/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eugeni Dodonov * */ #include #include "i915_drv.h" #include "i915_trace.h" #include "intel_audio.h" #include "intel_combo_phy.h" #include "intel_connector.h" #include "intel_ddi.h" #include "intel_display_types.h" #include "intel_dp.h" #include "intel_dp_mst.h" #include "intel_dp_link_training.h" #include "intel_dpio_phy.h" #include "intel_dsi.h" #include "intel_fifo_underrun.h" #include "intel_gmbus.h" #include "intel_hdcp.h" #include "intel_hdmi.h" #include "intel_hotplug.h" #include "intel_lspcon.h" #include "intel_panel.h" #include "intel_psr.h" #include "intel_sprite.h" #include "intel_tc.h" #include "intel_vdsc.h" struct ddi_buf_trans { u32 trans1; /* balance leg enable, de-emph level */ u32 trans2; /* vref sel, vswing */ u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */ }; static const u8 index_to_dp_signal_levels[] = { [0] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0, [1] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1, [2] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2, [3] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3, [4] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0, [5] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1, [6] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2, [7] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0, [8] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1, [9] = DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0, }; /* HDMI/DVI modes ignore everything but the last 2 items. So we share * them for both DP and FDI transports, allowing those ports to * automatically adapt to HDMI connections as well */ static const struct ddi_buf_trans hsw_ddi_translations_dp[] = { { 0x00FFFFFF, 0x0006000E, 0x0 }, { 0x00D75FFF, 0x0005000A, 0x0 }, { 0x00C30FFF, 0x00040006, 0x0 }, { 0x80AAAFFF, 0x000B0000, 0x0 }, { 0x00FFFFFF, 0x0005000A, 0x0 }, { 0x00D75FFF, 0x000C0004, 0x0 }, { 0x80C30FFF, 0x000B0000, 0x0 }, { 0x00FFFFFF, 0x00040006, 0x0 }, { 0x80D75FFF, 0x000B0000, 0x0 }, }; static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = { { 0x00FFFFFF, 0x0007000E, 0x0 }, { 0x00D75FFF, 0x000F000A, 0x0 }, { 0x00C30FFF, 0x00060006, 0x0 }, { 0x00AAAFFF, 0x001E0000, 0x0 }, { 0x00FFFFFF, 0x000F000A, 0x0 }, { 0x00D75FFF, 0x00160004, 0x0 }, { 0x00C30FFF, 0x001E0000, 0x0 }, { 0x00FFFFFF, 0x00060006, 0x0 }, { 0x00D75FFF, 0x001E0000, 0x0 }, }; static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = { /* Idx NT mV d T mV d db */ { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */ { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */ { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */ { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */ { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */ { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */ { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */ { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */ { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */ { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */ { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */ { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */ }; static const struct ddi_buf_trans bdw_ddi_translations_edp[] = { { 0x00FFFFFF, 0x00000012, 0x0 }, { 0x00EBAFFF, 0x00020011, 0x0 }, { 0x00C71FFF, 0x0006000F, 0x0 }, { 0x00AAAFFF, 0x000E000A, 0x0 }, { 0x00FFFFFF, 0x00020011, 0x0 }, { 0x00DB6FFF, 0x0005000F, 0x0 }, { 0x00BEEFFF, 0x000A000C, 0x0 }, { 0x00FFFFFF, 0x0005000F, 0x0 }, { 0x00DB6FFF, 0x000A000C, 0x0 }, }; static const struct ddi_buf_trans bdw_ddi_translations_dp[] = { { 0x00FFFFFF, 0x0007000E, 0x0 }, { 0x00D75FFF, 0x000E000A, 0x0 }, { 0x00BEFFFF, 0x00140006, 0x0 }, { 0x80B2CFFF, 0x001B0002, 0x0 }, { 0x00FFFFFF, 0x000E000A, 0x0 }, { 0x00DB6FFF, 0x00160005, 0x0 }, { 0x80C71FFF, 0x001A0002, 0x0 }, { 0x00F7DFFF, 0x00180004, 0x0 }, { 0x80D75FFF, 0x001B0002, 0x0 }, }; static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = { { 0x00FFFFFF, 0x0001000E, 0x0 }, { 0x00D75FFF, 0x0004000A, 0x0 }, { 0x00C30FFF, 0x00070006, 0x0 }, { 0x00AAAFFF, 0x000C0000, 0x0 }, { 0x00FFFFFF, 0x0004000A, 0x0 }, { 0x00D75FFF, 0x00090004, 0x0 }, { 0x00C30FFF, 0x000C0000, 0x0 }, { 0x00FFFFFF, 0x00070006, 0x0 }, { 0x00D75FFF, 0x000C0000, 0x0 }, }; static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = { /* Idx NT mV d T mV df db */ { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */ { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */ { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */ { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */ { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */ { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */ { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */ { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */ { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */ { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */ }; /* Skylake H and S */ static const struct ddi_buf_trans skl_ddi_translations_dp[] = { { 0x00002016, 0x000000A0, 0x0 }, { 0x00005012, 0x0000009B, 0x0 }, { 0x00007011, 0x00000088, 0x0 }, { 0x80009010, 0x000000C0, 0x1 }, { 0x00002016, 0x0000009B, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x80007011, 0x000000C0, 0x1 }, { 0x00002016, 0x000000DF, 0x0 }, { 0x80005012, 0x000000C0, 0x1 }, }; /* Skylake U */ static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = { { 0x0000201B, 0x000000A2, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x80007011, 0x000000CD, 0x1 }, { 0x80009010, 0x000000C0, 0x1 }, { 0x0000201B, 0x0000009D, 0x0 }, { 0x80005012, 0x000000C0, 0x1 }, { 0x80007011, 0x000000C0, 0x1 }, { 0x00002016, 0x00000088, 0x0 }, { 0x80005012, 0x000000C0, 0x1 }, }; /* Skylake Y */ static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = { { 0x00000018, 0x000000A2, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x80007011, 0x000000CD, 0x3 }, { 0x80009010, 0x000000C0, 0x3 }, { 0x00000018, 0x0000009D, 0x0 }, { 0x80005012, 0x000000C0, 0x3 }, { 0x80007011, 0x000000C0, 0x3 }, { 0x00000018, 0x00000088, 0x0 }, { 0x80005012, 0x000000C0, 0x3 }, }; /* Kabylake H and S */ static const struct ddi_buf_trans kbl_ddi_translations_dp[] = { { 0x00002016, 0x000000A0, 0x0 }, { 0x00005012, 0x0000009B, 0x0 }, { 0x00007011, 0x00000088, 0x0 }, { 0x80009010, 0x000000C0, 0x1 }, { 0x00002016, 0x0000009B, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x80007011, 0x000000C0, 0x1 }, { 0x00002016, 0x00000097, 0x0 }, { 0x80005012, 0x000000C0, 0x1 }, }; /* Kabylake U */ static const struct ddi_buf_trans kbl_u_ddi_translations_dp[] = { { 0x0000201B, 0x000000A1, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x80007011, 0x000000CD, 0x3 }, { 0x80009010, 0x000000C0, 0x3 }, { 0x0000201B, 0x0000009D, 0x0 }, { 0x80005012, 0x000000C0, 0x3 }, { 0x80007011, 0x000000C0, 0x3 }, { 0x00002016, 0x0000004F, 0x0 }, { 0x80005012, 0x000000C0, 0x3 }, }; /* Kabylake Y */ static const struct ddi_buf_trans kbl_y_ddi_translations_dp[] = { { 0x00001017, 0x000000A1, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x80007011, 0x000000CD, 0x3 }, { 0x8000800F, 0x000000C0, 0x3 }, { 0x00001017, 0x0000009D, 0x0 }, { 0x80005012, 0x000000C0, 0x3 }, { 0x80007011, 0x000000C0, 0x3 }, { 0x00001017, 0x0000004C, 0x0 }, { 0x80005012, 0x000000C0, 0x3 }, }; /* * Skylake/Kabylake H and S * eDP 1.4 low vswing translation parameters */ static const struct ddi_buf_trans skl_ddi_translations_edp[] = { { 0x00000018, 0x000000A8, 0x0 }, { 0x00004013, 0x000000A9, 0x0 }, { 0x00007011, 0x000000A2, 0x0 }, { 0x00009010, 0x0000009C, 0x0 }, { 0x00000018, 0x000000A9, 0x0 }, { 0x00006013, 0x000000A2, 0x0 }, { 0x00007011, 0x000000A6, 0x0 }, { 0x00000018, 0x000000AB, 0x0 }, { 0x00007013, 0x0000009F, 0x0 }, { 0x00000018, 0x000000DF, 0x0 }, }; /* * Skylake/Kabylake U * eDP 1.4 low vswing translation parameters */ static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = { { 0x00000018, 0x000000A8, 0x0 }, { 0x00004013, 0x000000A9, 0x0 }, { 0x00007011, 0x000000A2, 0x0 }, { 0x00009010, 0x0000009C, 0x0 }, { 0x00000018, 0x000000A9, 0x0 }, { 0x00006013, 0x000000A2, 0x0 }, { 0x00007011, 0x000000A6, 0x0 }, { 0x00002016, 0x000000AB, 0x0 }, { 0x00005013, 0x0000009F, 0x0 }, { 0x00000018, 0x000000DF, 0x0 }, }; /* * Skylake/Kabylake Y * eDP 1.4 low vswing translation parameters */ static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = { { 0x00000018, 0x000000A8, 0x0 }, { 0x00004013, 0x000000AB, 0x0 }, { 0x00007011, 0x000000A4, 0x0 }, { 0x00009010, 0x000000DF, 0x0 }, { 0x00000018, 0x000000AA, 0x0 }, { 0x00006013, 0x000000A4, 0x0 }, { 0x00007011, 0x0000009D, 0x0 }, { 0x00000018, 0x000000A0, 0x0 }, { 0x00006012, 0x000000DF, 0x0 }, { 0x00000018, 0x0000008A, 0x0 }, }; /* Skylake/Kabylake U, H and S */ static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = { { 0x00000018, 0x000000AC, 0x0 }, { 0x00005012, 0x0000009D, 0x0 }, { 0x00007011, 0x00000088, 0x0 }, { 0x00000018, 0x000000A1, 0x0 }, { 0x00000018, 0x00000098, 0x0 }, { 0x00004013, 0x00000088, 0x0 }, { 0x80006012, 0x000000CD, 0x1 }, { 0x00000018, 0x000000DF, 0x0 }, { 0x80003015, 0x000000CD, 0x1 }, /* Default */ { 0x80003015, 0x000000C0, 0x1 }, { 0x80000018, 0x000000C0, 0x1 }, }; /* Skylake/Kabylake Y */ static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = { { 0x00000018, 0x000000A1, 0x0 }, { 0x00005012, 0x000000DF, 0x0 }, { 0x80007011, 0x000000CB, 0x3 }, { 0x00000018, 0x000000A4, 0x0 }, { 0x00000018, 0x0000009D, 0x0 }, { 0x00004013, 0x00000080, 0x0 }, { 0x80006013, 0x000000C0, 0x3 }, { 0x00000018, 0x0000008A, 0x0 }, { 0x80003015, 0x000000C0, 0x3 }, /* Default */ { 0x80003015, 0x000000C0, 0x3 }, { 0x80000018, 0x000000C0, 0x3 }, }; struct bxt_ddi_buf_trans { u8 margin; /* swing value */ u8 scale; /* scale value */ u8 enable; /* scale enable */ u8 deemphasis; }; static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = { /* Idx NT mV diff db */ { 52, 0x9A, 0, 128, }, /* 0: 400 0 */ { 78, 0x9A, 0, 85, }, /* 1: 400 3.5 */ { 104, 0x9A, 0, 64, }, /* 2: 400 6 */ { 154, 0x9A, 0, 43, }, /* 3: 400 9.5 */ { 77, 0x9A, 0, 128, }, /* 4: 600 0 */ { 116, 0x9A, 0, 85, }, /* 5: 600 3.5 */ { 154, 0x9A, 0, 64, }, /* 6: 600 6 */ { 102, 0x9A, 0, 128, }, /* 7: 800 0 */ { 154, 0x9A, 0, 85, }, /* 8: 800 3.5 */ { 154, 0x9A, 1, 128, }, /* 9: 1200 0 */ }; static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = { /* Idx NT mV diff db */ { 26, 0, 0, 128, }, /* 0: 200 0 */ { 38, 0, 0, 112, }, /* 1: 200 1.5 */ { 48, 0, 0, 96, }, /* 2: 200 4 */ { 54, 0, 0, 69, }, /* 3: 200 6 */ { 32, 0, 0, 128, }, /* 4: 250 0 */ { 48, 0, 0, 104, }, /* 5: 250 1.5 */ { 54, 0, 0, 85, }, /* 6: 250 4 */ { 43, 0, 0, 128, }, /* 7: 300 0 */ { 54, 0, 0, 101, }, /* 8: 300 1.5 */ { 48, 0, 0, 128, }, /* 9: 300 0 */ }; /* BSpec has 2 recommended values - entries 0 and 8. * Using the entry with higher vswing. */ static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = { /* Idx NT mV diff db */ { 52, 0x9A, 0, 128, }, /* 0: 400 0 */ { 52, 0x9A, 0, 85, }, /* 1: 400 3.5 */ { 52, 0x9A, 0, 64, }, /* 2: 400 6 */ { 42, 0x9A, 0, 43, }, /* 3: 400 9.5 */ { 77, 0x9A, 0, 128, }, /* 4: 600 0 */ { 77, 0x9A, 0, 85, }, /* 5: 600 3.5 */ { 77, 0x9A, 0, 64, }, /* 6: 600 6 */ { 102, 0x9A, 0, 128, }, /* 7: 800 0 */ { 102, 0x9A, 0, 85, }, /* 8: 800 3.5 */ { 154, 0x9A, 1, 128, }, /* 9: 1200 0 */ }; struct cnl_ddi_buf_trans { u8 dw2_swing_sel; u8 dw7_n_scalar; u8 dw4_cursor_coeff; u8 dw4_post_cursor_2; u8 dw4_post_cursor_1; }; /* Voltage Swing Programming for VccIO 0.85V for DP */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_85V[] = { /* NT mV Trans mV db */ { 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */ { 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */ { 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */ { 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */ { 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */ { 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */ { 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */ { 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */ { 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */ { 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */ }; /* Voltage Swing Programming for VccIO 0.85V for HDMI */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_85V[] = { /* NT mV Trans mV db */ { 0xA, 0x60, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */ { 0xB, 0x73, 0x36, 0x00, 0x09 }, /* 450 650 3.2 */ { 0x6, 0x7F, 0x31, 0x00, 0x0E }, /* 450 850 5.5 */ { 0xB, 0x73, 0x3F, 0x00, 0x00 }, /* 650 650 0.0 */ { 0x6, 0x7F, 0x37, 0x00, 0x08 }, /* 650 850 2.3 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 850 850 0.0 */ { 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */ }; /* Voltage Swing Programming for VccIO 0.85V for eDP */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_85V[] = { /* NT mV Trans mV db */ { 0xA, 0x66, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */ { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */ { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */ { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */ { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */ { 0xA, 0x66, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */ { 0xB, 0x70, 0x3C, 0x00, 0x03 }, /* 460 600 2.3 */ { 0xC, 0x75, 0x3C, 0x00, 0x03 }, /* 537 700 2.3 */ { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */ }; /* Voltage Swing Programming for VccIO 0.95V for DP */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_95V[] = { /* NT mV Trans mV db */ { 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */ { 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */ { 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */ { 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */ { 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */ { 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */ { 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */ { 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */ { 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */ { 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */ }; /* Voltage Swing Programming for VccIO 0.95V for HDMI */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_95V[] = { /* NT mV Trans mV db */ { 0xA, 0x5C, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */ { 0xB, 0x69, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */ { 0x5, 0x76, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */ { 0xA, 0x5E, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */ { 0xB, 0x69, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */ { 0xB, 0x79, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */ { 0x6, 0x7D, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */ { 0x5, 0x76, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */ { 0x6, 0x7D, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */ { 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */ }; /* Voltage Swing Programming for VccIO 0.95V for eDP */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_95V[] = { /* NT mV Trans mV db */ { 0xA, 0x61, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */ { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */ { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */ { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */ { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */ { 0xA, 0x61, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */ { 0xB, 0x68, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */ { 0xC, 0x6E, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */ { 0x4, 0x7F, 0x3A, 0x00, 0x05 }, /* 460 600 2.3 */ { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */ }; /* Voltage Swing Programming for VccIO 1.05V for DP */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_1_05V[] = { /* NT mV Trans mV db */ { 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */ { 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */ { 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */ { 0x6, 0x7F, 0x2C, 0x00, 0x13 }, /* 400 1050 8.4 */ { 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */ { 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */ { 0x6, 0x7F, 0x30, 0x00, 0x0F }, /* 550 1050 5.6 */ { 0x5, 0x76, 0x3E, 0x00, 0x01 }, /* 850 900 0.5 */ { 0x6, 0x7F, 0x36, 0x00, 0x09 }, /* 750 1050 2.9 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */ }; /* Voltage Swing Programming for VccIO 1.05V for HDMI */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_1_05V[] = { /* NT mV Trans mV db */ { 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */ { 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */ { 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */ { 0xA, 0x5B, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */ { 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */ { 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */ { 0x6, 0x7C, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */ { 0x5, 0x70, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */ { 0x6, 0x7C, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */ { 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */ }; /* Voltage Swing Programming for VccIO 1.05V for eDP */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_1_05V[] = { /* NT mV Trans mV db */ { 0xA, 0x5E, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */ { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */ { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */ { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */ { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */ { 0xA, 0x5E, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */ { 0xB, 0x64, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */ { 0xE, 0x6A, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */ { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */ }; /* icl_combo_phy_ddi_translations */ static const struct cnl_ddi_buf_trans icl_combo_phy_ddi_translations_dp_hbr2[] = { /* NT mV Trans mV db */ { 0xA, 0x35, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */ { 0xA, 0x4F, 0x37, 0x00, 0x08 }, /* 350 500 3.1 */ { 0xC, 0x71, 0x2F, 0x00, 0x10 }, /* 350 700 6.0 */ { 0x6, 0x7F, 0x2B, 0x00, 0x14 }, /* 350 900 8.2 */ { 0xA, 0x4C, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */ { 0xC, 0x73, 0x34, 0x00, 0x0B }, /* 500 700 2.9 */ { 0x6, 0x7F, 0x2F, 0x00, 0x10 }, /* 500 900 5.1 */ { 0xC, 0x6C, 0x3C, 0x00, 0x03 }, /* 650 700 0.6 */ { 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 900 3.5 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */ }; static const struct cnl_ddi_buf_trans icl_combo_phy_ddi_translations_edp_hbr2[] = { /* NT mV Trans mV db */ { 0x0, 0x7F, 0x3F, 0x00, 0x00 }, /* 200 200 0.0 */ { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 200 250 1.9 */ { 0x1, 0x7F, 0x33, 0x00, 0x0C }, /* 200 300 3.5 */ { 0x9, 0x7F, 0x31, 0x00, 0x0E }, /* 200 350 4.9 */ { 0x8, 0x7F, 0x3F, 0x00, 0x00 }, /* 250 250 0.0 */ { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 250 300 1.6 */ { 0x9, 0x7F, 0x35, 0x00, 0x0A }, /* 250 350 2.9 */ { 0x1, 0x7F, 0x3F, 0x00, 0x00 }, /* 300 300 0.0 */ { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 300 350 1.3 */ { 0x9, 0x7F, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */ }; static const struct cnl_ddi_buf_trans icl_combo_phy_ddi_translations_edp_hbr3[] = { /* NT mV Trans mV db */ { 0xA, 0x35, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */ { 0xA, 0x4F, 0x37, 0x00, 0x08 }, /* 350 500 3.1 */ { 0xC, 0x71, 0x2F, 0x00, 0x10 }, /* 350 700 6.0 */ { 0x6, 0x7F, 0x2B, 0x00, 0x14 }, /* 350 900 8.2 */ { 0xA, 0x4C, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */ { 0xC, 0x73, 0x34, 0x00, 0x0B }, /* 500 700 2.9 */ { 0x6, 0x7F, 0x2F, 0x00, 0x10 }, /* 500 900 5.1 */ { 0xC, 0x6C, 0x3C, 0x00, 0x03 }, /* 650 700 0.6 */ { 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 900 3.5 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */ }; static const struct cnl_ddi_buf_trans icl_combo_phy_ddi_translations_hdmi[] = { /* NT mV Trans mV db */ { 0xA, 0x60, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */ { 0xB, 0x73, 0x36, 0x00, 0x09 }, /* 450 650 3.2 */ { 0x6, 0x7F, 0x31, 0x00, 0x0E }, /* 450 850 5.5 */ { 0xB, 0x73, 0x3F, 0x00, 0x00 }, /* 650 650 0.0 ALS */ { 0x6, 0x7F, 0x37, 0x00, 0x08 }, /* 650 850 2.3 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 850 850 0.0 */ { 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */ }; static const struct cnl_ddi_buf_trans ehl_combo_phy_ddi_translations_dp[] = { /* NT mV Trans mV db */ { 0xA, 0x33, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */ { 0xA, 0x47, 0x36, 0x00, 0x09 }, /* 350 500 3.1 */ { 0xC, 0x64, 0x34, 0x00, 0x0B }, /* 350 700 6.0 */ { 0x6, 0x7F, 0x30, 0x00, 0x0F }, /* 350 900 8.2 */ { 0xA, 0x46, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */ { 0xC, 0x64, 0x38, 0x00, 0x07 }, /* 500 700 2.9 */ { 0x6, 0x7F, 0x32, 0x00, 0x0D }, /* 500 900 5.1 */ { 0xC, 0x61, 0x3F, 0x00, 0x00 }, /* 650 700 0.6 */ { 0x6, 0x7F, 0x38, 0x00, 0x07 }, /* 600 900 3.5 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */ }; static const struct cnl_ddi_buf_trans jsl_combo_phy_ddi_translations_edp_hbr[] = { /* NT mV Trans mV db */ { 0x8, 0x7F, 0x3F, 0x00, 0x00 }, /* 200 200 0.0 */ { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 200 250 1.9 */ { 0x1, 0x7F, 0x33, 0x00, 0x0C }, /* 200 300 3.5 */ { 0xA, 0x35, 0x36, 0x00, 0x09 }, /* 200 350 4.9 */ { 0x8, 0x7F, 0x3F, 0x00, 0x00 }, /* 250 250 0.0 */ { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 250 300 1.6 */ { 0xA, 0x35, 0x35, 0x00, 0x0A }, /* 250 350 2.9 */ { 0x1, 0x7F, 0x3F, 0x00, 0x00 }, /* 300 300 0.0 */ { 0xA, 0x35, 0x38, 0x00, 0x07 }, /* 300 350 1.3 */ { 0xA, 0x35, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */ }; static const struct cnl_ddi_buf_trans jsl_combo_phy_ddi_translations_edp_hbr2[] = { /* NT mV Trans mV db */ { 0x8, 0x7F, 0x3F, 0x00, 0x00 }, /* 200 200 0.0 */ { 0x8, 0x7F, 0x3F, 0x00, 0x00 }, /* 200 250 1.9 */ { 0x1, 0x7F, 0x3D, 0x00, 0x02 }, /* 200 300 3.5 */ { 0xA, 0x35, 0x38, 0x00, 0x07 }, /* 200 350 4.9 */ { 0x8, 0x7F, 0x3F, 0x00, 0x00 }, /* 250 250 0.0 */ { 0x1, 0x7F, 0x3F, 0x00, 0x00 }, /* 250 300 1.6 */ { 0xA, 0x35, 0x3A, 0x00, 0x05 }, /* 250 350 2.9 */ { 0x1, 0x7F, 0x3F, 0x00, 0x00 }, /* 300 300 0.0 */ { 0xA, 0x35, 0x38, 0x00, 0x07 }, /* 300 350 1.3 */ { 0xA, 0x35, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */ }; struct icl_mg_phy_ddi_buf_trans { u32 cri_txdeemph_override_11_6; u32 cri_txdeemph_override_5_0; u32 cri_txdeemph_override_17_12; }; static const struct icl_mg_phy_ddi_buf_trans icl_mg_phy_ddi_translations_rbr_hbr[] = { /* Voltage swing pre-emphasis */ { 0x18, 0x00, 0x00 }, /* 0 0 */ { 0x1D, 0x00, 0x05 }, /* 0 1 */ { 0x24, 0x00, 0x0C }, /* 0 2 */ { 0x2B, 0x00, 0x14 }, /* 0 3 */ { 0x21, 0x00, 0x00 }, /* 1 0 */ { 0x2B, 0x00, 0x08 }, /* 1 1 */ { 0x30, 0x00, 0x0F }, /* 1 2 */ { 0x31, 0x00, 0x03 }, /* 2 0 */ { 0x34, 0x00, 0x0B }, /* 2 1 */ { 0x3F, 0x00, 0x00 }, /* 3 0 */ }; static const struct icl_mg_phy_ddi_buf_trans icl_mg_phy_ddi_translations_hbr2_hbr3[] = { /* Voltage swing pre-emphasis */ { 0x18, 0x00, 0x00 }, /* 0 0 */ { 0x1D, 0x00, 0x05 }, /* 0 1 */ { 0x24, 0x00, 0x0C }, /* 0 2 */ { 0x2B, 0x00, 0x14 }, /* 0 3 */ { 0x26, 0x00, 0x00 }, /* 1 0 */ { 0x2C, 0x00, 0x07 }, /* 1 1 */ { 0x33, 0x00, 0x0C }, /* 1 2 */ { 0x2E, 0x00, 0x00 }, /* 2 0 */ { 0x36, 0x00, 0x09 }, /* 2 1 */ { 0x3F, 0x00, 0x00 }, /* 3 0 */ }; static const struct icl_mg_phy_ddi_buf_trans icl_mg_phy_ddi_translations_hdmi[] = { /* HDMI Preset VS Pre-emph */ { 0x1A, 0x0, 0x0 }, /* 1 400mV 0dB */ { 0x20, 0x0, 0x0 }, /* 2 500mV 0dB */ { 0x29, 0x0, 0x0 }, /* 3 650mV 0dB */ { 0x32, 0x0, 0x0 }, /* 4 800mV 0dB */ { 0x3F, 0x0, 0x0 }, /* 5 1000mV 0dB */ { 0x3A, 0x0, 0x5 }, /* 6 Full -1.5 dB */ { 0x39, 0x0, 0x6 }, /* 7 Full -1.8 dB */ { 0x38, 0x0, 0x7 }, /* 8 Full -2 dB */ { 0x37, 0x0, 0x8 }, /* 9 Full -2.5 dB */ { 0x36, 0x0, 0x9 }, /* 10 Full -3 dB */ }; struct tgl_dkl_phy_ddi_buf_trans { u32 dkl_vswing_control; u32 dkl_preshoot_control; u32 dkl_de_emphasis_control; }; static const struct tgl_dkl_phy_ddi_buf_trans tgl_dkl_phy_dp_ddi_trans[] = { /* VS pre-emp Non-trans mV Pre-emph dB */ { 0x7, 0x0, 0x00 }, /* 0 0 400mV 0 dB */ { 0x5, 0x0, 0x05 }, /* 0 1 400mV 3.5 dB */ { 0x2, 0x0, 0x0B }, /* 0 2 400mV 6 dB */ { 0x0, 0x0, 0x18 }, /* 0 3 400mV 9.5 dB */ { 0x5, 0x0, 0x00 }, /* 1 0 600mV 0 dB */ { 0x2, 0x0, 0x08 }, /* 1 1 600mV 3.5 dB */ { 0x0, 0x0, 0x14 }, /* 1 2 600mV 6 dB */ { 0x2, 0x0, 0x00 }, /* 2 0 800mV 0 dB */ { 0x0, 0x0, 0x0B }, /* 2 1 800mV 3.5 dB */ { 0x0, 0x0, 0x00 }, /* 3 0 1200mV 0 dB HDMI default */ }; static const struct tgl_dkl_phy_ddi_buf_trans tgl_dkl_phy_dp_ddi_trans_hbr2[] = { /* VS pre-emp Non-trans mV Pre-emph dB */ { 0x7, 0x0, 0x00 }, /* 0 0 400mV 0 dB */ { 0x5, 0x0, 0x05 }, /* 0 1 400mV 3.5 dB */ { 0x2, 0x0, 0x0B }, /* 0 2 400mV 6 dB */ { 0x0, 0x0, 0x19 }, /* 0 3 400mV 9.5 dB */ { 0x5, 0x0, 0x00 }, /* 1 0 600mV 0 dB */ { 0x2, 0x0, 0x08 }, /* 1 1 600mV 3.5 dB */ { 0x0, 0x0, 0x14 }, /* 1 2 600mV 6 dB */ { 0x2, 0x0, 0x00 }, /* 2 0 800mV 0 dB */ { 0x0, 0x0, 0x0B }, /* 2 1 800mV 3.5 dB */ { 0x0, 0x0, 0x00 }, /* 3 0 1200mV 0 dB HDMI default */ }; static const struct tgl_dkl_phy_ddi_buf_trans tgl_dkl_phy_hdmi_ddi_trans[] = { /* HDMI Preset VS Pre-emph */ { 0x7, 0x0, 0x0 }, /* 1 400mV 0dB */ { 0x6, 0x0, 0x0 }, /* 2 500mV 0dB */ { 0x4, 0x0, 0x0 }, /* 3 650mV 0dB */ { 0x2, 0x0, 0x0 }, /* 4 800mV 0dB */ { 0x0, 0x0, 0x0 }, /* 5 1000mV 0dB */ { 0x0, 0x0, 0x5 }, /* 6 Full -1.5 dB */ { 0x0, 0x0, 0x6 }, /* 7 Full -1.8 dB */ { 0x0, 0x0, 0x7 }, /* 8 Full -2 dB */ { 0x0, 0x0, 0x8 }, /* 9 Full -2.5 dB */ { 0x0, 0x0, 0xA }, /* 10 Full -3 dB */ }; static const struct cnl_ddi_buf_trans tgl_combo_phy_ddi_translations_dp_hbr[] = { /* NT mV Trans mV db */ { 0xA, 0x32, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */ { 0xA, 0x4F, 0x37, 0x00, 0x08 }, /* 350 500 3.1 */ { 0xC, 0x71, 0x2F, 0x00, 0x10 }, /* 350 700 6.0 */ { 0x6, 0x7D, 0x2B, 0x00, 0x14 }, /* 350 900 8.2 */ { 0xA, 0x4C, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */ { 0xC, 0x73, 0x34, 0x00, 0x0B }, /* 500 700 2.9 */ { 0x6, 0x7F, 0x2F, 0x00, 0x10 }, /* 500 900 5.1 */ { 0xC, 0x6C, 0x3C, 0x00, 0x03 }, /* 650 700 0.6 */ { 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 900 3.5 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */ }; static const struct cnl_ddi_buf_trans tgl_combo_phy_ddi_translations_dp_hbr2[] = { /* NT mV Trans mV db */ { 0xA, 0x35, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */ { 0xA, 0x4F, 0x37, 0x00, 0x08 }, /* 350 500 3.1 */ { 0xC, 0x63, 0x2F, 0x00, 0x10 }, /* 350 700 6.0 */ { 0x6, 0x7F, 0x2B, 0x00, 0x14 }, /* 350 900 8.2 */ { 0xA, 0x47, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */ { 0xC, 0x63, 0x34, 0x00, 0x0B }, /* 500 700 2.9 */ { 0x6, 0x7F, 0x2F, 0x00, 0x10 }, /* 500 900 5.1 */ { 0xC, 0x61, 0x3C, 0x00, 0x03 }, /* 650 700 0.6 */ { 0x6, 0x7B, 0x35, 0x00, 0x0A }, /* 600 900 3.5 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */ }; static const struct cnl_ddi_buf_trans tgl_uy_combo_phy_ddi_translations_dp_hbr2[] = { /* NT mV Trans mV db */ { 0xA, 0x35, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */ { 0xA, 0x4F, 0x36, 0x00, 0x09 }, /* 350 500 3.1 */ { 0xC, 0x60, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */ { 0xC, 0x7F, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */ { 0xC, 0x47, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */ { 0xC, 0x6F, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */ { 0x6, 0x7D, 0x32, 0x00, 0x0D }, /* 500 900 5.1 */ { 0x6, 0x60, 0x3C, 0x00, 0x03 }, /* 650 700 0.6 */ { 0x6, 0x7F, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */ }; /* * Cloned the HOBL entry to comply with the voltage and pre-emphasis entries * that DisplayPort specification requires */ static const struct cnl_ddi_buf_trans tgl_combo_phy_ddi_translations_edp_hbr2_hobl[] = { /* VS pre-emp */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 0 0 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 0 1 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 0 2 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 0 3 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1 0 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1 1 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1 2 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 2 0 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 2 1 */ }; static bool is_hobl_buf_trans(const struct cnl_ddi_buf_trans *table) { return table == tgl_combo_phy_ddi_translations_edp_hbr2_hobl; } static const struct ddi_buf_trans * bdw_get_buf_trans_edp(struct intel_encoder *encoder, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (dev_priv->vbt.edp.low_vswing) { *n_entries = ARRAY_SIZE(bdw_ddi_translations_edp); return bdw_ddi_translations_edp; } else { *n_entries = ARRAY_SIZE(bdw_ddi_translations_dp); return bdw_ddi_translations_dp; } } static const struct ddi_buf_trans * skl_get_buf_trans_dp(struct intel_encoder *encoder, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (IS_SKL_ULX(dev_priv)) { *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp); return skl_y_ddi_translations_dp; } else if (IS_SKL_ULT(dev_priv)) { *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp); return skl_u_ddi_translations_dp; } else { *n_entries = ARRAY_SIZE(skl_ddi_translations_dp); return skl_ddi_translations_dp; } } static const struct ddi_buf_trans * kbl_get_buf_trans_dp(struct intel_encoder *encoder, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (IS_KBL_ULX(dev_priv) || IS_CFL_ULX(dev_priv) || IS_CML_ULX(dev_priv)) { *n_entries = ARRAY_SIZE(kbl_y_ddi_translations_dp); return kbl_y_ddi_translations_dp; } else if (IS_KBL_ULT(dev_priv) || IS_CFL_ULT(dev_priv) || IS_CML_ULT(dev_priv)) { *n_entries = ARRAY_SIZE(kbl_u_ddi_translations_dp); return kbl_u_ddi_translations_dp; } else { *n_entries = ARRAY_SIZE(kbl_ddi_translations_dp); return kbl_ddi_translations_dp; } } static const struct ddi_buf_trans * skl_get_buf_trans_edp(struct intel_encoder *encoder, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (dev_priv->vbt.edp.low_vswing) { if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv) || IS_CFL_ULX(dev_priv) || IS_CML_ULX(dev_priv)) { *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp); return skl_y_ddi_translations_edp; } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv) || IS_CFL_ULT(dev_priv) || IS_CML_ULT(dev_priv)) { *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp); return skl_u_ddi_translations_edp; } else { *n_entries = ARRAY_SIZE(skl_ddi_translations_edp); return skl_ddi_translations_edp; } } if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) return kbl_get_buf_trans_dp(encoder, n_entries); else return skl_get_buf_trans_dp(encoder, n_entries); } static const struct ddi_buf_trans * skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries) { if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv) || IS_CFL_ULX(dev_priv) || IS_CML_ULX(dev_priv)) { *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi); return skl_y_ddi_translations_hdmi; } else { *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi); return skl_ddi_translations_hdmi; } } static int skl_buf_trans_num_entries(enum port port, int n_entries) { /* Only DDIA and DDIE can select the 10th register with DP */ if (port == PORT_A || port == PORT_E) return min(n_entries, 10); else return min(n_entries, 9); } static const struct ddi_buf_trans * intel_ddi_get_buf_trans_dp(struct intel_encoder *encoder, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) { const struct ddi_buf_trans *ddi_translations = kbl_get_buf_trans_dp(encoder, n_entries); *n_entries = skl_buf_trans_num_entries(encoder->port, *n_entries); return ddi_translations; } else if (IS_SKYLAKE(dev_priv)) { const struct ddi_buf_trans *ddi_translations = skl_get_buf_trans_dp(encoder, n_entries); *n_entries = skl_buf_trans_num_entries(encoder->port, *n_entries); return ddi_translations; } else if (IS_BROADWELL(dev_priv)) { *n_entries = ARRAY_SIZE(bdw_ddi_translations_dp); return bdw_ddi_translations_dp; } else if (IS_HASWELL(dev_priv)) { *n_entries = ARRAY_SIZE(hsw_ddi_translations_dp); return hsw_ddi_translations_dp; } *n_entries = 0; return NULL; } static const struct ddi_buf_trans * intel_ddi_get_buf_trans_edp(struct intel_encoder *encoder, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (IS_GEN9_BC(dev_priv)) { const struct ddi_buf_trans *ddi_translations = skl_get_buf_trans_edp(encoder, n_entries); *n_entries = skl_buf_trans_num_entries(encoder->port, *n_entries); return ddi_translations; } else if (IS_BROADWELL(dev_priv)) { return bdw_get_buf_trans_edp(encoder, n_entries); } else if (IS_HASWELL(dev_priv)) { *n_entries = ARRAY_SIZE(hsw_ddi_translations_dp); return hsw_ddi_translations_dp; } *n_entries = 0; return NULL; } static const struct ddi_buf_trans * intel_ddi_get_buf_trans_fdi(struct drm_i915_private *dev_priv, int *n_entries) { if (IS_BROADWELL(dev_priv)) { *n_entries = ARRAY_SIZE(bdw_ddi_translations_fdi); return bdw_ddi_translations_fdi; } else if (IS_HASWELL(dev_priv)) { *n_entries = ARRAY_SIZE(hsw_ddi_translations_fdi); return hsw_ddi_translations_fdi; } *n_entries = 0; return NULL; } static const struct ddi_buf_trans * intel_ddi_get_buf_trans_hdmi(struct intel_encoder *encoder, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (IS_GEN9_BC(dev_priv)) { return skl_get_buf_trans_hdmi(dev_priv, n_entries); } else if (IS_BROADWELL(dev_priv)) { *n_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi); return bdw_ddi_translations_hdmi; } else if (IS_HASWELL(dev_priv)) { *n_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi); return hsw_ddi_translations_hdmi; } *n_entries = 0; return NULL; } static const struct bxt_ddi_buf_trans * bxt_get_buf_trans_dp(struct intel_encoder *encoder, int *n_entries) { *n_entries = ARRAY_SIZE(bxt_ddi_translations_dp); return bxt_ddi_translations_dp; } static const struct bxt_ddi_buf_trans * bxt_get_buf_trans_edp(struct intel_encoder *encoder, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (dev_priv->vbt.edp.low_vswing) { *n_entries = ARRAY_SIZE(bxt_ddi_translations_edp); return bxt_ddi_translations_edp; } return bxt_get_buf_trans_dp(encoder, n_entries); } static const struct bxt_ddi_buf_trans * bxt_get_buf_trans_hdmi(struct intel_encoder *encoder, int *n_entries) { *n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi); return bxt_ddi_translations_hdmi; } static const struct cnl_ddi_buf_trans * cnl_get_buf_trans_hdmi(struct intel_encoder *encoder, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; if (voltage == VOLTAGE_INFO_0_85V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_85V); return cnl_ddi_translations_hdmi_0_85V; } else if (voltage == VOLTAGE_INFO_0_95V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_95V); return cnl_ddi_translations_hdmi_0_95V; } else if (voltage == VOLTAGE_INFO_1_05V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_1_05V); return cnl_ddi_translations_hdmi_1_05V; } else { *n_entries = 1; /* shut up gcc */ MISSING_CASE(voltage); } return NULL; } static const struct cnl_ddi_buf_trans * cnl_get_buf_trans_dp(struct intel_encoder *encoder, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; if (voltage == VOLTAGE_INFO_0_85V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_85V); return cnl_ddi_translations_dp_0_85V; } else if (voltage == VOLTAGE_INFO_0_95V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_95V); return cnl_ddi_translations_dp_0_95V; } else if (voltage == VOLTAGE_INFO_1_05V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_1_05V); return cnl_ddi_translations_dp_1_05V; } else { *n_entries = 1; /* shut up gcc */ MISSING_CASE(voltage); } return NULL; } static const struct cnl_ddi_buf_trans * cnl_get_buf_trans_edp(struct intel_encoder *encoder, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; if (dev_priv->vbt.edp.low_vswing) { if (voltage == VOLTAGE_INFO_0_85V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_85V); return cnl_ddi_translations_edp_0_85V; } else if (voltage == VOLTAGE_INFO_0_95V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_95V); return cnl_ddi_translations_edp_0_95V; } else if (voltage == VOLTAGE_INFO_1_05V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_1_05V); return cnl_ddi_translations_edp_1_05V; } else { *n_entries = 1; /* shut up gcc */ MISSING_CASE(voltage); } return NULL; } else { return cnl_get_buf_trans_dp(encoder, n_entries); } } static const struct cnl_ddi_buf_trans * icl_get_combo_buf_trans_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_hdmi); return icl_combo_phy_ddi_translations_hdmi; } static const struct cnl_ddi_buf_trans * icl_get_combo_buf_trans_dp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_dp_hbr2); return icl_combo_phy_ddi_translations_dp_hbr2; } static const struct cnl_ddi_buf_trans * icl_get_combo_buf_trans_edp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (crtc_state->port_clock > 540000) { *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_edp_hbr3); return icl_combo_phy_ddi_translations_edp_hbr3; } else if (dev_priv->vbt.edp.low_vswing) { *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_edp_hbr2); return icl_combo_phy_ddi_translations_edp_hbr2; } return icl_get_combo_buf_trans_dp(encoder, crtc_state, n_entries); } static const struct cnl_ddi_buf_trans * icl_get_combo_buf_trans(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) return icl_get_combo_buf_trans_hdmi(encoder, crtc_state, n_entries); else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) return icl_get_combo_buf_trans_edp(encoder, crtc_state, n_entries); else return icl_get_combo_buf_trans_dp(encoder, crtc_state, n_entries); } static const struct icl_mg_phy_ddi_buf_trans * icl_get_mg_buf_trans_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { *n_entries = ARRAY_SIZE(icl_mg_phy_ddi_translations_hdmi); return icl_mg_phy_ddi_translations_hdmi; } static const struct icl_mg_phy_ddi_buf_trans * icl_get_mg_buf_trans_dp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { if (crtc_state->port_clock > 270000) { *n_entries = ARRAY_SIZE(icl_mg_phy_ddi_translations_hbr2_hbr3); return icl_mg_phy_ddi_translations_hbr2_hbr3; } else { *n_entries = ARRAY_SIZE(icl_mg_phy_ddi_translations_rbr_hbr); return icl_mg_phy_ddi_translations_rbr_hbr; } } static const struct icl_mg_phy_ddi_buf_trans * icl_get_mg_buf_trans(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) return icl_get_mg_buf_trans_hdmi(encoder, crtc_state, n_entries); else return icl_get_mg_buf_trans_dp(encoder, crtc_state, n_entries); } static const struct cnl_ddi_buf_trans * ehl_get_combo_buf_trans_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_hdmi); return icl_combo_phy_ddi_translations_hdmi; } static const struct cnl_ddi_buf_trans * ehl_get_combo_buf_trans_dp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { *n_entries = ARRAY_SIZE(ehl_combo_phy_ddi_translations_dp); return ehl_combo_phy_ddi_translations_dp; } static const struct cnl_ddi_buf_trans * ehl_get_combo_buf_trans_edp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (dev_priv->vbt.edp.low_vswing) { *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_edp_hbr2); return icl_combo_phy_ddi_translations_edp_hbr2; } return ehl_get_combo_buf_trans_dp(encoder, crtc_state, n_entries); } static const struct cnl_ddi_buf_trans * ehl_get_combo_buf_trans(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) return ehl_get_combo_buf_trans_hdmi(encoder, crtc_state, n_entries); else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) return ehl_get_combo_buf_trans_edp(encoder, crtc_state, n_entries); else return ehl_get_combo_buf_trans_dp(encoder, crtc_state, n_entries); } static const struct cnl_ddi_buf_trans * jsl_get_combo_buf_trans_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_hdmi); return icl_combo_phy_ddi_translations_hdmi; } static const struct cnl_ddi_buf_trans * jsl_get_combo_buf_trans_dp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_dp_hbr2); return icl_combo_phy_ddi_translations_dp_hbr2; } static const struct cnl_ddi_buf_trans * jsl_get_combo_buf_trans_edp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (dev_priv->vbt.edp.low_vswing) { if (crtc_state->port_clock > 270000) { *n_entries = ARRAY_SIZE(jsl_combo_phy_ddi_translations_edp_hbr2); return jsl_combo_phy_ddi_translations_edp_hbr2; } else { *n_entries = ARRAY_SIZE(jsl_combo_phy_ddi_translations_edp_hbr); return jsl_combo_phy_ddi_translations_edp_hbr; } } return jsl_get_combo_buf_trans_dp(encoder, crtc_state, n_entries); } static const struct cnl_ddi_buf_trans * jsl_get_combo_buf_trans(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) return jsl_get_combo_buf_trans_hdmi(encoder, crtc_state, n_entries); else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) return jsl_get_combo_buf_trans_edp(encoder, crtc_state, n_entries); else return jsl_get_combo_buf_trans_dp(encoder, crtc_state, n_entries); } static const struct cnl_ddi_buf_trans * tgl_get_combo_buf_trans_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_hdmi); return icl_combo_phy_ddi_translations_hdmi; } static const struct cnl_ddi_buf_trans * tgl_get_combo_buf_trans_dp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (crtc_state->port_clock > 270000) { if (IS_TGL_U(dev_priv) || IS_TGL_Y(dev_priv)) { *n_entries = ARRAY_SIZE(tgl_uy_combo_phy_ddi_translations_dp_hbr2); return tgl_uy_combo_phy_ddi_translations_dp_hbr2; } else { *n_entries = ARRAY_SIZE(tgl_combo_phy_ddi_translations_dp_hbr2); return tgl_combo_phy_ddi_translations_dp_hbr2; } } else { *n_entries = ARRAY_SIZE(tgl_combo_phy_ddi_translations_dp_hbr); return tgl_combo_phy_ddi_translations_dp_hbr; } } static const struct cnl_ddi_buf_trans * tgl_get_combo_buf_trans_edp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); if (crtc_state->port_clock > 540000) { *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_edp_hbr3); return icl_combo_phy_ddi_translations_edp_hbr3; } else if (dev_priv->vbt.edp.hobl && !intel_dp->hobl_failed) { *n_entries = ARRAY_SIZE(tgl_combo_phy_ddi_translations_edp_hbr2_hobl); return tgl_combo_phy_ddi_translations_edp_hbr2_hobl; } else if (dev_priv->vbt.edp.low_vswing) { *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_edp_hbr2); return icl_combo_phy_ddi_translations_edp_hbr2; } return tgl_get_combo_buf_trans_dp(encoder, crtc_state, n_entries); } static const struct cnl_ddi_buf_trans * tgl_get_combo_buf_trans(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) return tgl_get_combo_buf_trans_hdmi(encoder, crtc_state, n_entries); else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) return tgl_get_combo_buf_trans_edp(encoder, crtc_state, n_entries); else return tgl_get_combo_buf_trans_dp(encoder, crtc_state, n_entries); } static const struct tgl_dkl_phy_ddi_buf_trans * tgl_get_dkl_buf_trans_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { *n_entries = ARRAY_SIZE(tgl_dkl_phy_hdmi_ddi_trans); return tgl_dkl_phy_hdmi_ddi_trans; } static const struct tgl_dkl_phy_ddi_buf_trans * tgl_get_dkl_buf_trans_dp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { if (crtc_state->port_clock > 270000) { *n_entries = ARRAY_SIZE(tgl_dkl_phy_dp_ddi_trans_hbr2); return tgl_dkl_phy_dp_ddi_trans_hbr2; } else { *n_entries = ARRAY_SIZE(tgl_dkl_phy_dp_ddi_trans); return tgl_dkl_phy_dp_ddi_trans; } } static const struct tgl_dkl_phy_ddi_buf_trans * tgl_get_dkl_buf_trans(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int *n_entries) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) return tgl_get_dkl_buf_trans_hdmi(encoder, crtc_state, n_entries); else return tgl_get_dkl_buf_trans_dp(encoder, crtc_state, n_entries); } static int intel_ddi_hdmi_level(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); int n_entries, level, default_entry; enum phy phy = intel_port_to_phy(dev_priv, encoder->port); if (INTEL_GEN(dev_priv) >= 12) { if (intel_phy_is_combo(dev_priv, phy)) tgl_get_combo_buf_trans_hdmi(encoder, crtc_state, &n_entries); else tgl_get_dkl_buf_trans_hdmi(encoder, crtc_state, &n_entries); default_entry = n_entries - 1; } else if (INTEL_GEN(dev_priv) == 11) { if (intel_phy_is_combo(dev_priv, phy)) icl_get_combo_buf_trans_hdmi(encoder, crtc_state, &n_entries); else icl_get_mg_buf_trans_hdmi(encoder, crtc_state, &n_entries); default_entry = n_entries - 1; } else if (IS_CANNONLAKE(dev_priv)) { cnl_get_buf_trans_hdmi(encoder, &n_entries); default_entry = n_entries - 1; } else if (IS_GEN9_LP(dev_priv)) { bxt_get_buf_trans_hdmi(encoder, &n_entries); default_entry = n_entries - 1; } else if (IS_GEN9_BC(dev_priv)) { intel_ddi_get_buf_trans_hdmi(encoder, &n_entries); default_entry = 8; } else if (IS_BROADWELL(dev_priv)) { intel_ddi_get_buf_trans_hdmi(encoder, &n_entries); default_entry = 7; } else if (IS_HASWELL(dev_priv)) { intel_ddi_get_buf_trans_hdmi(encoder, &n_entries); default_entry = 6; } else { drm_WARN(&dev_priv->drm, 1, "ddi translation table missing\n"); return 0; } if (drm_WARN_ON_ONCE(&dev_priv->drm, n_entries == 0)) return 0; level = intel_bios_hdmi_level_shift(encoder); if (level < 0) level = default_entry; if (drm_WARN_ON_ONCE(&dev_priv->drm, level >= n_entries)) level = n_entries - 1; return level; } /* * Starting with Haswell, DDI port buffers must be programmed with correct * values in advance. This function programs the correct values for * DP/eDP/FDI use cases. */ static void intel_prepare_dp_ddi_buffers(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 iboost_bit = 0; int i, n_entries; enum port port = encoder->port; const struct ddi_buf_trans *ddi_translations; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) ddi_translations = intel_ddi_get_buf_trans_fdi(dev_priv, &n_entries); else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) ddi_translations = intel_ddi_get_buf_trans_edp(encoder, &n_entries); else ddi_translations = intel_ddi_get_buf_trans_dp(encoder, &n_entries); /* If we're boosting the current, set bit 31 of trans1 */ if (IS_GEN9_BC(dev_priv) && intel_bios_dp_boost_level(encoder)) iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE; for (i = 0; i < n_entries; i++) { intel_de_write(dev_priv, DDI_BUF_TRANS_LO(port, i), ddi_translations[i].trans1 | iboost_bit); intel_de_write(dev_priv, DDI_BUF_TRANS_HI(port, i), ddi_translations[i].trans2); } } /* * Starting with Haswell, DDI port buffers must be programmed with correct * values in advance. This function programs the correct values for * HDMI/DVI use cases. */ static void intel_prepare_hdmi_ddi_buffers(struct intel_encoder *encoder, int level) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 iboost_bit = 0; int n_entries; enum port port = encoder->port; const struct ddi_buf_trans *ddi_translations; ddi_translations = intel_ddi_get_buf_trans_hdmi(encoder, &n_entries); if (drm_WARN_ON_ONCE(&dev_priv->drm, !ddi_translations)) return; if (drm_WARN_ON_ONCE(&dev_priv->drm, level >= n_entries)) level = n_entries - 1; /* If we're boosting the current, set bit 31 of trans1 */ if (IS_GEN9_BC(dev_priv) && intel_bios_hdmi_boost_level(encoder)) iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE; /* Entry 9 is for HDMI: */ intel_de_write(dev_priv, DDI_BUF_TRANS_LO(port, 9), ddi_translations[level].trans1 | iboost_bit); intel_de_write(dev_priv, DDI_BUF_TRANS_HI(port, 9), ddi_translations[level].trans2); } static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv, enum port port) { if (IS_BROXTON(dev_priv)) { udelay(16); return; } if (wait_for_us((intel_de_read(dev_priv, DDI_BUF_CTL(port)) & DDI_BUF_IS_IDLE), 8)) drm_err(&dev_priv->drm, "Timeout waiting for DDI BUF %c to get idle\n", port_name(port)); } static void intel_wait_ddi_buf_active(struct drm_i915_private *dev_priv, enum port port) { /* Wait > 518 usecs for DDI_BUF_CTL to be non idle */ if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) { usleep_range(518, 1000); return; } if (wait_for_us(!