); } void intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, int pixel_clock, int link_clock, struct intel_link_m_n *m_n, bool constant_n, bool fec_enable) { u32 data_clock = bits_per_pixel * pixel_clock; if (fec_enable) data_clock = intel_dp_mode_to_fec_clock(data_clock); m_n->tu = 64; compute_m_n(data_clock, link_clock * nlanes * 8, &m_n->gmch_m, &m_n->gmch_n, constant_n); compute_m_n(pixel_clock, link_clock, &m_n->link_m, &m_n->link_n, constant_n); } static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) { /* * There may be no VBT; and if the BIOS enabled SSC we can * just keep using it to avoid unnecessary flicker. Whereas if the * BIOS isn't using it, don't assume it will work even if the VBT * indicates as much. */ if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { bool bios_lvds_use_ssc = intel_de_read(dev_priv, PCH_DREF_CONTROL) & DREF_SSC1_ENABLE; if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { drm_dbg_kms(&dev_priv->drm, "SSC %s by BIOS, overriding VBT which says %s\n", enableddisabled(bios_lvds_use_ssc), enableddisabled(dev_priv->vbt.lvds_use_ssc)); dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; } } } static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 reg_val; /* * PLLB opamp always calibrates to max value of 0x3f, force enable it * and set it to a reasonable value instead. */ reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); reg_val &= 0xffffff00; reg_val |= 0x00000030; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); reg_val &= 0x00ffffff; reg_val |= 0x8c000000; vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); reg_val &= 0xffffff00; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); reg_val &= 0x00ffffff; reg_val |= 0xb0000000; vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); } static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, const struct intel_link_m_n *m_n) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); } static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, enum transcoder transcoder) { if (IS_HASWELL(dev_priv)) return transcoder == TRANSCODER_EDP; /* * Strictly speaking some registers are available before * gen7, but we only support DRRS on gen7+ */ return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv); } static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, const struct intel_link_m_n *m_n, const struct intel_link_m_n *m2_n2) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; enum transcoder transcoder = crtc_state->cpu_transcoder; if (INTEL_GEN(dev_priv) >= 5) { intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m); intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), m_n->gmch_n); intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), m_n->link_m); intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), m_n->link_n); /* * M2_N2 registers are set only if DRRS is supported * (to make sure the registers are not unnecessarily accessed). */ if (m2_n2 && crtc_state->has_drrs && transcoder_has_m2_n2(dev_priv, transcoder)) { intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), m2_n2->gmch_n); intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), m2_n2->link_m); intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), m2_n2->link_n); } } else { intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); } } void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) { const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); if (m_n == M1_N1) { dp_m_n = &crtc_state->dp_m_n; dp_m2_n2 = &crtc_state->dp_m2_n2; } else if (m_n == M2_N2) { /* * M2_N2 registers are not supported. Hence m2_n2 divider value * needs to be programmed into M1_N1. */ dp_m_n = &crtc_state->dp_m2_n2; } else { drm_err(&i915->drm, "Unsupported divider value\n"); return; } if (crtc_state->has_pch_encoder) intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); else intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); } static void vlv_prepare_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = crtc->pipe; u32 mdiv; u32 bestn, bestm1, bestm2, bestp1, bestp2; u32 coreclk, reg_val; /* Enable Refclk */ intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); /* No need to actually set up the DPLL with DSI */ if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) return; vlv_dpio_get(dev_priv); bestn = pipe_config->dpll.n; bestm1 = pipe_config->dpll.m1; bestm2 = pipe_config->dpll.m2; bestp1 = pipe_config->dpll.p1; bestp2 = pipe_config->dpll.p2; /* See eDP HDMI DPIO driver vbios notes doc */ /* PLL B needs special handling */ if (pipe == PIPE_B) vlv_pllb_recal_opamp(dev_priv, pipe); /* Set up Tx target for periodic Rcomp update */ vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); /* Disable target IRef on PLL */ reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); reg_val &= 0x00ffffff; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); /* Disable fast lock */ vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); /* Set idtafcrecal before PLL is enabled */ mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); mdiv |= ((bestn << DPIO_N_SHIFT)); mdiv |= (1 << DPIO_K_SHIFT); /* * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, * but we don't support that). * Note: don't use the DAC post divider as it seems unstable. */ mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); mdiv |= DPIO_ENABLE_CALIBRATION; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); /* Set HBR and RBR LPF coefficients */ if (pipe_config->port_clock == 162000 || intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) || intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 0x009f0003); else vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 0x00d0000f); if (intel_crtc_has_dp_encoder(pipe_config)) { /* Use SSC source */ if (pipe == PIPE_A) vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df40000); else vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df70000); } else { /* HDMI or VGA */ /* Use bend source */ if (pipe == PIPE_A) vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df70000); else vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df40000); } coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); coreclk = (coreclk & 0x0000ff00) | 0x01c00000; if (intel_crtc_has_dp_encoder(pipe_config)) coreclk |= 0x01000000; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); vlv_dpio_put(dev_priv); } static void chv_prepare_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = crtc->pipe; enum dpio_channel port = vlv_pipe_to_channel(pipe); u32 loopfilter, tribuf_calcntr; u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; u32 dpio_val; int vco; /* Enable Refclk and SSC */ intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); /* No need to actually set up the DPLL with DSI */ if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) return; bestn = pipe_config->dpll.n; bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; bestm1 = pipe_config->dpll.m1; bestm2 = pipe_config->dpll.m2 >> 22; bestp1 = pipe_config->dpll.p1; bestp2 = pipe_config->dpll.p2; vco = pipe_config->dpll.vco; dpio_val = 0; loopfilter = 0; vlv_dpio_get(dev_priv); /* p1 and p2 divider */ vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 5 << DPIO_CHV_S1_DIV_SHIFT | bestp1 << DPIO_CHV_P1_DIV_SHIFT | bestp2 << DPIO_CHV_P2_DIV_SHIFT | 1 << DPIO_CHV_K_DIV_SHIFT); /* Feedback post-divider - m2 */ vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); /* Feedback refclk divider - n and m1 */ vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), DPIO_CHV_M1_DIV_BY_2 | 1 << DPIO_CHV_N_DIV_SHIFT); /* M2 fraction division */ vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); /* M2 fraction division enable */ dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); if (bestm2_frac) dpio_val |= DPIO_CHV_FRAC_DIV_EN; vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); /* Program digital lock detect threshold */ dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); if (!bestm2_frac) dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); /* Loop filter */ if (vco == 5400000) { loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); tribuf_calcntr = 0x9; } else if (vco <= 6200000) { loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); tribuf_calcntr = 0x9; } else if (vco <= 6480000) { loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); tribuf_calcntr = 0x8; } else { /* Not supported. Apply the same limits as in the max case */ loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); tribuf_calcntr = 0; } vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); /* AFC Recal */ vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | DPIO_AFC_RECAL); vlv_dpio_put(dev_priv); } /** * vlv_force_pll_on - forcibly enable just the PLL * @dev_priv: i915 private structure * @pipe: pipe PLL to enable * @dpll: PLL configuration * * Enable the PLL for @pipe using the supplied @dpll config. To be used * in cases where we need the PLL enabled even when @pipe is not going to * be enabled. */ int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, const struct dpll *dpll) { struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); struct intel_crtc_state *pipe_config; pipe_config = intel_crtc_state_alloc(crtc); if (!pipe_config) return -ENOMEM; pipe_config->cpu_transcoder = (enum transcoder)pipe; pipe_config->pixel_multiplier = 1; pipe_config->dpll = *dpll; if (IS_CHERRYVIEW(dev_priv)) { chv_compute_dpll(crtc, pipe_config); chv_prepare_pll(crtc, pipe_config); chv_enable_pll(crtc, pipe_config); } else { vlv_compute_dpll(crtc, pipe_config); vlv_prepare_pll(crtc, pipe_config); vlv_enable_pll(crtc, pipe_config); } kfree(pipe_config); return 0; } /** * vlv_force_pll_off - forcibly disable just the PLL * @dev_priv: i915 private structure * @pipe: pipe PLL to disable * * Disable the PLL for @pipe. To be used in cases where we need * the PLL enabled even when @pipe is not going to be enabled. */ void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) { if (IS_CHERRYVIEW(dev_priv)) chv_disable_pll(dev_priv, pipe); else vlv_disable_pll(dev_priv, pipe); } static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; u32 crtc_vtotal, crtc_vblank_end; int vsyncshift = 0; /* We need to be careful not to changed the adjusted mode, for otherwise * the hw state checker will get angry at the mismatch. */ crtc_vtotal = adjusted_mode->crtc_vtotal; crtc_vblank_end = adjusted_mode->crtc_vblank_end; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { /* the chip adds 2 halflines automatically */ crtc_vtotal -= 1; crtc_vblank_end -= 1; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; else vsyncshift = adjusted_mode->crtc_hsync_start - adjusted_mode->crtc_htotal / 2; if (vsyncshift < 0) vsyncshift += adjusted_mode->crtc_htotal; } if (INTEL_GEN(dev_priv) > 3) intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), vsyncshift); intel_de_write(dev_priv, HTOTAL(cpu_transcoder), (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); intel_de_write(dev_priv, HBLANK(cpu_transcoder), (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); intel_de_write(dev_priv, HSYNC(cpu_transcoder), (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); intel_de_write(dev_priv, VTOTAL(cpu_transcoder), (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); intel_de_write(dev_priv, VBLANK(cpu_transcoder), (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); intel_de_write(dev_priv, VSYNC(cpu_transcoder), (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); /* Workaround: when the EDP input selection is B, the VTOTAL_B must be * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is * documented on the DDI_FUNC_CTL register description, EDP Input Select * bits. */ if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && (pipe == PIPE_B || pipe == PIPE_C)) intel_de_write(dev_priv, VTOTAL(pipe), intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); } static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* pipesrc controls the size that is scaled from, which should * always be the user's requested size. */ intel_de_write(dev_priv, PIPESRC(pipe), ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); } static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (IS_GEN(dev_priv, 2)) return false; if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; else return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; } static void intel_get_transcoder_timings(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; u32 tmp; tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; if (!transcoder_is_dsi(cpu_transcoder)) { tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); pipe_config->hw.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1; pipe_config->hw.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1; } tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; if (!transcoder_is_dsi(cpu_transcoder)) { tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); pipe_config->hw.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1; pipe_config->hw.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1; } tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; if (intel_pipe_is_interlaced(pipe_config)) { pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; pipe_config->hw.adjusted_mode.crtc_vtotal += 1; pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; } } static void intel_get_pipe_src_size(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 tmp; tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); pipe_config->pipe_src_h = (tmp & 0xffff) + 1; pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; } static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 pipeconf; pipeconf = 0; /* we keep both pipes enabled on 830 */ if (IS_I830(dev_priv)) pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; if (crtc_state->double_wide) pipeconf |= PIPECONF_DOUBLE_WIDE; /* only g4x and later have fancy bpc/dither controls */ if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { /* Bspec claims that we can't use dithering for 30bpp pipes. */ if (crtc_state->dither && crtc_state->pipe_bpp != 30) pipeconf |= PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP; switch (crtc_state->pipe_bpp) { case 18: pipeconf |= PIPECONF_6BPC; break; case 24: pipeconf |= PIPECONF_8BPC; break; case 30: pipeconf |= PIPECONF_10BPC; break; default: /* Case prevented by intel_choose_pipe_bpp_dither. */ BUG(); } } if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { if (INTEL_GEN(dev_priv) < 4 || intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; else pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; } else { pipeconf |= PIPECONF_PROGRESSIVE; } if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && crtc_state->limited_color_range) pipeconf |= PIPECONF_COLOR_RANGE_SELECT; pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); pipeconf |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); } static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) { if (IS_I830(dev_priv)) return false; return INTEL_GEN(dev_priv) >= 4 || IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); } static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 tmp; if (!i9xx_has_pfit(dev_priv)) return; tmp = intel_de_read(dev_priv, PFIT_CONTROL); if (!(tmp & PFIT_ENABLE)) return; /* Check whether the pfit is attached to our pipe. */ if (INTEL_GEN(dev_priv) < 4) { if (crtc->pipe != PIPE_B) return; } else { if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) return; } crtc_state->gmch_pfit.control = tmp; crtc_state->gmch_pfit.pgm_ratios = intel_de_read(dev_priv, PFIT_PGM_RATIOS); } static void vlv_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = crtc->pipe; struct dpll clock; u32 mdiv; int refclk = 100000; /* In case of DSI, DPLL will not be used */ if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) return; vlv_dpio_get(dev_priv); mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); vlv_dpio_put(dev_priv); clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; clock.m2 = mdiv & DPIO_M2DIV_MASK; clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); } static void i9xx_get_initial_plane_config(struct intel_crtc *crtc, struct intel_initial_plane_config *plane_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_plane *plane = to_intel_plane(crtc->base.primary); enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; enum pipe pipe; u32 val, base, offset; int fourcc, pixel_format; unsigned int aligned_height; struct drm_framebuffer *fb; struct intel_framebuffer *intel_fb; if (!plane->get_hw_state(plane, &pipe)) return; drm_WARN_ON(dev, pipe != crtc->pipe); intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) { drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); return; } fb = &intel_fb->base; fb->dev = dev; val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); if (INTEL_GEN(dev_priv) >= 4) { if (val & DISPPLANE_TILED) { plane_config->tiling = I915_TILING_X; fb->modifier = I915_FORMAT_MOD_X_TILED; } if (val & DISPPLANE_ROTATE_180) plane_config->rotation = DRM_MODE_ROTATE_180; } if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B && val & DISPPLANE_MIRROR) plane_config->rotation |= DRM_MODE_REFLECT_X; pixel_format = val & DISPPLANE_PIXFORMAT_MASK; fourcc = i9xx_format_to_fourcc(pixel_format); fb->format = drm_format_info(fourcc); if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane)); base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; } else if (INTEL_GEN(dev_priv) >= 4) { if (plane_config->tiling) offset = intel_de_read(dev_priv, DSPTILEOFF(i9xx_plane)); else offset = intel_de_read(dev_priv, DSPLINOFF(i9xx_plane)); base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; } else { base = intel_de_read(dev_priv, DSPADDR(i9xx_plane)); } plane_config->base = base; val = intel_de_read(dev_priv, PIPESRC(pipe)); fb->width = ((val >> 16) & 0xfff) + 1; fb->height = ((val >> 0) & 0xfff) + 1; val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane)); fb->pitches[0] = val & 0xffffffc0; aligned_height = intel_fb_align_height(fb, 0, fb->height); plane_config->size = fb->pitches[0] * aligned_height; drm_dbg_kms(&dev_priv->drm, "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", crtc->base.name, plane->base.name, fb->width, fb->height, fb->format->cpp[0] * 8, base, fb->pitches[0], plane_config->size); plane_config->fb = intel_fb; } static void chv_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = crtc->pipe; enum dpio_channel port = vlv_pipe_to_channel(pipe); struct dpll clock; u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; int refclk = 100000; /* In case of DSI, DPLL will not be used */ if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) return; vlv_dpio_get(dev_priv); cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); vlv_dpio_put(dev_priv); clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; clock.m2 = (pll_dw0 & 0xff) << 22; if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) clock.m2 |= pll_dw2 & 0x3fffff; clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); } static enum intel_output_format bdw_get_pipemisc_output_format(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 tmp; tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); if (tmp & PIPEMISC_YUV420_ENABLE) { /* We support 4:2:0 in full blend mode only */ drm_WARN_ON(&dev_priv->drm, (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); return INTEL_OUTPUT_FORMAT_YCBCR420; } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { return INTEL_OUTPUT_FORMAT_YCBCR444; } else { return INTEL_OUTPUT_FORMAT_RGB; } } static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_plane *plane = to_intel_plane(crtc->base.primary); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; u32 tmp; tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); if (tmp & DISPPLANE_GAMMA_ENABLE) crtc_state->gamma_enable = true; if (!HAS_GMCH(dev_priv) && tmp & DISPPLANE_PIPE_CSC_ENABLE) crtc_state->csc_enable = true; } static bool i9xx_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; u32 tmp; bool ret; power_domain = POWER_DOMAIN_PIPE(crtc->pipe); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wakeref) return false; pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; pipe_config->shared_dpll = NULL; ret = false; tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); if (!(tmp & PIPECONF_ENABLE)) goto out; if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { switch (tmp & PIPECONF_BPC_MASK) { case PIPECONF_6BPC: pipe_config->pipe_bpp = 18; break; case PIPECONF_8BPC: pipe_config->pipe_bpp = 24; break; case PIPECONF_10BPC: pipe_config->pipe_bpp = 30; break; default: break; } } if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && (tmp & PIPECONF_COLOR_RANGE_SELECT)) pipe_config->limited_color_range = true; pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> PIPECONF_GAMMA_MODE_SHIFT; if (IS_CHERRYVIEW(dev_priv)) pipe_config->cgm_mode = intel_de_read(dev_priv, CGM_PIPE_MODE(crtc->pipe)); i9xx_get_pipe_color_config(pipe_config); intel_color_get_config(pipe_config); if (INTEL_GEN(dev_priv) < 4) pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; intel_get_transcoder_timings(crtc, pipe_config); intel_get_pipe_src_size(crtc, pipe_config); i9xx_get_pfit_config(pipe_config); if (INTEL_GEN(dev_priv) >= 4) { /* No way to read it out on pipes B and C */ if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) tmp = dev_priv->chv_dpll_md[crtc->pipe]; else tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); pipe_config->pixel_multiplier = ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; pipe_config->dpll_hw_state.dpll_md = tmp; } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); pipe_config->pixel_multiplier = ((tmp & SDVO_MULTIPLIER_MASK) >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; } else { /* Note that on i915G/GM the pixel multiplier is in the sdvo * port and will be fixed up in the encoder->get_config * function. */ pipe_config->pixel_multiplier = 1; } pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, DPLL(crtc->pipe)); if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, FP0(crtc->pipe)); pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, FP1(crtc->pipe)); } else { /* Mask out read-only status bits. */ pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | DPLL_PORTC_READY_MASK | DPLL_PORTB_READY_MASK); } if (IS_CHERRYVIEW(dev_priv)) chv_crtc_clock_get(crtc, pipe_config); else if (IS_VALLEYVIEW(dev_priv)) vlv_crtc_clock_get(crtc, pipe_config); else i9xx_crtc_clock_get(crtc, pipe_config); /* * Normally the dotclock is filled in by the encoder .get_config() * but in case the pipe is enabled w/o any ports we need a sane * default. */ pipe_config->hw.adjusted_mode.crtc_clock = pipe_config->port_clock / pipe_config->pixel_multiplier; ret = true; out: intel_display_power_put(dev_priv, power_domain, wakeref); return ret; } static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; int i; u32 val, final; bool has_lvds = false; bool has_cpu_edp = false; bool has_panel = false; bool has_ck505 = false; bool can_ssc = false; bool using_ssc_source = false; /* We need to take the global config into account */ for_each_intel_encoder(&dev_priv->drm, encoder) { switch (encoder->type) { case INTEL_OUTPUT_LVDS: has_panel = true; has_lvds = true; break; case INTEL_OUTPUT_EDP: has_panel = true; if (encoder->port == PORT_A) has_cpu_edp = true; break; default: break; } } if (HAS_PCH_IBX(dev_priv)) { has_ck505 = dev_priv->vbt.display_clock_mode; can_ssc = has_ck505; } else { has_ck505 = false; can_ssc = true; } /* Check if any DPLLs are using the SSC source */ for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); if (!(temp & DPLL_VCO_ENABLE)) continue; if ((temp & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) { using_ssc_source = true; break; } } drm_dbg_kms(&dev_priv->drm, "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", has_panel, has_lvds, has_ck505, using_ssc_source); /* Ironlake: try to setup display ref clock before DPLL * enabling. This is only under driver's control after * PCH B stepping, previous chipset stepping should be * ignoring this setting. */ val = intel_de_read(dev_priv, PCH_DREF_CONTROL); /* As we must carefully and slowly disable/enable each source in turn, * compute the final state we want first and check if we need to * make any changes at all. */ final = val; final &= ~DREF_NONSPREAD_SOURCE_MASK; if (has_ck505) final |= DREF_NONSPREAD_CK505_ENABLE; else final |= DREF_NONSPREAD_SOURCE_ENABLE; final &= ~DREF_SSC_SOURCE_MASK; final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; final &= ~DREF_SSC1_ENABLE; if (has_panel) { final |= DREF_SSC_SOURCE_ENABLE; if (intel_panel_use_ssc(dev_priv) && can_ssc) final |= DREF_SSC1_ENABLE; if (has_cpu_edp) { if (intel_panel_use_ssc(dev_priv) && can_ssc) final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; else final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; } else final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; } else if (using_ssc_source) { final |= DREF_SSC_SOURCE_ENABLE; final |= DREF_SSC1_ENABLE; } if (final == val) return; /* Always enable nonspread source */ val &= ~DREF_NONSPREAD_SOURCE_MASK; if (has_ck505) val |= DREF_NONSPREAD_CK505_ENABLE; else val |= DREF_NONSPREAD_SOURCE_ENABLE; if (has_panel) { val &= ~DREF_SSC_SOURCE_MASK; val |= DREF_SSC_SOURCE_ENABLE; /* SSC must be turned on before enabling the CPU output */ if (intel_panel_use_ssc(dev_priv) && can_ssc) { drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); val |= DREF_SSC1_ENABLE; } else val &= ~DREF_SSC1_ENABLE; /* Get SSC going before enabling the outputs */ intel_de_write(dev_priv, PCH_DREF_CONTROL, val); intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); udelay(200); val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; /* Enable CPU source on CPU attached eDP */ if (has_cpu_edp) { if (intel_panel_use_ssc(dev_priv) && can_ssc) { drm_dbg_kms(&dev_priv->drm, "Using SSC on eDP\n"); val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; } else val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; } else val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; intel_de_write(dev_priv, PCH_DREF_CONTROL, val); intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); udelay(200); } else { drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; /* Turn off CPU output */ val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; intel_de_write(dev_priv, PCH_DREF_CONTROL, val); intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); udelay(200); if (!using_ssc_source) { drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); /* Turn off the SSC source */ val &= ~DREF_SSC_SOURCE_MASK; val |= DREF_SSC_SOURCE_DISABLE; /* Turn off SSC1 */ val &= ~DREF_SSC1_ENABLE; intel_de_write(dev_priv, PCH_DREF_CONTROL, val); intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); udelay(200); } } BUG_ON(val != final); } static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) { u32 tmp; tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); tmp |= FDI_MPHY_IOSFSB_RESET_CTL; intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & FDI_MPHY_IOSFSB_RESET_STATUS, 100)) drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); } /* WaMPhyProgramming:hsw */ static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) { u32 tmp; tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); tmp &= ~(0xFF << 24); tmp |= (0x12 << 24); intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); tmp |= (1 << 11); intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); tmp |= (1 << 11); intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); tmp |= (1 << 24) | (1 << 21) | (1 << 18); intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); tmp |= (1 << 24) | (1 << 21) | (1 << 18); intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); tmp &= ~(7 << 13); tmp |= (5 << 13); intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); tmp &= ~(7 << 13); tmp |= (5 << 13); intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); tmp &= ~0xFF; tmp |= 0x1C; intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); tmp &= ~0xFF; tmp |= 0x1C; intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); tmp &= ~(0xFF << 16); tmp |= (0x1C << 16); intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); tmp &= ~(0xFF << 16); tmp |= (0x1C << 16); intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); tmp |= (1 << 27); intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); tmp |= (1 << 27); intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); tmp &= ~(0xF << 28); tmp |= (4 << 28); intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); tmp &= ~(0xF << 28); tmp |= (4 << 28); intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); } /* Implements 3 different sequences from BSpec chapter "Display iCLK * Programming" based on the parameters passed: * - Sequence to enable CLKOUT_DP * - Sequence to enable CLKOUT_DP without spread * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O */ static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, bool with_spread, bool with_fdi) { u32 reg, tmp; if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, "FDI requires downspread\n")) with_spread = true; if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && with_fdi, "LP PCH doesn't have FDI\n")) with_fdi = false; mutex_lock(&dev_priv->sb_lock); tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); tmp &= ~SBI_SSCCTL_DISABLE; tmp |= SBI_SSCCTL_PATHALT; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); udelay(24); if (with_spread) { tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); tmp &= ~SBI_SSCCTL_PATHALT; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); if (with_fdi) { lpt_reset_fdi_mphy(dev_priv); lpt_program_fdi_mphy(dev_priv); } } reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); mutex_unlock(&dev_priv->sb_lock); } /* Sequence to disable CLKOUT_DP */ void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) { u32 reg, tmp; mutex_lock(&dev_priv->sb_lock); reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); if (!(tmp & SBI_SSCCTL_DISABLE)) { if (!(tmp & SBI_SSCCTL_PATHALT)) { tmp |= SBI_SSCCTL_PATHALT; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); udelay(32); } tmp |= SBI_SSCCTL_DISABLE; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); } mutex_unlock(&dev_priv->sb_lock); } #define BEND_IDX(steps) ((50 + (steps)) / 5) static const u16 sscdivintphase[] = { [BEND_IDX( 50)] = 0x3B23, [BEND_IDX( 45)] = 0x3B23, [BEND_IDX( 40)] = 0x3C23, [BEND_IDX( 35)] = 0x3C23, [BEND_IDX( 30)] = 0x3D23, [BEND_IDX( 25)] = 0x3D23, [BEND_IDX( 20)] = 0x3E23, [BEND_IDX( 15)] = 0x3E23, [BEND_IDX( 10)] = 0x3F23, [BEND_IDX( 5)] = 0x3F23, [BEND_IDX( 0)] = 0x0025, [BEND_IDX( -5)] = 0x0025, [BEND_IDX(-10)] = 0x0125, [BEND_IDX(-15)] = 0x0125, [BEND_IDX(-20)] = 0x0225, [BEND_IDX(-25)] = 0x0225, [BEND_IDX(-30)] = 0x0325, [BEND_IDX(-35)] = 0x0325, [BEND_IDX(-40)] = 0x0425, [BEND_IDX(-45)] = 0x0425, [BEND_IDX(-50)] = 0x0525, }; /* * Bend CLKOUT_DP * steps -50 to 50 inclusive, in steps of 5 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) * change in clock period = -(steps / 10) * 5.787 ps */ static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) { u32 tmp; int idx = BEND_IDX(steps); if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) return; if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) return; mutex_lock(&dev_priv->sb_lock); if (steps % 10 != 0) tmp = 0xAAAAAAAB; else tmp = 0x00000000; intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); tmp &= 0xffff0000; tmp |= sscdivintphase[idx]; intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); mutex_unlock(&dev_priv->sb_lock); } #undef BEND_IDX static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) { u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); u32 ctl = intel_de_read(dev_priv, SPLL_CTL); if ((ctl & SPLL_PLL_ENABLE) == 0) return false; if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) return true; if (IS_BROADWELL(dev_priv) && (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) return true; return false; } static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, enum intel_dpll_id id) { u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); if ((ctl & WRPLL_PLL_ENABLE) == 0) return false; if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) return true; if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) return true; return false; } static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; bool has_fdi = false; for_each_intel_encoder(&dev_priv->drm, encoder) { switch (encoder->type) { case INTEL_OUTPUT_ANALOG: has_fdi = true; break; default: break; } } /* * The BIOS may have decided to use the PCH SSC * reference so we must not disable it until the * relevant PLLs have stopped relying on it. We'll * just leave the PCH SSC reference enabled in case * any active PLL is using it. It will get disabled * after runtime suspend if we don't have FDI. * * TODO: Move the whole reference clock handling * to the modeset sequence proper so that we can * actually enable/disable/reconfigure these things * safely. To do that we need to introduce a real * clock hierarchy. That would also allow us to do * clock bending finally. */ dev_priv->pch_ssc_use = 0; if (spll_uses_pch_ssc(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); } if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); } if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); } if (dev_priv->pch_ssc_use) return; if (has_fdi) { lpt_bend_clkout_dp(dev_priv, 0); lpt_enable_clkout_dp(dev_priv, true, true); } else { lpt_disable_clkout_dp(dev_priv); } } /* * Initialize reference clocks when the driver loads */ void intel_init_pch_refclk(struct drm_i915_private *dev_priv) { if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) ilk_init_pch_refclk(dev_priv); else if (HAS_PCH_LPT(dev_priv)) lpt_init_pch_refclk(dev_priv); } static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 val; val = 0; switch (crtc_state->pipe_bpp) { case 18: val |= PIPECONF_6BPC; break; case 24: val |= PIPECONF_8BPC; break; case 30: val |= PIPECONF_10BPC; break; case 36: val |= PIPECONF_12BPC; break; default: /* Case prevented by intel_choose_pipe_bpp_dither. */ BUG(); } if (crtc_state->dither) val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) val |= PIPECONF_INTERLACED_ILK; else val |= PIPECONF_PROGRESSIVE; /* * This would end up with an odd purple hue over * the entire display. Make sure we don't do it. */ drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); if (crtc_state->limited_color_range && !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) val |= PIPECONF_COLOR_RANGE_SELECT; if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); intel_de_write(dev_priv, PIPECONF(pipe), val); intel_de_posting_read(dev_priv, PIPECONF(pipe)); } static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; u32 val = 0; if (IS_HASWELL(dev_priv) && crtc_state->dither) val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) val |= PIPECONF_INTERLACED_ILK; else val |= PIPECONF_PROGRESSIVE; if (IS_HASWELL(dev_priv) && crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); } static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 val = 0; switch (crtc_state->pipe_bpp) { case 18: val |= PIPEMISC_DITHER_6_BPC; break; case 24: val |= PIPEMISC_DITHER_8_BPC; break; case 30: val |= PIPEMISC_DITHER_10_BPC; break; case 36: val |= PIPEMISC_DITHER_12_BPC; break; default: MISSING_CASE(crtc_state->pipe_bpp); break; } if (crtc_state->dither) val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) val |= PIPEMISC_YUV420_ENABLE | PIPEMISC_YUV420_MODE_FULL_BLEND; if (INTEL_GEN(dev_priv) >= 11 && (crtc_state->active_planes & ~(icl_hdr_plane_mask() | BIT(PLANE_CURSOR))) == 0) val |= PIPEMISC_HDR_MODE_PRECISION; if (INTEL_GEN(dev_priv) >= 12) val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); } int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 tmp; tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); switch (tmp & PIPEMISC_DITHER_BPC_MASK) { case PIPEMISC_DITHER_6_BPC: return 18; case PIPEMISC_DITHER_8_BPC: return 24; case PIPEMISC_DITHER_10_BPC: return 30; case PIPEMISC_DITHER_12_BPC: return 36; default: MISSING_CASE(tmp); return 0; } } int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) { /* * Account for spread spectrum to avoid * oversubscribing the link. Max center spread * is 2.5%; use 5% for safety's sake. */ u32 bps = target_clock * bpp * 21 / 20; return DIV_ROUND_UP(bps, link_bw * 8); } static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, struct intel_link_m_n *m_n) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = crtc->pipe; m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) & ~TU_SIZE_MASK; m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; } static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, enum transcoder transcoder, struct intel_link_m_n *m_n, struct intel_link_m_n *m2_n2) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; if (INTEL_GEN(dev_priv) >= 5) { m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M1(transcoder)); m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N1(transcoder)); m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) & ~TU_SIZE_MASK; m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N1(transcoder)); m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { m2_n2->link_m = intel_de_read(dev_priv, PIPE_LINK_M2(transcoder)); m2_n2->link_n = intel_de_read(dev_priv, PIPE_LINK_N2(transcoder)); m2_n2->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) & ~TU_SIZE_MASK; m2_n2->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N2(transcoder)); m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; } } else { m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) & ~TU_SIZE_MASK; m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; } } void intel_dp_get_m_n(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { if (pipe_config->has_pch_encoder) intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); else intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, &pipe_config->dp_m_n, &pipe_config->dp_m2_n2); } static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, &pipe_config->fdi_m_n, NULL); } static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, u32 pos, u32 size) { drm_rect_init(&crtc_state->pch_pfit.dst, pos >> 16, pos & 0xffff, size >> 16, size & 0xffff); } static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; int id = -1; int i; /* find scaler attached to this pipe */ for (i = 0; i < crtc->num_scalers; i++) { u32 ctl, pos, size; ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) continue; id = i; crtc_state->pch_pfit.enabled = true; pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); ilk_get_pfit_pos_size(crtc_state, pos, size); scaler_state->scalers[i].in_use = true; break; } scaler_state->scaler_id = id; if (id >= 0) scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); else scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); } static void skl_get_initial_plane_config(struct intel_crtc *crtc, struct intel_initial_plane_config *plane_config) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_plane *plane = to_intel_plane(crtc->base.primary); enum plane_id plane_id = plane->id; enum pipe pipe; u32 val, base, offset, stride_mult, tiling, alpha; int fourcc, pixel_format; unsigned int aligned_height; struct drm_framebuffer *fb; struct intel_framebuffer *intel_fb; if (!plane->get_hw_state(plane, &pipe)) return; drm_WARN_ON(dev, pipe != crtc->pipe); if (crtc_state->bigjoiner) { drm_dbg_kms(&dev_priv->drm, "Unsupported bigjoiner configuration for initial FB\n"); return; } intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) { drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); return; } fb = &intel_fb->base; fb->dev = dev; val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id)); if (INTEL_GEN(dev_priv) >= 11) pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK; else pixel_format = val & PLANE_CTL_FORMAT_MASK; if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { alpha = intel_de_read(dev_priv, PLANE_COLOR_CTL(pipe, plane_id)); alpha &= PLANE_COLOR_ALPHA_MASK; } else { alpha = val & PLANE_CTL_ALPHA_MASK; } fourcc = skl_format_to_fourcc(pixel_format, val & PLANE_CTL_ORDER_RGBX, alpha); fb->format = drm_format_info(fourcc); tiling = val & PLANE_CTL_TILED_MASK; switch (tiling) { case PLANE_CTL_TILED_LINEAR: fb->modifier = DRM_FORMAT_MOD_LINEAR; break; case PLANE_CTL_TILED_X: plane_config->tiling = I915_TILING_X; fb->modifier = I915_FORMAT_MOD_X_TILED; break; case PLANE_CTL_TILED_Y: plane_config->tiling = I915_TILING_Y; if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) fb->modifier = INTEL_GEN(dev_priv) >= 12 ? I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS : I915_FORMAT_MOD_Y_TILED_CCS; else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE) fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; else fb->modifier = I915_FORMAT_MOD_Y_TILED; break; case PLANE_CTL_TILED_YF: if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS; else fb->modifier = I915_FORMAT_MOD_Yf_TILED; break; default: MISSING_CASE(tiling); goto error; } /* * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr * while i915 HW rotation is clockwise, thats why this swapping. */ switch (val & PLANE_CTL_ROTATE_MASK) { case PLANE_CTL_ROTATE_0: plane_config->rotation = DRM_MODE_ROTATE_0; break; case PLANE_CTL_ROTATE_90: plane_config->rotation = DRM_MODE_ROTATE_270; break; case PLANE_CTL_ROTATE_180: plane_config->rotation = DRM_MODE_ROTATE_180; break; case PLANE_CTL_ROTATE_270: plane_config->rotation = DRM_MODE_ROTATE_90; break; } if (INTEL_GEN(dev_priv) >= 10 && val & PLANE_CTL_FLIP_HORIZONTAL) plane_config->rotation |= DRM_MODE_REFLECT_X; /* 90/270 degree rotation would require extra work */ if (drm_rotation_90_or_270(plane_config->rotation)) goto error; base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000; plane_config->base = base; offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id)); val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id)); fb->height = ((val >> 16) & 0xffff) + 1; fb->width = ((val >> 0) & 0xffff) + 1; val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id)); stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0); fb->pitches[0] = (val & 0x3ff) * stride_mult; aligned_height = intel_fb_align_height(fb, 0, fb->height); plane_config->size = fb->pitches[0] * aligned_height; drm_dbg_kms(&dev_priv->drm, "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", crtc->base.name, plane->base.name, fb->width, fb->height, fb->format->cpp[0] * 8, base, fb->pitches[0], plane_config->size); plane_config->fb = intel_fb; return; error: kfree(intel_fb); } static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 ctl, pos, size; ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); if ((ctl & PF_ENABLE) == 0) return; crtc_state->pch_pfit.enabled = true; pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); ilk_get_pfit_pos_size(crtc_state, pos, size); /* * We currently do not free assignements of panel fitters on * ivb/hsw (since we don't use the higher upscaling modes which * differentiates them) so just WARN about this case for now. */ drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) && (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); } static bool ilk_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; u32 tmp; bool ret; power_domain = POWER_DOMAIN_PIPE(crtc->pipe); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wakeref) return false; pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; pipe_config->shared_dpll = NULL; ret = false; tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); if (!(tmp & PIPECONF_ENABLE)) goto out; switch (tmp & PIPECONF_BPC_MASK) { case PIPECONF_6BPC: pipe_config->pipe_bpp = 18; break; case PIPECONF_8BPC: pipe_config->pipe_bpp = 24; break; case PIPECONF_10BPC: pipe_config->pipe_bpp = 30; break; case PIPECONF_12BPC: pipe_config->pipe_bpp = 36; break; default: break; } if (tmp & PIPECONF_COLOR_RANGE_SELECT) pipe_config->limited_color_range = true; switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { case PIPECONF_OUTPUT_COLORSPACE_YUV601: case PIPECONF_OUTPUT_COLORSPACE_YUV709: pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; break; default: pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; break; } pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> PIPECONF_GAMMA_MODE_SHIFT; pipe_config->csc_mode = intel_de_read(dev_priv, PIPE_CSC_MODE(crtc->pipe)); i9xx_get_pipe_color_config(pipe_config); intel_color_get_config(pipe_config); if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { struct intel_shared_dpll *pll; enum intel_dpll_id pll_id; bool pll_active; pipe_config->has_pch_encoder = true; tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> FDI_DP_PORT_WIDTH_SHIFT) + 1; ilk_get_fdi_m_n_config(crtc, pipe_config); if (HAS_PCH_IBX(dev_priv)) { /* * The pipe->pch transcoder and pch transcoder->pll * mapping is fixed. */ pll_id = (enum intel_dpll_id) crtc->pipe; } else { tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) pll_id = DPLL_ID_PCH_PLL_B; else pll_id= DPLL_ID_PCH_PLL_A; } pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, pll_id); pll = pipe_config->shared_dpll; pll_active = intel_dpll_get_hw_state(dev_priv, pll, &pipe_config->dpll_hw_state); drm_WARN_ON(dev, !pll_active); tmp = pipe_config->dpll_hw_state.dpll; pipe_config->pixel_multiplier = ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; ilk_pch_clock_get(crtc, pipe_config); } else { pipe_config->pixel_multiplier = 1; } intel_get_transcoder_timings(crtc, pipe_config); intel_get_pipe_src_size(crtc, pipe_config); ilk_get_pfit_config(pipe_config); ret = true; out: intel_display_power_put(dev_priv, power_domain, wakeref); return ret; } static void dg1_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { enum icl_port_dpll_id port_dpll_id = ICL_PORT_DPLL_DEFAULT; enum phy phy = intel_port_to_phy(dev_priv, port); struct icl_port_dpll *port_dpll; struct intel_shared_dpll *pll; enum intel_dpll_id id; bool pll_active; u32 clk_sel; clk_sel = intel_de_read(dev_priv, DG1_DPCLKA_CFGCR0(phy)) & DG1_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); id = DG1_DPCLKA_CFGCR0_DDI_CLK_SEL_DPLL_MAP(clk_sel, phy); if (WARN_ON(id > DPLL_ID_DG1_DPLL3)) return; pll = intel_get_shared_dpll_by_id(dev_priv, id); port_dpll = &pipe_config->icl_port_dplls[port_dpll_id]; port_dpll->pll = pll; pll_active = intel_dpll_get_hw_state(dev_priv, pll, &port_dpll->hw_state); drm_WARN_ON(&dev_priv->drm, !pll_active); icl_set_active_port_dpll(pipe_config, port_dpll_id); } static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { enum phy phy = intel_port_to_phy(dev_priv, port); enum icl_port_dpll_id port_dpll_id; struct icl_port_dpll *port_dpll; struct intel_shared_dpll *pll; enum intel_dpll_id id; bool pll_active; u32 temp; if (intel_phy_is_combo(dev_priv, phy)) { u32 mask, shift; if (IS_ROCKETLAKE(dev_priv)) { mask = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); shift = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); } else { mask = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); shift = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); } temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & mask; id = temp >> shift; port_dpll_id = ICL_PORT_DPLL_DEFAULT; } else if (intel_phy_is_tc(dev_priv, phy)) { u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK; if (clk_sel == DDI_CLK_SEL_MG) { id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, port)); port_dpll_id = ICL_PORT_DPLL_MG_PHY; } else { drm_WARN_ON(&dev_priv->drm, clk_sel < DDI_CLK_SEL_TBT_162); id = DPLL_ID_ICL_TBTPLL; port_dpll_id = ICL_PORT_DPLL_DEFAULT; } } else { drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port); return; } pll = intel_get_shared_dpll_by_id(dev_priv, id); port_dpll = &pipe_config->icl_port_dplls[port_dpll_id]; port_dpll->pll = pll; pll_active = intel_dpll_get_hw_state(dev_priv, pll, &port_dpll->hw_state); drm_WARN_ON(&dev_priv->drm, !pll_active); icl_set_active_port_dpll(pipe_config, port_dpll_id); } static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { struct intel_shared_dpll *pll; enum intel_dpll_id id; bool pll_active; u32 temp; temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port); if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2)) return; pll = intel_get_shared_dpll_by_id(dev_priv, id); pipe_config->shared_dpll = pll; pll_active = intel_dpll_get_hw_state(dev_priv, pll, &pipe_config->dpll_hw_state); drm_WARN_ON(&dev_priv->drm, !pll_active); } static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { struct intel_shared_dpll *pll; enum intel_dpll_id id; bool pll_active; switch (port) { case PORT_A: id = DPLL_ID_SKL_DPLL0; break; case PORT_B: id = DPLL_ID_SKL_DPLL1; break; case PORT_C: id = DPLL_ID_SKL_DPLL2; break; default: drm_err(&dev_priv->drm, "Incorrect port type\n"); return; } pll = intel_get_shared_dpll_by_id(dev_priv, id); pipe_config->shared_dpll = pll; pll_active = intel_dpll_get_hw_state(dev_priv, pll, &pipe_config->dpll_hw_state); drm_WARN_ON(&dev_priv->drm, !pll_active); } static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { struct intel_shared_dpll *pll; enum intel_dpll_id id; bool pll_active; u32 temp; temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); id = temp >> (port * 3 + 1); if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3)) return; pll = intel_get_shared_dpll_by_id(dev_priv, id); pipe_config->shared_dpll = pll; pll_active = intel_dpll_get_hw_state(dev_priv, pll, &pipe_config->dpll_hw_state); drm_WARN_ON(&dev_priv->drm, !pll_active); } static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { struct intel_shared_dpll *pll; enum intel_dpll_id id; u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port)); bool pll_active; switch (ddi_pll_sel) { case PORT_CLK_SEL_WRPLL1: id = DPLL_ID_WRPLL1; break; case PORT_CLK_SEL_WRPLL2: id = DPLL_ID_WRPLL2; break; case PORT_CLK_SEL_SPLL: id = DPLL_ID_SPLL; break; case PORT_CLK_SEL_LCPLL_810: id = DPLL_ID_LCPLL_810; break; case PORT_CLK_SEL_LCPLL_1350: id = DPLL_ID_LCPLL_1350; break; case PORT_CLK_SEL_LCPLL_2700: id = DPLL_ID_LCPLL_2700; break; default: MISSING_CASE(ddi_pll_sel); fallthrough; case PORT_CLK_SEL_NONE: return; } pll = intel_get_shared_dpll_by_id(dev_priv, id); pipe_config->shared_dpll = pll; pll_active = intel_dpll_get_hw_state(dev_priv, pll, &pipe_config->dpll_hw_state); drm_WARN_ON(&dev_priv->drm, !pll_active); } static bool hsw_get_transcoder_state(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config, struct intel_display_power_domain_set *power_domain_set) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP); unsigned long enabled_panel_transcoders = 0; enum transcoder panel_transcoder; u32 tmp; if (INTEL_GEN(dev_priv) >= 11) panel_transcoder_mask |= BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); /* * The pipe->transcoder mapping is fixed with the exception of the eDP * and DSI transcoders handled below. */ pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; /* * XXX: Do intel_display_power_get_if_enabled before reading this (for * consistency and less surprising code; it's in always on power). */ for_each_cpu_transcoder_masked(dev_priv, panel_transcoder, panel_transcoder_mask) { bool force_thru = false; enum pipe trans_pipe; tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(panel_transcoder)); if (!(tmp & TRANS_DDI_FUNC_ENABLE)) continue; /* * Log all enabled ones, only use the first one. * * FIXME: This won't work for two separate DSI displays. */ enabled_panel_transcoders |= BIT(panel_transcoder); if (enabled_panel_transcoders != BIT(panel_transcoder)) continue; switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { default: drm_WARN(dev, 1, "unknown pipe linked to transcoder %s\n", transcoder_name(panel_transcoder)); fallthrough; case TRANS_DDI_EDP_INPUT_A_ONOFF: force_thru = true; fallthrough; case TRANS_DDI_EDP_INPUT_A_ON: trans_pipe = PIPE_A; break; case TRANS_DDI_EDP_INPUT_B_ONOFF: trans_pipe = PIPE_B; break; case TRANS_DDI_EDP_INPUT_C_ONOFF: trans_pipe = PIPE_C; break; case TRANS_DDI_EDP_INPUT_D_ONOFF: trans_pipe = PIPE_D; break; } if (trans_pipe == crtc->pipe) { pipe_config->cpu_transcoder = panel_transcoder; pipe_config->pch_pfit.force_thru = force_thru; } } /* * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 */ drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && enabled_panel_transcoders != BIT(TRANSCODER_EDP)); if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) return false; tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); return tmp & PIPECONF_ENABLE; } static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config, struct intel_display_power_domain_set *power_domain_set) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum transcoder cpu_transcoder; enum port port; u32 tmp; for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { if (port == PORT_A) cpu_transcoder = TRANSCODER_DSI_A; else cpu_transcoder = TRANSCODER_DSI_C; if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, POWER_DOMAIN_TRANSCODER(cpu_transcoder))) continue; /* * The PLL needs to be enabled with a valid divider * configuration, otherwise accessing DSI registers will hang * the machine. See BSpec North Display Engine * registers/MIPI[BXT]. We can break out here early, since we * need the same DSI PLL to be enabled for both DSI ports. */ if (!bxt_dsi_pll_is_enabled(dev_priv)) break; /* XXX: this works for video mode only */ tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); if (!(tmp & DPI_ENABLE)) continue; tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) continue; pipe_config->cpu_transcoder = cpu_transcoder; break; } return transcoder_is_dsi(pipe_config->cpu_transcoder); } static void hsw_get_ddi_port_state(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; enum port port; u32 tmp; if (transcoder_is_dsi(cpu_transcoder)) { port = (cpu_transcoder == TRANSCODER_DSI_A) ? PORT_A : PORT_B; } else { tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)); if (!(tmp & TRANS_DDI_FUNC_ENABLE)) return; if (INTEL_GEN(dev_priv) >= 12) port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); else port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); } if (IS_DG1(dev_priv)) dg1_get_ddi_pll(dev_priv, port, pipe_config); else if (INTEL_GEN(dev_priv) >= 11) icl_get_ddi_pll(dev_priv, port, pipe_config); else if (IS_CANNONLAKE(dev_priv)) cnl_get_ddi_pll(dev_priv, port, pipe_config); else if (IS_GEN9_LP(dev_priv)) bxt_get_ddi_pll(dev_priv, port, pipe_config); else if (IS_GEN9_BC(dev_priv)) skl_get_ddi_pll(dev_priv, port, pipe_config); else hsw_get_ddi_pll(dev_priv, port, pipe_config); /* * Haswell has only FDI/PCH transcoder A. It is which is connected to * DDI E. So just check whether this pipe is wired to DDI E and whether * the PCH transcoder is on. */ if (INTEL_GEN(dev_priv) < 9 && (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { pipe_config->has_pch_encoder = true; tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> FDI_DP_PORT_WIDTH_SHIFT) + 1; ilk_get_fdi_m_n_config(crtc, pipe_config); } } static bool hsw_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_display_power_domain_set power_domain_set = { }; bool active; u32 tmp; if (!intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, POWER_DOMAIN_PIPE(crtc->pipe))) return false; pipe_config->shared_dpll = NULL; active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_set); if (IS_GEN9_LP(dev_priv) && bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_set)) { drm_WARN_ON(&dev_priv->drm, active); active = true; } intel_dsc_get_config(pipe_config); if (!active) { /* bigjoiner slave doesn't enable transcoder */ if (!pipe_config->bigjoiner_slave) goto out; active = true; pipe_config->pixel_multiplier = 1; /* we cannot read out most state, so don't bother.. */ pipe_config->quirks |= PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE; } else if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || INTEL_GEN(dev_priv) >= 11) { hsw_get_ddi_port_state(crtc, pipe_config); intel_get_transcoder_timings(crtc, pipe_config); } intel_get_pipe_src_size(crtc, pipe_config); if (IS_HASWELL(dev_priv)) { u32 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; else pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; } else { pipe_config->output_format = bdw_get_pipemisc_output_format(crtc); } pipe_config->gamma_mode = intel_de_read(dev_priv, GAMMA_MODE(crtc->pipe)); pipe_config->csc_mode = intel_de_read(dev_priv, PIPE_CSC_MODE(crtc->pipe)); if (INTEL_GEN(dev_priv) >= 9) { tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) pipe_config->gamma_enable = true; if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) pipe_config->csc_enable = true; } else { i9xx_get_pipe_color_config(pipe_config); } intel_color_get_config(pipe_config); tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) pipe_config->ips_linetime = REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); if (intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) { if (INTEL_GEN(dev_priv) >= 9) skl_get_pfit_config(pipe_config); else ilk_get_pfit_config(pipe_config); } if (hsw_crtc_supports_ips(crtc)) { if (IS_HASWELL(dev_priv)) pipe_config->ips_enabled = intel_de_read(dev_priv, IPS_CTL) & IPS_ENABLE; else { /* * We cannot readout IPS state on broadwell, set to * true so we can set it to a defined state on first * commit. */ pipe_config->ips_enabled = true; } } if (pipe_config->bigjoiner_slave) { /* Cannot be read out as a slave, set to 0. */ pipe_config->pixel_multiplier = 0; } else if (pipe_config->cpu_transcoder != TRANSCODER_EDP && !transcoder_is_dsi(pipe_config->cpu_transcoder)) { pipe_config->pixel_multiplier = intel_de_read(dev_priv, PIPE_MULT(pipe_config->cpu_transcoder)) + 1; } else { pipe_config->pixel_multiplier = 1; } out: intel_display_power_put_all_in_set(dev_priv, &power_domain_set); return active; } static bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); if (!i915->display.get_pipe_config(crtc, crtc_state)) return false; crtc_state->hw.active = true; intel_crtc_readout_derived_state(crtc_state); return true; } /* VESA 640x480x72Hz mode to set on the pipe */ static const struct drm_display_mode load_detect_mode = { DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), }; struct drm_framebuffer * intel_framebuffer_create(struct drm_i915_gem_object *obj, struct drm_mode_fb_cmd2 *mode_cmd) { struct intel_framebuffer *intel_fb; int ret; intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) return ERR_PTR(-ENOMEM); ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); if (ret) goto err; return &intel_fb->base; err: kfree(intel_fb); return ERR_PTR(ret); } static int intel_modeset_disable_planes(struct drm_atomic_state *state, struct drm_crtc *crtc) { struct drm_plane *plane; struct drm_plane_state *plane_state; int ret, i; ret = drm_atomic_add_affected_planes(state, crtc); if (ret) return ret; for_each_new_plane_in_state(state, plane, plane_state, i) { if (plane_state->crtc != crtc) continue; ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); if (ret) return ret; drm_atomic_set_fb_for_plane(plane_state, NULL); } return 0; } int intel_get_load_detect_pipe(struct drm_connector *connector, struct intel_load_detect_pipe *old, struct drm_modeset_acquire_ctx *ctx) { struct intel_crtc *intel_crtc; struct intel_encoder *intel_encoder = intel_attached_encoder(to_intel_connector(connector)); struct drm_crtc *possible_crtc; struct drm_encoder *encoder = &intel_encoder->base; struct drm_crtc *crtc = NULL; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_mode_config *config = &dev->mode_config; struct drm_atomic_state *state = NULL, *restore_state = NULL; struct drm_connector_state *connector_state; struct intel_crtc_state *crtc_state; int ret, i = -1; drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, connector->name, encoder->base.id, encoder->name); old->restore_state = NULL; drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); /* * Algorithm gets a little messy: * * - if the connector already has an assigned crtc, use it (but make * sure it's on first) * * - try to find the first unused crtc that can drive this connector, * and use that if we find one */ /* See if we already have a CRTC for this connector */ if (connector->state->crtc) { crtc = connector->state->crtc; ret = drm_modeset_lock(&crtc->mutex, ctx); if (ret) goto fail; /* Make sure the crtc and connector are running */ goto found; } /* Find an unused one (if possible) */ for_each_crtc(dev, possible_crtc) { i++; if (!