(intel_de_read(dev_priv, DDI_BUF_CTL(port)) & DDI_BUF_IS_IDLE), 500)) drm_err(&dev_priv->drm, "Timeout waiting for DDI BUF %c to get active\n", port_name(port)); } static u32 hsw_pll_to_ddi_pll_sel(const struct intel_shared_dpll *pll) { switch (pll->info->id) { case DPLL_ID_WRPLL1: return PORT_CLK_SEL_WRPLL1; case DPLL_ID_WRPLL2: return PORT_CLK_SEL_WRPLL2; case DPLL_ID_SPLL: return PORT_CLK_SEL_SPLL; case DPLL_ID_LCPLL_810: return PORT_CLK_SEL_LCPLL_810; case DPLL_ID_LCPLL_1350: return PORT_CLK_SEL_LCPLL_1350; case DPLL_ID_LCPLL_2700: return PORT_CLK_SEL_LCPLL_2700; default: MISSING_CASE(pll->info->id); return PORT_CLK_SEL_NONE; } } static u32 icl_pll_to_ddi_clk_sel(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { const struct intel_shared_dpll *pll = crtc_state->shared_dpll; int clock = crtc_state->port_clock; const enum intel_dpll_id id = pll->info->id; switch (id) { default: /* * DPLL_ID_ICL_DPLL0 and DPLL_ID_ICL_DPLL1 should not be used * here, so do warn if this get passed in */ MISSING_CASE(id); return DDI_CLK_SEL_NONE; case DPLL_ID_ICL_TBTPLL: switch (clock) { case 162000: return DDI_CLK_SEL_TBT_162; case 270000: return DDI_CLK_SEL_TBT_270; case 540000: return DDI_CLK_SEL_TBT_540; case 810000: return DDI_CLK_SEL_TBT_810; default: MISSING_CASE(clock); return DDI_CLK_SEL_NONE; } case DPLL_ID_ICL_MGPLL1: case DPLL_ID_ICL_MGPLL2: case DPLL_ID_ICL_MGPLL3: case DPLL_ID_ICL_MGPLL4: case DPLL_ID_TGL_MGPLL5: case DPLL_ID_TGL_MGPLL6: return DDI_CLK_SEL_MG; } } /* Starting with Haswell, different DDI ports can work in FDI mode for * connection to the PCH-located connectors. For this, it is necessary to train * both the DDI port and PCH receiver for the desired DDI buffer settings. * * The recommended port to work in FDI mode is DDI E, which we use here. Also, * please note that when FDI mode is active on DDI E, it shares 2 lines with * DDI A (which is used for eDP) */ void hsw_fdi_link_train(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 temp, i, rx_ctl_val, ddi_pll_sel; intel_prepare_dp_ddi_buffers(encoder, crtc_state); /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the * mode set "sequence for CRT port" document: * - TP1 to TP2 time with the default value * - FDI delay to 90h * * WaFDIAutoLinkSetTimingOverrride:hsw */ intel_de_write(dev_priv, FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2) | FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); /* Enable the PCH Receiver FDI PLL */ rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE | FDI_RX_PLL_ENABLE | FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), rx_ctl_val); intel_de_posting_read(dev_priv, FDI_RX_CTL(PIPE_A)); udelay(220); /* Switch from Rawclk to PCDclk */ rx_ctl_val |= FDI_PCDCLK; intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), rx_ctl_val); /* Configure Port Clock Select */ ddi_pll_sel = hsw_pll_to_ddi_pll_sel(crtc_state->shared_dpll); intel_de_write(dev_priv, PORT_CLK_SEL(PORT_E), ddi_pll_sel); drm_WARN_ON(&dev_priv->drm, ddi_pll_sel != PORT_CLK_SEL_SPLL); /* Start the training iterating through available voltages and emphasis, * testing each value twice. */ for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) { /* Configure DP_TP_CTL with auto-training */ intel_de_write(dev_priv, DP_TP_CTL(PORT_E), DP_TP_CTL_FDI_AUTOTRAIN | DP_TP_CTL_ENHANCED_FRAME_ENABLE | DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_ENABLE); /* Configure and enable DDI_BUF_CTL for DDI E with next voltage. * DDI E does not support port reversal, the functionality is * achieved on the PCH side in FDI_RX_CTL, so no need to set the * port reversal bit */ intel_de_write(dev_priv, DDI_BUF_CTL(PORT_E), DDI_BUF_CTL_ENABLE | ((crtc_state->fdi_lanes - 1) << 1) | DDI_BUF_TRANS_SELECT(i / 2)); intel_de_posting_read(dev_priv, DDI_BUF_CTL(PORT_E)); udelay(600); /* Program PCH FDI Receiver TU */ intel_de_write(dev_priv, FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64)); /* Enable PCH FDI Receiver with auto-training */ rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO; intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), rx_ctl_val); intel_de_posting_read(dev_priv, FDI_RX_CTL(PIPE_A)); /* Wait for FDI receiver lane calibration */ udelay(30); /* Unset FDI_RX_MISC pwrdn lanes */ temp = intel_de_read(dev_priv, FDI_RX_MISC(PIPE_A)); temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); intel_de_write(dev_priv, FDI_RX_MISC(PIPE_A), temp); intel_de_posting_read(dev_priv, FDI_RX_MISC(PIPE_A)); /* Wait for FDI auto training time */ udelay(5); temp = intel_de_read(dev_priv, DP_TP_STATUS(PORT_E)); if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) { drm_dbg_kms(&dev_priv->drm, "FDI link training done on step %d\n", i); break; } /* * Leave things enabled even if we failed to train FDI. * Results in less fireworks from the state checker. */ if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) { drm_err(&dev_priv->drm, "FDI link training failed!\n"); break; } rx_ctl_val &= ~FDI_RX_ENABLE; intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), rx_ctl_val); intel_de_posting_read(dev_priv, FDI_RX_CTL(PIPE_A)); temp = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_E)); temp &= ~DDI_BUF_CTL_ENABLE; intel_de_write(dev_priv, DDI_BUF_CTL(PORT_E), temp); intel_de_posting_read(dev_priv, DDI_BUF_CTL(PORT_E)); /* Disable DP_TP_CTL and FDI_RX_CTL and retry */ temp = intel_de_read(dev_priv, DP_TP_CTL(PORT_E)); temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); temp |= DP_TP_CTL_LINK_TRAIN_PAT1; intel_de_write(dev_priv, DP_TP_CTL(PORT_E), temp); intel_de_posting_read(dev_priv, DP_TP_CTL(PORT_E)); intel_wait_ddi_buf_idle(dev_priv, PORT_E); /* Reset FDI_RX_MISC pwrdn lanes */ temp = intel_de_read(dev_priv, FDI_RX_MISC(PIPE_A)); temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2); intel_de_write(dev_priv, FDI_RX_MISC(PIPE_A), temp); intel_de_posting_read(dev_priv, FDI_RX_MISC(PIPE_A)); } /* Enable normal pixel sending for FDI */ intel_de_write(dev_priv, DP_TP_CTL(PORT_E), DP_TP_CTL_FDI_AUTOTRAIN | DP_TP_CTL_LINK_TRAIN_NORMAL | DP_TP_CTL_ENHANCED_FRAME_ENABLE | DP_TP_CTL_ENABLE); } static void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); intel_dp->DP = dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0); intel_dp->DP |= DDI_PORT_WIDTH(crtc_state->lane_count); } static int icl_calc_tbt_pll_link(struct drm_i915_private *dev_priv, enum port port) { u32 val = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK; switch (val) { case DDI_CLK_SEL_NONE: return 0; case DDI_CLK_SEL_TBT_162: return 162000; case DDI_CLK_SEL_TBT_270: return 270000; case DDI_CLK_SEL_TBT_540: return 540000; case DDI_CLK_SEL_TBT_810: return 810000; default: MISSING_CASE(val); return 0; } } static void ddi_dotclock_get(struct intel_crtc_state *pipe_config) { int dotclock; if (pipe_config->has_pch_encoder) dotclock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->fdi_m_n); else if (intel_crtc_has_dp_encoder(pipe_config)) dotclock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->dp_m_n); else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp > 24) dotclock = pipe_config->port_clock * 24 / pipe_config->pipe_bpp; else dotclock = pipe_config->port_clock; if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 && !intel_crtc_has_dp_encoder(pipe_config)) dotclock *= 2; if (pipe_config->pixel_multiplier) dotclock /= pipe_config->pixel_multiplier; pipe_config->hw.adjusted_mode.crtc_clock = dotclock; } static void intel_ddi_clock_get(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum phy phy = intel_port_to_phy(dev_priv, encoder->port); if (intel_phy_is_tc(dev_priv, phy) && intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll) == DPLL_ID_ICL_TBTPLL) pipe_config->port_clock = icl_calc_tbt_pll_link(dev_priv, encoder->port); else pipe_config->port_clock = intel_dpll_get_freq(dev_priv, pipe_config->shared_dpll, &pipe_config->dpll_hw_state); ddi_dotclock_get(pipe_config); } void intel_ddi_set_dp_msa(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; u32 temp; if (!intel_crtc_has_dp_encoder(crtc_state)) return; drm_WARN_ON(&dev_priv->drm, transcoder_is_dsi(cpu_transcoder)); temp = DP_MSA_MISC_SYNC_CLOCK; switch (crtc_state->pipe_bpp) { case 18: temp |= DP_MSA_MISC_6_BPC; break; case 24: temp |= DP_MSA_MISC_8_BPC; break; case 30: temp |= DP_MSA_MISC_10_BPC; break; case 36: temp |= DP_MSA_MISC_12_BPC; break; default: MISSING_CASE(crtc_state->pipe_bpp); break; } /* nonsense combination */ drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); if (crtc_state->limited_color_range) temp |= DP_MSA_MISC_COLOR_CEA_RGB; /* * As per DP 1.2 spec section 2.3.4.3 while sending * YCBCR 444 signals we should program MSA MISC1/0 fields with * colorspace information. */ if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) temp |= DP_MSA_MISC_COLOR_YCBCR_444_BT709; /* * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication * of Color Encoding Format and Content Color Gamut] while sending * YCBCR 420, HDR BT.2020 signals we should program MSA MISC1 fields * which indicate VSC SDP for the Pixel Encoding/Colorimetry Format. */ if (intel_dp_needs_vsc_sdp(crtc_state, conn_state)) temp |= DP_MSA_MISC_COLOR_VSC_SDP; intel_de_write(dev_priv, TRANS_MSA_MISC(cpu_transcoder), temp); } static u32 bdw_trans_port_sync_master_select(enum transcoder master_transcoder) { if (master_transcoder == TRANSCODER_EDP) return 0; else return master_transcoder + 1; } /* * Returns the TRANS_DDI_FUNC_CTL value based on CRTC state. * * Only intended to be used by intel_ddi_enable_transcoder_func() and * intel_ddi_config_transcoder_func(). */ static u32 intel_ddi_transcoder_func_reg_val_get(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; enum port port = encoder->port; u32 temp; /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */ temp = TRANS_DDI_FUNC_ENABLE; if (INTEL_GEN(dev_priv) >= 12) temp |= TGL_TRANS_DDI_SELECT_PORT(port); else temp |= TRANS_DDI_SELECT_PORT(port); switch (crtc_state->pipe_bpp) { case 18: temp |= TRANS_DDI_BPC_6; break; case 24: temp |= TRANS_DDI_BPC_8; break; case 30: temp |= TRANS_DDI_BPC_10; break; case 36: temp |= TRANS_DDI_BPC_12; break; default: BUG(); } if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC) temp |= TRANS_DDI_PVSYNC; if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC) temp |= TRANS_DDI_PHSYNC; if (cpu_transcoder == TRANSCODER_EDP) { switch (pipe) { case PIPE_A: /* On Haswell, can only use the always-on power well for * eDP when not using the panel fitter, and when not * using motion blur mitigation (which we don't * support). */ if (crtc_state->pch_pfit.force_thru) temp |= TRANS_DDI_EDP_INPUT_A_ONOFF; else temp |= TRANS_DDI_EDP_INPUT_A_ON; break; case PIPE_B: temp |= TRANS_DDI_EDP_INPUT_B_ONOFF; break; case PIPE_C: temp |= TRANS_DDI_EDP_INPUT_C_ONOFF; break; default: BUG(); break; } } if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { if (crtc_state->has_hdmi_sink) temp |= TRANS_DDI_MODE_SELECT_HDMI; else temp |= TRANS_DDI_MODE_SELECT_DVI; if (crtc_state->hdmi_scrambling) temp |= TRANS_DDI_HDMI_SCRAMBLING; if (crtc_state->hdmi_high_tmds_clock_ratio) temp |= TRANS_DDI_HIGH_TMDS_CHAR_RATE; } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { temp |= TRANS_DDI_MODE_SELECT_FDI; temp |= (crtc_state->fdi_lanes - 1) << 1; } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) { temp |= TRANS_DDI_MODE_SELECT_DP_MST; temp |= DDI_PORT_WIDTH(crtc_state->lane_count); if (INTEL_GEN(dev_priv) >= 12) { enum transcoder master; master = crtc_state->mst_master_transcoder; drm_WARN_ON(&dev_priv->drm, master == INVALID_TRANSCODER); temp |= TRANS_DDI_MST_TRANSPORT_SELECT(master); } } else { temp |= TRANS_DDI_MODE_SELECT_DP_SST; temp |= DDI_PORT_WIDTH(crtc_state->lane_count); } if (IS_GEN_RANGE(dev_priv, 8, 10) && crtc_state->master_transcoder != INVALID_TRANSCODER) { u8 master_select = bdw_trans_port_sync_master_select(crtc_state->master_transcoder); temp |= TRANS_DDI_PORT_SYNC_ENABLE | TRANS_DDI_PORT_SYNC_MASTER_SELECT(master_select); } return temp; } void intel_ddi_enable_transcoder_func(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (INTEL_GEN(dev_priv) >= 11) { enum transcoder master_transcoder = crtc_state->master_transcoder; u32 ctl2 = 0; if (master_transcoder != INVALID_TRANSCODER) { u8 master_select = bdw_trans_port_sync_master_select(master_transcoder); ctl2 |= PORT_SYNC_MODE_ENABLE | PORT_SYNC_MODE_MASTER_SELECT(master_select); } intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL2(cpu_transcoder), ctl2); } intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder), intel_ddi_transcoder_func_reg_val_get(encoder, crtc_state)); } /* * Same as intel_ddi_enable_transcoder_func(), but it does not set the enable * bit. */ static void intel_ddi_config_transcoder_func(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; u32 ctl; ctl = intel_ddi_transcoder_func_reg_val_get(encoder, crtc_state); ctl &= ~TRANS_DDI_FUNC_ENABLE; intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder), ctl); } void intel_ddi_disable_transcoder_func(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; u32 ctl; if (INTEL_GEN(dev_priv) >= 11) intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL2(cpu_transcoder), 0); ctl = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)); drm_WARN_ON(crtc->base.dev, ctl & TRANS_DDI_HDCP_SIGNALLING); ctl &= ~TRANS_DDI_FUNC_ENABLE; if (IS_GEN_RANGE(dev_priv, 8, 10)) ctl &= ~(TRANS_DDI_PORT_SYNC_ENABLE | TRANS_DDI_PORT_SYNC_MASTER_SELECT_MASK); if (INTEL_GEN(dev_priv) >= 12) { if (!intel_dp_mst_is_master_trans(crtc_state)) { ctl &= ~(TGL_TRANS_DDI_PORT_MASK | TRANS_DDI_MODE_SELECT_MASK); } } else { ctl &= ~(TRANS_DDI_PORT_MASK | TRANS_DDI_MODE_SELECT_MASK); } intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder), ctl); if (dev_priv->quirks & QUIRK_INCREASE_DDI_DISABLED_TIME && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { drm_dbg_kms(&dev_priv->drm, "Quirk Increase DDI disabled time\n"); /* Quirk time at 100ms for reliable operation */ msleep(100); } } int intel_ddi_toggle_hdcp_signalling(struct intel_encoder *intel_encoder, enum transcoder cpu_transcoder, bool enable) { struct drm_device *dev = intel_encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); intel_wakeref_t wakeref; int ret = 0; u32 tmp; wakeref = intel_display_power_get_if_enabled(dev_priv, intel_encoder->power_domain); if (drm_WARN_ON(dev, !wakeref)) return -ENXIO; tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)); if (enable) tmp |= TRANS_DDI_HDCP_SIGNALLING; else tmp &= ~TRANS_DDI_HDCP_SIGNALLING; intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder), tmp); intel_display_power_put(dev_priv, intel_encoder->power_domain, wakeref); return ret; } bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector) { struct drm_device *dev = intel_connector->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_encoder *encoder = intel_attached_encoder(intel_connector); int type = intel_connector->base.connector_type; enum port port = encoder->port; enum transcoder cpu_transcoder; intel_wakeref_t wakeref; enum pipe pipe = 0; u32 tmp; bool ret; wakeref = intel_display_power_get_if_enabled(dev_priv, encoder->power_domain); if (!wakeref) return false; if (!encoder->get_hw_state(encoder, &pipe)) { ret = false; goto out; } if (HAS_TRANSCODER(dev_priv, TRANSCODER_EDP) && port == PORT_A) cpu_transcoder = TRANSCODER_EDP; else cpu_transcoder = (enum transcoder) pipe; tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)); switch (tmp & TRANS_DDI_MODE_SELECT_MASK) { case TRANS_DDI_MODE_SELECT_HDMI: case TRANS_DDI_MODE_SELECT_DVI: ret = type == DRM_MODE_CONNECTOR_HDMIA; break; case TRANS_DDI_MODE_SELECT_DP_SST: ret = type == DRM_MODE_CONNECTOR_eDP || type == DRM_MODE_CONNECTOR_DisplayPort; break; case TRANS_DDI_MODE_SELECT_DP_MST: /* if the transcoder is in MST state then * connector isn't connected */ ret = false; break; case TRANS_DDI_MODE_SELECT_FDI: ret = type == DRM_MODE_CONNECTOR_VGA; break; default: ret = false; break; } out: intel_display_power_put(dev_priv, encoder->power_domain, wakeref); return ret; } static void intel_ddi_get_encoder_pipes(struct intel_encoder *encoder, u8 *pipe_mask, bool *is_dp_mst) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum port port = encoder->port; intel_wakeref_t wakeref; enum pipe p; u32 tmp; u8 mst_pipe_mask; *pipe_mask = 0; *is_dp_mst = false; wakeref = intel_display_power_get_if_enabled(dev_priv, encoder->power_domain); if (!wakeref) return; tmp = intel_de_read(dev_priv, DDI_BUF_CTL(port)); if (!