(encoder->possible_crtcs & (1 << i))) continue; ret = drm_modeset_lock(&possible_crtc->mutex, ctx); if (ret) goto fail; if (possible_crtc->state->enable) { drm_modeset_unlock(&possible_crtc->mutex); continue; } crtc = possible_crtc; break; } /* * If we didn't find an unused CRTC, don't use any. */ if (!crtc) { drm_dbg_kms(&dev_priv->drm, "no pipe available for load-detect\n"); ret = -ENODEV; goto fail; } found: intel_crtc = to_intel_crtc(crtc); state = drm_atomic_state_alloc(dev); restore_state = drm_atomic_state_alloc(dev); if (!state || !restore_state) { ret = -ENOMEM; goto fail; } state->acquire_ctx = ctx; restore_state->acquire_ctx = ctx; connector_state = drm_atomic_get_connector_state(state, connector); if (IS_ERR(connector_state)) { ret = PTR_ERR(connector_state); goto fail; } ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); if (ret) goto fail; crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto fail; } crtc_state->uapi.active = true; ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &load_detect_mode); if (ret) goto fail; ret = intel_modeset_disable_planes(state, crtc); if (ret) goto fail; ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); if (!ret) ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); if (!ret) ret = drm_atomic_add_affected_planes(restore_state, crtc); if (ret) { drm_dbg_kms(&dev_priv->drm, "Failed to create a copy of old state to restore: %i\n", ret); goto fail; } ret = drm_atomic_commit(state); if (ret) { drm_dbg_kms(&dev_priv->drm, "failed to set mode on load-detect pipe\n"); goto fail; } old->restore_state = restore_state; drm_atomic_state_put(state); /* let the connector get through one full cycle before testing */ intel_wait_for_vblank(dev_priv, intel_crtc->pipe); return true; fail: if (state) { drm_atomic_state_put(state); state = NULL; } if (restore_state) { drm_atomic_state_put(restore_state); restore_state = NULL; } if (ret == -EDEADLK) return ret; return false; } void intel_release_load_detect_pipe(struct drm_connector *connector, struct intel_load_detect_pipe *old, struct drm_modeset_acquire_ctx *ctx) { struct intel_encoder *intel_encoder = intel_attached_encoder(to_intel_connector(connector)); struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); struct drm_encoder *encoder = &intel_encoder->base; struct drm_atomic_state *state = old->restore_state; int ret; drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, connector->name, encoder->base.id, encoder->name); if (!state) return; ret = drm_atomic_helper_commit_duplicated_state(state, ctx); if (ret) drm_dbg_kms(&i915->drm, "Couldn't release load detect pipe: %i\n", ret); drm_atomic_state_put(state); } static int i9xx_pll_refclk(struct drm_device *dev, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(dev); u32 dpll = pipe_config->dpll_hw_state.dpll; if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) return dev_priv->vbt.lvds_ssc_freq; else if (HAS_PCH_SPLIT(dev_priv)) return 120000; else if (!IS_GEN(dev_priv, 2)) return 96000; else return 48000; } /* Returns the clock of the currently programmed mode of the given pipe. */ static void i9xx_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = crtc->pipe; u32 dpll = pipe_config->dpll_hw_state.dpll; u32 fp; struct dpll clock; int port_clock; int refclk = i9xx_pll_refclk(dev, pipe_config); if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = pipe_config->dpll_hw_state.fp0; else fp = pipe_config->dpll_hw_state.fp1; clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; if (IS_PINEVIEW(dev_priv)) { clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; } else { clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; } if (!IS_GEN(dev_priv, 2)) { if (IS_PINEVIEW(dev_priv)) clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); else clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> DPLL_FPA01_P1_POST_DIV_SHIFT); switch (dpll & DPLL_MODE_MASK) { case DPLLB_MODE_DAC_SERIAL: clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 5 : 10; break; case DPLLB_MODE_LVDS: clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 7 : 14; break; default: drm_dbg_kms(&dev_priv->drm, "Unknown DPLL mode %08x in programmed " "mode\n", (int)(dpll & DPLL_MODE_MASK)); return; } if (IS_PINEVIEW(dev_priv)) port_clock = pnv_calc_dpll_params(refclk, &clock); else port_clock = i9xx_calc_dpll_params(refclk, &clock); } else { u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, LVDS); bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); if (is_lvds) { clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> DPLL_FPA01_P1_POST_DIV_SHIFT); if (lvds & LVDS_CLKB_POWER_UP) clock.p2 = 7; else clock.p2 = 14; } else { if (dpll & PLL_P1_DIVIDE_BY_TWO) clock.p1 = 2; else { clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; } if (dpll & PLL_P2_DIVIDE_BY_4) clock.p2 = 4; else clock.p2 = 2; } port_clock = i9xx_calc_dpll_params(refclk, &clock); } /* * This value includes pixel_multiplier. We will use * port_clock to compute adjusted_mode.crtc_clock in the * encoder's get_config() function. */ pipe_config->port_clock = port_clock; } int intel_dotclock_calculate(int link_freq, const struct intel_link_m_n *m_n) { /* * The calculation for the data clock is: * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp * But we want to avoid losing precison if possible, so: * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) * * and the link clock is simpler: * link_clock = (m * link_clock) / n */ if (!m_n->link_n) return 0; return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); } static void ilk_pch_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* read out port_clock from the DPLL */ i9xx_crtc_clock_get(crtc, pipe_config); /* * In case there is an active pipe without active ports, * we may need some idea for the dotclock anyway. * Calculate one based on the FDI configuration. */ pipe_config->hw.adjusted_mode.crtc_clock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), &pipe_config->fdi_m_n); } /* Returns the currently programmed mode of the given encoder. */ struct drm_display_mode * intel_encoder_current_mode(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc_state *crtc_state; struct drm_display_mode *mode; struct intel_crtc *crtc; enum pipe pipe; if (!encoder->get_hw_state(encoder, &pipe)) return NULL; crtc = intel_get_crtc_for_pipe(dev_priv, pipe); mode = kzalloc(sizeof(*mode), GFP_KERNEL); if (!mode) return NULL; crtc_state = intel_crtc_state_alloc(crtc); if (!crtc_state) { kfree(mode); return NULL; } if (!intel_crtc_get_pipe_config(crtc_state)) { kfree(crtc_state); kfree(mode); return NULL; } intel_encoder_get_config(encoder, crtc_state); intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode); kfree(crtc_state); return mode; } /** * intel_wm_need_update - Check whether watermarks need updating * @cur: current plane state * @new: new plane state * * Check current plane state versus the new one to determine whether * watermarks need to be recalculated. * * Returns true or false. */ static bool intel_wm_need_update(const struct intel_plane_state *cur, struct intel_plane_state *new) { /* Update watermarks on tiling or size changes. */ if (new->uapi.visible != cur->uapi.visible) return true; if (!cur->hw.fb || !new->hw.fb) return false; if (cur->hw.fb->modifier != new->hw.fb->modifier || cur->hw.rotation != new->hw.rotation || drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) return true; return false; } static bool needs_scaling(const struct intel_plane_state *state) { int src_w = drm_rect_width(&state->uapi.src) >> 16; int src_h = drm_rect_height(&state->uapi.src) >> 16; int dst_w = drm_rect_width(&state->uapi.dst); int dst_h = drm_rect_height(&state->uapi.dst); return (src_w != dst_w || src_h != dst_h); } int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *crtc_state, const struct intel_plane_state *old_plane_state, struct intel_plane_state *plane_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); bool mode_changed = intel_crtc_needs_modeset(crtc_state); bool was_crtc_enabled = old_crtc_state->hw.active; bool is_crtc_enabled = crtc_state->hw.active; bool turn_off, turn_on, visible, was_visible; int ret; if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { ret = skl_update_scaler_plane(crtc_state, plane_state); if (ret) return ret; } was_visible = old_plane_state->uapi.visible; visible = plane_state->uapi.visible; if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) was_visible = false; /* * Visibility is calculated as if the crtc was on, but * after scaler setup everything depends on it being off * when the crtc isn't active. * * FIXME this is wrong for watermarks. Watermarks should also * be computed as if the pipe would be active. Perhaps move * per-plane wm computation to the .check_plane() hook, and * only combine the results from all planes in the current place? */ if (!is_crtc_enabled) { intel_plane_set_invisible(crtc_state, plane_state); visible = false; } if (!was_visible && !visible) return 0; turn_off = was_visible && (!visible || mode_changed); turn_on = visible && (!was_visible || mode_changed); drm_dbg_atomic(&dev_priv->drm, "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", crtc->base.base.id, crtc->base.name, plane->base.base.id, plane->base.name, was_visible, visible, turn_off, turn_on, mode_changed); if (turn_on) { if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) crtc_state->update_wm_pre = true; /* must disable cxsr around plane enable/disable */ if (plane->id != PLANE_CURSOR) crtc_state->disable_cxsr = true; } else if (turn_off) { if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) crtc_state->update_wm_post = true; /* must disable cxsr around plane enable/disable */ if (plane->id != PLANE_CURSOR) crtc_state->disable_cxsr = true; } else if (intel_wm_need_update(old_plane_state, plane_state)) { if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) { /* FIXME bollocks */ crtc_state->update_wm_pre = true; crtc_state->update_wm_post = true; } } if (visible || was_visible) crtc_state->fb_bits |= plane->frontbuffer_bit; /* * ILK/SNB DVSACNTR/Sprite Enable * IVB SPR_CTL/Sprite Enable * "When in Self Refresh Big FIFO mode, a write to enable the * plane will be internally buffered and delayed while Big FIFO * mode is exiting." * * Which means that enabling the sprite can take an extra frame * when we start in big FIFO mode (LP1+). Thus we need to drop * down to LP0 and wait for vblank in order to make sure the * sprite gets enabled on the next vblank after the register write. * Doing otherwise would risk enabling the sprite one frame after * we've already signalled flip completion. We can resume LP1+ * once the sprite has been enabled. * * * WaCxSRDisabledForSpriteScaling:ivb * IVB SPR_SCALE/Scaling Enable * "Low Power watermarks must be disabled for at least one * frame before enabling sprite scaling, and kept disabled * until sprite scaling is disabled." * * ILK/SNB DVSASCALE/Scaling Enable * "When in Self Refresh Big FIFO mode, scaling enable will be * masked off while Big FIFO mode is exiting." * * Despite the w/a only being listed for IVB we assume that * the ILK/SNB note has similar ramifications, hence we apply * the w/a on all three platforms. * * With experimental results seems this is needed also for primary * plane, not only sprite plane. */ if (plane->id != PLANE_CURSOR && (IS_GEN_RANGE(dev_priv, 5, 6) || IS_IVYBRIDGE(dev_priv)) && (turn_on || (!needs_scaling(old_plane_state) && needs_scaling(plane_state)))) crtc_state->disable_lp_wm = true; return 0; } static bool encoders_cloneable(const struct intel_encoder *a, const struct intel_encoder *b) { /* masks could be asymmetric, so check both ways */ return a == b || (a->cloneable & (1 << b->type) && b->cloneable & (1 << a->type)); } static bool check_single_encoder_cloning(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct intel_encoder *source_encoder; struct drm_connector *connector; struct drm_connector_state *connector_state; int i; for_each_new_connector_in_state(&state->base, connector, connector_state, i) { if (connector_state->crtc != &crtc->base) continue; source_encoder = to_intel_encoder(connector_state->best_encoder); if (!encoders_cloneable(encoder, source_encoder)) return false; } return true; } static int icl_add_linked_planes(struct intel_atomic_state *state) { struct intel_plane *plane, *linked; struct intel_plane_state *plane_state, *linked_plane_state; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { linked = plane_state->planar_linked_plane; if (!linked) continue; linked_plane_state = intel_atomic_get_plane_state(state, linked); if (IS_ERR(linked_plane_state)) return PTR_ERR(linked_plane_state); drm_WARN_ON(state->base.dev, linked_plane_state->planar_linked_plane != plane); drm_WARN_ON(state->base.dev, linked_plane_state->planar_slave == plane_state->planar_slave); } return 0; } static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); struct intel_plane *plane, *linked; struct intel_plane_state *plane_state; int i; if (INTEL_GEN(dev_priv) < 11) return 0; /* * Destroy all old plane links and make the slave plane invisible * in the crtc_state->active_planes mask. */ for_each_new_intel_plane_in_state(state, plane, plane_state, i) { if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) continue; plane_state->planar_linked_plane = NULL; if (plane_state->planar_slave && !plane_state->uapi.visible) { crtc_state->enabled_planes &= ~BIT(plane->id); crtc_state->active_planes &= ~BIT(plane->id); crtc_state->update_planes |= BIT(plane->id); } plane_state->planar_slave = false; } if (!crtc_state->nv12_planes) return 0; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { struct intel_plane_state *linked_state = NULL; if (plane->pipe != crtc->pipe || !(crtc_state->nv12_planes & BIT(plane->id))) continue; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { if (!icl_is_nv12_y_plane(dev_priv, linked->id)) continue; if (crtc_state->active_planes & BIT(linked->id)) continue; linked_state = intel_atomic_get_plane_state(state, linked); if (IS_ERR(linked_state)) return PTR_ERR(linked_state); break; } if (!linked_state) { drm_dbg_kms(&dev_priv->drm, "Need %d free Y planes for planar YUV\n", hweight8(crtc_state->nv12_planes)); return -EINVAL; } plane_state->planar_linked_plane = linked; linked_state->planar_slave = true; linked_state->planar_linked_plane = plane; crtc_state->enabled_planes |= BIT(linked->id); crtc_state->active_planes |= BIT(linked->id); crtc_state->update_planes |= BIT(linked->id); drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", linked->base.name, plane->base.name); /* Copy parameters to slave plane */ linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; linked_state->color_ctl = plane_state->color_ctl; linked_state->view = plane_state->view; memcpy(linked_state->color_plane, plane_state->color_plane, sizeof(linked_state->color_plane)); intel_plane_copy_hw_state(linked_state, plane_state); linked_state->uapi.src = plane_state->uapi.src; linked_state->uapi.dst = plane_state->uapi.dst; if (icl_is_hdr_plane(dev_priv, plane->id)) { if (linked->id == PLANE_SPRITE5) plane_state->cus_ctl |= PLANE_CUS_PLANE_7; else if (linked->id == PLANE_SPRITE4) plane_state->cus_ctl |= PLANE_CUS_PLANE_6; else if (linked->id == PLANE_SPRITE3) plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; else if (linked->id == PLANE_SPRITE2) plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; else MISSING_CASE(linked->id); } } return 0; } static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; } static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) { const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; int linetime_wm; if (!crtc_state->hw.enable) return 0; linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, pipe_mode->crtc_clock); return min(linetime_wm, 0x1ff); } static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, const struct intel_cdclk_state *cdclk_state) { const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; int linetime_wm; if (!crtc_state->hw.enable) return 0; linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, cdclk_state->logical.cdclk); return min(linetime_wm, 0x1ff); } static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; int linetime_wm; if (!crtc_state->hw.enable) return 0; linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8, crtc_state->pixel_rate); /* Display WA #1135: BXT:ALL GLK:ALL */ if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled) linetime_wm /= 2; return min(linetime_wm, 0x1ff); } static int hsw_compute_linetime_wm(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct intel_cdclk_state *cdclk_state; if (INTEL_GEN(dev_priv) >= 9) crtc_state->linetime = skl_linetime_wm(crtc_state); else crtc_state->linetime = hsw_linetime_wm(crtc_state); if (!hsw_crtc_supports_ips(crtc)) return 0; cdclk_state = intel_atomic_get_cdclk_state(state); if (IS_ERR(cdclk_state)) return PTR_ERR(cdclk_state); crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, cdclk_state); return 0; } static int intel_crtc_atomic_check(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); bool mode_changed = intel_crtc_needs_modeset(crtc_state); int ret; if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) && mode_changed && !crtc_state->hw.active) crtc_state->update_wm_post = true; if (mode_changed && crtc_state->hw.enable && dev_priv->display.crtc_compute_clock && !crtc_state->bigjoiner_slave && !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); if (ret) return ret; } /* * May need to update pipe gamma enable bits * when C8 planes are getting enabled/disabled. */ if (c8_planes_changed(crtc_state)) crtc_state->uapi.color_mgmt_changed = true; if (mode_changed || crtc_state->update_pipe || crtc_state->uapi.color_mgmt_changed) { ret = intel_color_check(crtc_state); if (ret) return ret; } if (dev_priv->display.compute_pipe_wm) { ret = dev_priv->display.compute_pipe_wm(crtc_state); if (ret) { drm_dbg_kms(&dev_priv->drm, "Target pipe watermarks are invalid\n"); return ret; } } if (dev_priv->display.compute_intermediate_wm) { if (drm_WARN_ON(&dev_priv->drm, !dev_priv->display.compute_pipe_wm)) return 0; /* * Calculate 'intermediate' watermarks that satisfy both the * old state and the new state. We can program these * immediately. */ ret = dev_priv->display.compute_intermediate_wm(crtc_state); if (ret) { drm_dbg_kms(&dev_priv->drm, "No valid intermediate pipe watermarks are possible\n"); return ret; } } if (INTEL_GEN(dev_priv) >= 9) { if (mode_changed || crtc_state->update_pipe) { ret = skl_update_scaler_crtc(crtc_state); if (ret) return ret; } ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); if (ret) return ret; } if (HAS_IPS(dev_priv)) { ret = hsw_compute_ips_config(crtc_state); if (ret) return ret; } if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { ret = hsw_compute_linetime_wm(state, crtc); if (ret) return ret; } if (!mode_changed) { ret = intel_psr2_sel_fetch_update(state, crtc); if (ret) return ret; } return 0; } static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) { struct intel_connector *connector; struct drm_connector_list_iter conn_iter; drm_connector_list_iter_begin(dev, &conn_iter); for_each_intel_connector_iter(connector, &conn_iter) { if (connector->base.state->crtc) drm_connector_put(&connector->base); if (connector->base.encoder) { connector->base.state->best_encoder = connector->base.encoder; connector->base.state->crtc = connector->base.encoder->crtc; drm_connector_get(&connector->base); } else { connector->base.state->best_encoder = NULL; connector->base.state->crtc = NULL; } } drm_connector_list_iter_end(&conn_iter); } static int compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, struct intel_crtc_state *pipe_config) { struct drm_connector *connector = conn_state->connector; struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); const struct drm_display_info *info = &connector->display_info; int bpp; switch (conn_state->max_bpc) { case 6 ... 7: bpp = 6 * 3; break; case 8 ... 9: bpp = 8 * 3; break; case 10 ... 11: bpp = 10 * 3; break; case 12 ... 16: bpp = 12 * 3; break; default: MISSING_CASE(conn_state->max_bpc); return -EINVAL; } if (bpp < pipe_config->pipe_bpp) { drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " "EDID bpp %d, requested bpp %d, max platform bpp %d\n", connector->base.id, connector->name, bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc, pipe_config->pipe_bpp); pipe_config->pipe_bpp = bpp; } return 0; } static int compute_baseline_pipe_bpp(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct drm_atomic_state *state = pipe_config->uapi.state; struct drm_connector *connector; struct drm_connector_state *connector_state; int bpp, i; if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) bpp = 10*3; else if (INTEL_GEN(dev_priv) >= 5) bpp = 12*3; else bpp = 8*3; pipe_config->pipe_bpp = bpp; /* Clamp display bpp to connector max bpp */ for_each_new_connector_in_state(state, connector, connector_state, i) { int ret; if (connector_state->crtc != &crtc->base) continue; ret = compute_sink_pipe_bpp(connector_state, pipe_config); if (ret) return ret; } return 0; } static void intel_dump_crtc_timings(struct drm_i915_private *i915, const struct drm_display_mode *mode) { drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " "type: 0x%x flags: 0x%x\n", mode->crtc_clock, mode->crtc_hdisplay, mode->crtc_hsync_start, mode->crtc_hsync_end, mode->crtc_htotal, mode->crtc_vdisplay, mode->crtc_vsync_start, mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags); } static void intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, const char *id, unsigned int lane_count, const struct intel_link_m_n *m_n) { struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); drm_dbg_kms(&i915->drm, "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", id, lane_count, m_n->gmch_m, m_n->gmch_n, m_n->link_m, m_n->link_n, m_n->tu); } static void intel_dump_infoframe(struct drm_i915_private *dev_priv, const union hdmi_infoframe *frame) { if (!drm_debug_enabled(DRM_UT_KMS)) return; hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); } static void intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, const struct drm_dp_vsc_sdp *vsc) { if (!drm_debug_enabled(DRM_UT_KMS)) return; drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); } #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x static const char * const output_type_str[] = { OUTPUT_TYPE(UNUSED), OUTPUT_TYPE(ANALOG), OUTPUT_TYPE(DVO), OUTPUT_TYPE(SDVO), OUTPUT_TYPE(LVDS), OUTPUT_TYPE(TVOUT), OUTPUT_TYPE(HDMI), OUTPUT_TYPE(DP), OUTPUT_TYPE(EDP), OUTPUT_TYPE(DSI), OUTPUT_TYPE(DDI), OUTPUT_TYPE(DP_MST), }; #undef OUTPUT_TYPE static void snprintf_output_types(char *buf, size_t len, unsigned int output_types) { char *str = buf; int i; str[0] = '\0'; for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { int r; if ((output_types & BIT(i)) == 0) continue; r = snprintf(str, len, "%s%s", str != buf ? "," : "", output_type_str[i]); if (r >= len) break; str += r; len -= r; output_types &= ~BIT(i); } WARN_ON_ONCE(output_types != 0); } static const char * const output_format_str[] = { [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid", [INTEL_OUTPUT_FORMAT_RGB] = "RGB", [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", }; static const char *output_formats(enum intel_output_format format) { if (format >= ARRAY_SIZE(output_format_str)) format = INTEL_OUTPUT_FORMAT_INVALID; return output_format_str[format]; } static void intel_dump_plane_state(const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *i915 = to_i915(plane->base.dev); const struct drm_framebuffer *fb = plane_state->hw.fb; struct drm_format_name_buf format_name; if (!fb) { drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", plane->base.base.id, plane->base.name, yesno(plane_state->uapi.visible)); return; } drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s modifier = 0x%llx, visible: %s\n", plane->base.base.id, plane->base.name, fb->base.id, fb->width, fb->height, drm_get_format_name(fb->format->format, &format_name), fb->modifier, yesno(plane_state->uapi.visible)); drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", plane_state->hw.rotation, plane_state->scaler_id); if (plane_state->uapi.visible) drm_dbg_kms(&i915->drm, "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", DRM_RECT_FP_ARG(&plane_state->uapi.src), DRM_RECT_ARG(&plane_state->uapi.dst)); } static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, struct intel_atomic_state *state, const char *context) { struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_plane_state *plane_state; struct intel_plane *plane; char buf[64]; int i; drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", crtc->base.base.id, crtc->base.name, yesno(pipe_config->hw.enable), context); if (!pipe_config->hw.enable) goto dump_planes; snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); drm_dbg_kms(&dev_priv->drm, "active: %s, output_types: %s (0x%x), output format: %s\n", yesno(pipe_config->hw.active), buf, pipe_config->output_types, output_formats(pipe_config->output_format)); drm_dbg_kms(&dev_priv->drm, "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", transcoder_name(pipe_config->cpu_transcoder), pipe_config->pipe_bpp, pipe_config->dither); drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", transcoder_name(pipe_config->mst_master_transcoder)); drm_dbg_kms(&dev_priv->drm, "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", transcoder_name(pipe_config->master_transcoder), pipe_config->sync_mode_slaves_mask); drm_dbg_kms(&dev_priv->drm, "bigjoiner: %s\n", pipe_config->bigjoiner_slave ? "slave" : pipe_config->bigjoiner ? "master" : "no"); if (pipe_config->has_pch_encoder) intel_dump_m_n_config(pipe_config, "fdi", pipe_config->fdi_lanes, &pipe_config->fdi_m_n); if (intel_crtc_has_dp_encoder(pipe_config)) { intel_dump_m_n_config(pipe_config, "dp m_n", pipe_config->lane_count, &pipe_config->dp_m_n); if (pipe_config->has_drrs) intel_dump_m_n_config(pipe_config, "dp m2_n2", pipe_config->lane_count, &pipe_config->dp_m2_n2); } drm_dbg_kms(&dev_priv->drm, "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", pipe_config->has_audio, pipe_config->has_infoframe, pipe_config->infoframes.enable); if (pipe_config->infoframes.enable & intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", pipe_config->infoframes.gcp); if (pipe_config->infoframes.enable & intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); if (pipe_config->infoframes.enable & intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); if (pipe_config->infoframes.enable & intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); if (pipe_config->infoframes.enable & intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); if (pipe_config->infoframes.enable & intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); if (pipe_config->infoframes.enable & intel_hdmi_infoframe_enable(DP_SDP_VSC)) intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); drm_mode_debug_printmodeline(&pipe_config->hw.mode); drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); drm_dbg_kms(&dev_priv->drm, "pipe mode:\n"); drm_mode_debug_printmodeline(&pipe_config->hw.pipe_mode); intel_dump_crtc_timings(dev_priv, &pipe_config->hw.pipe_mode); drm_dbg_kms(&dev_priv->drm, "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", pipe_config->port_clock, pipe_config->pipe_src_w, pipe_config->pipe_src_h, pipe_config->pixel_rate); drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", pipe_config->linetime, pipe_config->ips_linetime); if (INTEL_GEN(dev_priv) >= 9) drm_dbg_kms(&dev_priv->drm, "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", crtc->num_scalers, pipe_config->scaler_state.scaler_users, pipe_config->scaler_state.scaler_id); if (HAS_GMCH(dev_priv)) drm_dbg_kms(&dev_priv->drm, "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", pipe_config->gmch_pfit.control, pipe_config->gmch_pfit.pgm_ratios, pipe_config->gmch_pfit.lvds_border_bits); else drm_dbg_kms(&dev_priv->drm, "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", DRM_RECT_ARG(&pipe_config->pch_pfit.dst), enableddisabled(pipe_config->pch_pfit.enabled), yesno(pipe_config->pch_pfit.force_thru)); drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", pipe_config->ips_enabled, pipe_config->double_wide); intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); if (IS_CHERRYVIEW(dev_priv)) drm_dbg_kms(&dev_priv->drm, "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", pipe_config->cgm_mode, pipe_config->gamma_mode, pipe_config->gamma_enable, pipe_config->csc_enable); else drm_dbg_kms(&dev_priv->drm, "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", pipe_config->csc_mode, pipe_config->gamma_mode, pipe_config->gamma_enable, pipe_config->csc_enable); drm_dbg_kms(&dev_priv->drm, "degamma lut: %d entries, gamma lut: %d entries\n", pipe_config->hw.degamma_lut ? drm_color_lut_size(pipe_config->hw.degamma_lut) : 0, pipe_config->hw.gamma_lut ? drm_color_lut_size(pipe_config->hw.gamma_lut) : 0); dump_planes: if (!state) return; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { if (plane->pipe == crtc->pipe) intel_dump_plane_state(plane_state); } } static bool check_digital_port_conflicts(struct intel_atomic_state *state) { struct drm_device *dev = state->base.dev; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; unsigned int used_ports = 0; unsigned int used_mst_ports = 0; bool ret = true; /* * We're going to peek into connector->state, * hence connection_mutex must be held. */ drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); /* * Walk the connector list instead of the encoder * list to detect the problem on ddi platforms * where there's just one encoder per digital port. */ drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct drm_connector_state *connector_state; struct intel_encoder *encoder; connector_state = drm_atomic_get_new_connector_state(&state->base, connector); if (!connector_state) connector_state = connector->state; if (!connector_state->best_encoder) continue; encoder = to_intel_encoder(connector_state->best_encoder); drm_WARN_ON(dev, !connector_state->crtc); switch (encoder->type) { case INTEL_OUTPUT_DDI: if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) break; fallthrough; case INTEL_OUTPUT_DP: case INTEL_OUTPUT_HDMI: case INTEL_OUTPUT_EDP: /* the same port mustn't appear more than once */ if (used_ports & BIT(encoder->port)) ret = false; used_ports |= BIT(encoder->port); break; case INTEL_OUTPUT_DP_MST: used_mst_ports |= 1 << encoder->port; break; default: break; } } drm_connector_list_iter_end(&conn_iter); /* can't mix MST and SST/HDMI on the same port */ if (used_ports & used_mst_ports) return false; return ret; } static void intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state, struct intel_crtc_state *crtc_state) { const struct intel_crtc_state *from_crtc_state = crtc_state; if (crtc_state->bigjoiner_slave) { from_crtc_state = intel_atomic_get_new_crtc_state(state, crtc_state->bigjoiner_linked_crtc); /* No need to copy state if the master state is unchanged */ if (!from_crtc_state) return; } intel_crtc_copy_color_blobs(crtc_state, from_crtc_state); } static void intel_crtc_copy_uapi_to_hw_state(struct intel_atomic_state *state, struct intel_crtc_state *crtc_state) { crtc_state->hw.enable = crtc_state->uapi.enable; crtc_state->hw.active = crtc_state->uapi.active; crtc_state->hw.mode = crtc_state->uapi.mode; crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter; intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc_state); } static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) { if (crtc_state->bigjoiner_slave) return; crtc_state->uapi.enable = crtc_state->hw.enable; crtc_state->uapi.active = crtc_state->hw.active; drm_WARN_ON(crtc_state->uapi.crtc->dev, drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; crtc_state->uapi.scaling_filter = crtc_state->hw.scaling_filter; /* copy color blobs to uapi */ drm_property_replace_blob(&crtc_state->uapi.degamma_lut, crtc_state->hw.degamma_lut); drm_property_replace_blob(&crtc_state->uapi.gamma_lut, crtc_state->hw.gamma_lut); drm_property_replace_blob(&crtc_state->uapi.ctm, crtc_state->hw.ctm); } static int copy_bigjoiner_crtc_state(struct intel_crtc_state *crtc_state, const struct intel_crtc_state *from_crtc_state) { struct intel_crtc_state *saved_state; struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); saved_state = kmemdup(from_crtc_state, sizeof(*saved_state), GFP_KERNEL); if (!saved_state) return -ENOMEM; saved_state->uapi = crtc_state->uapi; saved_state->scaler_state = crtc_state->scaler_state; saved_state->shared_dpll = crtc_state->shared_dpll; saved_state->dpll_hw_state = crtc_state->dpll_hw_state; saved_state->crc_enabled = crtc_state->crc_enabled; intel_crtc_free_hw_state(crtc_state); memcpy(crtc_state, saved_state, sizeof(*crtc_state)); kfree(saved_state); /* Re-init hw state */ memset(&crtc_state->hw, 0, sizeof(saved_state->hw)); crtc_state->hw.enable = from_crtc_state->hw.enable; crtc_state->hw.active = from_crtc_state->hw.active; crtc_state->hw.pipe_mode = from_crtc_state->hw.pipe_mode; crtc_state->hw.adjusted_mode = from_crtc_state->hw.adjusted_mode; /* Some fixups */ crtc_state->uapi.mode_changed = from_crtc_state->uapi.mode_changed; crtc_state->uapi.connectors_changed = from_crtc_state->uapi.connectors_changed; crtc_state->uapi.active_changed = from_crtc_state->uapi.active_changed; crtc_state->nv12_planes = crtc_state->c8_planes = crtc_state->update_planes = 0; crtc_state->bigjoiner_linked_crtc = to_intel_crtc(from_crtc_state->uapi.crtc); crtc_state->bigjoiner_slave = true; crtc_state->cpu_transcoder = (enum transcoder)crtc->pipe; crtc_state->has_audio = false; return 0; } static int intel_crtc_prepare_cleared_state(struct intel_atomic_state *state, struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_state *saved_state; saved_state = intel_crtc_state_alloc(crtc); if (!saved_state) return -ENOMEM; /* free the old crtc_state->hw members */ intel_crtc_free_hw_state(crtc_state); /* FIXME: before the switch to atomic started, a new pipe_config was * kzalloc'd. Code that depends on any field being zero should be * fixed, so that the crtc_state can be safely duplicated. For now, * only fields that are know to not cause problems are preserved. */ saved_state->uapi = crtc_state->uapi; saved_state->scaler_state = crtc_state->scaler_state; saved_state->shared_dpll = crtc_state->shared_dpll; saved_state->dpll_hw_state = crtc_state->dpll_hw_state; memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, sizeof(saved_state->icl_port_dplls)); saved_state->crc_enabled = crtc_state->crc_enabled; if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) saved_state->wm = crtc_state->wm; memcpy(crtc_state, saved_state, sizeof(*crtc_state)); kfree(saved_state); intel_crtc_copy_uapi_to_hw_state(state, crtc_state); return 0; } static int intel_modeset_pipe_config(struct intel_atomic_state *state, struct intel_crtc_state *pipe_config) { struct drm_crtc *crtc = pipe_config->uapi.crtc; struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); struct drm_connector *connector; struct drm_connector_state *connector_state; int base_bpp, ret, i; bool retry = true; pipe_config->cpu_transcoder = (enum transcoder) to_intel_crtc(crtc)->pipe; /* * Sanitize sync polarity flags based on requested ones. If neither * positive or negative polarity is requested, treat this as meaning * negative polarity. */ if (!(pipe_config->hw.adjusted_mode.flags & (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; if (!(pipe_config->hw.adjusted_mode.flags & (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), pipe_config); if (ret) return ret; base_bpp = pipe_config->pipe_bpp; /* * Determine the real pipe dimensions. Note that stereo modes can * increase the actual pipe size due to the frame doubling and * insertion of additional space for blanks between the frame. This * is stored in the crtc timings. We use the requested mode to do this * computation to clearly distinguish it from the adjusted mode, which * can be changed by the connectors in the below retry loop. */ drm_mode_get_hv_timing(&pipe_config->hw.mode, &pipe_config->pipe_src_w, &pipe_config->pipe_src_h); for_each_new_connector_in_state(&state->base, connector, connector_state, i) { struct intel_encoder *encoder = to_intel_encoder(connector_state->best_encoder); if (connector_state->crtc != crtc) continue; if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { drm_dbg_kms(&i915->drm, "rejecting invalid cloning configuration\n"); return -EINVAL; } /* * Determine output_types before calling the .compute_config() * hooks so that the hooks can use this information safely. */ if (encoder->compute_output_type) pipe_config->output_types |= BIT(encoder->compute_output_type(encoder, pipe_config, connector_state)); else pipe_config->output_types |= BIT(encoder->type); } encoder_retry: /* Ensure the port clock defaults are reset when retrying. */ pipe_config->port_clock = 0; pipe_config->pixel_multiplier = 1; /* Fill in default crtc timings, allow encoders to overwrite them. */ drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, CRTC_STEREO_DOUBLE); /* Pass our mode to the connectors and the CRTC to give them a chance to * adjust it according to limitations or connector properties, and also * a chance to reject the mode entirely. */ for_each_new_connector_in_state(&state->base, connector, connector_state, i) { struct intel_encoder *encoder = to_intel_encoder(connector_state->best_encoder); if (connector_state->crtc != crtc) continue; ret = encoder->compute_config(encoder, pipe_config, connector_state); if (ret < 0) { if (ret != -EDEADLK) drm_dbg_kms(&i915->drm, "Encoder config failure: %d\n", ret); return ret; } } /* Set default port clock if not overwritten by the encoder. Needs to be * done afterwards in case the encoder adjusts the mode. */ if (!pipe_config->port_clock) pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock * pipe_config->pixel_multiplier; ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); if (ret == -EDEADLK) return ret; if (ret < 0) { drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); return ret; } if (ret == I915_DISPLAY_CONFIG_RETRY) { if (drm_WARN(&i915->drm, !retry, "loop in pipe configuration computation\n")) return -EINVAL; drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); retry = false; goto encoder_retry; } /* Dithering seems to not pass-through bits correctly when it should, so * only enable it on 6bpc panels and when its not a compliance * test requesting 6bpc video pattern. */ pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && !pipe_config->dither_force_disable; drm_dbg_kms(&i915->drm, "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", base_bpp, pipe_config->pipe_bpp, pipe_config->dither); return 0; } static int intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) { struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_connector_state *conn_state; struct drm_connector *connector; int i; for_each_new_connector_in_state(&state->base, connector, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); int ret; if (conn_state->crtc != &crtc->base || !encoder->compute_config_late) continue; ret = encoder->compute_config_late(encoder, crtc_state, conn_state); if (ret) return ret; } return 0; } bool intel_fuzzy_clock_check(int clock1, int clock2) { int diff; if (clock1 == clock2) return true; if (!clock1 || !clock2) return false; diff = abs(clock1 - clock2); if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) return true; return false; } static bool intel_compare_m_n(unsigned int m, unsigned int n, unsigned int m2, unsigned int n2, bool exact) { if (m == m2 && n == n2) return true; if (exact || !m || !n || !m2 || !n2) return false; BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); if (n > n2) { while (n > n2) { m2 <<= 1; n2 <<= 1; } } else if (n < n2) { while (n < n2) { m <<= 1; n <<= 1; } } if (n != n2) return false; return intel_fuzzy_clock_check(m, m2); } static bool intel_compare_link_m_n(const struct intel_link_m_n *m_n, const struct intel_link_m_n *m2_n2, bool exact) { return m_n->tu == m2_n2->tu && intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, m2_n2->gmch_m, m2_n2->gmch_n, exact) && intel_compare_m_n(m_n->link_m, m_n->link_n, m2_n2->link_m, m2_n2->link_n, exact); } static bool intel_compare_infoframe(const union hdmi_infoframe *a, const union hdmi_infoframe *b) { return memcmp(a, b, sizeof(*a)) == 0; } static bool intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, const struct drm_dp_vsc_sdp *b) { return memcmp(a, b, sizeof(*a)) == 0; } static void pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, bool fastset, const char *name, const union hdmi_infoframe *a, const union hdmi_infoframe *b) { if (fastset) { if (!drm_debug_enabled(DRM_UT_KMS)) return; drm_dbg_kms(&dev_priv->drm, "fastset mismatch in %s infoframe\n", name); drm_dbg_kms(&dev_priv->drm, "expected:\n"); hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); drm_dbg_kms(&dev_priv->drm, "found:\n"); hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); } else { drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); drm_err(&dev_priv->drm, "expected:\n"); hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); drm_err(&dev_priv->drm, "found:\n"); hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); } } static void pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, bool fastset, const char *name, const struct drm_dp_vsc_sdp *a, const struct drm_dp_vsc_sdp *b) { if (fastset) { if (!drm_debug_enabled(DRM_UT_KMS)) return; drm_dbg_kms(&dev_priv->drm, "fastset mismatch in %s dp sdp\n", name); drm_dbg_kms(&dev_priv->drm, "expected:\n"); drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); drm_dbg_kms(&dev_priv->drm, "found:\n"); drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); } else { drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); drm_err(&dev_priv->drm, "expected:\n"); drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); drm_err(&dev_priv->drm, "found:\n"); drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); } } static void __printf(4, 5) pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, const char *name, const char *format, ...) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct va_format vaf; va_list args; va_start(args, format); vaf.fmt = format; vaf.va = &args; if (fastset) drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] fastset mismatch in %s %pV\n", crtc->base.base.id, crtc->base.name, name, &vaf); else drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", crtc->base.base.id, crtc->base.name, name, &vaf); va_end(args); } static bool fastboot_enabled(struct drm_i915_private *dev_priv) { if (dev_priv->params.fastboot != -1) return dev_priv->params.fastboot; /* Enable fastboot by default on Skylake and newer */ if (INTEL_GEN(dev_priv) >= 9) return true; /* Enable fastboot by default on VLV and CHV */ if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) return true; /* Disabled by default on all others */ return false; } static bool intel_pipe_config_compare(const struct intel_crtc_state *current_config, const struct intel_crtc_state *pipe_config, bool fastset) { struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); bool ret = true; u32 bp_gamma = 0; bool fixup_inherited = fastset && current_config->inherited && !pipe_config->inherited; if (fixup_inherited && !fastboot_enabled(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "initial modeset and fastboot not set\n"); ret = false; } #define PIPE_CONF_CHECK_X(name) do { \ if (current_config->name != pipe_config->name) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected 0x%08x, found 0x%08x)", \ current_config->name, \ pipe_config->name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_I(name) do { \ if (current_config->name != pipe_config->name) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected %i, found %i)", \ current_config->name, \ pipe_config->name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_BOOL(name) do { \ if (current_config->name != pipe_config->name) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected %s, found %s)", \ yesno(current_config->name), \ yesno(pipe_config->name)); \ ret = false; \ } \ } while (0) /* * Checks state where we only read out the enabling, but not the entire * state itself (like full infoframes or ELD for audio). These states * require a full modeset on bootup to fix up. */ #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ PIPE_CONF_CHECK_BOOL(name); \ } else { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ yesno(current_config->name), \ yesno(pipe_config->name)); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_P(name) do { \ if (current_config->name != pipe_config->name) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected %p, found %p)", \ current_config->name, \ pipe_config->name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_M_N(name) do { \ if (!intel_compare_link_m_n(¤t_config->name, \ &pipe_config->name,\ !fastset)) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected tu %i gmch %i/%i link %i/%i, " \ "found tu %i, gmch %i/%i link %i/%i)", \ current_config->name.tu, \ current_config->name.gmch_m, \ current_config->name.gmch_n, \ current_config->name.link_m, \ current_config->name.link_n, \ pipe_config->name.tu, \ pipe_config->name.gmch_m, \ pipe_config->name.gmch_n, \ pipe_config->name.link_m, \ pipe_config->name.link_n); \ ret = false; \ } \ } while (0) /* This is required for BDW+ where there is only one set of registers for * switching between high and low RR. * This macro can be used whenever a comparison has to be made between one * hw state and multiple sw state variables. */ #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ if (!intel_compare_link_m_n(¤t_config->name, \ &pipe_config->name, !fastset) && \ !intel_compare_link_m_n(¤t_config->alt_name, \ &pipe_config->name, !fastset)) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected tu %i gmch %i/%i link %i/%i, " \ "or tu %i gmch %i/%i link %i/%i, " \ "found tu %i, gmch %i/%i link %i/%i)", \ current_config->name.tu, \ current_config->name.gmch_m, \ current_config->name.gmch_n, \ current_config->name.link_m, \ current_config->name.link_n, \ current_config->alt_name.tu, \ current_config->alt_name.gmch_m, \ current_config->alt_name.gmch_n, \ current_config->alt_name.link_m, \ current_config->alt_name.link_n, \ pipe_config->name.tu, \ pipe_config->name.gmch_m, \ pipe_config->name.gmch_n, \ pipe_config->name.link_m, \ pipe_config->name.link_n); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ if ((current_config->name ^ pipe_config->name) & (mask)) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(%x) (expected %i, found %i)", \ (mask), \ current_config->name & (mask), \ pipe_config->name & (mask)); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected %i, found %i)", \ current_config->name, \ pipe_config->name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ if (!intel_compare_infoframe(¤t_config->infoframes.name, \ &pipe_config->infoframes.name)) { \ pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ ¤t_config->infoframes.name, \ &pipe_config->infoframes.name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ if (!current_config->has_psr && !pipe_config->has_psr && \ !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ &pipe_config->infoframes.name)) { \ pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ ¤t_config->infoframes.name, \ &pipe_config->infoframes.name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ if (current_config->name1 != pipe_config->name1) { \ pipe_config_mismatch(fastset, crtc, __stringify(name1), \ "(expected %i, found %i, won't compare lut values)", \ current_config->name1, \ pipe_config->name1); \ ret = false;\ } else { \ if (!intel_color_lut_equal(current_config->name2, \ pipe_config->name2, pipe_config->name1, \ bit_precision)) { \ pipe_config_mismatch(fastset, crtc, __stringify(name2), \ "hw_state doesn't match sw_state"); \ ret = false; \ } \ } \ } while (0) #define PIPE_CONF_QUIRK(quirk) \ ((current_config->quirks | pipe_config->quirks) & (quirk)) PIPE_CONF_CHECK_I(cpu_transcoder); PIPE_CONF_CHECK_BOOL(has_pch_encoder); PIPE_CONF_CHECK_I(fdi_lanes); PIPE_CONF_CHECK_M_N(fdi_m_n); PIPE_CONF_CHECK_I(lane_count); PIPE_CONF_CHECK_X(lane_lat_optim_mask); if (INTEL_GEN(dev_priv) < 8) { PIPE_CONF_CHECK_M_N(dp_m_n); if (current_config->has_drrs) PIPE_CONF_CHECK_M_N(dp_m2_n2); } else PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); PIPE_CONF_CHECK_X(output_types); /* FIXME do the readout properly and get rid of this quirk */ if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hdisplay); PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_htotal); PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_start); PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_end); PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_start); PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_end); PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vdisplay); PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vtotal); PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_start); PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_end); PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_start); PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_end); PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); PIPE_CONF_CHECK_I(pixel_multiplier); PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, DRM_MODE_FLAG_INTERLACE); if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, DRM_MODE_FLAG_PHSYNC); PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, DRM_MODE_FLAG_NHSYNC); PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, DRM_MODE_FLAG_PVSYNC); PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, DRM_MODE_FLAG_NVSYNC); } } PIPE_CONF_CHECK_I(output_format); PIPE_CONF_CHECK_BOOL(has_hdmi_sink); if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) PIPE_CONF_CHECK_BOOL(limited_color_range); PIPE_CONF_CHECK_BOOL(hdmi_scrambling); PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); PIPE_CONF_CHECK_BOOL(has_infoframe); /* FIXME do the readout properly and get rid of this quirk */ if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) PIPE_CONF_CHECK_BOOL(fec_enable); PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); PIPE_CONF_CHECK_X(gmch_pfit.control); /* pfit ratios are autocomputed by the hw on gen4+ */ if (INTEL_GEN(dev_priv) < 4) PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); /* * Changing the EDP transcoder input mux * (A_ONOFF vs. A_ON) requires a full modeset. */ PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); if (!fastset) { PIPE_CONF_CHECK_I(pipe_src_w); PIPE_CONF_CHECK_I(pipe_src_h); PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); if (current_config->pch_pfit.enabled) { PIPE_CONF_CHECK_I(pch_pfit.dst.x1); PIPE_CONF_CHECK_I(pch_pfit.dst.y1); PIPE_CONF_CHECK_I(pch_pfit.dst.x2); PIPE_CONF_CHECK_I(pch_pfit.dst.y2); } PIPE_CONF_CHECK_I(scaler_state.scaler_id); /* FIXME do the readout properly and get rid of this quirk */ if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); PIPE_CONF_CHECK_X(gamma_mode); if (IS_CHERRYVIEW(dev_priv)) PIPE_CONF_CHECK_X(cgm_mode); else PIPE_CONF_CHECK_X(csc_mode); PIPE_CONF_CHECK_BOOL(gamma_enable); PIPE_CONF_CHECK_BOOL(csc_enable); PIPE_CONF_CHECK_I(linetime); PIPE_CONF_CHECK_I(ips_linetime); bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); if (bp_gamma) PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); } PIPE_CONF_CHECK_BOOL(double_wide); PIPE_CONF_CHECK_P(shared_dpll); /* FIXME do the readout properly and get rid of this quirk */ if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { PIPE_CONF_CHECK_X(dpll_hw_state.dpll); PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); PIPE_CONF_CHECK_X(dpll_hw_state.fp0); PIPE_CONF_CHECK_X(dpll_hw_state.fp1); PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); PIPE_CONF_CHECK_X(dpll_hw_state.spll); PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); PIPE_CONF_CHECK_X(dpll_hw_state.pll0); PIPE_CONF_CHECK_X(dpll_hw_state.pll1); PIPE_CONF_CHECK_X(dpll_hw_state.pll2); PIPE_CONF_CHECK_X(dpll_hw_state.pll3); PIPE_CONF_CHECK_X(dpll_hw_state.pll6); PIPE_CONF_CHECK_X(dpll_hw_state.pll8); PIPE_CONF_CHECK_X(dpll_hw_state.pll9); PIPE_CONF_CHECK_X(dpll_hw_state.pll10); PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); PIPE_CONF_CHECK_X(dsi_pll.ctrl); PIPE_CONF_CHECK_X(dsi_pll.div); if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) PIPE_CONF_CHECK_I(pipe_bpp); PIPE_CONF_CHECK_CLOCK_FUZZY(hw.pipe_mode.crtc_clock); PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); PIPE_CONF_CHECK_I(min_voltage_level); } PIPE_CONF_CHECK_X(infoframes.enable); PIPE_CONF_CHECK_X(infoframes.gcp); PIPE_CONF_CHECK_INFOFRAME(avi); PIPE_CONF_CHECK_INFOFRAME(spd); PIPE_CONF_CHECK_INFOFRAME(hdmi); PIPE_CONF_CHECK_INFOFRAME(drm); PIPE_CONF_CHECK_DP_VSC_SDP(vsc); PIPE_CONF_CHECK_X(sync_mode_slaves_mask); PIPE_CONF_CHECK_I(master_transcoder); PIPE_CONF_CHECK_BOOL(bigjoiner); PIPE_CONF_CHECK_BOOL(bigjoiner_slave); PIPE_CONF_CHECK_P(bigjoiner_linked_crtc); PIPE_CONF_CHECK_I(dsc.compression_enable); PIPE_CONF_CHECK_I(dsc.dsc_split); PIPE_CONF_CHECK_I(dsc.compressed_bpp); PIPE_CONF_CHECK_I(mst_master_transcoder); PIPE_CONF_CHECK_BOOL(vrr.enable); PIPE_CONF_CHECK_I(vrr.vmin); PIPE_CONF_CHECK_I(vrr.vmax); PIPE_CONF_CHECK_I(vrr.flipline); PIPE_CONF_CHECK_I(vrr.pipeline_full); #undef PIPE_CONF_CHECK_X #undef PIPE_CONF_CHECK_I #undef PIPE_CONF_CHECK_BOOL #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE #undef PIPE_CONF_CHECK_P #undef PIPE_CONF_CHECK_FLAGS #undef PIPE_CONF_CHECK_CLOCK_FUZZY #undef PIPE_CONF_CHECK_COLOR_LUT #undef PIPE_CONF_QUIRK return ret; } static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, const struct intel_crtc_state *pipe_config) { if (pipe_config->has_pch_encoder) { int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), &pipe_config->fdi_m_n); int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; /* * FDI already provided one idea for the dotclock. * Yell if the encoder disagrees. */ drm_WARN(&dev_priv->drm, !intel_fuzzy_clock_check(fdi_dotclock, dotclock), "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", fdi_dotclock, dotclock); } } static void verify_wm_state(struct intel_crtc *crtc, struct intel_crtc_state *new_crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct skl_hw_state { struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; struct skl_pipe_wm wm; } *hw; struct skl_pipe_wm *sw_wm; struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; u8 hw_enabled_slices; const enum pipe pipe = crtc->pipe; int plane, level, max_level = ilk_wm_max_level(dev_priv); if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active) return; hw = kzalloc(sizeof(*hw), GFP_KERNEL); if (!hw) return; skl_pipe_wm_get_hw_state(crtc, &hw->wm); sw_wm = &new_crtc_state->wm.skl.optimal; skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); if (INTEL_GEN(dev_priv) >= 11 && hw_enabled_slices != dev_priv->dbuf.enabled_slices) drm_err(&dev_priv->drm, "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", dev_priv->dbuf.enabled_slices, hw_enabled_slices); /* planes */ for_each_universal_plane(dev_priv, pipe, plane) { struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; hw_plane_wm = &hw->wm.planes[plane]; sw_plane_wm = &sw_wm->planes[plane]; /* Watermarks */ for (level = 0; level <= max_level; level++) { if (skl_wm_level_equals(&hw_plane_wm->wm[level], &sw_plane_wm->wm[level]) || (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level], &sw_plane_wm->sagv_wm0))) continue; drm_err(&dev_priv->drm, "mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", pipe_name(pipe), plane + 1, level, sw_plane_wm->wm[level].plane_en, sw_plane_wm->wm[level].plane_res_b, sw_plane_wm->wm[level].plane_res_l, hw_plane_wm->wm[level].plane_en, hw_plane_wm->wm[level].plane_res_b, hw_plane_wm->wm[level].plane_res_l); } if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, &sw_plane_wm->trans_wm)) { drm_err(&dev_priv->drm, "mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", pipe_name(pipe), plane + 1, sw_plane_wm->trans_wm.plane_en, sw_plane_wm->trans_wm.plane_res_b, sw_plane_wm->trans_wm.plane_res_l, hw_plane_wm->trans_wm.plane_en, hw_plane_wm->trans_wm.plane_res_b, hw_plane_wm->trans_wm.plane_res_l); } /* DDB */ hw_ddb_entry = &hw->ddb_y[plane]; sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane]; if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { drm_err(&dev_priv->drm, "mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n", pipe_name(pipe), plane + 1, sw_ddb_entry->start, sw_ddb_entry->end, hw_ddb_entry->start, hw_ddb_entry->end); } } /* * cursor * If the cursor plane isn't active, we may not have updated it's ddb * allocation. In that case since the ddb allocation will be updated * once the plane becomes visible, we can skip this check */ if (1) { struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; hw_plane_wm = &hw->wm.planes[PLANE_CURSOR]; sw_plane_wm = &sw_wm->planes[PLANE_CURSOR]; /* Watermarks */ for (level = 0; level <= max_level; level++) { if (skl_wm_level_equals(&hw_plane_wm->wm[level], &sw_plane_wm->wm[level]) || (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level], &sw_plane_wm->sagv_wm0))) continue; drm_err(&dev_priv->drm, "mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", pipe_name(pipe), level, sw_plane_wm->wm[level].plane_en, sw_plane_wm->wm[level].plane_res_b, sw_plane_wm->wm[level].plane_res_l, hw_plane_wm->wm[level].plane_en, hw_plane_wm->wm[level].plane_res_b, hw_plane_wm->wm[level].plane_res_l); } if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, &sw_plane_wm->trans_wm)) { drm_err(&dev_priv->drm, "mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", pipe_name(pipe), sw_plane_wm->trans_wm.plane_en, sw_plane_wm->trans_wm.plane_res_b, sw_plane_wm->trans_wm.plane_res_l, hw_plane_wm->trans_wm.plane_en, hw_plane_wm->trans_wm.plane_res_b, hw_plane_wm->trans_wm.plane_res_l); } /* DDB */ hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR]; sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR]; if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { drm_err(&dev_priv->drm, "mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n", pipe_name(pipe), sw_ddb_entry->start, sw_ddb_entry->end, hw_ddb_entry->start, hw_ddb_entry->end); } } kfree(hw); } static void verify_connector_state(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_connector *connector; struct drm_connector_state *new_conn_state; int i; for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { struct drm_encoder *encoder = connector->encoder; struct intel_crtc_state *crtc_state = NULL; if (new_conn_state->crtc != &crtc->base) continue; if (crtc) crtc_state = intel_atomic_get_new_crtc_state(state, crtc); intel_connector_verify_state(crtc_state, new_conn_state); I915_STATE_WARN(new_conn_state->best_encoder != encoder, "connector's atomic encoder doesn't match legacy encoder\n"); } } static void verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) { struct intel_encoder *encoder; struct drm_connector *connector; struct drm_connector_state *old_conn_state, *new_conn_state; int i; for_each_intel_encoder(&dev_priv->drm, encoder) { bool enabled = false, found = false; enum pipe pipe; drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", encoder->base.base.id, encoder->base.name); for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, new_conn_state, i) { if (old_conn_state->best_encoder == &encoder->base) found = true; if (new_conn_state->best_encoder != &encoder->base) continue; found = enabled = true; I915_STATE_WARN(new_conn_state->crtc != encoder->base.crtc, "connector's crtc doesn't match encoder crtc\n"); } if (!found) continue; I915_STATE_WARN(!!encoder->base.crtc != enabled, "encoder's enabled state mismatch " "(expected %i, found %i)\n", !!encoder->base.crtc, enabled); if (!encoder->base.crtc) { bool active; active = encoder->get_hw_state(encoder, &pipe); I915_STATE_WARN(active, "encoder detached but still enabled on pipe %c.\n", pipe_name(pipe)); } } } static void verify_crtc_state(struct intel_crtc *crtc, struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_encoder *encoder; struct intel_crtc_state *pipe_config = old_crtc_state; struct drm_atomic_state *state = old_crtc_state->uapi.state; struct intel_crtc *master = crtc; __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); intel_crtc_free_hw_state(old_crtc_state); intel_crtc_state_reset(old_crtc_state, crtc); old_crtc_state->uapi.state = state; drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, crtc->base.name); pipe_config->hw.enable = new_crtc_state->hw.enable; intel_crtc_get_pipe_config(pipe_config); /* we keep both pipes enabled on 830 */ if (IS_I830(dev_priv) && pipe_config->hw.active) pipe_config->hw.active = new_crtc_state->hw.active; I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active, "crtc active state doesn't match with hw state " "(expected %i, found %i)\n", new_crtc_state->hw.active, pipe_config->hw.active); I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, "transitional active state does not match atomic hw state " "(expected %i, found %i)\n", new_crtc_state->hw.active, crtc->active); if (new_crtc_state->bigjoiner_slave) master = new_crtc_state->bigjoiner_linked_crtc; for_each_encoder_on_crtc(dev, &master->base, encoder) { enum pipe pipe; bool active; active = encoder->get_hw_state(encoder, &pipe); I915_STATE_WARN(active != new_crtc_state->hw.active, "[ENCODER:%i] active %i with crtc active %i\n", encoder->base.base.id, active, new_crtc_state->hw.active); I915_STATE_WARN(active && master->pipe != pipe, "Encoder connected to wrong pipe %c\n", pipe_name(pipe)); if (active) intel_encoder_get_config(encoder, pipe_config); } if (!new_crtc_state->hw.active) return; intel_pipe_config_sanity_check(dev_priv, pipe_config); if (!intel_pipe_config_compare(new_crtc_state, pipe_config, false)) { I915_STATE_WARN(1, "pipe state doesn't match!\n"); intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); } } static void intel_verify_planes(struct intel_atomic_state *state) { struct intel_plane *plane; const struct intel_plane_state *plane_state; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) assert_plane(plane, plane_state->planar_slave || plane_state->uapi.visible); } static void verify_single_dpll_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_crtc *crtc, struct intel_crtc_state *new_crtc_state) { struct intel_dpll_hw_state dpll_hw_state; unsigned int crtc_mask; bool active; memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); active = intel_dpll_get_hw_state(dev_priv, pll, &dpll_hw_state); if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { I915_STATE_WARN(!pll->on && pll->active_mask, "pll in active use but not on in sw tracking\n"); I915_STATE_WARN(pll->on && !pll->active_mask, "pll is on but not used by any active crtc\n"); I915_STATE_WARN(pll->on != active, "pll on state mismatch (expected %i, found %i)\n", pll->on, active); } if (!crtc) { I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask, "more active pll users than references: %x vs %x\n", pll->active_mask, pll->state.crtc_mask); return; } crtc_mask = drm_crtc_mask(&crtc->base); if (new_crtc_state->hw.active) I915_STATE_WARN(!(pll->active_mask & crtc_mask), "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", pipe_name(crtc->pipe), pll->active_mask); else I915_STATE_WARN(pll->active_mask & crtc_mask, "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", pipe_name(crtc->pipe), pll->active_mask); I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask), "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", crtc_mask, pll->state.crtc_mask); I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, &dpll_hw_state, sizeof(dpll_hw_state)), "pll hw state mismatch\n"); } static void verify_shared_dpll_state(struct intel_crtc *crtc, struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (new_crtc_state->shared_dpll) verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); if (old_crtc_state->shared_dpll && old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { unsigned int crtc_mask = drm_crtc_mask(&crtc->base); struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; I915_STATE_WARN(pll->active_mask & crtc_mask, "pll active mismatch (didn't expect pipe %c in active mask)\n", pipe_name(crtc->pipe)); I915_STATE_WARN(pll->state.crtc_mask & crtc_mask, "pll enabled crtcs mismatch (found %x in enabled mask)\n", pipe_name(crtc->pipe)); } } static void intel_modeset_verify_crtc(struct intel_crtc *crtc, struct intel_atomic_state *state, struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { if (!intel_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) return; verify_wm_state(crtc, new_crtc_state); verify_connector_state(state, crtc); verify_crtc_state(crtc, old_crtc_state, new_crtc_state); verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); } static void verify_disabled_dpll_state(struct drm_i915_private *dev_priv) { int i; for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) verify_single_dpll_state(dev_priv, &dev_priv->dpll.shared_dplls[i], NULL, NULL); } static void intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) { verify_encoder_state(dev_priv, state); verify_connector_state(state, NULL); verify_disabled_dpll_state(dev_priv); } static void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; drm_calc_timestamping_constants(&crtc->base, adjusted_mode); crtc->mode_flags = crtc_state->mode_flags; /* * The scanline counter increments at the leading edge of hsync. * * On most platforms it starts counting from vtotal-1 on the * first active line. That means the scanline counter value is * always one less than what we would expect. Ie. just after * start of vblank, which also occurs at start of hsync (on the * last active line), the scanline counter will read vblank_start-1. * * On gen2 the scanline counter starts counting from 1 instead * of vtotal-1, so we have to subtract one (or rather add vtotal-1 * to keep the value positive), instead of adding one. * * On HSW+ the behaviour of the scanline counter depends on the output * type. For DP ports it behaves like most other platforms, but on HDMI * there's an extra 1 line difference. So we need to add two instead of * one to the value. * * On VLV/CHV DSI the scanline counter would appear to increment * approx. 1/3 of a scanline before start of vblank. Unfortunately * that means we can't tell whether we're in vblank or not while * we're on that particular line. We must still set scanline_offset * to 1 so that the vblank timestamps come out correct when we query * the scanline counter from within the vblank interrupt handler. * However if queried just before the start of vblank we'll get an * answer that's slightly in the future. */ if (IS_GEN(dev_priv, 2)) { int vtotal; vtotal = adjusted_mode->crtc_vtotal; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) vtotal /= 2; crtc->scanline_offset = vtotal - 1; } else if (HAS_DDI(dev_priv) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { crtc->scanline_offset = 2; } else { crtc->scanline_offset = 1; } } static void intel_modeset_clear_plls(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int i; if (!dev_priv->display.crtc_compute_clock) return; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (!intel_crtc_needs_modeset(new_crtc_state)) continue; intel_release_shared_dplls(state, crtc); } } /* * This implements the workaround described in the "notes" section of the mode * set sequence documentation. When going from no pipes or single pipe to * multiple pipes, and planes are enabled after the pipe, we need to wait at * least 2 vblanks on the first pipe before enabling planes on the second pipe. */ static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) { struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; struct intel_crtc_state *first_crtc_state = NULL; struct intel_crtc_state *other_crtc_state = NULL; enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; int i; /* look at all crtc's that are going to be enabled in during modeset */ for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { if (!crtc_state->hw.active || !intel_crtc_needs_modeset(crtc_state)) continue; if (first_crtc_state) { other_crtc_state = crtc_state; break; } else { first_crtc_state = crtc_state; first_pipe = crtc->pipe; } } /* No workaround needed? */ if (!first_crtc_state) return 0; /* w/a possibly needed, check how many crtc's are already enabled. */ for_each_intel_crtc(state->base.dev, crtc) { crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); crtc_state->hsw_workaround_pipe = INVALID_PIPE; if (!crtc_state->hw.active || intel_crtc_needs_modeset(crtc_state)) continue; /* 2 or more enabled crtcs means no need for w/a */ if (enabled_pipe != INVALID_PIPE) return 0; enabled_pipe = crtc->pipe; } if (enabled_pipe != INVALID_PIPE) first_crtc_state->hsw_workaround_pipe = enabled_pipe; else if (other_crtc_state) other_crtc_state->hsw_workaround_pipe = first_pipe; return 0; } u8 intel_calc_active_pipes(struct intel_atomic_state *state, u8 active_pipes) { const struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { if (crtc_state->hw.active) active_pipes |= BIT(crtc->pipe); else active_pipes &= ~BIT(crtc->pipe); } return active_pipes; } static int intel_modeset_checks(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); state->modeset = true; if (IS_HASWELL(dev_priv)) return hsw_mode_set_planes_workaround(state); return 0; } /* * Handle calculation of various watermark data at the end of the atomic check * phase. The code here should be run after the per-crtc and per-plane 'check' * handlers to ensure that all derived state has been updated. */ static int calc_watermark_data(struct intel_atomic_state *state) { struct drm_device *dev = state->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); /* Is there platform-specific watermark information to calculate? */ if (dev_priv->display.compute_global_watermarks) return dev_priv->display.compute_global_watermarks(state); return 0; } static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) return; new_crtc_state->uapi.mode_changed = false; new_crtc_state->update_pipe = true; } static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { /* * If we're not doing the full modeset we want to * keep the current M/N values as they may be * sufficiently different to the computed values * to cause problems. * * FIXME: should really copy more fuzzy state here */ new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; new_crtc_state->has_drrs = old_crtc_state->has_drrs; } static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, struct intel_crtc *crtc, u8 plane_ids_mask) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_plane *plane; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { struct intel_plane_state *plane_state; if ((plane_ids_mask & BIT(plane->id)) == 0) continue; plane_state = intel_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); } return 0; } int intel_atomic_add_affected_planes(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); return intel_crtc_add_planes_to_state(state, crtc, old_crtc_state->enabled_planes | new_crtc_state->enabled_planes); } static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) { /* See {hsw,vlv,ivb}_plane_ratio() */ return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11); } static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_crtc *other) { const struct intel_plane_state *plane_state; struct intel_plane *plane; u8 plane_ids = 0; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { if (plane->pipe == crtc->pipe) plane_ids |= BIT(plane->id); } return intel_crtc_add_planes_to_state(state, other, plane_ids); } static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state) { const struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { int ret; if (!crtc_state->bigjoiner) continue; ret = intel_crtc_add_bigjoiner_planes(state, crtc, crtc_state->bigjoiner_linked_crtc); if (ret) return ret; } return 0; } static int intel_atomic_check_planes(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc_state *old_crtc_state, *new_crtc_state; struct intel_plane_state *plane_state; struct intel_plane *plane; struct intel_crtc *crtc; int i, ret; ret = icl_add_linked_planes(state); if (ret) return ret; ret = intel_bigjoiner_add_affected_planes(state); if (ret) return ret; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { ret = intel_plane_atomic_check(state, plane); if (ret) { drm_dbg_atomic(&dev_priv->drm, "[PLANE:%d:%s] atomic driver check failed\n", plane->base.base.id, plane->base.name); return ret; } } for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { u8 old_active_planes, new_active_planes; ret = icl_check_nv12_planes(new_crtc_state); if (ret) return ret; /* * On some platforms the number of active planes affects * the planes' minimum cdclk calculation. Add such planes * to the state before we compute the minimum cdclk. */ if (!active_planes_affects_min_cdclk(dev_priv)) continue; old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); /* * Not only the number of planes, but if the plane configuration had * changed might already mean we need to recompute min CDCLK, * because different planes might consume different amount of Dbuf bandwidth * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor */ if (old_active_planes == new_active_planes) continue; ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); if (ret) return ret; } return 0; } static int intel_atomic_check_cdclk(struct intel_atomic_state *state, bool *need_cdclk_calc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_cdclk_state *old_cdclk_state; const struct intel_cdclk_state *new_cdclk_state; struct intel_plane_state *plane_state; struct intel_bw_state *new_bw_state; struct intel_plane *plane; int min_cdclk = 0; enum pipe pipe; int ret; int i; /* * active_planes bitmask has been updated, and potentially * affected planes are part of the state. We can now * compute the minimum cdclk for each plane. */ for_each_new_intel_plane_in_state(state, plane, plane_state, i) { ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); if (ret) return ret; } old_cdclk_state = intel_atomic_get_old_cdclk_state(state); new_cdclk_state = intel_atomic_get_new_cdclk_state(state); if (new_cdclk_state && old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) *need_cdclk_calc = true; ret = dev_priv->display.bw_calc_min_cdclk(state); if (ret) return ret; new_bw_state = intel_atomic_get_new_bw_state(state); if (!new_cdclk_state || !new_bw_state) return 0; for_each_pipe(dev_priv, pipe) { min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); /* * Currently do this change only if we need to increase */ if (new_bw_state->min_cdclk > min_cdclk) *need_cdclk_calc = true; } return 0; } static int intel_atomic_check_crtcs(struct intel_atomic_state *state) { struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); int ret; ret = intel_crtc_atomic_check(state, crtc); if (ret) { drm_dbg_atomic(&i915->drm, "[CRTC:%d:%s] atomic driver check failed\n", crtc->base.base.id, crtc->base.name); return ret; } } return 0; } static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, u8 transcoders) { const struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->hw.enable && transcoders & BIT(new_crtc_state->cpu_transcoder) && intel_crtc_needs_modeset(new_crtc_state)) return true; } return false; } static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc_state *slave_crtc_state, *master_crtc_state; struct intel_crtc *slave, *master; /* slave being enabled, is master is still claiming this crtc? */ if (old_crtc_state->bigjoiner_slave) { slave = crtc; master = old_crtc_state->bigjoiner_linked_crtc; master_crtc_state = intel_atomic_get_new_crtc_state(state, master); if (!master_crtc_state || !intel_crtc_needs_modeset(master_crtc_state)) goto claimed; } if (!new_crtc_state->bigjoiner) return 0; if (1 + crtc->pipe >= INTEL_NUM_PIPES(dev_priv)) { DRM_DEBUG_KMS("[CRTC:%d:%s] Big joiner configuration requires " "CRTC + 1 to be used, doesn't exist\n", crtc->base.base.id, crtc->base.name); return -EINVAL; } slave = new_crtc_state->bigjoiner_linked_crtc = intel_get_crtc_for_pipe(dev_priv, crtc->pipe + 1); slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave); master = crtc; if (IS_ERR(slave_crtc_state)) return PTR_ERR(slave_crtc_state); /* master being enabled, slave was already configured? */ if (slave_crtc_state->uapi.enable) goto claimed; DRM_DEBUG_KMS("[CRTC:%d:%s] Used as slave for big joiner\n", slave->base.base.id, slave->base.name); return copy_bigjoiner_crtc_state(slave_crtc_state, new_crtc_state); claimed: DRM_DEBUG_KMS("[CRTC:%d:%s] Slave is enabled as normal CRTC, but " "[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n", slave->base.base.id, slave->base.name, master->base.base.id, master->base.name); return -EINVAL; } static void kill_bigjoiner_slave(struct intel_atomic_state *state, struct intel_crtc_state *master_crtc_state) { struct intel_crtc_state *slave_crtc_state = intel_atomic_get_new_crtc_state(state, master_crtc_state->bigjoiner_linked_crtc); slave_crtc_state->bigjoiner = master_crtc_state->bigjoiner = false; slave_crtc_state->bigjoiner_slave = master_crtc_state->bigjoiner_slave = false; slave_crtc_state->bigjoiner_linked_crtc = master_crtc_state->bigjoiner_linked_crtc = NULL; intel_crtc_copy_uapi_to_hw_state(state, slave_crtc_state); } /** * DOC: asynchronous flip implementation * * Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC * flag. Currently async flip is only supported via the drmModePageFlip IOCTL. * Correspondingly, support is currently added for primary plane only. * * Async flip can only change the plane surface address, so anything else * changing is rejected from the intel_atomic_check_async() function. * Once this check is cleared, flip done interrupt is enabled using * the intel_crtc_enable_flip_done() function. * * As soon as the surface address register is written, flip done interrupt is * generated and the requested events are sent to the usersapce in the interrupt * handler itself. The timestamp and sequence sent during the flip done event * correspond to the last vblank and have no relation to the actual time when * the flip done event was sent. */ static int intel_atomic_check_async(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state, *new_crtc_state; const struct intel_plane_state *new_plane_state, *old_plane_state; struct intel_crtc *crtc; struct intel_plane *plane; int i; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (intel_crtc_needs_modeset(new_crtc_state)) { drm_dbg_kms(&i915->drm, "Modeset Required. Async flip not supported\n"); return -EINVAL; } if (!new_crtc_state->hw.active) { drm_dbg_kms(&i915->drm, "CRTC inactive\n"); return -EINVAL; } if (old_crtc_state->active_planes != new_crtc_state->active_planes) { drm_dbg_kms(&i915->drm, "Active planes cannot be changed during async flip\n"); return -EINVAL; } } for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { /* * TODO: Async flip is only supported through the page flip IOCTL * as of now. So support currently added for primary plane only. * Support for other planes on platforms on which supports * this(vlv/chv and icl+) should be added when async flip is * enabled in the atomic IOCTL path. */ if (!plane->async_flip) return -EINVAL; /* * FIXME: This check is kept generic for all platforms. * Need to verify this for all gen9 and gen10 platforms to enable * this selectively if required. */ switch (new_plane_state->hw.fb->modifier) { case I915_FORMAT_MOD_X_TILED: case I915_FORMAT_MOD_Y_TILED: case I915_FORMAT_MOD_Yf_TILED: break; default: drm_dbg_kms(&i915->drm, "Linear memory/CCS does not support async flips\n"); return -EINVAL; } if (old_plane_state->color_plane[0].stride != new_plane_state->color_plane[0].stride) { drm_dbg_kms(&i915->drm, "Stride cannot be changed in async flip\n"); return -EINVAL; } if (old_plane_state->hw.fb->modifier != new_plane_state->hw.fb->modifier) { drm_dbg_kms(&i915->drm, "Framebuffer modifiers cannot be changed in async flip\n"); return -EINVAL; } if (old_plane_state->hw.fb->format != new_plane_state->hw.fb->format) { drm_dbg_kms(&i915->drm, "Framebuffer format cannot be changed in async flip\n"); return -EINVAL; } if (old_plane_state->hw.rotation != new_plane_state->hw.rotation) { drm_dbg_kms(&i915->drm, "Rotation cannot be changed in async flip\n"); return -EINVAL; } if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) || !drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) { drm_dbg_kms(&i915->drm, "Plane size/co-ordinates cannot be changed in async flip\n"); return -EINVAL; } if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) { drm_dbg_kms(&i915->drm, "Alpha value cannot be changed in async flip\n"); return -EINVAL; } if (old_plane_state->hw.pixel_blend_mode != new_plane_state->hw.pixel_blend_mode) { drm_dbg_kms(&i915->drm, "Pixel blend mode cannot be changed in async flip\n"); return -EINVAL; } if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) { drm_dbg_kms(&i915->drm, "Color encoding cannot be changed in async flip\n"); return -EINVAL; } if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) { drm_dbg_kms(&i915->drm, "Color range cannot be changed in async flip\n"); return -EINVAL; } } return 0; } static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state) { struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { struct intel_crtc_state *linked_crtc_state; struct intel_crtc *linked_crtc; int ret; if (!crtc_state->bigjoiner) continue; linked_crtc = crtc_state->bigjoiner_linked_crtc; linked_crtc_state = intel_atomic_get_crtc_state(&state->base, linked_crtc); if (IS_ERR(linked_crtc_state)) return PTR_ERR(linked_crtc_state); if (!intel_crtc_needs_modeset(crtc_state)) continue; linked_crtc_state->uapi.mode_changed = true; ret = drm_atomic_add_affected_connectors(&state->base, &linked_crtc->base); if (ret) return ret; ret = intel_atomic_add_affected_planes(state, linked_crtc); if (ret) return ret; } for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { /* Kill old bigjoiner link, we may re-establish afterwards */ if (intel_crtc_needs_modeset(crtc_state) && crtc_state->bigjoiner && !crtc_state->bigjoiner_slave) kill_bigjoiner_slave(state, crtc_state); } return 0; } /** * intel_atomic_check - validate state object * @dev: drm device * @_state: state to validate */ static int intel_atomic_check(struct drm_device *dev, struct drm_atomic_state *_state) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_atomic_state *state = to_intel_atomic_state(_state); struct intel_crtc_state *old_crtc_state, *new_crtc_state; struct intel_crtc *crtc; int ret, i; bool any_ms = false; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (new_crtc_state->inherited != old_crtc_state->inherited) new_crtc_state->uapi.mode_changed = true; } intel_vrr_check_modeset(state); ret = drm_atomic_helper_check_modeset(dev, &state->base); if (ret) goto fail; ret = intel_bigjoiner_add_affected_crtcs(state); if (ret) goto fail; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (!intel_crtc_needs_modeset(new_crtc_state)) { /* Light copy */ intel_crtc_copy_uapi_to_hw_state_nomodeset(state, new_crtc_state); continue; } if (!new_crtc_state->uapi.enable) { if (!new_crtc_state->bigjoiner_slave) { intel_crtc_copy_uapi_to_hw_state(state, new_crtc_state); any_ms = true; } continue; } ret = intel_crtc_prepare_cleared_state(state, new_crtc_state); if (ret) goto fail; ret = intel_modeset_pipe_config(state, new_crtc_state); if (ret) goto fail; ret = intel_atomic_check_bigjoiner(state, crtc, old_crtc_state, new_crtc_state); if (ret) goto fail; } for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (!intel_crtc_needs_modeset(new_crtc_state)) continue; ret = intel_modeset_pipe_config_late(new_crtc_state); if (ret) goto fail; intel_crtc_check_fastset(old_crtc_state, new_crtc_state); } /** * Check if fastset is allowed by external dependencies like other * pipes and transcoders. * * Right now it only forces a fullmodeset when the MST master * transcoder did not changed but the pipe of the master transcoder * needs a fullmodeset so all slaves also needs to do a fullmodeset or * in case of port synced crtcs, if one of the synced crtcs * needs a full modeset, all other synced crtcs should be * forced a full modeset. */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state)) continue; if (intel_dp_mst_is_slave_trans(new_crtc_state)) { enum transcoder master = new_crtc_state->mst_master_transcoder; if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { new_crtc_state->uapi.mode_changed = true; new_crtc_state->update_pipe = false; } } if (is_trans_port_sync_mode(new_crtc_state)) { u8 trans = new_crtc_state->sync_mode_slaves_mask; if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) trans |= BIT(new_crtc_state->master_transcoder); if (intel_cpu_transcoders_need_modeset(state, trans)) { new_crtc_state->uapi.mode_changed = true; new_crtc_state->update_pipe = false; } } if (new_crtc_state->bigjoiner) { struct intel_crtc_state *linked_crtc_state = intel_atomic_get_new_crtc_state(state, new_crtc_state->bigjoiner_linked_crtc); if (intel_crtc_needs_modeset(linked_crtc_state)) { new_crtc_state->uapi.mode_changed = true; new_crtc_state->update_pipe = false; } } } for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (intel_crtc_needs_modeset(new_crtc_state)) { any_ms = true; continue; } if (!new_crtc_state->update_pipe) continue; intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); } if (any_ms && !check_digital_port_conflicts(state)) { drm_dbg_kms(&dev_priv->drm, "rejecting conflicting digital port configuration\n"); ret = -EINVAL; goto fail; } ret = drm_dp_mst_atomic_check(&state->base); if (ret) goto fail; ret = intel_atomic_check_planes(state); if (ret) goto fail; /* * distrust_bios_wm will force a full dbuf recomputation * but the hardware