(tmp & DDI_BUF_CTL_ENABLE)) goto out; if (HAS_TRANSCODER(dev_priv, TRANSCODER_EDP) && port == PORT_A) { tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { default: MISSING_CASE(tmp & TRANS_DDI_EDP_INPUT_MASK); fallthrough; case TRANS_DDI_EDP_INPUT_A_ON: case TRANS_DDI_EDP_INPUT_A_ONOFF: *pipe_mask = BIT(PIPE_A); break; case TRANS_DDI_EDP_INPUT_B_ONOFF: *pipe_mask = BIT(PIPE_B); break; case TRANS_DDI_EDP_INPUT_C_ONOFF: *pipe_mask = BIT(PIPE_C); break; } goto out; } mst_pipe_mask = 0; for_each_pipe(dev_priv, p) { enum transcoder cpu_transcoder = (enum transcoder)p; unsigned int port_mask, ddi_select; intel_wakeref_t trans_wakeref; trans_wakeref = intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_TRANSCODER(cpu_transcoder)); if (!trans_wakeref) continue; if (INTEL_GEN(dev_priv) >= 12) { port_mask = TGL_TRANS_DDI_PORT_MASK; ddi_select = TGL_TRANS_DDI_SELECT_PORT(port); } else { port_mask = TRANS_DDI_PORT_MASK; ddi_select = TRANS_DDI_SELECT_PORT(port); } tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)); intel_display_power_put(dev_priv, POWER_DOMAIN_TRANSCODER(cpu_transcoder), trans_wakeref); if ((tmp & port_mask) != ddi_select) continue; if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST) mst_pipe_mask |= BIT(p); *pipe_mask |= BIT(p); } if (!*pipe_mask) drm_dbg_kms(&dev_priv->drm, "No pipe for [ENCODER:%d:%s] found\n", encoder->base.base.id, encoder->base.name); if (!mst_pipe_mask && hweight8(*pipe_mask) > 1) { drm_dbg_kms(&dev_priv->drm, "Multiple pipes for [ENCODER:%d:%s] (pipe_mask %02x)\n", encoder->base.base.id, encoder->base.name, *pipe_mask); *pipe_mask = BIT(ffs(*pipe_mask) - 1); } if (mst_pipe_mask && mst_pipe_mask != *pipe_mask) drm_dbg_kms(&dev_priv->drm, "Conflicting MST and non-MST state for [ENCODER:%d:%s] (pipe_mask %02x mst_pipe_mask %02x)\n", encoder->base.base.id, encoder->base.name, *pipe_mask, mst_pipe_mask); else *is_dp_mst = mst_pipe_mask; out: if (*pipe_mask && IS_GEN9_LP(dev_priv)) { tmp = intel_de_read(dev_priv, BXT_PHY_CTL(port)); if ((tmp & (BXT_PHY_CMNLANE_POWERDOWN_ACK | BXT_PHY_LANE_POWERDOWN_ACK | BXT_PHY_LANE_ENABLED)) != BXT_PHY_LANE_ENABLED) drm_err(&dev_priv->drm, "[ENCODER:%d:%s] enabled but PHY powered down? (PHY_CTL %08x)\n", encoder->base.base.id, encoder->base.name, tmp); } intel_display_power_put(dev_priv, encoder->power_domain, wakeref); } bool intel_ddi_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { u8 pipe_mask; bool is_mst; intel_ddi_get_encoder_pipes(encoder, &pipe_mask, &is_mst); if (is_mst || !pipe_mask) return false; *pipe = ffs(pipe_mask) - 1; return true; } static enum intel_display_power_domain intel_ddi_main_link_aux_domain(struct intel_digital_port *dig_port) { /* CNL+ HW requires corresponding AUX IOs to be powered up for PSR with * DC states enabled at the same time, while for driver initiated AUX * transfers we need the same AUX IOs to be powered but with DC states * disabled. Accordingly use the AUX power domain here which leaves DC * states enabled. * However, for non-A AUX ports the corresponding non-EDP transcoders * would have already enabled power well 2 and DC_OFF. This means we can * acquire a wider POWER_DOMAIN_AUX_{B,C,D,F} reference instead of a * specific AUX_IO reference without powering up any extra wells. * Note that PSR is enabled only on Port A even though this function * returns the correct domain for other ports too. */ return dig_port->aux_ch == AUX_CH_A ? POWER_DOMAIN_AUX_IO_A : intel_aux_power_domain(dig_port); } static void intel_ddi_get_power_domains(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port; enum phy phy = intel_port_to_phy(dev_priv, encoder->port); /* * TODO: Add support for MST encoders. Atm, the following should never * happen since fake-MST encoders don't set their get_power_domains() * hook. */ if (drm_WARN_ON(&dev_priv->drm, intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST))) return; dig_port = enc_to_dig_port(encoder); if (!intel_phy_is_tc(dev_priv, phy) || dig_port->tc_mode != TC_PORT_TBT_ALT) intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain); /* * AUX power is only needed for (e)DP mode, and for HDMI mode on TC * ports. */ if (intel_crtc_has_dp_encoder(crtc_state) || intel_phy_is_tc(dev_priv, phy)) intel_display_power_get(dev_priv, intel_ddi_main_link_aux_domain(dig_port)); } void intel_ddi_enable_pipe_clock(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum port port = encoder->port; enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (cpu_transcoder != TRANSCODER_EDP) { if (INTEL_GEN(dev_priv) >= 12) intel_de_write(dev_priv, TRANS_CLK_SEL(cpu_transcoder), TGL_TRANS_CLK_SEL_PORT(port)); else intel_de_write(dev_priv, TRANS_CLK_SEL(cpu_transcoder), TRANS_CLK_SEL_PORT(port)); } } void intel_ddi_disable_pipe_clock(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (cpu_transcoder != TRANSCODER_EDP) { if (INTEL_GEN(dev_priv) >= 12) intel_de_write(dev_priv, TRANS_CLK_SEL(cpu_transcoder), TGL_TRANS_CLK_SEL_DISABLED); else intel_de_write(dev_priv, TRANS_CLK_SEL(cpu_transcoder), TRANS_CLK_SEL_DISABLED); } } static void _skl_ddi_set_iboost(struct drm_i915_private *dev_priv, enum port port, u8 iboost) { u32 tmp; tmp = intel_de_read(dev_priv, DISPIO_CR_TX_BMU_CR0); tmp &= ~(BALANCE_LEG_MASK(port) | BALANCE_LEG_DISABLE(port)); if (iboost) tmp |= iboost << BALANCE_LEG_SHIFT(port); else tmp |= BALANCE_LEG_DISABLE(port); intel_de_write(dev_priv, DISPIO_CR_TX_BMU_CR0, tmp); } static void skl_ddi_set_iboost(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int level) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u8 iboost; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) iboost = intel_bios_hdmi_boost_level(encoder); else iboost = intel_bios_dp_boost_level(encoder); if (iboost == 0) { const struct ddi_buf_trans *ddi_translations; int n_entries; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) ddi_translations = intel_ddi_get_buf_trans_hdmi(encoder, &n_entries); else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) ddi_translations = intel_ddi_get_buf_trans_edp(encoder, &n_entries); else ddi_translations = intel_ddi_get_buf_trans_dp(encoder, &n_entries); if (drm_WARN_ON_ONCE(&dev_priv->drm, !ddi_translations)) return; if (drm_WARN_ON_ONCE(&dev_priv->drm, level >= n_entries)) level = n_entries - 1; iboost = ddi_translations[level].i_boost; } /* Make sure that the requested I_boost is valid */ if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) { drm_err(&dev_priv->drm, "Invalid I_boost value %u\n", iboost); return; } _skl_ddi_set_iboost(dev_priv, encoder->port, iboost); if (encoder->port == PORT_A && dig_port->max_lanes == 4) _skl_ddi_set_iboost(dev_priv, PORT_E, iboost); } static void bxt_ddi_vswing_sequence(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int level) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); const struct bxt_ddi_buf_trans *ddi_translations; enum port port = encoder->port; int n_entries; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) ddi_translations = bxt_get_buf_trans_hdmi(encoder, &n_entries); else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) ddi_translations = bxt_get_buf_trans_edp(encoder, &n_entries); else ddi_translations = bxt_get_buf_trans_dp(encoder, &n_entries); if (drm_WARN_ON_ONCE(&dev_priv->drm, !ddi_translations)) return; if (drm_WARN_ON_ONCE(&dev_priv->drm, level >= n_entries)) level = n_entries - 1; bxt_ddi_phy_set_signal_level(dev_priv, port, ddi_translations[level].margin, ddi_translations[level].scale, ddi_translations[level].enable, ddi_translations[level].deemphasis); } static u8 intel_ddi_dp_voltage_max(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; enum phy phy = intel_port_to_phy(dev_priv, port); int n_entries; if (INTEL_GEN(dev_priv) >= 12) { if (intel_phy_is_combo(dev_priv, phy)) tgl_get_combo_buf_trans(encoder, crtc_state, &n_entries); else tgl_get_dkl_buf_trans(encoder, crtc_state, &n_entries); } else if (INTEL_GEN(dev_priv) == 11) { if (IS_PLATFORM(dev_priv, INTEL_JASPERLAKE)) jsl_get_combo_buf_trans(encoder, crtc_state, &n_entries); else if (IS_PLATFORM(dev_priv, INTEL_ELKHARTLAKE)) ehl_get_combo_buf_trans(encoder, crtc_state, &n_entries); else if (intel_phy_is_combo(dev_priv, phy)) icl_get_combo_buf_trans(encoder, crtc_state, &n_entries); else icl_get_mg_buf_trans(encoder, crtc_state, &n_entries); } else if (IS_CANNONLAKE(dev_priv)) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) cnl_get_buf_trans_edp(encoder, &n_entries); else cnl_get_buf_trans_dp(encoder, &n_entries); } else if (IS_GEN9_LP(dev_priv)) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) bxt_get_buf_trans_edp(encoder, &n_entries); else bxt_get_buf_trans_dp(encoder, &n_entries); } else { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) intel_ddi_get_buf_trans_edp(encoder, &n_entries); else intel_ddi_get_buf_trans_dp(encoder, &n_entries); } if (drm_WARN_ON(&dev_priv->drm, n_entries < 1)) n_entries = 1; if (drm_WARN_ON(&dev_priv->drm, n_entries > ARRAY_SIZE(index_to_dp_signal_levels))) n_entries = ARRAY_SIZE(index_to_dp_signal_levels); return index_to_dp_signal_levels[n_entries - 1] & DP_TRAIN_VOLTAGE_SWING_MASK; } /* * We assume that the full set of pre-emphasis values can be * used on all DDI platforms. Should that change we need to * rethink this code. */ static u8 intel_ddi_dp_preemph_max(struct intel_dp *intel_dp) { return DP_TRAIN_PRE_EMPH_LEVEL_3; } static void cnl_ddi_vswing_program(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int level) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); const struct cnl_ddi_buf_trans *ddi_translations; enum port port = encoder->port; int n_entries, ln; u32 val; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) ddi_translations = cnl_get_buf_trans_hdmi(encoder, &n_entries); else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) ddi_translations = cnl_get_buf_trans_edp(encoder, &n_entries); else ddi_translations = cnl_get_buf_trans_dp(encoder, &n_entries); if (drm_WARN_ON_ONCE(&dev_priv->drm, !ddi_translations)) return; if (drm_WARN_ON_ONCE(&dev_priv->drm, level >= n_entries)) level = n_entries - 1; /* Set PORT_TX_DW5 Scaling Mode Sel to 010b. */ val = intel_de_read(dev_priv, CNL_PORT_TX_DW5_LN0(port)); val &= ~SCALING_MODE_SEL_MASK; val |= SCALING_MODE_SEL(2); intel_de_write(dev_priv, CNL_PORT_TX_DW5_GRP(port), val); /* Program PORT_TX_DW2 */ val = intel_de_read(dev_priv, CNL_PORT_TX_DW2_LN0(port)); val &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK | RCOMP_SCALAR_MASK); val |= SWING_SEL_UPPER(ddi_translations[level].dw2_swing_sel); val |= SWING_SEL_LOWER(ddi_translations[level].dw2_swing_sel); /* Rcomp scalar is fixed as 0x98 for every table entry */ val |= RCOMP_SCALAR(0x98); intel_de_write(dev_priv, CNL_PORT_TX_DW2_GRP(port), val); /* Program PORT_TX_DW4 */ /* We cannot write to GRP. It would overrite individual loadgen */ for (ln = 0; ln < 4; ln++) { val = intel_de_read(dev_priv, CNL_PORT_TX_DW4_LN(ln, port)); val &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK | CURSOR_COEFF_MASK); val |= POST_CURSOR_1(ddi_translations[level].dw4_post_cursor_1); val |= POST_CURSOR_2(ddi_translations[level].dw4_post_cursor_2); val |= CURSOR_COEFF(ddi_translations[level].dw4_cursor_coeff); intel_de_write(dev_priv, CNL_PORT_TX_DW4_LN(ln, port), val); } /* Program PORT_TX_DW5 */ /* All DW5 values are fixed for every table entry */ val = intel_de_read(dev_priv, CNL_PORT_TX_DW5_LN0(port)); val &= ~RTERM_SELECT_MASK; val |= RTERM_SELECT(6); val |= TAP3_DISABLE; intel_de_write(dev_priv, CNL_PORT_TX_DW5_GRP(port), val); /* Program PORT_TX_DW7 */ val = intel_de_read(dev_priv, CNL_PORT_TX_DW7_LN0(port)); val &= ~N_SCALAR_MASK; val |= N_SCALAR(ddi_translations[level].dw7_n_scalar); intel_de_write(dev_priv, CNL_PORT_TX_DW7_GRP(port), val); } static void cnl_ddi_vswing_sequence(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int level) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; int width, rate, ln; u32 val; width = crtc_state->lane_count; rate = crtc_state->port_clock; /* * 1. If port type is eDP or DP, * set PORT_PCS_DW1 cmnkeeper_enable to 1b, * else clear to 0b. */ val = intel_de_read(dev_priv, CNL_PORT_PCS_DW1_LN0(port)); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) val &= ~COMMON_KEEPER_EN; else val |= COMMON_KEEPER_EN; intel_de_write(dev_priv, CNL_PORT_PCS_DW1_GRP(port), val); /* 2. Program loadgen select */ /* * Program PORT_TX_DW4_LN depending on Bit rate and used lanes * <= 6 GHz and 4 lanes (LN0=0, LN1=1, LN2=1, LN3=1) * <= 6 GHz and 1,2 lanes (LN0=0, LN1=1, LN2=1, LN3=0) * > 6 GHz (LN0=0, LN1=0, LN2=0, LN3=0) */ for (ln = 0; ln <= 3; ln++) { val = intel_de_read(dev_priv, CNL_PORT_TX_DW4_LN(ln, port)); val &= ~LOADGEN_SELECT; if ((rate <= 600000 && width == 4 && ln >= 1) || (rate <= 600000 && width < 4 && (ln == 1 || ln == 2))) { val |= LOADGEN_SELECT; } intel_de_write(dev_priv, CNL_PORT_TX_DW4_LN(ln, port), val); } /* 3. Set PORT_CL_DW5 SUS Clock Config to 11b */ val = intel_de_read(dev_priv, CNL_PORT_CL1CM_DW5); val |= SUS_CLOCK_CONFIG; intel_de_write(dev_priv, CNL_PORT_CL1CM_DW5, val); /* 4. Clear training enable to change swing values */ val = intel_de_read(dev_priv, CNL_PORT_TX_DW5_LN0(port)); val &= ~TX_TRAINING_EN; intel_de_write(dev_priv, CNL_PORT_TX_DW5_GRP(port), val); /* 5. Program swing and de-emphasis */ cnl_ddi_vswing_program(encoder, crtc_state, level); /* 6. Set training enable to trigger update */ val = intel_de_read(dev_priv, CNL_PORT_TX_DW5_LN0(port)); val |= TX_TRAINING_EN; intel_de_write(dev_priv, CNL_PORT_TX_DW5_GRP(port), val); } static void icl_ddi_combo_vswing_program(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int level) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); const struct cnl_ddi_buf_trans *ddi_translations; enum phy phy = intel_port_to_phy(dev_priv, encoder->port); int n_entries, ln; u32 val; if (INTEL_GEN(dev_priv) >= 12) ddi_translations = tgl_get_combo_buf_trans(encoder, crtc_state, &n_entries); else if (IS_PLATFORM(dev_priv, INTEL_JASPERLAKE)) ddi_translations = jsl_get_combo_buf_trans(encoder, crtc_state, &n_entries); else if (IS_PLATFORM(dev_priv, INTEL_ELKHARTLAKE)) ddi_translations = ehl_get_combo_buf_trans(encoder, crtc_state, &n_entries); else ddi_translations = icl_get_combo_buf_trans(encoder, crtc_state, &n_entries); if (!ddi_translations) return; if (level >= n_entries) { drm_dbg_kms(&dev_priv->drm, "DDI translation not found for level %d. Using %d instead.", level, n_entries - 1); level = n_entries - 1; } if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); val = EDP4K2K_MODE_OVRD_EN | EDP4K2K_MODE_OVRD_OPTIMIZED; intel_dp->hobl_active = is_hobl_buf_trans(ddi_translations); intel_de_rmw(dev_priv, ICL_PORT_CL_DW10(phy), val, intel_dp->hobl_active ? val : 0); } /* Set PORT_TX_DW5 */ val = intel_de_read(dev_priv, ICL_PORT_TX_DW5_LN0(phy)); val &= ~(SCALING_MODE_SEL_MASK | RTERM_SELECT_MASK | TAP2_DISABLE | TAP3_DISABLE); val |= SCALING_MODE_SEL(0x2); val |= RTERM_SELECT(0x6); val |= TAP3_DISABLE; intel_de_write(dev_priv, ICL_PORT_TX_DW5_GRP(phy), val); /* Program PORT_TX_DW2 */ val = intel_de_read(dev_priv, ICL_PORT_TX_DW2_LN0(phy)); val &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK | RCOMP_SCALAR_MASK); val |= SWING_SEL_UPPER(ddi_translations[level].dw2_swing_sel); val |= SWING_SEL_LOWER(ddi_translations[level].dw2_swing_sel); /* Program Rcomp scalar for every table entry */ val |= RCOMP_SCALAR(0x98); intel_de_write(dev_priv, ICL_PORT_TX_DW2_GRP(phy), val); /* Program PORT_TX_DW4 */ /* We cannot write to GRP. It would overwrite individual loadgen. */ for (ln = 0; ln <= 3; ln++) { val = intel_de_read(dev_priv, ICL_PORT_TX_DW4_LN(ln, phy)); val &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK | CURSOR_COEFF_MASK); val |= POST_CURSOR_1(ddi_translations[level].dw4_post_cursor_1); val |= POST_CURSOR_2(ddi_translations[level].dw4_post_cursor_2); val |= CURSOR_COEFF(ddi_translations[level].dw4_cursor_coeff); intel_de_write(dev_priv, ICL_PORT_TX_DW4_LN(ln, phy), val); } /* Program PORT_TX_DW7 */ val = intel_de_read(dev_priv, ICL_PORT_TX_DW7_LN0(phy)); val &= ~N_SCALAR_MASK; val |= N_SCALAR(ddi_translations[level].dw7_n_scalar); intel_de_write(dev_priv, ICL_PORT_TX_DW7_GRP(phy), val); } static void icl_combo_phy_ddi_vswing_sequence(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int level) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum phy phy = intel_port_to_phy(dev_priv, encoder->port); int width, rate, ln; u32 val; width = crtc_state->lane_count; rate = crtc_state->port_clock; /* * 1. If port type is eDP or DP, * set PORT_PCS_DW1 cmnkeeper_enable to 1b, * else clear to 0b. */ val = intel_de_read(dev_priv, ICL_PORT_PCS_DW1_LN0(phy)); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) val &= ~COMMON_KEEPER_EN; else val |= COMMON_KEEPER_EN; intel_de_write(dev_priv, ICL_PORT_PCS_DW1_GRP(phy), val); /* 2. Program loadgen select */ /* * Program PORT_TX_DW4_LN depending on Bit rate and used lanes * <= 6 GHz and 4 lanes (LN0=0, LN1=1, LN2=1, LN3=1) * <= 6 GHz and 1,2 lanes (LN0=0, LN1=1, LN2=1, LN3=0) * > 6 GHz (LN0=0, LN1=0, LN2=0, LN3=0) */ for (ln = 0; ln <= 3; ln++) { val = intel_de_read(dev_priv, ICL_PORT_TX_DW4_LN(ln, phy)); val &= ~LOADGEN_SELECT; if ((rate <= 600000 && width == 4 && ln >= 1) || (rate <= 600000 && width < 4 && (ln == 1 || ln == 2))) { val |= LOADGEN_SELECT; } intel_de_write(dev_priv, ICL_PORT_TX_DW4_LN(ln, phy), val); } /* 3. Set PORT_CL_DW5 SUS Clock Config to 11b */ val = intel_de_read(dev_priv, ICL_PORT_CL_DW5(phy)); val |= SUS_CLOCK_CONFIG; intel_de_write(dev_priv, ICL_PORT_CL_DW5(phy), val); /* 4. Clear training enable to change swing values */ val = intel_de_read(dev_priv, ICL_PORT_TX_DW5_LN0(phy)); val &= ~TX_TRAINING_EN; intel_de_write(dev_priv, ICL_PORT_TX_DW5_GRP(phy), val); /* 5. Program swing and de-emphasis */ icl_ddi_combo_vswing_program(encoder, crtc_state, level); /* 6. Set training enable to trigger update */ val = intel_de_read(dev_priv, ICL_PORT_TX_DW5_LN0(phy)); val |= TX_TRAINING_EN; intel_de_write(dev_priv, ICL_PORT_TX_DW5_GRP(phy), val); } static void icl_mg_phy_ddi_vswing_sequence(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int level) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum tc_port tc_port = intel_port_to_tc(dev_priv, encoder->port); const struct icl_mg_phy_ddi_buf_trans *ddi_translations; int n_entries, ln; u32 val; ddi_translations = icl_get_mg_buf_trans(encoder, crtc_state, &n_entries); /* The table does not have values for level 3 and level 9. */ if (level >= n_entries || level == 3 || level == 9) { drm_dbg_kms(&dev_priv->drm, "DDI translation not found for level %d. Using %d instead.", level, n_entries - 2); level = n_entries - 2; } /* Set MG_TX_LINK_PARAMS cri_use_fs32 to 0. */ for (ln = 0; ln < 2; ln++) { val = intel_de_read(dev_priv, MG_TX1_LINK_PARAMS(ln, tc_port)); val &= ~CRI_USE_FS32; intel_de_write(dev_priv, MG_TX1_LINK_PARAMS(ln, tc_port), val); val = intel_de_read(dev_priv, MG_TX2_LINK_PARAMS(ln, tc_port)); val &= ~CRI_USE_FS32; intel_de_write(dev_priv, MG_TX2_LINK_PARAMS(ln, tc_port), val); } /* Program MG_TX_SWINGCTRL with values from vswing table */ for (ln = 0; ln < 2; ln++) { val = intel_de_read(dev_priv, MG_TX1_SWINGCTRL(ln, tc_port)); val &= ~CRI_TXDEEMPH_OVERRIDE_17_12_MASK; val |= CRI_TXDEEMPH_OVERRIDE_17_12( ddi_translations[level].cri_txdeemph_override_17_12); intel_de_write(dev_priv, MG_TX1_SWINGCTRL(ln, tc_port), val); val = intel_de_read(dev_priv, MG_TX2_SWINGCTRL(ln, tc_port)); val &= ~CRI_TXDEEMPH_OVERRIDE_17_12_MASK; val |= CRI_TXDEEMPH_OVERRIDE_17_12( ddi_translations[level].cri_txdeemph_override_17_12); intel_de_write(dev_priv, MG_TX2_SWINGCTRL(ln, tc_port), val); } /* Program MG_TX_DRVCTRL with values from vswing table */ for (ln = 0; ln < 2; ln++) { val = intel_de_read(dev_priv, MG_TX1_DRVCTRL(ln, tc_port)); val &= ~(CRI_TXDEEMPH_OVERRIDE_11_6_MASK | CRI_TXDEEMPH_OVERRIDE_5_0_MASK); val |= CRI_TXDEEMPH_OVERRIDE_5_0( ddi_translations[level].cri_txdeemph_override_5_0) | CRI_TXDEEMPH_OVERRIDE_11_6( ddi_translations[level].cri_txdeemph_override_11_6) | CRI_TXDEEMPH_OVERRIDE_EN; intel_de_write(dev_priv, MG_TX1_DRVCTRL(ln, tc_port), val); val = intel_de_read(dev_priv, MG_TX2_DRVCTRL(ln, tc_port)); val &= ~(CRI_TXDEEMPH_OVERRIDE_11_6_MASK | CRI_TXDEEMPH_OVERRIDE_5_0_MASK); val |= CRI_TXDEEMPH_OVERRIDE_5_0( ddi_translations[level].cri_txdeemph_override_5_0) | CRI_TXDEEMPH_OVERRIDE_11_6( ddi_translations[level].cri_txdeemph_override_11_6) | CRI_TXDEEMPH_OVERRIDE_EN; intel_de_write(dev_priv, MG_TX2_DRVCTRL(ln, tc_port), val); /* FIXME: Program CRI_LOADGEN_SEL after the spec is updated */ } /* * Program MG_CLKHUB with value from frequency table * In case of Legacy mode on MG PHY, both TX1 and TX2 enabled so use the * values from table for which TX1 and TX2 enabled. */ for (ln = 0; ln < 2; ln++) { val = intel_de_read(dev_priv, MG_CLKHUB(ln, tc_port)); if (crtc_state->port_clock < 300000) val |= CFG_LOW_RATE_LKREN_EN; else val &= ~CFG_LOW_RATE_LKREN_EN; intel_de_write(dev_priv, MG_CLKHUB(ln, tc_port), val); } /* Program the MG_TX_DCC based on the link frequency */ for (ln = 0; ln < 2; ln++) { val = intel_de_read(dev_priv, MG_TX1_DCC(ln, tc_port)); val &= ~CFG_AMI_CK_DIV_OVERRIDE_VAL_MASK; if (crtc_state->port_clock <= 500000) { val &= ~CFG_AMI_CK_DIV_OVERRIDE_EN; } else { val |= CFG_AMI_CK_DIV_OVERRIDE_EN | CFG_AMI_CK_DIV_OVERRIDE_VAL(1); } intel_de_write(dev_priv, MG_TX1_DCC(ln, tc_port), val); val = intel_de_read(dev_priv, MG_TX2_DCC(ln, tc_port)); val &= ~CFG_AMI_CK_DIV_OVERRIDE_VAL_MASK; if (crtc_state->port_clock <= 500000) { val &= ~CFG_AMI_CK_DIV_OVERRIDE_EN; } else { val |= CFG_AMI_CK_DIV_OVERRIDE_EN | CFG_AMI_CK_DIV_OVERRIDE_VAL(1); } intel_de_write(dev_priv, MG_TX2_DCC(ln, tc_port), val); } /* Program MG_TX_PISO_READLOAD with values from vswing table */ for (ln = 0; ln < 2; ln++) { val = intel_de_read(dev_priv, MG_TX1_PISO_READLOAD(ln, tc_port)); val |= CRI_CALCINIT; intel_de_write(dev_priv, MG_TX1_PISO_READLOAD(ln, tc_port), val); val = intel_de_read(dev_priv, MG_TX2_PISO_READLOAD(ln, tc_port)); val |= CRI_CALCINIT; intel_de_write(dev_priv, MG_TX2_PISO_READLOAD(ln, tc_port), val); } } static void icl_ddi_vswing_sequence(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int level) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum phy phy = intel_port_to_phy(dev_priv, encoder->port); if (intel_phy_is_combo(dev_priv, phy)) icl_combo_phy_ddi_vswing_sequence(encoder, crtc_state, level); else icl_mg_phy_ddi_vswing_sequence(encoder, crtc_state, level); } static void tgl_dkl_phy_ddi_vswing_sequence(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int level) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum tc_port tc_port = intel_port_to_tc(dev_priv, encoder->port); const struct tgl_dkl_phy_ddi_buf_trans *ddi_translations; u32 val, dpcnt_mask, dpcnt_val; int n_entries, ln; ddi_translations = tgl_get_dkl_buf_trans(encoder, crtc_state, &n_entries); if (level >= n_entries) level = n_entries - 1; dpcnt_mask = (DKL_TX_PRESHOOT_COEFF_MASK | DKL_TX_DE_EMPAHSIS_COEFF_MASK | DKL_TX_VSWING_CONTROL_MASK); dpcnt_val = DKL_TX_VSWING_CONTROL(ddi_translations[level].dkl_vswing_control); dpcnt_val |= DKL_TX_DE_EMPHASIS_COEFF(ddi_translations[level].dkl_de_emphasis_control); dpcnt_val |= DKL_TX_PRESHOOT_COEFF(ddi_translations[level].dkl_preshoot_control); for (ln = 0; ln < 2; ln++) { intel_de_write(dev_priv, HIP_INDEX_REG(tc_port), HIP_INDEX_VAL(tc_port, ln)); intel_de_write(dev_priv, DKL_TX_PMD_LANE_SUS(tc_port), 0); /* All the registers are RMW */ val = intel_de_read(dev_priv, DKL_TX_DPCNTL0(tc_port)); val &= ~dpcnt_mask; val |= dpcnt_val; intel_de_write(dev_priv, DKL_TX_DPCNTL0(tc_port), val); val = intel_de_read(dev_priv, DKL_TX_DPCNTL1(tc_port)); val &= ~dpcnt_mask; val |= dpcnt_val; intel_de_write(dev_priv, DKL_TX_DPCNTL1(tc_port), val); val = intel_de_read(dev_priv, DKL_TX_DPCNTL2(tc_port)); val &= ~DKL_TX_DP20BITMODE; intel_de_write(dev_priv, DKL_TX_DPCNTL2(tc_port), val); } } static void tgl_ddi_vswing_sequence(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int level) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum phy phy = intel_port_to_phy(dev_priv, encoder->port); if (intel_phy_is_combo(dev_priv, phy)) icl_combo_phy_ddi_vswing_sequence(encoder, crtc_state, level); else tgl_dkl_phy_ddi_vswing_sequence(encoder, crtc_state, level); } static int translate_signal_level(struct intel_dp *intel_dp, u8 signal_levels) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int i; for (i = 0; i < ARRAY_SIZE(index_to_dp_signal_levels); i++) { if (index_to_dp_signal_levels[i] == signal_levels) return i; } drm_WARN(&i915->drm, 1, "Unsupported voltage swing/pre-emphasis level: 0x%x\n", signal_levels); return 0; } static int intel_ddi_dp_level(struct intel_dp *intel_dp) { u8 train_set = intel_dp->train_set[0]; u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); return translate_signal_level(intel_dp, signal_levels); } static void tgl_set_signal_levels(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; int level = intel_ddi_dp_level(intel_dp); tgl_ddi_vswing_sequence(encoder, crtc_state, level); } static void icl_set_signal_levels(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; int level = intel_ddi_dp_level(intel_dp); icl_ddi_vswing_sequence(encoder, crtc_state, level); } static void cnl_set_signal_levels(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; int level = intel_ddi_dp_level(intel_dp); cnl_ddi_vswing_sequence(encoder, crtc_state, level); } static void bxt_set_signal_levels(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; int level = intel_ddi_dp_level(intel_dp); bxt_ddi_vswing_sequence(encoder, crtc_state, level); } static void hsw_set_signal_levels(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); int level = intel_ddi_dp_level(intel_dp); enum port port = encoder->port; u32 signal_levels; signal_levels = DDI_BUF_TRANS_SELECT(level); drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", signal_levels); intel_dp->DP &= ~DDI_BUF_EMP_MASK; intel_dp->DP |= signal_levels; if (IS_GEN9_BC(dev_priv)) skl_ddi_set_iboost(encoder, crtc_state, level); intel_de_write(dev_priv, DDI_BUF_CTL(port), intel_dp->DP); intel_de_posting_read(dev_priv, DDI_BUF_CTL(port)); } static u32 icl_dpclka_cfgcr0_clk_off(struct drm_i915_private *dev_priv, enum phy phy) { if (IS_ROCKETLAKE(dev_priv)) { return RKL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy); } else if (intel_phy_is_combo(dev_priv, phy)) { return ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy); } else if (intel_phy_is_tc(dev_priv, phy)) { enum tc_port tc_port = intel_port_to_tc(dev_priv, (enum port)phy); return ICL_DPCLKA_CFGCR0_TC_CLK_OFF(tc_port); } return 0; } static void dg1_map_plls_to_ports(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_shared_dpll *pll = crtc_state->shared_dpll; enum phy phy = intel_port_to_phy(dev_priv, encoder->port); u32 val; /* * If we fail this, something went very wrong: first 2 PLLs should be * used by first 2 phys and last 2 PLLs by last phys */ if (drm_WARN_ON(&dev_priv->drm, (pll->info->id < DPLL_ID_DG1_DPLL2 && phy >= PHY_C) || (pll->info->id >= DPLL_ID_DG1_DPLL2 && phy < PHY_C))) return; mutex_lock(&dev_priv->dpll.lock); val = intel_de_read(dev_priv, DG1_DPCLKA_CFGCR0(phy)); drm_WARN_ON(&dev_priv->drm, (val & DG1_DPCLKA_CFGCR0_DDI_CLK_OFF(phy)) == 0); val &= ~DG1_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); val |= DG1_DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, phy); intel_de_write(dev_priv, DG1_DPCLKA_CFGCR0(phy), val); intel_de_posting_read(dev_priv, DG1_DPCLKA_CFGCR0(phy)); val &= ~DG1_DPCLKA_CFGCR0_DDI_CLK_OFF(phy); intel_de_write(dev_priv, DG1_DPCLKA_CFGCR0(phy), val); mutex_unlock(&dev_priv->dpll.lock); } static void icl_map_plls_to_ports(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_shared_dpll *pll = crtc_state->shared_dpll; enum phy phy = intel_port_to_phy(dev_priv, encoder->port); u32 val; mutex_lock(&dev_priv->dpll.lock); val = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0); drm_WARN_ON(&dev_priv->drm, (val & icl_dpclka_cfgcr0_clk_off(dev_priv, phy)) == 0); if (intel_phy_is_combo(dev_priv, phy)) { u32 mask, sel; if (IS_ROCKETLAKE(dev_priv)) { mask = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); sel = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, phy); } else { mask = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); sel = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, phy); } /* * Even though this register references DDIs, note that we * want to pass the PHY rather than the port (DDI). For * ICL, port=phy in all cases so it doesn't matter, but for * EHL the bspec notes the following: * * "DDID clock tied to DDIA clock, so DPCLKA_CFGCR0 DDIA * Clock Select chooses the PLL for both DDIA and DDID and * drives port A in all cases." */ val &= ~mask; val |= sel; intel_de_write(dev_priv, ICL_DPCLKA_CFGCR0, val); intel_de_posting_read(dev_priv, ICL_DPCLKA_CFGCR0); } val &= ~icl_dpclka_cfgcr0_clk_off(dev_priv, phy); intel_de_write(dev_priv, ICL_DPCLKA_CFGCR0, val); mutex_unlock(&dev_priv->dpll.lock); } static void dg1_unmap_plls_to_ports(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum phy phy = intel_port_to_phy(dev_priv, encoder->port); mutex_lock(&dev_priv->dpll.lock); intel_de_rmw(dev_priv, DG1_DPCLKA_CFGCR0(phy), 0, DG1_DPCLKA_CFGCR0_DDI_CLK_OFF(phy)); mutex_unlock(&dev_priv->dpll.lock); } static void icl_unmap_plls_to_ports(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum phy phy = intel_port_to_phy(dev_priv, encoder->port); u32 val; mutex_lock(&dev_priv->dpll.lock); val = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0); val |= icl_dpclka_cfgcr0_clk_off(dev_priv, phy); intel_de_write(dev_priv, ICL_DPCLKA_CFGCR0, val); mutex_unlock(&dev_priv->dpll.lock); } static void dg1_sanitize_port_clk_off(struct drm_i915_private *dev_priv, u32 port_mask, bool ddi_clk_needed) { enum port port; u32 val; for_each_port_masked(port, port_mask) { enum phy phy = intel_port_to_phy(dev_priv, port); bool ddi_clk_off; val = intel_de_read(dev_priv, DG1_DPCLKA_CFGCR0(phy)); ddi_clk_off = val & DG1_DPCLKA_CFGCR0_DDI_CLK_OFF(phy); if (ddi_clk_needed == !ddi_clk_off) continue; /* * Punt on the case now where clock is gated, but it would * be needed by the port. Something else is really broken then. */ if (drm_WARN_ON(&dev_priv->drm, ddi_clk_needed)) continue; drm_notice(&dev_priv->drm, "PHY %c is disabled with an ungated DDI clock, gate it\n", phy_name(phy)); val |= DG1_DPCLKA_CFGCR0_DDI_CLK_OFF(phy); intel_de_write(dev_priv, DG1_DPCLKA_CFGCR0(phy), val); } } static void icl_sanitize_port_clk_off(struct drm_i915_private *dev_priv, u32 port_mask, bool ddi_clk_needed) { enum port port; u32 val; val = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0); for_each_port_masked(port, port_mask) { enum phy phy = intel_port_to_phy(dev_priv, port); bool ddi_clk_off = val & icl_dpclka_cfgcr0_clk_off(dev_priv, phy); if (ddi_clk_needed == !ddi_clk_off) continue; /* * Punt on