state will only get updated accordingly * if state->modeset==true. Hence distrust_bios_wm==true && * state->modeset==false is an invalid combination which * would cause the hardware and software dbuf state to get * out of sync. We must prevent that. * * FIXME clean up this mess and introduce better * state tracking for dbuf. */ if (dev_priv->wm.distrust_bios_wm) any_ms = true; intel_fbc_choose_crtc(dev_priv, state); ret = calc_watermark_data(state); if (ret) goto fail; ret = intel_bw_atomic_check(state); if (ret) goto fail; ret = intel_atomic_check_cdclk(state, &any_ms); if (ret) goto fail; if (any_ms) { ret = intel_modeset_checks(state); if (ret) goto fail; ret = intel_modeset_calc_cdclk(state); if (ret) return ret; intel_modeset_clear_plls(state); } ret = intel_atomic_check_crtcs(state); if (ret) goto fail; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (new_crtc_state->uapi.async_flip) { ret = intel_atomic_check_async(state); if (ret) goto fail; } if (!intel_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) continue; intel_dump_pipe_config(new_crtc_state, state, intel_crtc_needs_modeset(new_crtc_state) ? "[modeset]" : "[fastset]"); } return 0; fail: if (ret == -EDEADLK) return ret; /* * FIXME would probably be nice to know which crtc specifically * caused the failure, in cases where we can pinpoint it. */ for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) intel_dump_pipe_config(new_crtc_state, state, "[failed]"); return ret; } static int intel_atomic_prepare_commit(struct intel_atomic_state *state) { struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; int i, ret; ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); if (ret < 0) return ret; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { bool mode_changed = intel_crtc_needs_modeset(crtc_state); if (mode_changed || crtc_state->update_pipe || crtc_state->uapi.color_mgmt_changed) { intel_dsb_prepare(crtc_state); } } return 0; } void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes) intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); if (crtc_state->has_pch_encoder) { enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); } } static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* * Update pipe size and adjust fitter if needed: the reason for this is * that in compute_mode_changes we check the native mode (not the pfit * mode) to see if we can flip rather than do a full mode set. In the * fastboot case, we'll flip, but if we don't update the pipesrc and * pfit state, we'll end up with a big fb scanned out into the wrong * sized surface. */ intel_set_pipe_src_size(new_crtc_state); /* on skylake this is done by detaching scalers */ if (INTEL_GEN(dev_priv) >= 9) { skl_detach_scalers(new_crtc_state); if (new_crtc_state->pch_pfit.enabled) skl_pfit_enable(new_crtc_state); } else if (HAS_PCH_SPLIT(dev_priv)) { if (new_crtc_state->pch_pfit.enabled) ilk_pfit_enable(new_crtc_state); else if (old_crtc_state->pch_pfit.enabled) ilk_pfit_disable(old_crtc_state); } /* * The register is supposedly single buffered so perhaps * not 100% correct to do this here. But SKL+ calculate * this based on the adjust pixel rate so pfit changes do * affect it and so it must be updated for fastsets. * HSW/BDW only really need this here for fastboot, after * that the value should not change without a full modeset. */ if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) hsw_set_linetime_wm(new_crtc_state); if (INTEL_GEN(dev_priv) >= 11) icl_set_pipe_chicken(crtc); } static void commit_pipe_config(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); bool modeset = intel_crtc_needs_modeset(new_crtc_state); /* * During modesets pipe configuration was programmed as the * CRTC was enabled. */ if (!modeset) { if (new_crtc_state->uapi.color_mgmt_changed || new_crtc_state->update_pipe) intel_color_commit(new_crtc_state); if (INTEL_GEN(dev_priv) >= 9) skl_detach_scalers(new_crtc_state); if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) bdw_set_pipemisc(new_crtc_state); if (new_crtc_state->update_pipe) intel_pipe_fastset(old_crtc_state, new_crtc_state); intel_psr2_program_trans_man_trk_ctl(new_crtc_state); } if (dev_priv->display.atomic_update_watermarks) dev_priv->display.atomic_update_watermarks(state, crtc); } static void intel_enable_crtc(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (!intel_crtc_needs_modeset(new_crtc_state)) return; intel_crtc_update_active_timings(new_crtc_state); dev_priv->display.crtc_enable(state, crtc); if (new_crtc_state->bigjoiner_slave) return; /* vblanks work again, re-enable pipe CRC. */ intel_crtc_enable_pipe_crc(crtc); } static void intel_update_crtc(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); bool modeset = intel_crtc_needs_modeset(new_crtc_state); if (!modeset) { if (new_crtc_state->preload_luts && (new_crtc_state->uapi.color_mgmt_changed || new_crtc_state->update_pipe)) intel_color_load_luts(new_crtc_state); intel_pre_plane_update(state, crtc); if (new_crtc_state->update_pipe) intel_encoders_update_pipe(state, crtc); } if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) intel_fbc_disable(crtc); else intel_fbc_enable(state, crtc); /* Perform vblank evasion around commit operation */ intel_pipe_update_start(new_crtc_state); commit_pipe_config(state, crtc); if (INTEL_GEN(dev_priv) >= 9) skl_update_planes_on_crtc(state, crtc); else i9xx_update_planes_on_crtc(state, crtc); intel_pipe_update_end(new_crtc_state); /* * We usually enable FIFO underrun interrupts as part of the * CRTC enable sequence during modesets. But when we inherit a * valid pipe configuration from the BIOS we need to take care * of enabling them on the CRTC's first fastset. */ if (new_crtc_state->update_pipe && !modeset && old_crtc_state->inherited) intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); } static void intel_old_crtc_state_disables(struct intel_atomic_state *state, struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); drm_WARN_ON(&dev_priv->drm, old_crtc_state->bigjoiner_slave); intel_crtc_disable_planes(state, crtc); /* * We still need special handling for disabling bigjoiner master * and slaves since for slave we do not have encoder or plls * so we dont need to disable those. */ if (old_crtc_state->bigjoiner) { intel_crtc_disable_planes(state, old_crtc_state->bigjoiner_linked_crtc); old_crtc_state->bigjoiner_linked_crtc->active = false; } /* * We need to disable pipe CRC before disabling the pipe, * or we race against vblank off. */ intel_crtc_disable_pipe_crc(crtc); dev_priv->display.crtc_disable(state, crtc); crtc->active = false; intel_fbc_disable(crtc); intel_disable_shared_dpll(old_crtc_state); /* FIXME unify this for all platforms */ if (!new_crtc_state->hw.active && !HAS_GMCH(dev_priv) && dev_priv->display.initial_watermarks) dev_priv->display.initial_watermarks(state, crtc); } static void intel_commit_modeset_disables(struct intel_atomic_state *state) { struct intel_crtc_state *new_crtc_state, *old_crtc_state; struct intel_crtc *crtc; u32 handled = 0; int i; /* Only disable port sync and MST slaves */ for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (!intel_crtc_needs_modeset(new_crtc_state) || old_crtc_state->bigjoiner) continue; if (!old_crtc_state->hw.active) continue; /* In case of Transcoder port Sync master slave CRTCs can be * assigned in any order and we need to make sure that * slave CRTCs are disabled first and then master CRTC since * Slave vblanks are masked till Master Vblanks. */ if (!is_trans_port_sync_slave(old_crtc_state) && !intel_dp_mst_is_slave_trans(old_crtc_state)) continue; intel_pre_plane_update(state, crtc); intel_old_crtc_state_disables(state, old_crtc_state, new_crtc_state, crtc); handled |= BIT(crtc->pipe); } /* Disable everything else left on */ for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (!intel_crtc_needs_modeset(new_crtc_state) || (handled & BIT(crtc->pipe)) || old_crtc_state->bigjoiner_slave) continue; intel_pre_plane_update(state, crtc); if (old_crtc_state->bigjoiner) { struct intel_crtc *slave = old_crtc_state->bigjoiner_linked_crtc; intel_pre_plane_update(state, slave); } if (old_crtc_state->hw.active) intel_old_crtc_state_disables(state, old_crtc_state, new_crtc_state, crtc); } } static void intel_commit_modeset_enables(struct intel_atomic_state *state) { struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (!new_crtc_state->hw.active) continue; intel_enable_crtc(state, crtc); intel_update_crtc(state, crtc); } } static void skl_commit_modeset_enables(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; struct intel_crtc_state *old_crtc_state, *new_crtc_state; struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; u8 update_pipes = 0, modeset_pipes = 0; int i; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { enum pipe pipe = crtc->pipe; if (!new_crtc_state->hw.active) continue; /* ignore allocations for crtc's that have been turned off. */ if (!intel_crtc_needs_modeset(new_crtc_state)) { entries[pipe] = old_crtc_state->wm.skl.ddb; update_pipes |= BIT(pipe); } else { modeset_pipes |= BIT(pipe); } } /* * Whenever the number of active pipes changes, we need to make sure we * update the pipes in the right order so that their ddb allocations * never overlap with each other between CRTC updates. Otherwise we'll * cause pipe underruns and other bad stuff. * * So first lets enable all pipes that do not need a fullmodeset as * those don't have any external dependency. */ while (update_pipes) { for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { enum pipe pipe = crtc->pipe; if ((update_pipes & BIT(pipe)) == 0) continue; if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, entries, I915_MAX_PIPES, pipe)) continue; entries[pipe] = new_crtc_state->wm.skl.ddb; update_pipes &= ~BIT(pipe); intel_update_crtc(state, crtc); /* * If this is an already active pipe, it's DDB changed, * and this isn't the last pipe that needs updating * then we need to wait for a vblank to pass for the * new ddb allocation to take effect. */ if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, &old_crtc_state->wm.skl.ddb) && (update_pipes | modeset_pipes)) intel_wait_for_vblank(dev_priv, pipe); } } update_pipes = modeset_pipes; /* * Enable all pipes that needs a modeset and do not depends on other * pipes */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { enum pipe pipe = crtc->pipe; if ((modeset_pipes & BIT(pipe)) == 0) continue; if (intel_dp_mst_is_slave_trans(new_crtc_state) || is_trans_port_sync_master(new_crtc_state) || (new_crtc_state->bigjoiner && !new_crtc_state->bigjoiner_slave)) continue; modeset_pipes &= ~BIT(pipe); intel_enable_crtc(state, crtc); } /* * Then we enable all remaining pipes that depend on other * pipes: MST slaves and port sync masters, big joiner master */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { enum pipe pipe = crtc->pipe; if ((modeset_pipes & BIT(pipe)) == 0) continue; modeset_pipes &= ~BIT(pipe); intel_enable_crtc(state, crtc); } /* * Finally we do the plane updates/etc. for all pipes that got enabled. */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { enum pipe pipe = crtc->pipe; if ((update_pipes & BIT(pipe)) == 0) continue; drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, entries, I915_MAX_PIPES, pipe)); entries[pipe] = new_crtc_state->wm.skl.ddb; update_pipes &= ~BIT(pipe); intel_update_crtc(state, crtc); } drm_WARN_ON(&dev_priv->drm, modeset_pipes); drm_WARN_ON(&dev_priv->drm, update_pipes); } static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) { struct intel_atomic_state *state, *next; struct llist_node *freed; freed = llist_del_all(&dev_priv->atomic_helper.free_list); llist_for_each_entry_safe(state, next, freed, freed) drm_atomic_state_put(&state->base); } static void intel_atomic_helper_free_state_worker(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), atomic_helper.free_work); intel_atomic_helper_free_state(dev_priv); } static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) { struct wait_queue_entry wait_fence, wait_reset; struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); init_wait_entry(&wait_fence, 0); init_wait_entry(&wait_reset, 0); for (;;) { prepare_to_wait(&intel_state->commit_ready.wait, &wait_fence, TASK_UNINTERRUPTIBLE); prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, I915_RESET_MODESET), &wait_reset, TASK_UNINTERRUPTIBLE); if (i915_sw_fence_done(&intel_state->commit_ready) || test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) break; schedule(); } finish_wait(&intel_state->commit_ready.wait, &wait_fence); finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, I915_RESET_MODESET), &wait_reset); } static void intel_cleanup_dsbs(struct intel_atomic_state *state) { struct intel_crtc_state *old_crtc_state, *new_crtc_state; struct intel_crtc *crtc; int i; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) intel_dsb_cleanup(old_crtc_state); } static void intel_atomic_cleanup_work(struct work_struct *work) { struct intel_atomic_state *state = container_of(work, struct intel_atomic_state, base.commit_work); struct drm_i915_private *i915 = to_i915(state->base.dev); intel_cleanup_dsbs(state); drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); drm_atomic_helper_commit_cleanup_done(&state->base); drm_atomic_state_put(&state->base); intel_atomic_helper_free_state(i915); } static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); struct intel_plane *plane; struct intel_plane_state *plane_state; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { struct drm_framebuffer *fb = plane_state->hw.fb; int ret; if (!fb || fb->modifier != I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC) continue; /* * The layout of the fast clear color value expected by HW * (the DRM ABI requiring this value to be located in fb at offset 0 of plane#2): * - 4 x 4 bytes per-channel value * (in surface type specific float/int format provided by the fb user) * - 8 bytes native color value used by the display * (converted/written by GPU during a fast clear operation using the * above per-channel values) * * The commit's FB prepare hook already ensured that FB obj is pinned and the * caller made sure that the object is synced wrt. the related color clear value * GPU write on it. */ ret = i915_gem_object_read_from_page(intel_fb_obj(fb), fb->offsets[2] + 16, &plane_state->ccval, sizeof(plane_state->ccval)); /* The above could only fail if the FB obj has an unexpected backing store type. */ drm_WARN_ON(&i915->drm, ret); } } static void intel_atomic_commit_tail(struct intel_atomic_state *state) { struct drm_device *dev = state->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc_state *new_crtc_state, *old_crtc_state; struct intel_crtc *crtc; u64 put_domains[I915_MAX_PIPES] = {}; intel_wakeref_t wakeref = 0; int i; intel_atomic_commit_fence_wait(state); drm_atomic_helper_wait_for_dependencies(&state->base); if (state->modeset) wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); intel_atomic_prepare_plane_clear_colors(state); for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (intel_crtc_needs_modeset(new_crtc_state) || new_crtc_state->update_pipe) { put_domains[crtc->pipe] = modeset_get_crtc_power_domains(new_crtc_state); } } intel_commit_modeset_disables(state); /* FIXME: Eventually get rid of our crtc->config pointer */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) crtc->config = new_crtc_state; if (state->modeset) { drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); intel_set_cdclk_pre_plane_update(state); intel_modeset_verify_disabled(dev_priv, state); } intel_sagv_pre_plane_update(state); /* Complete the events for pipes that have now been disabled */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { bool modeset = intel_crtc_needs_modeset(new_crtc_state); /* Complete events for now disable pipes here. */ if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { spin_lock_irq(&dev->event_lock); drm_crtc_send_vblank_event(&crtc->base, new_crtc_state->uapi.event); spin_unlock_irq(&dev->event_lock); new_crtc_state->uapi.event = NULL; } } if (state->modeset) intel_encoders_update_prepare(state); intel_dbuf_pre_plane_update(state); for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->uapi.async_flip) intel_crtc_enable_flip_done(state, crtc); } /* Now enable the clocks, plane, pipe, and connectors that we set up. */ dev_priv->display.commit_modeset_enables(state); if (state->modeset) { intel_encoders_update_complete(state); intel_set_cdclk_post_plane_update(state); } /* FIXME: We should call drm_atomic_helper_commit_hw_done() here * already, but still need the state for the delayed optimization. To * fix this: * - wrap the optimization/post_plane_update stuff into a per-crtc work. * - schedule that vblank worker _before_ calling hw_done * - at the start of commit_tail, cancel it _synchrously * - switch over to the vblank wait helper in the core after that since * we don't need out special handling any more. */ drm_atomic_helper_wait_for_flip_done(dev, &state->base); for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->uapi.async_flip) intel_crtc_disable_flip_done(state, crtc); if (new_crtc_state->hw.active && !intel_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->preload_luts && (new_crtc_state->uapi.color_mgmt_changed || new_crtc_state->update_pipe)) intel_color_load_luts(new_crtc_state); } /* * Now that the vblank has passed, we can go ahead and program the * optimal watermarks on platforms that need two-step watermark * programming. * * TODO: Move this (and other cleanup) to an async worker eventually. */ for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { /* * Gen2 reports pipe underruns whenever all planes are disabled. * So re-enable underrun reporting after some planes get enabled. * * We do this before .optimize_watermarks() so that we have a * chance of catching underruns with the intermediate watermarks * vs. the new plane configuration. */ if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state)) intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); if (dev_priv->display.optimize_watermarks) dev_priv->display.optimize_watermarks(state, crtc); } intel_dbuf_post_plane_update(state); for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { intel_post_plane_update(state, crtc); modeset_put_crtc_power_domains(crtc, put_domains[crtc->pipe]); intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); /* * DSB cleanup is done in cleanup_work aligning with framebuffer * cleanup. So copy and reset the dsb structure to sync with * commit_done and later do dsb cleanup in cleanup_work. */ old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); } /* Underruns don't always raise interrupts, so check manually */ intel_check_cpu_fifo_underruns(dev_priv); intel_check_pch_fifo_underruns(dev_priv); if (state->modeset) intel_verify_planes(state); intel_sagv_post_plane_update(state); drm_atomic_helper_commit_hw_done(&state->base); if (state->modeset) { /* As one of the primary mmio accessors, KMS has a high * likelihood of triggering bugs in unclaimed access. After we * finish modesetting, see if an error has been flagged, and if * so enable debugging for the next modeset - and hope we catch * the culprit. */ intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); } intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); /* * Defer the cleanup of the old state to a separate worker to not * impede the current task (userspace for blocking modesets) that * are executed inline. For out-of-line asynchronous modesets/flips, * deferring to a new worker seems overkill, but we would place a * schedule point (cond_resched()) here anyway to keep latencies * down. */ INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); queue_work(system_highpri_wq, &state->base.commit_work); } static void intel_atomic_commit_work(struct work_struct *work) { struct intel_atomic_state *state = container_of(work, struct intel_atomic_state, base.commit_work); intel_atomic_commit_tail(state); } static int __i915_sw_fence_call intel_atomic_commit_ready(struct i915_sw_fence *fence, enum i915_sw_fence_notify notify) { struct intel_atomic_state *state = container_of(fence, struct intel_atomic_state, commit_ready); switch (notify) { case FENCE_COMPLETE: /* we do blocking waits in the worker, nothing to do here */ break; case FENCE_FREE: { struct intel_atomic_helper *helper = &to_i915(state->base.dev)->atomic_helper; if (llist_add(&state->freed, &helper->free_list)) schedule_work(&helper->free_work); break; } } return NOTIFY_DONE; } static void intel_atomic_track_fbs(struct intel_atomic_state *state) { struct intel_plane_state *old_plane_state, *new_plane_state; struct intel_plane *plane; int i; for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), to_intel_frontbuffer(new_plane_state->hw.fb), plane->frontbuffer_bit); } static int intel_atomic_commit(struct drm_device *dev, struct drm_atomic_state *_state, bool nonblock) { struct intel_atomic_state *state = to_intel_atomic_state(_state); struct drm_i915_private *dev_priv = to_i915(dev); int ret = 0; state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); drm_atomic_state_get(&state->base); i915_sw_fence_init(&state->commit_ready, intel_atomic_commit_ready); /* * The intel_legacy_cursor_update() fast path takes care * of avoiding the vblank waits for simple cursor * movement and flips. For cursor on/off and size changes, * we want to perform the vblank waits so that watermark * updates happen during the correct frames. Gen9+ have * double buffered watermarks and so shouldn't need this. * * Unset state->legacy_cursor_update before the call to * drm_atomic_helper_setup_commit() because otherwise * drm_atomic_helper_wait_for_flip_done() is a noop and * we get FIFO underruns because we didn't wait * for vblank. * * FIXME doing watermarks and fb cleanup from a vblank worker * (assuming we had any) would solve these problems. */ if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) { struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) if (new_crtc_state->wm.need_postvbl_update || new_crtc_state->update_wm_post) state->base.legacy_cursor_update = false; } ret = intel_atomic_prepare_commit(state); if (ret) { drm_dbg_atomic(&dev_priv->drm, "Preparing state failed with %i\n", ret); i915_sw_fence_commit(&state->commit_ready); intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); return ret; } ret = drm_atomic_helper_setup_commit(&state->base, nonblock); if (!ret) ret = drm_atomic_helper_swap_state(&state->base, true); if (!ret) intel_atomic_swap_global_state(state); if (ret) { struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int i; i915_sw_fence_commit(&state->commit_ready); for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) intel_dsb_cleanup(new_crtc_state); drm_atomic_helper_cleanup_planes(dev, &state->base); intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); return ret; } dev_priv->wm.distrust_bios_wm = false; intel_shared_dpll_swap_state(state); intel_atomic_track_fbs(state); drm_atomic_state_get(&state->base); INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); i915_sw_fence_commit(&state->commit_ready); if (nonblock && state->modeset) { queue_work(dev_priv->modeset_wq, &state->base.commit_work); } else if (nonblock) { queue_work(dev_priv->flip_wq, &state->base.commit_work); } else { if (state->modeset) flush_workqueue(dev_priv->modeset_wq); intel_atomic_commit_tail(state); } return 0; } struct wait_rps_boost { struct wait_queue_entry wait; struct drm_crtc *crtc; struct i915_request *request; }; static int do_rps_boost(struct wait_queue_entry *_wait, unsigned mode, int sync, void *key) { struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); struct i915_request *rq = wait->request; /* * If we missed the vblank, but the request is already running it * is reasonable to assume that it will complete before the next * vblank without our intervention, so leave RPS alone. */ if (!i915_request_started(rq)) intel_rps_boost(rq); i915_request_put(rq); drm_crtc_vblank_put(wait->crtc); list_del(&wait->wait.entry); kfree(wait); return 1; } static void add_rps_boost_after_vblank(struct drm_crtc *crtc, struct dma_fence *fence) { struct wait_rps_boost *wait; if (!dma_fence_is_i915(fence)) return; if (INTEL_GEN(to_i915(crtc->dev)) < 6) return; if (drm_crtc_vblank_get(crtc)) return; wait = kmalloc(sizeof(*wait), GFP_KERNEL); if (!wait) { drm_crtc_vblank_put(crtc); return; } wait->request = to_request(dma_fence_get(fence)); wait->crtc = crtc; wait->wait.func = do_rps_boost; wait->wait.flags = 0; add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); } int intel_plane_pin_fb(struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); struct drm_framebuffer *fb = plane_state->hw.fb; struct i915_vma *vma; if (plane->id == PLANE_CURSOR && INTEL_INFO(dev_priv)->display.cursor_needs_physical) { struct drm_i915_gem_object *obj = intel_fb_obj(fb); const int align = intel_cursor_alignment(dev_priv); int err; err = i915_gem_object_attach_phys(obj, align); if (err) return err; } vma = intel_pin_and_fence_fb_obj(fb, &plane_state->view, intel_plane_uses_fence(plane_state), &plane_state->flags); if (IS_ERR(vma)) return PTR_ERR(vma); plane_state->vma = vma; return 0; } void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) { struct i915_vma *vma; vma = fetch_and_zero(&old_plane_state->vma); if (vma) intel_unpin_fb_vma(vma, old_plane_state->flags); } static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj) { struct i915_sched_attr attr = { .