the case now where clock is gated, but it would * be needed by the port. Something else is really broken then. */ if (drm_WARN_ON(&dev_priv->drm, ddi_clk_needed)) continue; drm_notice(&dev_priv->drm, "PHY %c is disabled/in DSI mode with an ungated DDI clock, gate it\n", phy_name(phy)); val |= icl_dpclka_cfgcr0_clk_off(dev_priv, phy); intel_de_write(dev_priv, ICL_DPCLKA_CFGCR0, val); } } void icl_sanitize_encoder_pll_mapping(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 port_mask; bool ddi_clk_needed; /* * In case of DP MST, we sanitize the primary encoder only, not the * virtual ones. */ if (encoder->type == INTEL_OUTPUT_DP_MST) return; if (!encoder->base.crtc && intel_encoder_is_dp(encoder)) { u8 pipe_mask; bool is_mst; intel_ddi_get_encoder_pipes(encoder, &pipe_mask, &is_mst); /* * In the unlikely case that BIOS enables DP in MST mode, just * warn since our MST HW readout is incomplete. */ if (drm_WARN_ON(&dev_priv->drm, is_mst)) return; } port_mask = BIT(encoder->port); ddi_clk_needed = encoder->base.crtc; if (encoder->type == INTEL_OUTPUT_DSI) { struct intel_encoder *other_encoder; port_mask = intel_dsi_encoder_ports(encoder); /* * Sanity check that we haven't incorrectly registered another * encoder using any of the ports of this DSI encoder. */ for_each_intel_encoder(&dev_priv->drm, other_encoder) { if (other_encoder == encoder) continue; if (drm_WARN_ON(&dev_priv->drm, port_mask & BIT(other_encoder->port))) return; } /* * For DSI we keep the ddi clocks gated * except during enable/disable sequence. */ ddi_clk_needed = false; } if (IS_DG1(dev_priv)) dg1_sanitize_port_clk_off(dev_priv, port_mask, ddi_clk_needed); else icl_sanitize_port_clk_off(dev_priv, port_mask, ddi_clk_needed); } static void intel_ddi_clk_select(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; enum phy phy = intel_port_to_phy(dev_priv, port); u32 val; const struct intel_shared_dpll *pll = crtc_state->shared_dpll; if (drm_WARN_ON(&dev_priv->drm, !pll)) return; mutex_lock(&dev_priv->dpll.lock); if (INTEL_GEN(dev_priv) >= 11) { if (!intel_phy_is_combo(dev_priv, phy)) intel_de_write(dev_priv, DDI_CLK_SEL(port), icl_pll_to_ddi_clk_sel(encoder, crtc_state)); else if (IS_JSL_EHL(dev_priv) && port >= PORT_C) /* * MG does not exist but the programming is required * to ungate DDIC and DDID */ intel_de_write(dev_priv, DDI_CLK_SEL(port), DDI_CLK_SEL_MG); } else if (IS_CANNONLAKE(dev_priv)) { /* Configure DPCLKA_CFGCR0 to map the DPLL to the DDI. */ val = intel_de_read(dev_priv, DPCLKA_CFGCR0); val &= ~DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); val |= DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, port); intel_de_write(dev_priv, DPCLKA_CFGCR0, val); /* * Configure DPCLKA_CFGCR0 to turn on the clock for the DDI. * This step and the step before must be done with separate * register writes. */ val = intel_de_read(dev_priv, DPCLKA_CFGCR0); val &= ~DPCLKA_CFGCR0_DDI_CLK_OFF(port); intel_de_write(dev_priv, DPCLKA_CFGCR0, val); } else if (IS_GEN9_BC(dev_priv)) { /* DDI -> PLL mapping */ val = intel_de_read(dev_priv, DPLL_CTRL2); val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) | DPLL_CTRL2_DDI_CLK_SEL_MASK(port)); val |= (DPLL_CTRL2_DDI_CLK_SEL(pll->info->id, port) | DPLL_CTRL2_DDI_SEL_OVERRIDE(port)); intel_de_write(dev_priv, DPLL_CTRL2, val); } else if (INTEL_GEN(dev_priv) < 9) { intel_de_write(dev_priv, PORT_CLK_SEL(port), hsw_pll_to_ddi_pll_sel(pll)); } mutex_unlock(&dev_priv->dpll.lock); } static void intel_ddi_clk_disable(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; enum phy phy = intel_port_to_phy(dev_priv, port); if (INTEL_GEN(dev_priv) >= 11) { if (!intel_phy_is_combo(dev_priv, phy) || (IS_JSL_EHL(dev_priv) && port >= PORT_C)) intel_de_write(dev_priv, DDI_CLK_SEL(port), DDI_CLK_SEL_NONE); } else if (IS_CANNONLAKE(dev_priv)) { intel_de_write(dev_priv, DPCLKA_CFGCR0, intel_de_read(dev_priv, DPCLKA_CFGCR0) | DPCLKA_CFGCR0_DDI_CLK_OFF(port)); } else if (IS_GEN9_BC(dev_priv)) { intel_de_write(dev_priv, DPLL_CTRL2, intel_de_read(dev_priv, DPLL_CTRL2) | DPLL_CTRL2_DDI_CLK_OFF(port)); } else if (INTEL_GEN(dev_priv) < 9) { intel_de_write(dev_priv, PORT_CLK_SEL(port), PORT_CLK_SEL_NONE); } } static void icl_program_mg_dp_mode(struct intel_digital_port *dig_port, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port); u32 ln0, ln1, pin_assignment; u8 width; if (dig_port->tc_mode == TC_PORT_TBT_ALT) return; if (INTEL_GEN(dev_priv) >= 12) { intel_de_write(dev_priv, HIP_INDEX_REG(tc_port), HIP_INDEX_VAL(tc_port, 0x0)); ln0 = intel_de_read(dev_priv, DKL_DP_MODE(tc_port)); intel_de_write(dev_priv, HIP_INDEX_REG(tc_port), HIP_INDEX_VAL(tc_port, 0x1)); ln1 = intel_de_read(dev_priv, DKL_DP_MODE(tc_port)); } else { ln0 = intel_de_read(dev_priv, MG_DP_MODE(0, tc_port)); ln1 = intel_de_read(dev_priv, MG_DP_MODE(1, tc_port)); } ln0 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE); ln1 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE); /* DPPATC */ pin_assignment = intel_tc_port_get_pin_assignment_mask(dig_port); width = crtc_state->lane_count; switch (pin_assignment) { case 0x0: drm_WARN_ON(&dev_priv->drm, dig_port->tc_mode != TC_PORT_LEGACY); if (width == 1) { ln1 |= MG_DP_MODE_CFG_DP_X1_MODE; } else { ln0 |= MG_DP_MODE_CFG_DP_X2_MODE; ln1 |= MG_DP_MODE_CFG_DP_X2_MODE; } break; case 0x1: if (width == 4) { ln0 |= MG_DP_MODE_CFG_DP_X2_MODE; ln1 |= MG_DP_MODE_CFG_DP_X2_MODE; } break; case 0x2: if (width == 2) { ln0 |= MG_DP_MODE_CFG_DP_X2_MODE; ln1 |= MG_DP_MODE_CFG_DP_X2_MODE; } break; case 0x3: case 0x5: if (width == 1) { ln0 |= MG_DP_MODE_CFG_DP_X1_MODE; ln1 |= MG_DP_MODE_CFG_DP_X1_MODE; } else { ln0 |= MG_DP_MODE_CFG_DP_X2_MODE; ln1 |= MG_DP_MODE_CFG_DP_X2_MODE; } break; case 0x4: case 0x6: if (width == 1) { ln0 |= MG_DP_MODE_CFG_DP_X1_MODE; ln1 |= MG_DP_MODE_CFG_DP_X1_MODE; } else { ln0 |= MG_DP_MODE_CFG_DP_X2_MODE; ln1 |= MG_DP_MODE_CFG_DP_X2_MODE; } break; default: MISSING_CASE(pin_assignment); } if (INTEL_GEN(dev_priv) >= 12) { intel_de_write(dev_priv, HIP_INDEX_REG(tc_port), HIP_INDEX_VAL(tc_port, 0x0)); intel_de_write(dev_priv, DKL_DP_MODE(tc_port), ln0); intel_de_write(dev_priv, HIP_INDEX_REG(tc_port), HIP_INDEX_VAL(tc_port, 0x1)); intel_de_write(dev_priv, DKL_DP_MODE(tc_port), ln1); } else { intel_de_write(dev_priv, MG_DP_MODE(0, tc_port), ln0); intel_de_write(dev_priv, MG_DP_MODE(1, tc_port), ln1); } } static enum transcoder tgl_dp_tp_transcoder(const struct intel_crtc_state *crtc_state) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) return crtc_state->mst_master_transcoder; else return crtc_state->cpu_transcoder; } i915_reg_t dp_tp_ctl_reg(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (INTEL_GEN(dev_priv) >= 12) return TGL_DP_TP_CTL(tgl_dp_tp_transcoder(crtc_state)); else return DP_TP_CTL(encoder->port); } i915_reg_t dp_tp_status_reg(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (INTEL_GEN(dev_priv) >= 12) return TGL_DP_TP_STATUS(tgl_dp_tp_transcoder(crtc_state)); else return DP_TP_STATUS(encoder->port); } static void intel_dp_sink_set_fec_ready(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); if (!crtc_state->fec_enable) return; if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_FEC_CONFIGURATION, DP_FEC_READY) <= 0) drm_dbg_kms(&i915->drm, "Failed to set FEC_READY in the sink\n"); } static void intel_ddi_enable_fec(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp; u32 val; if (!crtc_state->fec_enable) return; intel_dp = enc_to_intel_dp(encoder); val = intel_de_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state)); val |= DP_TP_CTL_FEC_ENABLE; intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), val); if (intel_de_wait_for_set(dev_priv, dp_tp_status_reg(encoder, crtc_state), DP_TP_STATUS_FEC_ENABLE_LIVE, 1)) drm_err(&dev_priv->drm, "Timed out waiting for FEC Enable Status\n"); } static void intel_ddi_disable_fec_state(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp; u32 val; if (!crtc_state->fec_enable) return; intel_dp = enc_to_intel_dp(encoder); val = intel_de_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state)); val &= ~DP_TP_CTL_FEC_ENABLE; intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), val); intel_de_posting_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state)); } static void tgl_ddi_pre_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum phy phy = intel_port_to_phy(dev_priv, encoder->port); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST); int level = intel_ddi_dp_level(intel_dp); intel_dp_set_link_params(intel_dp, crtc_state->port_clock, crtc_state->lane_count); /* * 1. Enable Power Wells * * This was handled at the beginning of intel_atomic_commit_tail(), * before we called down into this function. */ /* 2. Enable Panel Power if PPS is required */ intel_edp_panel_on(intel_dp); /* * 3. For non-TBT Type-C ports, set FIA lane count * (DFLEXDPSP.DPX4TXLATC) * * This was done before tgl_ddi_pre_enable_dp by * hsw_crtc_enable()->intel_encoders_pre_pll_enable(). */ /* * 4. Enable the port PLL. * * The PLL enabling itself was already done before this function by * hsw_crtc_enable()->intel_enable_shared_dpll(). We need only * configure the PLL to port mapping here. */ intel_ddi_clk_select(encoder, crtc_state); /* 5. If IO power is controlled through PWR_WELL_CTL, Enable IO Power */ if (!intel_phy_is_tc(dev_priv, phy) || dig_port->tc_mode != TC_PORT_TBT_ALT) intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain); /* 6. Program DP_MODE */ icl_program_mg_dp_mode(dig_port, crtc_state); /* * 7. The rest of the below are substeps under the bspec's "Enable and * Train Display Port" step. Note that steps that are specific to * MST will be handled by intel_mst_pre_enable_dp() before/after it * calls into this function. Also intel_mst_pre_enable_dp() only calls * us when active_mst_links==0, so any steps designated for "single * stream or multi-stream master transcoder" can just be performed * unconditionally here. */ /* * 7.a Configure Transcoder Clock Select to direct the Port clock to the * Transcoder. */ intel_ddi_enable_pipe_clock(encoder, crtc_state); /* * 7.b Configure TRANS_DDI_FUNC_CTL DDI Select, DDI Mode Select & MST * Transport Select */ intel_ddi_config_transcoder_func(encoder, crtc_state); /* * 7.c Configure & enable DP_TP_CTL with link training pattern 1 * selected * * This will be handled by the intel_dp_start_link_train() farther * down this function. */ /* 7.e Configure voltage swing and related IO settings */ tgl_ddi_vswing_sequence(encoder, crtc_state, level); /* * 7.f Combo PHY: Configure PORT_CL_DW10 Static Power Down to power up * the used lanes of the DDI. */ if (intel_phy_is_combo(dev_priv, phy)) { bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL; intel_combo_phy_power_up_lanes(dev_priv, phy, false, crtc_state->lane_count, lane_reversal); } /* * 7.g Configure and enable DDI_BUF_CTL * 7.h Wait for DDI_BUF_CTL DDI Idle Status = 0b (Not Idle), timeout * after 500 us. * * We only configure what the register value will be here. Actual * enabling happens during link training farther down. */ intel_ddi_init_dp_buf_reg(encoder, crtc_state); if (!is_mst) intel_dp_set_power(intel_dp, DP_SET_POWER_D0); intel_dp_sink_set_decompression_state(intel_dp, crtc_state, true); /* * DDI FEC: "anticipates enabling FEC encoding sets the FEC_READY bit * in the FEC_CONFIGURATION register to 1 before initiating link * training */ intel_dp_sink_set_fec_ready(intel_dp, crtc_state); intel_dp_check_frl_training(intel_dp); intel_dp_pcon_dsc_configure(intel_dp, crtc_state); /* * 7.i Follow DisplayPort specification training sequence (see notes for * failure handling) * 7.j If DisplayPort multi-stream - Set DP_TP_CTL link training to Idle * Pattern, wait for 5 idle patterns (DP_TP_STATUS Min_Idles_Sent) * (timeout after 800 us) */ intel_dp_start_link_train(intel_dp, crtc_state); /* 7.k Set DP_TP_CTL link training to Normal */ if (!is_trans_port_sync_mode(crtc_state)) intel_dp_stop_link_train(intel_dp, crtc_state); /* 7.l Configure and enable FEC if needed */ intel_ddi_enable_fec(encoder, crtc_state); if (!crtc_state->bigjoiner) intel_dsc_enable(encoder, crtc_state); } static void hsw_ddi_pre_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; enum phy phy = intel_port_to_phy(dev_priv, port); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST); int level = intel_ddi_dp_level(intel_dp); if (INTEL_GEN(dev_priv) < 11) drm_WARN_ON(&dev_priv->drm, is_mst && (port == PORT_A || port == PORT_E)); else drm_WARN_ON(&dev_priv->drm, is_mst && port == PORT_A); intel_dp_set_link_params(intel_dp, crtc_state->port_clock, crtc_state->lane_count); intel_edp_panel_on(intel_dp); intel_ddi_clk_select(encoder, crtc_state); if (!intel_phy_is_tc(dev_priv, phy) || dig_port->tc_mode != TC_PORT_TBT_ALT) intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain); icl_program_mg_dp_mode(dig_port, crtc_state); if (INTEL_GEN(dev_priv) >= 11) icl_ddi_vswing_sequence(encoder, crtc_state, level); else if (IS_CANNONLAKE(dev_priv)) cnl_ddi_vswing_sequence(encoder, crtc_state, level); else if (IS_GEN9_LP(dev_priv)) bxt_ddi_vswing_sequence(encoder, crtc_state, level); else intel_prepare_dp_ddi_buffers(encoder, crtc_state); if (intel_phy_is_combo(dev_priv, phy)) { bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL; intel_combo_phy_power_up_lanes(dev_priv, phy, false, crtc_state->lane_count, lane_reversal); } intel_ddi_init_dp_buf_reg(encoder, crtc_state); if (!is_mst) intel_dp_set_power(intel_dp, DP_SET_POWER_D0); intel_dp_configure_protocol_converter(intel_dp); intel_dp_sink_set_decompression_state(intel_dp, crtc_state, true); intel_dp_sink_set_fec_ready(intel_dp, crtc_state); intel_dp_start_link_train(intel_dp, crtc_state); if ((port != PORT_A || INTEL_GEN(dev_priv) >= 9) && !is_trans_port_sync_mode(crtc_state)) intel_dp_stop_link_train(intel_dp, crtc_state); intel_ddi_enable_fec(encoder, crtc_state); if (!is_mst) intel_ddi_enable_pipe_clock(encoder, crtc_state); if (!crtc_state->bigjoiner) intel_dsc_enable(encoder, crtc_state); } static void intel_ddi_pre_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (INTEL_GEN(dev_priv) >= 12) tgl_ddi_pre_enable_dp(state, encoder, crtc_state, conn_state); else hsw_ddi_pre_enable_dp(state, encoder, crtc_state, conn_state); /* MST will call a setting of MSA after an allocating of Virtual Channel * from MST encoder pre_enable callback. */ if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) { intel_ddi_set_dp_msa(crtc_state, conn_state); intel_dp_set_m_n(crtc_state, M1_N1); } } static void intel_ddi_pre_enable_hdmi(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct intel_hdmi *intel_hdmi = &dig_port->hdmi; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); int level = intel_ddi_hdmi_level(encoder, crtc_state); intel_dp_dual_mode_set_tmds_output(intel_hdmi, true); intel_ddi_clk_select(encoder, crtc_state); intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain); icl_program_mg_dp_mode(dig_port, crtc_state); if (INTEL_GEN(dev_priv) >= 12) tgl_ddi_vswing_sequence(encoder, crtc_state, level); else if (INTEL_GEN(dev_priv) == 11) icl_ddi_vswing_sequence(encoder, crtc_state, level); else if (IS_CANNONLAKE(dev_priv)) cnl_ddi_vswing_sequence(encoder, crtc_state, level); else if (IS_GEN9_LP(dev_priv)) bxt_ddi_vswing_sequence(encoder, crtc_state, level); else intel_prepare_hdmi_ddi_buffers(encoder, level); if (IS_GEN9_BC(dev_priv)) skl_ddi_set_iboost(encoder, crtc_state, level); intel_ddi_enable_pipe_clock(encoder, crtc_state); dig_port->set_infoframes(encoder, crtc_state->has_infoframe, crtc_state, conn_state); } static void intel_ddi_pre_enable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* * When called from DP MST code: * - conn_state will be NULL * - encoder will be the main encoder (ie. mst->primary) * - the main connector associated with this port * won't be active or linked to a crtc * - crtc_state will be the state of the first