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY), }; i915_gem_object_wait_priority(obj, 0, &attr); } /** * intel_prepare_plane_fb - Prepare fb for usage on plane * @_plane: drm plane to prepare for * @_new_plane_state: the plane state being prepared * * Prepares a framebuffer for usage on a display plane. Generally this * involves pinning the underlying object and updating the frontbuffer tracking * bits. Some older platforms need special physical address handling for * cursor planes. * * Returns 0 on success, negative error code on failure. */ int intel_prepare_plane_fb(struct drm_plane *_plane, struct drm_plane_state *_new_plane_state) { struct intel_plane *plane = to_intel_plane(_plane); struct intel_plane_state *new_plane_state = to_intel_plane_state(_new_plane_state); struct intel_atomic_state *state = to_intel_atomic_state(new_plane_state->uapi.state); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); const struct intel_plane_state *old_plane_state = intel_atomic_get_old_plane_state(state, plane); struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); int ret; if (old_obj) { const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, to_intel_crtc(old_plane_state->hw.crtc)); /* Big Hammer, we also need to ensure that any pending * MI_WAIT_FOR_EVENT inside a user batch buffer on the * current scanout is retired before unpinning the old * framebuffer. Note that we rely on userspace rendering * into the buffer attached to the pipe they are waiting * on. If not, userspace generates a GPU hang with IPEHR * point to the MI_WAIT_FOR_EVENT. * * This should only fail upon a hung GPU, in which case we * can safely continue. */ if (intel_crtc_needs_modeset(crtc_state)) { ret = i915_sw_fence_await_reservation(&state->commit_ready, old_obj->base.resv, NULL, false, 0, GFP_KERNEL); if (ret < 0) return ret; } } if (new_plane_state->uapi.fence) { /* explicit fencing */ ret = i915_sw_fence_await_dma_fence(&state->commit_ready, new_plane_state->uapi.fence, i915_fence_timeout(dev_priv), GFP_KERNEL); if (ret < 0) return ret; } if (!obj) return 0; ret = i915_gem_object_pin_pages(obj); if (ret) return ret; ret = intel_plane_pin_fb(new_plane_state); i915_gem_object_unpin_pages(obj); if (ret) return ret; fb_obj_bump_render_priority(obj); i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); if (!new_plane_state->uapi.fence) { /* implicit fencing */ struct dma_fence *fence; ret = i915_sw_fence_await_reservation(&state->commit_ready, obj->base.resv, NULL, false, i915_fence_timeout(dev_priv), GFP_KERNEL); if (ret < 0) goto unpin_fb; fence = dma_resv_get_excl_rcu(obj->base.resv); if (fence) { add_rps_boost_after_vblank(new_plane_state->hw.crtc, fence); dma_fence_put(fence); } } else { add_rps_boost_after_vblank(new_plane_state->hw.crtc, new_plane_state->uapi.fence); } /* * We declare pageflips to be interactive and so merit a small bias * towards upclocking to deliver the frame on time. By only changing * the RPS thresholds to sample more regularly and aim for higher * clocks we can hopefully deliver low power workloads (like kodi) * that are not quite steady state without resorting to forcing * maximum clocks following a vblank miss (see do_rps_boost()). */ if (!state->rps_interactive) { intel_rps_mark_interactive(&dev_priv->gt.rps, true); state->rps_interactive = true; } return 0; unpin_fb: intel_plane_unpin_fb(new_plane_state); return ret; } /** * intel_cleanup_plane_fb - Cleans up an fb after plane use * @plane: drm plane to clean up for * @_old_plane_state: the state from the previous modeset * * Cleans up a framebuffer that has just been removed from a plane. */ void intel_cleanup_plane_fb(struct drm_plane *plane, struct drm_plane_state *_old_plane_state) { struct intel_plane_state *old_plane_state = to_intel_plane_state(_old_plane_state); struct intel_atomic_state *state = to_intel_atomic_state(old_plane_state->uapi.state); struct drm_i915_private *dev_priv = to_i915(plane->dev); struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); if (!obj) return; if (state->rps_interactive) { intel_rps_mark_interactive(&dev_priv->gt.rps, false); state->rps_interactive = false; } /* Should only be called after a successful intel_prepare_plane_fb()! */ intel_plane_unpin_fb(old_plane_state); } /** * intel_plane_destroy - destroy a plane * @plane: plane to destroy * * Common destruction function for all types of planes (primary, cursor, * sprite). */ void intel_plane_destroy(struct drm_plane *plane) { drm_plane_cleanup(plane); kfree(to_intel_plane(plane)); } static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) { struct intel_plane *plane; for_each_intel_plane(&dev_priv->drm, plane) { struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, plane->pipe); plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); } } int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; struct drm_crtc *drmmode_crtc; struct intel_crtc *crtc; drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); if (!drmmode_crtc) return -ENOENT; crtc = to_intel_crtc(drmmode_crtc); pipe_from_crtc_id->pipe = crtc->pipe; return 0; } static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct intel_encoder *source_encoder; u32 possible_clones = 0; for_each_intel_encoder(dev, source_encoder) { if (encoders_cloneable(encoder, source_encoder)) possible_clones |= drm_encoder_mask(&source_encoder->base); } return possible_clones; } static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct intel_crtc *crtc; u32 possible_crtcs = 0; for_each_intel_crtc(dev, crtc) { if (encoder->pipe_mask & BIT(crtc->pipe)) possible_crtcs |= drm_crtc_mask(&crtc->base); } return possible_crtcs; } static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) { if (!IS_MOBILE(dev_priv)) return false; if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) return false; if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) return false; return true; } static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) >= 9) return false; if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) return false; if (HAS_PCH_LPT_H(dev_priv) && intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) return false; /* DDI E can't be used if DDI A requires 4 lanes */ if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) return false; if (!dev_priv->vbt.int_crt_support) return false; return true; } static void intel_setup_outputs(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; bool dpd_is_edp = false; intel_pps_unlock_regs_wa(dev_priv); if (!HAS_DISPLAY(dev_priv)) return; if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_TC1); intel_ddi_init(dev_priv, PORT_TC2); } else if (INTEL_GEN(dev_priv) >= 12) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_TC1); intel_ddi_init(dev_priv, PORT_TC2); intel_ddi_init(dev_priv, PORT_TC3); intel_ddi_init(dev_priv, PORT_TC4); intel_ddi_init(dev_priv, PORT_TC5); intel_ddi_init(dev_priv, PORT_TC6); icl_dsi_init(dev_priv); } else if (IS_JSL_EHL(dev_priv)) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_C); intel_ddi_init(dev_priv, PORT_D); icl_dsi_init(dev_priv); } else if (IS_GEN(dev_priv, 11)) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_C); intel_ddi_init(dev_priv, PORT_D); intel_ddi_init(dev_priv, PORT_E); /* * On some ICL SKUs port F is not present. No strap bits for * this, so rely on VBT. * Work around broken VBTs on SKUs known to have no port F. */ if (IS_ICL_WITH_PORT_F(dev_priv) && intel_bios_is_port_present(dev_priv, PORT_F)) intel_ddi_init(dev_priv, PORT_F); icl_dsi_init(dev_priv); } else if (IS_GEN9_LP(dev_priv)) { /* * FIXME: Broxton doesn't support port detection via the * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to * detect the ports. */ intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_C); vlv_dsi_init(dev_priv); } else if (HAS_DDI(dev_priv)) { int found; if (intel_ddi_crt_present(dev_priv)) intel_crt_init(dev_priv); /* * Haswell uses DDI functions to detect digital outputs. * On SKL pre-D0 the strap isn't connected, so we assume * it's there. */ found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; /* WaIgnoreDDIAStrap: skl */ if (found || IS_GEN9_BC(dev_priv)) intel_ddi_init(dev_priv, PORT_A); /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP * register */ found = intel_de_read(dev_priv, SFUSE_STRAP); if (found & SFUSE_STRAP_DDIB_DETECTED) intel_ddi_init(dev_priv, PORT_B); if (found & SFUSE_STRAP_DDIC_DETECTED) intel_ddi_init(dev_priv, PORT_C); if (found & SFUSE_STRAP_DDID_DETECTED) intel_ddi_init(dev_priv, PORT_D); if (found & SFUSE_STRAP_DDIF_DETECTED) intel_ddi_init(dev_priv, PORT_F); /* * On SKL we don't have a way to detect DDI-E so we rely on VBT. */ if (IS_GEN9_BC(dev_priv) && intel_bios_is_port_present(dev_priv, PORT_E)) intel_ddi_init(dev_priv, PORT_E); } else if (HAS_PCH_SPLIT(dev_priv)) { int found; /* * intel_edp_init_connector() depends on this completing first, * to prevent the registration of both eDP and LVDS and the * incorrect sharing of the PPS. */ intel_lvds_init(dev_priv); intel_crt_init(dev_priv); dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); if (ilk_has_edp_a(dev_priv)) intel_dp_init(dev_priv, DP_A, PORT_A); if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { /* PCH SDVOB multiplex with HDMIB */ found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); if (!found) intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) intel_dp_init(dev_priv, PCH_DP_B, PORT_B); } if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D); if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) intel_dp_init(dev_priv, PCH_DP_C, PORT_C); if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) intel_dp_init(dev_priv, PCH_DP_D, PORT_D); } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { bool has_edp, has_port; if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) intel_crt_init(dev_priv); /* * The DP_DETECTED bit is the latched state of the DDC * SDA pin at boot. However since eDP doesn't require DDC * (no way to plug in a DP->HDMI dongle) the DDC pins for * eDP ports may have been muxed to an alternate function. * Thus we can't rely on the DP_DETECTED bit alone to detect * eDP ports. Consult the VBT as well as DP_DETECTED to * detect eDP ports. * * Sadly the straps seem to be missing sometimes even for HDMI * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap * and VBT for the presence of the port. Additionally we can't * trust the port type the VBT declares as we've seen at least * HDMI ports that the VBT claim are DP or eDP. */ has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); has_port = intel_bios_is_port_present(dev_priv, PORT_B); if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B); if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); has_port = intel_bios_is_port_present(dev_priv, PORT_C); if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C); if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); if (IS_CHERRYVIEW(dev_priv)) { /* * eDP not supported on port D, * so no need to worry about it */ has_port = intel_bios_is_port_present(dev_priv, PORT_D); if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) intel_dp_init(dev_priv, CHV_DP_D, PORT_D); if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D); } vlv_dsi_init(dev_priv); } else if (IS_PINEVIEW(dev_priv)) { intel_lvds_init(dev_priv); intel_crt_init(dev_priv); } else if (IS_GEN_RANGE(dev_priv, 3, 4)) { bool found = false; if (IS_MOBILE(dev_priv)) intel_lvds_init(dev_priv); intel_crt_init(dev_priv); if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); if (!found && IS_G4X(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "probing HDMI on SDVOB\n"); intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); } if (!found && IS_G4X(dev_priv)) intel_dp_init(dev_priv, DP_B, PORT_B); } /* Before G4X SDVOC doesn't have its own detect register */ if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); } if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { if (IS_G4X(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "probing HDMI on SDVOC\n"); intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); } if (IS_G4X(dev_priv)) intel_dp_init(dev_priv, DP_C, PORT_C); } if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) intel_dp_init(dev_priv, DP_D, PORT_D); if (SUPPORTS_TV(dev_priv)) intel_tv_init(dev_priv); } else if (IS_GEN(dev_priv, 2)) { if (IS_I85X(dev_priv)) intel_lvds_init(dev_priv); intel_crt_init(dev_priv); intel_dvo_init(dev_priv); } intel_psr_init(dev_priv); for_each_intel_encoder(&dev_priv->drm, encoder) { encoder->base.possible_crtcs = intel_encoder_possible_crtcs(encoder); encoder->base.possible_clones = intel_encoder_possible_clones(encoder); } intel_init_pch_refclk(dev_priv); drm_helper_move_panel_connectors_to_head(&dev_priv->drm); } static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) { struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); drm_framebuffer_cleanup(fb); intel_frontbuffer_put(intel_fb->frontbuffer); kfree(intel_fb); } static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, struct drm_file *file, unsigned int *handle) { struct drm_i915_gem_object *obj = intel_fb_obj(fb); struct drm_i915_private *i915 = to_i915(obj->base.dev); if (obj->userptr.mm) { drm_dbg(&i915->drm, "attempting to use a userptr for a framebuffer, denied\n"); return -EINVAL; } return drm_gem_handle_create(file, &obj->base, handle); } static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, struct drm_file *file, unsigned flags, unsigned color, struct drm_clip_rect *clips, unsigned num_clips) { struct drm_i915_gem_object *obj = intel_fb_obj(fb); i915_gem_object_flush_if_display(obj); intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); return 0; } static const struct drm_framebuffer_funcs intel_fb_funcs = { .destroy = intel_user_framebuffer_destroy, .create_handle = intel_user_framebuffer_create_handle, .dirty = intel_user_framebuffer_dirty, }; static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, struct drm_i915_gem_object *obj, struct drm_mode_fb_cmd2 *mode_cmd) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); struct drm_framebuffer *fb = &intel_fb->base; u32 max_stride; unsigned int tiling, stride; int ret = -EINVAL; int i; intel_fb->frontbuffer = intel_frontbuffer_get(obj); if (!intel_fb->frontbuffer) return -ENOMEM; i915_gem_object_lock(obj, NULL); tiling = i915_gem_object_get_tiling(obj); stride = i915_gem_object_get_stride(obj); i915_gem_object_unlock(obj); if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { /* * If there's a fence, enforce that * the fb modifier and tiling mode match. */ if (tiling != I915_TILING_NONE && tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { drm_dbg_kms(&dev_priv->drm, "tiling_mode doesn't match fb modifier\n"); goto err; } } else { if (tiling == I915_TILING_X) { mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; } else if (tiling == I915_TILING_Y) { drm_dbg_kms(&dev_priv->drm, "No Y tiling for legacy addfb\n"); goto err; } } if (!drm_any_plane_has_format(&dev_priv->drm, mode_cmd->pixel_format, mode_cmd->modifier[0])) { struct drm_format_name_buf format_name; drm_dbg_kms(&dev_priv->drm, "unsupported pixel format %s / modifier 0x%llx\n", drm_get_format_name(mode_cmd->pixel_format, &format_name), mode_cmd->modifier[0]); goto err; } /* * gen2/3 display engine uses the fence if present, * so the tiling mode must match the fb modifier exactly. */ if (INTEL_GEN(dev_priv) < 4 && tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { drm_dbg_kms(&dev_priv->drm, "tiling_mode must match fb modifier exactly on gen2/3\n"); goto err; } max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, mode_cmd->modifier[0]); if (mode_cmd->pitches[0] > max_stride) { drm_dbg_kms(&dev_priv->drm, "%s pitch (%u) must be at most %d\n", mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? "tiled" : "linear", mode_cmd->pitches[0], max_stride); goto err; } /* * If there's a fence, enforce that * the fb pitch and fence stride match. */ if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { drm_dbg_kms(&dev_priv->drm, "pitch (%d) must match tiling stride (%d)\n", mode_cmd->pitches[0], stride); goto err; } /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ if (mode_cmd->offsets[0] != 0) { drm_dbg_kms(&dev_priv->drm, "plane 0 offset (0x%08x) must be 0\n", mode_cmd->offsets[0]); goto err; } drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); for (i = 0; i < fb->format->num_planes; i++) { u32 stride_alignment; if (mode_cmd->handles[i] != mode_cmd->handles[0]) { drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", i); goto err; } stride_alignment = intel_fb_stride_alignment(fb, i); if (fb->pitches[i] & (stride_alignment - 1)) { drm_dbg_kms(&dev_priv->drm, "plane %d pitch (%d) must be at least %u byte aligned\n", i, fb->pitches[i], stride_alignment); goto err; } if (is_gen12_ccs_plane(fb, i) && !is_gen12_ccs_cc_plane(fb, i)) { int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); if (fb->pitches[i] != ccs_aux_stride) { drm_dbg_kms(&dev_priv->drm, "ccs aux plane %d pitch (%d) must be %d\n", i, fb->pitches[i], ccs_aux_stride); goto err; } } fb->obj[i] = &obj->base; } ret = intel_fill_fb_info(dev_priv, fb); if (ret) goto err; ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); if (ret) { drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); goto err; } return 0; err: intel_frontbuffer_put(intel_fb->frontbuffer); return ret; } static struct drm_framebuffer * intel_user_framebuffer_create(struct drm_device *dev, struct drm_file *filp, const struct drm_mode_fb_cmd2 *user_mode_cmd) { struct drm_framebuffer *fb; struct drm_i915_gem_object *obj; struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); if (!obj) return ERR_PTR(-ENOENT); fb = intel_framebuffer_create(obj, &mode_cmd); i915_gem_object_put(obj); return fb; } static enum drm_mode_status intel_mode_valid(struct drm_device *dev, const struct drm_display_mode *mode) { struct drm_i915_private *dev_priv = to_i915(dev); int hdisplay_max, htotal_max; int vdisplay_max, vtotal_max; /* * Can't reject DBLSCAN here because Xorg ddxen can add piles * of DBLSCAN modes to the output's mode list when they detect * the scaling mode property on the connector. And they don't * ask the kernel to validate those modes in any way until * modeset time at which point the client gets a protocol error. * So in order to not upset those clients we silently ignore the * DBLSCAN flag on such connectors. For other connectors we will * reject modes with the DBLSCAN flag in encoder->compute_config(). * And we always reject DBLSCAN modes in connector->mode_valid() * as we never want such modes on the connector's mode list. */ if (mode->vscan > 1) return MODE_NO_VSCAN; if (mode->flags & DRM_MODE_FLAG_HSKEW) return MODE_H_ILLEGAL; if (mode->flags & (DRM_MODE_FLAG_CSYNC | DRM_MODE_FLAG_NCSYNC | DRM_MODE_FLAG_PCSYNC)) return MODE_HSYNC; if (mode->flags & (DRM_MODE_FLAG_BCAST | DRM_MODE_FLAG_PIXMUX | DRM_MODE_FLAG_CLKDIV2)) return MODE_BAD; /* Transcoder timing limits */ if (INTEL_GEN(dev_priv) >= 11) { hdisplay_max = 16384; vdisplay_max = 8192; htotal_max = 16384; vtotal_max = 8192; } else if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ vdisplay_max = 4096; htotal_max = 8192; vtotal_max = 8192; } else if (INTEL_GEN(dev_priv) >= 3) { hdisplay_max = 4096; vdisplay_max = 4096; htotal_max = 8192; vtotal_max = 8192; } else { hdisplay_max = 2048; vdisplay_max = 2048; htotal_max = 4096; vtotal_max = 4096; } if (mode->hdisplay > hdisplay_max || mode->hsync_start > htotal_max || mode->hsync_end > htotal_max || mode->htotal > htotal_max) return MODE_H_ILLEGAL; if (mode->vdisplay > vdisplay_max || mode->vsync_start > vtotal_max || mode->vsync_end > vtotal_max || mode->vtotal > vtotal_max) return MODE_V_ILLEGAL; if (INTEL_GEN(dev_priv) >= 5) { if (mode->hdisplay < 64 || mode->htotal - mode->hdisplay < 32) return MODE_H_ILLEGAL; if (mode->vtotal - mode->vdisplay < 5) return MODE_V_ILLEGAL; } else { if (mode->htotal - mode->hdisplay < 32) return MODE_H_ILLEGAL; if (mode->vtotal - mode->vdisplay < 3) return MODE_V_ILLEGAL; } return MODE_OK; } enum drm_mode_status intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, const struct drm_display_mode *mode, bool bigjoiner) { int plane_width_max, plane_height_max; /* * intel_mode_valid() should be * sufficient on older platforms. */ if (INTEL_GEN(dev_priv) < 9) return MODE_OK; /* * Most people will probably want a fullscreen * plane so let's not advertize modes that are * too big for that. */ if (INTEL_GEN(dev_priv) >= 11) { plane_width_max = 5120 << bigjoiner; plane_height_max = 4320; } else { plane_width_max = 5120; plane_height_max = 4096; } if (mode->hdisplay > plane_width_max) return MODE_H_ILLEGAL; if (mode->vdisplay > plane_height_max) return MODE_V_ILLEGAL; return MODE_OK; } static const struct drm_mode_config_funcs intel_mode_funcs = { .fb_create = intel_user_framebuffer_create, .get_format_info = intel_get_format_info, .output_poll_changed = intel_fbdev_output_poll_changed, .mode_valid = intel_mode_valid, .atomic_check = intel_atomic_check, .atomic_commit = intel_atomic_commit, .atomic_state_alloc = intel_atomic_state_alloc, .atomic_state_clear = intel_atomic_state_clear, .atomic_state_free = intel_atomic_state_free, }; /** * intel_init_display_hooks - initialize the display modesetting hooks * @dev_priv: device private */ void intel_init_display_hooks(struct drm_i915_private *dev_priv) { intel_init_cdclk_hooks(dev_priv); intel_dpll_init_clock_hook(dev_priv); if (INTEL_GEN(dev_priv) >= 9) { dev_priv->display.get_pipe_config = hsw_get_pipe_config; dev_priv->display.crtc_enable = hsw_crtc_enable; dev_priv->display.crtc_disable = hsw_crtc_disable; } else if (HAS_DDI(dev_priv)) { dev_priv->display.get_pipe_config = hsw_get_pipe_config; dev_priv->display.crtc_enable = hsw_crtc_enable; dev_priv->display.crtc_disable = hsw_crtc_disable; } else if (HAS_PCH_SPLIT(dev_priv)) { dev_priv->display.get_pipe_config = ilk_get_pipe_config; dev_priv->display.crtc_enable = ilk_crtc_enable; dev_priv->display.crtc_disable = ilk_crtc_disable; } else if (IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv)) { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.crtc_enable = valleyview_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } else { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.crtc_enable = i9xx_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } intel_fdi_init_hook(dev_priv); if (INTEL_GEN(dev_priv) >= 9) { dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; dev_priv->display.get_initial_plane_config = skl_get_initial_plane_config; } else { dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; } } void intel_modeset_init_hw(struct drm_i915_private *i915) { struct intel_cdclk_state *cdclk_state = to_intel_cdclk_state(i915->cdclk.obj.state); struct intel_dbuf_state *dbuf_state = to_intel_dbuf_state(i915->dbuf.obj.state); intel_update_cdclk(i915); intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; dbuf_state->enabled_slices = i915->dbuf.enabled_slices; } static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) { struct drm_plane *plane; struct intel_crtc *crtc; for_each_intel_crtc(state->dev, crtc) { struct intel_crtc_state *crtc_state; crtc_state = intel_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); if (crtc_state->hw.active) { /* * Preserve the inherited flag to avoid * taking the full modeset path. */ crtc_state->inherited = true; } } drm_for_each_plane(plane, state->dev) { struct drm_plane_state *plane_state; plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); } return 0; } /* * Calculate what we think the watermarks should be for the state we've read * out of the hardware and then immediately program those watermarks so that * we ensure the hardware settings match our internal state. * * We can calculate what we think WM's should be by creating a duplicate of the * current state (which was constructed during hardware readout) and running it * through the atomic check code to calculate new watermark values in the * state object. */ static void sanitize_watermarks(struct drm_i915_private *dev_priv) { struct drm_atomic_state *state; struct intel_atomic_state *intel_state; struct intel_crtc *crtc; struct intel_crtc_state *crtc_state; struct drm_modeset_acquire_ctx ctx; int ret; int i; /* Only supported on platforms that use atomic watermark design */ if (!dev_priv->display.optimize_watermarks) return; state = drm_atomic_state_alloc(&dev_priv->drm); if (drm_WARN_ON(&dev_priv->drm, !state)) return; intel_state = to_intel_atomic_state(state); drm_modeset_acquire_init(&ctx, 0); retry: state->acquire_ctx = &ctx; /* * Hardware readout is the only time we don't want to calculate * intermediate watermarks (since we don't trust the current * watermarks). */ if (!HAS_GMCH(dev_priv)) intel_state->skip_intermediate_wm = true; ret = sanitize_watermarks_add_affected(state); if (ret) goto fail; ret = intel_atomic_check(&dev_priv->drm, state); if (ret) goto fail; /* Write calculated watermark values back */ for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { crtc_state->wm.need_postvbl_update = true; dev_priv->display.optimize_watermarks(intel_state, crtc); to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; } fail: if (ret == -EDEADLK) { drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); goto retry; } /* * If we fail here, it means that the hardware appears to be * programmed in a way that shouldn't be possible, given our * understanding of watermark requirements. This might mean a * mistake in the hardware readout code or a mistake in the * watermark calculations for a given platform. Raise a WARN * so that this is noticeable. * * If this actually happens, we'll have to just leave the * BIOS-programmed watermarks untouched and hope for the best. */ drm_WARN(&dev_priv->drm, ret, "Could not determine valid watermarks for inherited state\n"); drm_atomic_state_put(state); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); } static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) { if (IS_GEN(dev_priv, 5)) { u32 fdi_pll_clk = intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) { dev_priv->fdi_pll_freq = 270000; } else { return; } drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); } static int intel_initial_commit(struct drm_device *dev) { struct drm_atomic_state *state = NULL; struct drm_modeset_acquire_ctx ctx; struct intel_crtc *crtc; int ret = 0; state = drm_atomic_state_alloc(dev); if (!state) return -ENOMEM; drm_modeset_acquire_init(&ctx, 0); retry: state->acquire_ctx = &ctx; for_each_intel_crtc(dev, crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto out; } if (crtc_state->hw.active) { struct intel_encoder *encoder; /* * We've not yet detected sink capabilities * (audio,infoframes,etc.) and thus we don't want to * force a full state recomputation yet. We want that to * happen only for the first real commit from userspace. * So preserve the inherited flag for the time being. */ crtc_state->inherited = true; ret = drm_atomic_add_affected_planes(state, &crtc->base); if (ret) goto out; /* * FIXME hack to force a LUT update to avoid the * plane update forcing the pipe gamma on without * having a proper LUT loaded. Remove once we * have readout for pipe gamma enable. */ crtc_state->uapi.color_mgmt_changed = true; for_each_intel_encoder_mask(dev, encoder, crtc_state->uapi.encoder_mask) { if (encoder->initial_fastset_check && !encoder->initial_fastset_check(encoder, crtc_state)) { ret = drm_atomic_add_affected_connectors(state, &crtc->base); if (ret) goto out; } } } } ret = drm_atomic_commit(state); out: if (ret == -EDEADLK) { drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); goto retry; } drm_atomic_state_put(state); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); return ret; } static void intel_mode_config_init(struct drm_i915_private *i915) { struct drm_mode_config *mode_config = &i915->drm.mode_config; drm_mode_config_init(&i915->drm); INIT_LIST_HEAD(&i915->global_obj_list); mode_config->min_width = 0; mode_config->min_height = 0; mode_config->preferred_depth = 24; mode_config->prefer_shadow = 1; mode_config->allow_fb_modifiers = true; mode_config->funcs = &intel_mode_funcs; if (INTEL_GEN(i915) >= 9) mode_config->async_page_flip = true; /* * Maximum framebuffer dimensions, chosen to match * the maximum render engine surface size on gen4+. */ if (INTEL_GEN(i915) >= 7) { mode_config->max_width = 16384; mode_config->max_height = 16384; } else if (INTEL_GEN(i915) >= 4) { mode_config->max_width = 8192; mode_config->max_height = 8192; } else if (IS_GEN(i915, 3)) { mode_config->max_width = 4096; mode_config->max_height = 4096; } else { mode_config->max_width = 2048; mode_config->max_height = 2048; } if (IS_I845G(i915) || IS_I865G(i915)) { mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; mode_config->cursor_height = 1023; } else if (IS_I830(i915) || IS_I85X(i915) || IS_I915G(i915) || IS_I915GM(i915)) { mode_config->cursor_width = 64; mode_config->cursor_height = 64; } else { mode_config->cursor_width = 256; mode_config->cursor_height = 256; } } static void intel_mode_config_cleanup(struct drm_i915_private *i915) { intel_atomic_global_obj_cleanup(i915); drm_mode_config_cleanup(&i915->drm); } static void plane_config_fini(struct intel_initial_plane_config *plane_config) { if (plane_config->fb) { struct drm_framebuffer *fb = &plane_config->fb->base; /* We may only have the stub and not a full framebuffer */ if (drm_framebuffer_read_refcount(fb)) drm_framebuffer_put(fb); else kfree(fb); } if (plane_config->vma) i915_vma_put(plane_config->vma); } /* part #1: call before irq install */ int intel_modeset_init_noirq(struct drm_i915_private *i915) { int ret; if (i915_inject_probe_failure(i915)) return -ENODEV; if (HAS_DISPLAY(i915)) { ret = drm_vblank_init(&i915->drm, INTEL_NUM_PIPES(i915)); if (ret) return ret; } intel_bios_init(i915); ret = intel_vga_register(i915); if (ret) goto cleanup_bios; /* FIXME: completely on the wrong abstraction layer */ intel_power_domains_init_hw(i915, false); intel_csr_ucode_init(i915); i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); i915->framestart_delay = 1; /* 1-4 */ intel_mode_config_init(i915); ret = intel_cdclk_init(i915); if (ret) goto cleanup_vga_client_pw_domain_csr; ret = intel_dbuf_init(i915); if (ret) goto cleanup_vga_client_pw_domain_csr; ret = intel_bw_init(i915); if (ret) goto cleanup_vga_client_pw_domain_csr; init_llist_head(&i915->atomic_helper.free_list); INIT_WORK(&i915->atomic_helper.free_work, intel_atomic_helper_free_state_worker); intel_init_quirks(i915); intel_fbc_init(i915); return 0; cleanup_vga_client_pw_domain_csr: intel_csr_ucode_fini(i915); intel_power_domains_driver_remove(i915); intel_vga_unregister(i915); cleanup_bios: intel_bios_driver_remove(i915); return ret; } /* part #2: call after irq install, but before gem init */ int intel_modeset_init_nogem(struct drm_i915_private *i915) { struct drm_device *dev = &i915->drm; enum pipe pipe; struct intel_crtc *crtc; int ret; intel_init_pm(i915); intel_panel_sanitize_ssc(i915); intel_pps_setup(i915); intel_gmbus_setup(i915); drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", INTEL_NUM_PIPES(i915), INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); if (HAS_DISPLAY(i915)) { for_each_pipe(i915, pipe) { ret = intel_crtc_init(i915, pipe); if (ret) { intel_mode_config_cleanup(i915); return ret; } } } intel_plane_possible_crtcs_init(i915); intel_shared_dpll_init(dev); intel_update_fdi_pll_freq(i915); intel_update_czclk(i915); intel_modeset_init_hw(i915); intel_hdcp_component_init(i915); if (i915->max_cdclk_freq == 0) intel_update_max_cdclk(i915); /* * If the platform has HTI, we need to find out whether it has reserved * any display resources before we create our display outputs. */ if (INTEL_INFO(i915)->display.has_hti) i915->hti_state = intel_de_read(i915, HDPORT_STATE); /* Just disable it once at startup */ intel_vga_disable(i915); intel_setup_outputs(i915); drm_modeset_lock_all(dev); intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); drm_modeset_unlock_all(dev); for_each_intel_crtc(dev, crtc) { struct intel_initial_plane_config plane_config = {}; if (!to_intel_crtc_state(crtc->base.state)->uapi.active) continue; /* * Note that reserving the BIOS fb up front prevents us * from stuffing other stolen allocations like the ring * on top. This prevents some ugliness at boot time, and * can even allow for smooth boot transitions if the BIOS * fb is large enough for the active pipe configuration. */ i915->display.get_initial_plane_config(crtc, &plane_config); /* * If the fb is shared between multiple heads, we'll * just get the first one. */ intel_find_initial_plane_obj(crtc, &plane_config); plane_config_fini(&plane_config); } /* * Make sure hardware watermarks really match the state we read out. * Note that we need to do this after reconstructing the BIOS fb's * since the watermark calculation done here will use pstate->fb. */ if (!HAS_GMCH(i915)) sanitize_watermarks(i915); return 0; } /* part #3: call after gem init */ int intel_modeset_init(struct drm_i915_private *i915) { int ret; if (!HAS_DISPLAY(i915)) return 0; /* * Force all active planes to recompute their states. So that on * mode_setcrtc after probe, all the intel_plane_state variables * are already calculated and there is no assert_plane warnings * during bootup. */ ret = intel_initial_commit(&i915->drm); if (ret) drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret); intel_overlay_setup(i915); ret = intel_fbdev_init(&i915->drm); if (ret) return ret; /* Only enable hotplug handling once the fbdev is fully set up. */ intel_hpd_init(i915); intel_hpd_poll_disable(i915); intel_init_ipc(i915); return 0; } void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) { struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); /* 640x480@60Hz, ~25175 kHz */ struct dpll clock = { .m1 = 18, .m2 = 7, .p1 = 13, .p2 = 4, .n = 2, }; u32 dpll, fp; int i; drm_WARN_ON(&dev_priv->drm, i9xx_calc_dpll_params(48000, &clock) != 25154); drm_dbg_kms(&dev_priv->drm, "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", pipe_name(pipe), clock.vco, clock.dot); fp = i9xx_dpll_compute_fp(&clock); dpll = DPLL_DVO_2X_MODE | DPLL_VGA_MODE_DIS | ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | PLL_P2_DIVIDE_BY_4 | PLL_REF_INPUT_DREFCLK | DPLL_VCO_ENABLE; intel_de_write(dev_priv, FP0(pipe), fp); intel_de_write(dev_priv, FP1(pipe), fp); intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); /* * Apparently we need to have VGA mode enabled prior to changing * the P1/P2 dividers. Otherwise the DPLL will keep using the old * dividers, even though the register value does change. */ intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); intel_de_write(dev_priv, DPLL(pipe), dpll); /* Wait for the clocks to stabilize. */ intel_de_posting_read(dev_priv, DPLL(pipe)); udelay(150); /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ intel_de_write(dev_priv, DPLL(pipe), dpll); /* We do this three times for luck */ for (i = 0; i < 3 ; i++) { intel_de_write(dev_priv, DPLL(pipe), dpll); intel_de_posting_read(dev_priv, DPLL(pipe)); udelay(150); /* wait for warmup */ } intel_de_write(dev_priv, PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); intel_de_posting_read(dev_priv, PIPECONF(pipe)); intel_wait_for_pipe_scanline_moving(crtc); } void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) { struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", pipe_name(pipe)); drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE); drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE); drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE); drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); intel_de_write(dev_priv, PIPECONF(pipe), 0); intel_de_posting_read(dev_priv, PIPECONF(pipe)); intel_wait_for_pipe_scanline_stopped(crtc); intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); intel_de_posting_read(dev_priv, DPLL(pipe)); } static void intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) { struct intel_crtc *crtc; if (INTEL_GEN(dev_priv) >= 4) return; for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_plane *plane = to_intel_plane(crtc->base.primary); struct intel_crtc *plane_crtc; enum pipe pipe; if (!plane->get_hw_state(plane, &pipe)) continue; if (pipe == crtc->pipe) continue; drm_dbg_kms(&dev_priv->drm, "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", plane->base.base.id, plane->base.name); plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); intel_plane_disable_noatomic(plane_crtc, plane); } } static bool intel_crtc_has_encoders(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct intel_encoder *encoder; for_each_encoder_on_crtc(dev, &crtc->base, encoder) return true; return false; } static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct intel_connector *connector; for_each_connector_on_encoder(dev, &encoder->base, connector) return connector; return NULL; } static bool has_pch_trancoder(struct drm_i915_private *dev_priv, enum pipe pch_transcoder) { return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); } static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); u32 val; if (transcoder_is_dsi(cpu_transcoder)) return; val = intel_de_read(dev_priv, reg); val &= ~HSW_FRAME_START_DELAY_MASK; val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); intel_de_write(dev_priv, reg, val); } else { i915_reg_t reg = PIPECONF(cpu_transcoder); u32 val; val = intel_de_read(dev_priv, reg); val &= ~PIPECONF_FRAME_START_DELAY_MASK; val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); intel_de_write(dev_priv, reg, val); } if (!crtc_state->has_pch_encoder) return; if (HAS_PCH_IBX(dev_priv)) { i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); u32 val; val = intel_de_read(dev_priv, reg); val &= ~TRANS_FRAME_START_DELAY_MASK; val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); intel_de_write(dev_priv, reg, val); } else { enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); u32 val; val = intel_de_read(dev_priv, reg); val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); intel_de_write(dev_priv, reg, val); } } static void intel_sanitize_crtc(struct intel_crtc *crtc, struct drm_modeset_acquire_ctx *ctx) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); if (crtc_state->hw.active) { struct intel_plane *plane; /* Clear any frame start delays used for debugging left by the BIOS */ intel_sanitize_frame_start_delay(crtc_state); /* Disable everything but the primary plane */ for_each_intel_plane_on_crtc(dev, crtc, plane) { const struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); if (plane_state->uapi.visible && plane->base.type != DRM_PLANE_TYPE_PRIMARY) intel_plane_disable_noatomic(crtc, plane); } /* * Disable any background color set by the BIOS, but enable the * gamma and CSC to match how we program our planes. */ if (INTEL_GEN(dev_priv) >= 9) intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); } /* Adjust the state of the output pipe according to whether we * have active connectors/encoders. */ if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc) && !crtc_state->bigjoiner_slave) intel_crtc_disable_noatomic(crtc, ctx); if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { /* * We start out with underrun reporting disabled to avoid races. * For correct bookkeeping mark this on active crtcs. * * Also on gmch platforms we dont have any hardware bits to * disable the underrun reporting. Which means we need to start * out with underrun reporting disabled also on inactive pipes, * since otherwise we'll complain about the garbage we read when * e.g. coming up after runtime pm. * * No protection against concurrent access is required - at * worst a fifo underrun happens which also sets this to false. */ crtc->cpu_fifo_underrun_disabled = true; /* * We track the PCH trancoder underrun reporting state * within the crtc. With crtc for pipe A housing the underrun * reporting state for PCH transcoder A, crtc for pipe B housing * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, * and marking underrun reporting as disabled for the non-existing * PCH transcoders B and C would prevent enabling the south * error interrupt (see cpt_can_enable_serr_int()). */ if (has_pch_trancoder(dev_priv, crtc->pipe)) crtc->pch_fifo_underrun_disabled = true; } } static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); /* * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram * the hardware when a high res displays plugged in. DPLL P * divider is zero, and the pipe timings are bonkers. We'll * try to disable everything in that case. * * FIXME would be nice to be able to sanitize this state * without several WARNs, but for now let's take the easy * road. */ return IS_GEN(dev_priv, 6) && crtc_state->hw.active && crtc_state->shared_dpll && crtc_state->port_clock == 0; } static void intel_sanitize_encoder(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_connector *connector; struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); struct intel_crtc_state *crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; /* We need to check both for a crtc link (meaning that the * encoder is active and trying to read from a pipe) and the * pipe itself being active. */ bool has_active_crtc = crtc_state && crtc_state->hw.active; if (crtc_state && has_bogus_dpll_config(crtc_state)) { drm_dbg_kms(&dev_priv->drm, "BIOS has misprogrammed the hardware. Disabling pipe %c\n", pipe_name(crtc->pipe)); has_active_crtc = false; } connector = intel_encoder_find_connector(encoder); if (connector && !has_active_crtc) { drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] has active connectors but no active pipe!\n", encoder->base.base.id, encoder->base.name); /* Connector is active, but has no active pipe. This is * fallout from our resume register restoring. Disable * the encoder manually again. */ if (crtc_state) { struct drm_encoder *best_encoder; drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] manually disabled\n", encoder->base.base.id, encoder->base.name); /* avoid oopsing in case the hooks consult best_encoder */ best_encoder = connector->base.state->best_encoder; connector->base.state->best_encoder = &encoder->base; /* FIXME NULL atomic state passed! */ if (encoder->disable) encoder->disable(NULL, encoder, crtc_state, connector->base.state); if (encoder->post_disable) encoder->post_disable(NULL, encoder, crtc_state, connector->base.state); connector->base.state->best_encoder = best_encoder; } encoder->base.crtc = NULL; /* Inconsistent output/port/pipe state happens presumably due to * a bug in one of the get_hw_state functions. Or someplace else * in our code, like the register restore mess on resume. Clamp * things to off as a safer default. */ connector->base.dpms = DRM_MODE_DPMS_OFF; connector->base.encoder = NULL; } /* notify opregion of the sanitized encoder state */ intel_opregion_notify_encoder(encoder, connector && has_active_crtc); if (INTEL_GEN(dev_priv) >= 11) icl_sanitize_encoder_pll_mapping(encoder); } /* FIXME read out full plane state for all planes */ static void readout_plane_state(struct drm_i915_private *dev_priv) { struct intel_plane *plane; struct intel_crtc *crtc; for_each_intel_plane(&dev_priv->drm, plane) { struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); struct intel_crtc_state *crtc_state; enum pipe pipe = PIPE_A; bool visible; visible = plane->get_hw_state(plane, &pipe); crtc = intel_get_crtc_for_pipe(dev_priv, pipe); crtc_state = to_intel_crtc_state(crtc->base.state); intel_set_plane_visible(crtc_state, plane_state, visible); drm_dbg_kms(&dev_priv->drm, "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", plane->base.base.id, plane->base.name, enableddisabled(visible), pipe_name(pipe)); } for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); fixup_plane_bitmasks(crtc_state); } } static void intel_modeset_readout_hw_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_cdclk_state *cdclk_state = to_intel_cdclk_state(dev_priv->cdclk.obj.state); struct intel_dbuf_state *dbuf_state = to_intel_dbuf_state(dev_priv->dbuf.obj.state); enum pipe pipe; struct intel_crtc *crtc; struct intel_encoder *encoder; struct intel_connector *connector; struct drm_connector_list_iter conn_iter; u8 active_pipes = 0; for_each_intel_crtc(dev, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); intel_crtc_free_hw_state(crtc_state); intel_crtc_state_reset(crtc_state, crtc); intel_crtc_get_pipe_config(crtc_state); crtc_state->hw.enable = crtc_state->hw.active; crtc->base.enabled = crtc_state->hw.enable; crtc->active = crtc_state->hw.active; if (crtc_state->hw.active) active_pipes |= BIT(crtc->pipe); drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] hw state readout: %s\n", crtc->base.base.id, crtc->base.name, enableddisabled(crtc_state->hw.active)); } dev_priv->active_pipes = cdclk_state->active_pipes = dbuf_state->active_pipes = active_pipes; readout_plane_state(dev_priv); intel_dpll_readout_hw_state(dev_priv); for_each_intel_encoder(dev, encoder) { pipe = 0; if (encoder->get_hw_state(encoder, &pipe)) { struct intel_crtc_state *crtc_state; crtc = intel_get_crtc_for_pipe(dev_priv, pipe); crtc_state = to_intel_crtc_state(crtc->base.state); encoder->base.crtc = &crtc->base; intel_encoder_get_config(encoder, crtc_state); if (encoder->sync_state) encoder->sync_state(encoder, crtc_state); /* read out to slave crtc as well for bigjoiner */ if (crtc_state->bigjoiner) { /* encoder should read be linked to bigjoiner master */ WARN_ON(crtc_state->bigjoiner_slave); crtc = crtc_state->bigjoiner_linked_crtc; crtc_state = to_intel_crtc_state(crtc->base.state); intel_encoder_get_config(encoder, crtc_state); } } else { encoder->base.crtc = NULL; } drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", encoder->base.base.id, encoder->base.name, enableddisabled(encoder->base.crtc), pipe_name(pipe)); } drm_connector_list_iter_begin(dev, &conn_iter); for_each_intel_connector_iter(connector, &conn_iter) { if (connector->get_hw_state(connector)) { struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; connector->base.dpms = DRM_MODE_DPMS_ON; encoder = intel_attached_encoder(connector); connector->base.encoder = &encoder->base; crtc = to_intel_crtc(encoder->base.crtc); crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; if (crtc_state && crtc_state->hw.active) { /* * This has to be done during hardware readout * because anything calling .crtc_disable may * rely on the connector_mask being accurate. */ crtc_state->uapi.connector_mask |= drm_connector_mask(&connector->base); crtc_state->uapi.encoder_mask |= drm_encoder_mask(&encoder->base); } } else { connector->base.dpms = DRM_MODE_DPMS_OFF; connector->base.encoder = NULL; } drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s] hw state readout: %s\n", connector->base.base.id, connector->base.name, enableddisabled(connector->base.encoder)); } drm_connector_list_iter_end(&conn_iter); for_each_intel_crtc(dev, crtc) { struct intel_bw_state *bw_state = to_intel_bw_state(dev_priv->bw_obj.state); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_plane *plane; int min_cdclk = 0; if (crtc_state->bigjoiner_slave) continue; if (crtc_state->hw.active) { /* * The initial mode needs to be set in order to keep * the atomic core happy. It wants a valid mode if the * crtc's enabled, so we do the above call. * * But we don't set all the derived state fully, hence * set a flag to indicate that a full recalculation is * needed on the next commit. */ crtc_state->inherited = true; intel_crtc_update_active_timings(crtc_state); intel_crtc_copy_hw_to_uapi_state(crtc_state); } for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { const struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); /* * FIXME don't have the fb yet, so can't * use intel_plane_data_rate() :( */ if (plane_state->uapi.visible) crtc_state->data_rate[plane->id] = 4 * crtc_state->pixel_rate; /* * FIXME don't have the fb yet, so can't * use plane->min_cdclk() :( */ if (plane_state->uapi.visible && plane->min_cdclk) { if (crtc_state->double_wide || INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) crtc_state->min_cdclk[plane->id] = DIV_ROUND_UP(crtc_state->pixel_rate, 2); else crtc_state->min_cdclk[plane->id] = crtc_state->pixel_rate; } drm_dbg_kms(&dev_priv->drm, "[PLANE:%d:%s] min_cdclk %d kHz\n", plane->base.base.id, plane->base.name, crtc_state->min_cdclk[plane->id]); } if (crtc_state->hw.active) { min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); if (drm_WARN_ON(dev, min_cdclk < 0)) min_cdclk = 0; } cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; cdclk_state->min_voltage_level[crtc->pipe] = crtc_state->min_voltage_level; intel_bw_crtc_update(bw_state, crtc_state); intel_pipe_config_sanity_check(dev_priv, crtc_state); /* discard our incomplete slave state, copy it from master */ if (crtc_state->bigjoiner && crtc_state->hw.active) { struct intel_crtc *slave = crtc_state->bigjoiner_linked_crtc; struct intel_crtc_state *slave_crtc_state = to_intel_crtc_state(slave->base.state); copy_bigjoiner_crtc_state(slave_crtc_state, crtc_state); slave->base.mode = crtc->base.mode; cdclk_state->min_cdclk[slave->pipe] = min_cdclk; cdclk_state->min_voltage_level[slave->pipe] = crtc_state->min_voltage_level; for_each_intel_plane_on_crtc(&dev_priv->drm, slave, plane) { const struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); /* * FIXME don't have the fb yet, so can't * use intel_plane_data_rate() :( */ if (plane_state->uapi.visible) crtc_state->data_rate[plane->id] = 4 * crtc_state->pixel_rate; else crtc_state->data_rate[plane->id] = 0; } intel_bw_crtc_update(bw_state, slave_crtc_state); drm_calc_timestamping_constants(&slave->base, &slave_crtc_state->hw.adjusted_mode); } } } static void get_encoder_power_domains(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; for_each_intel_encoder(&dev_priv->drm, encoder) { struct intel_crtc_state *crtc_state; if (!encoder->get_power_domains) continue; /* * MST-primary and inactive encoders don't have a crtc state * and neither of these require any power domain references. */ if (!encoder->base.crtc) continue; crtc_state = to_intel_crtc_state(encoder->base.crtc->state); encoder->get_power_domains(encoder, crtc_state); } } static void intel_early_display_was(struct drm_i915_private *dev_priv) { /* * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl * Also known as Wa_14010480278. */ if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv)) intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); if (IS_HASWELL(dev_priv)) { /* * WaRsPkgCStateDisplayPMReq:hsw * System hang if this isn't done before disabling all planes! */ intel_de_write(dev_priv, CHICKEN_PAR1_1, intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); } if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) { /* Display WA #1142:kbl,cfl,cml */ intel_de_rmw(dev_priv, CHICKEN_PAR1_1, KBL_ARB_FILL_SPARE_22, KBL_ARB_FILL_SPARE_22); intel_de_rmw(dev_priv, CHICKEN_MISC_2, KBL_ARB_FILL_SPARE_13 | KBL_ARB_FILL_SPARE_14, KBL_ARB_FILL_SPARE_14); } } static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, enum port port, i915_reg_t hdmi_reg) { u32 val = intel_de_read(dev_priv, hdmi_reg); if (val & SDVO_ENABLE || (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) return; drm_dbg_kms(&dev_priv->drm, "Sanitizing transcoder select for HDMI %c\n", port_name(port)); val &= ~SDVO_PIPE_SEL_MASK; val |= SDVO_PIPE_SEL(PIPE_A); intel_de_write(dev_priv, hdmi_reg, val); } static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, enum port port, i915_reg_t dp_reg) { u32 val = intel_de_read(dev_priv, dp_reg); if (val & DP_PORT_EN || (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) return; drm_dbg_kms(&dev_priv->drm, "Sanitizing transcoder select for DP %c\n", port_name(port)); val &= ~DP_PIPE_SEL_MASK; val |= DP_PIPE_SEL(PIPE_A); intel_de_write(dev_priv, dp_reg, val); } static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) { /* * The BIOS may select transcoder B on some of the PCH * ports even it doesn't enable the port. This would trip * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). * Sanitize the transcoder select bits to prevent that. We * assume that the BIOS never actually enabled the port, * because if it did we'd actually have to toggle the port * on and back off to make the transcoder A select stick * (see. intel_dp_link_down(), intel_disable_hdmi(), * intel_disable_sdvo()). */ ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); /* PCH SDVOB multiplex with HDMIB */ ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); } /* Scan out the current hw modeset state, * and sanitizes it to the current state */ static void intel_modeset_setup_hw_state(struct drm_device *dev, struct drm_modeset_acquire_ctx *ctx) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_encoder *encoder; struct intel_crtc *crtc; intel_wakeref_t wakeref; wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); intel_early_display_was(dev_priv); intel_modeset_readout_hw_state(dev); /* HW state is read out, now we need to sanitize this mess. */ /* Sanitize the TypeC port mode upfront, encoders depend on this */ for_each_intel_encoder(dev, encoder) { enum phy phy = intel_port_to_phy(dev_priv, encoder->port); /* We need to sanitize only the MST primary port. */ if (encoder->type != INTEL_OUTPUT_DP_MST && intel_phy_is_tc(dev_priv, phy)) intel_tc_port_sanitize(enc_to_dig_port(encoder)); } get_encoder_power_domains(dev_priv); if (HAS_PCH_IBX(dev_priv)) ibx_sanitize_pch_ports(dev_priv); /* * intel_sanitize_plane_mapping() may need to do vblank * waits, so we need vblank interrupts restored beforehand. */ for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); drm_crtc_vblank_reset(&crtc->base); if (crtc_state->hw.active) intel_crtc_vblank_on(crtc_state); } intel_sanitize_plane_mapping(dev_priv); for_each_intel_encoder(dev, encoder) intel_sanitize_encoder(encoder); for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); intel_sanitize_crtc(crtc, ctx); intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); } intel_modeset_update_connector_atomic_state(dev); intel_dpll_sanitize_state(dev_priv); if (IS_G4X(dev_priv)) { g4x_wm_get_hw_state(dev_priv); g4x_wm_sanitize(dev_priv); } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { vlv_wm_get_hw_state(dev_priv); vlv_wm_sanitize(dev_priv); } else if (INTEL_GEN(dev_priv) >= 9) { skl_wm_get_hw_state(dev_priv); } else if (HAS_PCH_SPLIT(dev_priv)) { ilk_wm_get_hw_state(dev_priv); } for_each_intel_crtc(dev, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); u64 put_domains; put_domains = modeset_get_crtc_power_domains(crtc_state); if (drm_WARN_ON(dev, put_domains)) modeset_put_crtc_power_domains(crtc, put_domains); } intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); } void intel_display_resume(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_atomic_state *state = dev_priv->modeset_restore_state; struct drm_modeset_acquire_ctx ctx; int ret; dev_priv->modeset_restore_state = NULL; if (state) state->acquire_ctx = &ctx; drm_modeset_acquire_init(&ctx, 0); while (1) { ret = drm_modeset_lock_all_ctx(dev, &ctx); if (ret != -EDEADLK) break; drm_modeset_backoff(&ctx); } if (!ret) ret = __intel_display_resume(dev, state, &ctx); intel_enable_ipc(dev_priv); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); if (ret) drm_err(&dev_priv->drm, "Restoring old state failed with %i\n", ret); if (state) drm_atomic_state_put(state); } static void intel_hpd_poll_fini(struct drm_i915_private *i915) { struct intel_connector *connector; struct drm_connector_list_iter conn_iter; /* Kill all the work that may have been queued by hpd. */ drm_connector_list_iter_begin(&i915->drm, &conn_iter); for_each_intel_connector_iter(connector, &conn_iter) { if (connector->modeset_retry_work.func) cancel_work_sync(&connector->modeset_retry_work); if (connector->hdcp.shim) { cancel_delayed_work_sync(&connector->hdcp.check_work); cancel_work_sync(&connector->hdcp.prop_work); } } drm_connector_list_iter_end(&conn_iter); } /* part #1: call before irq uninstall */ void intel_modeset_driver_remove(struct drm_i915_private *i915) { flush_workqueue(i915->flip_wq); flush_workqueue(i915->modeset_wq); flush_work(&i915->atomic_helper.free_work); drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); } /* part #2: call after irq uninstall */ void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) { /* * Due to the hpd irq storm handling the hotplug work can re-arm the * poll handlers. Hence disable polling after hpd handling is shut down. */ intel_hpd_poll_fini(i915); /* * MST topology needs to be suspended so we don't have any calls to * fbdev after it's finalized. MST will be destroyed later as part of * drm_mode_config_cleanup() */ intel_dp_mst_suspend(i915); /* poll work can call into fbdev, hence clean that up afterwards */ intel_fbdev_fini(i915); intel_unregister_dsm_handler(); intel_fbc_global_disable(i915); /* flush any delayed tasks or pending work */ flush_scheduled_work(); intel_hdcp_component_fini(i915); intel_mode_config_cleanup(i915); intel_overlay_cleanup(i915); intel_gmbus_teardown(i915); destroy_workqueue(i915->flip_wq); destroy_workqueue(i915->modeset_wq); intel_fbc_cleanup_cfb(i915); } /* part #3: call after gem init */ void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) { intel_csr_ucode_fini(i915); intel_power_domains_driver_remove(i915); intel_vga_unregister(i915); intel_bios_driver_remove(i915); } #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) struct intel_display_error_state { u32 power_well_driver; struct intel_cursor_error_state { u32 control; u32 position; u32 base; u32 size; } cursor[I915_MAX_PIPES]; struct intel_pipe_error_state { bool power_domain_on; u32 source; u32 stat; } pipe[I915_MAX_PIPES]; struct intel_plane_error_state { u32 control; u32 stride; u32 size; u32 pos; u32 addr; u32 surface; u32 tile_offset; } plane[I915_MAX_PIPES]; struct intel_transcoder_error_state { bool available; bool power_domain_on; enum transcoder cpu_transcoder; u32 conf; u32 htotal; u32 hblank; u32 hsync; u32 vtotal; u32 vblank; u32 vsync; } transcoder[5]; }; struct intel_display_error_state * intel_display_capture_error_state(struct drm_i915_private *dev_priv) { struct intel_display_error_state *error; int transcoders[] = { TRANSCODER_A, TRANSCODER_B, TRANSCODER_C, TRANSCODER_D, TRANSCODER_EDP, }; int i; BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder)); if (!HAS_DISPLAY(dev_priv)) return NULL; error = kzalloc(sizeof(*error), GFP_ATOMIC); if (error == NULL) return NULL; if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) error->power_well_driver = intel_de_read(dev_priv, HSW_PWR_WELL_CTL2); for_each_pipe(dev_priv, i) { error->pipe[i].power_domain_on = __intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(i)); if (!error->pipe[i].power_domain_on) continue; error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i)); error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i)); error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i)); error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i)); error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i)); if (INTEL_GEN(dev_priv) <= 3) { error->plane[i].size = intel_de_read(dev_priv, DSPSIZE(i)); error->plane[i].pos = intel_de_read(dev_priv, DSPPOS(i)); } if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) error->plane[i].addr = intel_de_read(dev_priv, DSPADDR(i)); if (INTEL_GEN(dev_priv) >= 4) { error->plane[i].surface = intel_de_read(dev_priv, DSPSURF(i)); error->plane[i].tile_offset = intel_de_read(dev_priv, DSPTILEOFF(i)); } error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i)); if (HAS_GMCH(dev_priv)) error->pipe[i].stat = intel_de_read(dev_priv, PIPESTAT(i)); } for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { enum transcoder cpu_transcoder = transcoders[i]; if (!HAS_TRANSCODER(dev_priv, cpu_transcoder)) continue; error->transcoder[i].available = true; error->transcoder[i].power_domain_on = __intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_TRANSCODER(cpu_transcoder)); if (!error->transcoder[i].power_domain_on) continue; error->transcoder[i].cpu_transcoder = cpu_transcoder; error->transcoder[i].conf = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); error->transcoder[i].htotal = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); error->transcoder[i].hblank = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); error->transcoder[i].hsync = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); error->transcoder[i].vtotal = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); error->transcoder[i].vblank = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); error->transcoder[i].vsync = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); } return error; } #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) void intel_display_print_error_state(struct drm_i915_error_state_buf *m, struct intel_display_error_state *error) { struct drm_i915_private *dev_priv = m->i915; int i; if (!error) return; err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv)); if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) err_printf(m, "PWR_WELL_CTL2: %08x\n", error->power_well_driver); for_each_pipe(dev_priv, i) { err_printf(m, "Pipe [%d]:\n", i); err_printf(m, " Power: %s\n", onoff(error->pipe[i].power_domain_on)); err_printf(m, " SRC: %08x\n", error->pipe[i].source); err_printf(m, " STAT: %08x\n", error->pipe[i].stat); err_printf(m, "Plane [%d]:\n", i); err_printf(m, " CNTR: %08x\n", error->plane[i].control); err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); if (INTEL_GEN(dev_priv) <= 3) { err_printf(m, " SIZE: %08x\n", error->plane[i].size); err_printf(m, " POS: %08x\n", error->plane[i].pos); } if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) err_printf(m, " ADDR: %08x\n", error->plane[i].addr); if (INTEL_GEN(dev_priv) >= 4) { err_printf(m, " SURF: %08x\n", error->plane[i].surface); err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); } err_printf(m, "Cursor [%d]:\n", i); err_printf(m, " CNTR: %08x\n", error->cursor[i].control); err_printf(m, " POS: %08x\n", error->cursor[i].position); err_printf(m, " BASE: %08x\n", error->cursor[i].base); } for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { if (!error->transcoder[i].available) continue; err_printf(m, "CPU transcoder: %s\n", transcoder_name(error->transcoder[i].cpu_transcoder)); err_printf(m, " Power: %s\n", onoff(error->transcoder[i].power_domain_on)); err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); } } #endif