stream to * be activated on this port, and it may not be the same * stream that will be deactivated last, but each stream * should have a state that is identical when it comes to * the DP link parameteres */ drm_WARN_ON(&dev_priv->drm, crtc_state->has_pch_encoder); if (IS_DG1(dev_priv)) dg1_map_plls_to_ports(encoder, crtc_state); else if (INTEL_GEN(dev_priv) >= 11) icl_map_plls_to_ports(encoder, crtc_state); intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { intel_ddi_pre_enable_hdmi(state, encoder, crtc_state, conn_state); } else { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); intel_ddi_pre_enable_dp(state, encoder, crtc_state, conn_state); /* FIXME precompute everything properly */ /* FIXME how do we turn infoframes off again? */ if (dig_port->lspcon.active && dig_port->dp.has_hdmi_sink) dig_port->set_infoframes(encoder, crtc_state->has_infoframe, crtc_state, conn_state); } } static void intel_disable_ddi_buf(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; bool wait = false; u32 val; val = intel_de_read(dev_priv, DDI_BUF_CTL(port)); if (val & DDI_BUF_CTL_ENABLE) { val &= ~DDI_BUF_CTL_ENABLE; intel_de_write(dev_priv, DDI_BUF_CTL(port), val); wait = true; } if (intel_crtc_has_dp_encoder(crtc_state)) { val = intel_de_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state)); val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); val |= DP_TP_CTL_LINK_TRAIN_PAT1; intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), val); } /* Disable FEC in DP Sink */ intel_ddi_disable_fec_state(encoder, crtc_state); if (wait) intel_wait_ddi_buf_idle(dev_priv, port); } static void intel_ddi_post_disable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct intel_dp *intel_dp = &dig_port->dp; bool is_mst = intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST); enum phy phy = intel_port_to_phy(dev_priv, encoder->port); if (!is_mst) intel_dp_set_infoframes(encoder, false, old_crtc_state, old_conn_state); /* * Power down sink before disabling the port, otherwise we end * up getting interrupts from the sink on detecting link loss. */ intel_dp_set_power(intel_dp, DP_SET_POWER_D3); if (INTEL_GEN(dev_priv) >= 12) { if (is_mst) { enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; u32 val; val = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)); val &= ~(TGL_TRANS_DDI_PORT_MASK | TRANS_DDI_MODE_SELECT_MASK); intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder), val); } } else { if (!is_mst) intel_ddi_disable_pipe_clock(old_crtc_state); } intel_disable_ddi_buf(encoder, old_crtc_state); /* * From TGL spec: "If single stream or multi-stream master transcoder: * Configure Transcoder Clock select to direct no clock to the * transcoder" */ if (INTEL_GEN(dev_priv) >= 12) intel_ddi_disable_pipe_clock(old_crtc_state); intel_edp_panel_vdd_on(intel_dp); intel_edp_panel_off(intel_dp); if (!intel_phy_is_tc(dev_priv, phy) || dig_port->tc_mode != TC_PORT_TBT_ALT) intel_display_power_put_unchecked(dev_priv, dig_port->ddi_io_power_domain); intel_ddi_clk_disable(encoder); } static void intel_ddi_post_disable_hdmi(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct intel_hdmi *intel_hdmi = &dig_port->hdmi; dig_port->set_infoframes(encoder, false, old_crtc_state, old_conn_state); intel_ddi_disable_pipe_clock(old_crtc_state); intel_disable_ddi_buf(encoder, old_crtc_state); intel_display_power_put_unchecked(dev_priv, dig_port->ddi_io_power_domain); intel_ddi_clk_disable(encoder); intel_dp_dual_mode_set_tmds_output(intel_hdmi, false); } static void intel_ddi_post_disable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); enum phy phy = intel_port_to_phy(dev_priv, encoder->port); bool is_tc_port = intel_phy_is_tc(dev_priv, phy); if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST)) { intel_crtc_vblank_off(old_crtc_state); intel_disable_pipe(old_crtc_state); intel_ddi_disable_transcoder_func(old_crtc_state); intel_dsc_disable(old_crtc_state); if (INTEL_GEN(dev_priv) >= 9) skl_scaler_disable(old_crtc_state); else ilk_pfit_disable(old_crtc_state); } if (old_crtc_state->bigjoiner_linked_crtc) { struct intel_atomic_state *state = to_intel_atomic_state(old_crtc_state->uapi.state); struct intel_crtc *slave = old_crtc_state->bigjoiner_linked_crtc; const struct intel_crtc_state *old_slave_crtc_state = intel_atomic_get_old_crtc_state(state, slave); intel_crtc_vblank_off(old_slave_crtc_state); trace_intel_pipe_disable(slave); intel_dsc_disable(old_slave_crtc_state); skl_scaler_disable(old_slave_crtc_state); } /* * When called from DP MST code: * - old_conn_state will be NULL * - encoder will be the main encoder (ie. mst->primary) * - the main connector associated with this port * won't be active or linked to a crtc * - old_crtc_state will be the state of the last stream to * be deactivated on this port, and it may not be the same * stream that was activated last, but each stream * should have a state that is identical when it comes to * the DP link parameteres */ if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI)) intel_ddi_post_disable_hdmi(state, encoder, old_crtc_state, old_conn_state); else intel_ddi_post_disable_dp(state, encoder, old_crtc_state, old_conn_state); if (IS_DG1(dev_priv)) dg1_unmap_plls_to_ports(encoder); else if (INTEL_GEN(dev_priv) >= 11) icl_unmap_plls_to_ports(encoder); if (intel_crtc_has_dp_encoder(old_crtc_state) || is_tc_port) intel_display_power_put_unchecked(dev_priv, intel_ddi_main_link_aux_domain(dig_port)); if (is_tc_port) intel_tc_port_put_link(dig_port); } void intel_ddi_fdi_post_disable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 val; /* * Bspec lists this as both step 13 (before DDI_BUF_CTL disable) * and step 18 (after clearing PORT_CLK_SEL). Based on a BUN, * step 13 is the correct place for it. Step 18 is where it was * originally before the BUN. */ val = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); val &= ~FDI_RX_ENABLE; intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), val); intel_disable_ddi_buf(encoder, old_crtc_state); intel_ddi_clk_disable(encoder); val = intel_de_read(dev_priv, FDI_RX_MISC(PIPE_A)); val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2); intel_de_write(dev_priv, FDI_RX_MISC(PIPE_A), val); val = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); val &= ~FDI_PCDCLK; intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), val); val = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); val &= ~FDI_RX_PLL_ENABLE; intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), val); } static void trans_port_sync_stop_link_train(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { const struct drm_connector_state *conn_state; struct drm_connector *conn; int i; if (!crtc_state->sync_mode_slaves_mask) return; for_each_new_connector_in_state(&state->base, conn, conn_state, i) { struct intel_encoder *slave_encoder = to_intel_encoder(conn_state->best_encoder); struct intel_crtc *slave_crtc = to_intel_crtc(conn_state->crtc); const struct intel_crtc_state *slave_crtc_state; if (!slave_crtc) continue; slave_crtc_state = intel_atomic_get_new_crtc_state(state, slave_crtc); if (slave_crtc_state->master_transcoder != crtc_state->cpu_transcoder) continue; intel_dp_stop_link_train(enc_to_intel_dp(slave_encoder), slave_crtc_state); } usleep_range(200, 400); intel_dp_stop_link_train(enc_to_intel_dp(encoder), crtc_state); } static void intel_enable_ddi_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); enum port port = encoder->port; if (port == PORT_A && INTEL_GEN(dev_priv) < 9) intel_dp_stop_link_train(intel_dp, crtc_state); intel_edp_backlight_on(crtc_state, conn_state); intel_psr_enable(intel_dp, crtc_state, conn_state); intel_dp_set_infoframes(encoder, true, crtc_state, conn_state); intel_edp_drrs_enable(intel_dp, crtc_state); if (crtc_state->has_audio) intel_audio_codec_enable(encoder, crtc_state, conn_state); trans_port_sync_stop_link_train(state, encoder, crtc_state); } static i915_reg_t gen9_chicken_trans_reg_by_port(struct drm_i915_private *dev_priv, enum port port) { static const enum transcoder trans[] = { [PORT_A] = TRANSCODER_EDP, [PORT_B] = TRANSCODER_A, [PORT_C] = TRANSCODER_B, [PORT_D] = TRANSCODER_C, [PORT_E] = TRANSCODER_A, }; drm_WARN_ON(&dev_priv->drm, INTEL_GEN(dev_priv) < 9); if (drm_WARN_ON(&dev_priv->drm, port < PORT_A || port > PORT_E)) port = PORT_A; return CHICKEN_TRANS(trans[port]); } static void intel_enable_ddi_hdmi(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct drm_connector *connector = conn_state->connector; enum port port = encoder->port; if (!intel_hdmi_handle_sink_scrambling(encoder, connector, crtc_state->hdmi_high_tmds_clock_ratio, crtc_state->hdmi_scrambling)) drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s] Failed to configure sink scrambling/TMDS bit clock ratio\n", connector->base.id, connector->name); /* Display WA #1143: skl,kbl,cfl */ if (IS_GEN9_BC(dev_priv)) { /* * For some reason these chicken bits have been * stuffed into a transcoder register, event though * the bits affect a specific DDI port rather than * a specific transcoder. */ i915_reg_t reg = gen9_chicken_trans_reg_by_port(dev_priv, port); u32 val; val = intel_de_read(dev_priv, reg); if (port == PORT_E) val |= DDIE_TRAINING_OVERRIDE_ENABLE | DDIE_TRAINING_OVERRIDE_VALUE; else val |= DDI_TRAINING_OVERRIDE_ENABLE | DDI_TRAINING_OVERRIDE_VALUE; intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); udelay(1); if (port == PORT_E) val &= ~(DDIE_TRAINING_OVERRIDE_ENABLE | DDIE_TRAINING_OVERRIDE_VALUE); else val &= ~(DDI_TRAINING_OVERRIDE_ENABLE | DDI_TRAINING_OVERRIDE_VALUE); intel_de_write(dev_priv, reg, val); } /* In HDMI/DVI mode, the port width, and swing/emphasis values * are ignored so nothing special needs to be done besides * enabling the port. */ intel_de_write(dev_priv, DDI_BUF_CTL(port), dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE); if (crtc_state->has_audio) intel_audio_codec_enable(encoder, crtc_state, conn_state); } static void intel_enable_ddi(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { drm_WARN_ON(state->base.dev, crtc_state->has_pch_encoder); if (!crtc_state->bigjoiner_slave) intel_ddi_enable_transcoder_func(encoder, crtc_state); intel_enable_pipe(crtc_state); intel_crtc_vblank_on(crtc_state); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) intel_enable_ddi_hdmi(state, encoder, crtc_state, conn_state); else intel_enable_ddi_dp(state, encoder, crtc_state, conn_state); /* Enable hdcp if it's desired */ if (conn_state->content_protection == DRM_MODE_CONTENT_PROTECTION_DESIRED) intel_hdcp_enable(to_intel_connector(conn_state->connector), crtc_state->cpu_transcoder, (u8)conn_state->hdcp_content_type); } static void intel_disable_ddi_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_dp->link_trained = false; if (old_crtc_state->has_audio) intel_audio_codec_disable(encoder, old_crtc_state, old_conn_state); intel_edp_drrs_disable(intel_dp, old_crtc_state); intel_psr_disable(intel_dp, old_crtc_state); intel_edp_backlight_off(old_conn_state); /* Disable the decompression in DP Sink */ intel_dp_sink_set_decompression_state(intel_dp, old_crtc_state, false); } static void intel_disable_ddi_hdmi(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct drm_connector *connector = old_conn_state->connector; if (old_crtc_state->has_audio) intel_audio_codec_disable(encoder, old_crtc_state, old_conn_state); if (!intel_hdmi_handle_sink_scrambling(encoder, connector, false, false)) drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] Failed to reset sink scrambling/TMDS bit clock ratio\n", connector->base.id, connector->name); } static void intel_disable_ddi(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_hdcp_disable(to_intel_connector(old_conn_state->connector)); if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI)) intel_disable_ddi_hdmi(state, encoder, old_crtc_state, old_conn_state); else intel_disable_ddi_dp(state, encoder, old_crtc_state, old_conn_state); } static void intel_ddi_update_pipe_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_ddi_set_dp_msa(crtc_state, conn_state); intel_psr_update(intel_dp, crtc_state, conn_state); intel_dp_set_infoframes(encoder, true, crtc_state, conn_state); intel_edp_drrs_update(intel_dp, crtc_state); intel_panel_update_backlight(state, encoder, crtc_state, conn_state); } void intel_ddi_update_pipe(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) && !intel_encoder_is_mst(encoder)) intel_ddi_update_pipe_dp(state, encoder, crtc_state, conn_state); intel_hdcp_update_pipe(state, encoder, crtc_state, conn_state); } static void intel_ddi_update_prepare(struct intel_atomic_state *state, struct intel_encoder *encoder, struct intel_crtc *crtc) { struct intel_crtc_state *crtc_state = crtc ? intel_atomic_get_new_crtc_state(state, crtc) : NULL; int required_lanes = crtc_state ? crtc_state->lane_count : 1; drm_WARN_ON(state->base.dev, crtc && crtc->active); intel_tc_port_get_link(enc_to_dig_port(encoder), required_lanes); if (crtc_state && crtc_state->hw.active) intel_update_active_dpll(state, crtc, encoder); } static void intel_ddi_update_complete(struct intel_atomic_state *state, struct intel_encoder *encoder, struct intel_crtc *crtc) { intel_tc_port_put_link(enc_to_dig_port(encoder)); } static void intel_ddi_pre_pll_enable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); enum phy phy = intel_port_to_phy(dev_priv, encoder->port); bool is_tc_port = intel_phy_is_tc(dev_priv, phy); if (is_tc_port) intel_tc_port_get_link(dig_port, crtc_state->lane_count); if (intel_crtc_has_dp_encoder(crtc_state) || is_tc_port) intel_display_power_get(dev_priv, intel_ddi_main_link_aux_domain(dig_port)); if (is_tc_port && dig_port->tc_mode != TC_PORT_TBT_ALT) /* * Program the lane count for static/dynamic connections on * Type-C ports. Skip this step for TBT. */ intel_tc_port_set_fia_lane_count(dig_port, crtc_state->lane_count); else if (IS_GEN9_LP(dev_priv)) bxt_ddi_phy_set_lane_optim_mask(encoder, crtc_state->lane_lat_optim_mask); } static void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; u32 dp_tp_ctl, ddi_buf_ctl; bool wait = false; dp_tp_ctl = intel_de_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state)); if (dp_tp_ctl & DP_TP_CTL_ENABLE) { ddi_buf_ctl = intel_de_read(dev_priv, DDI_BUF_CTL(port)); if (ddi_buf_ctl & DDI_BUF_CTL_ENABLE) { intel_de_write(dev_priv, DDI_BUF_CTL(port), ddi_buf_ctl & ~DDI_BUF_CTL_ENABLE); wait = true; } dp_tp_ctl &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); dp_tp_ctl |= DP_TP_CTL_LINK_TRAIN_PAT1; intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), dp_tp_ctl); intel_de_posting_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state)); if (wait) intel_wait_ddi_buf_idle(dev_priv, port); } dp_tp_ctl = DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_PAT1; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) { dp_tp_ctl |= DP_TP_CTL_MODE_MST; } else { dp_tp_ctl |= DP_TP_CTL_MODE_SST; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) dp_tp_ctl |= DP_TP_CTL_ENHANCED_FRAME_ENABLE; } intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), dp_tp_ctl); intel_de_posting_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state)); intel_dp->DP |= DDI_BUF_CTL_ENABLE; intel_de_write(dev_priv, DDI_BUF_CTL(port), intel_dp->DP); intel_de_posting_read(dev_priv, DDI_BUF_CTL(port)); intel_wait_ddi_buf_active(dev_priv, port); } static void intel_ddi_set_link_train(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, u8 dp_train_pat) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 temp; temp = intel_de_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state)); temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; switch (intel_dp_training_pattern_symbol(dp_train_pat)) { case DP_TRAINING_PATTERN_DISABLE: temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; break; case DP_TRAINING_PATTERN_1: temp |= DP_TP_CTL_LINK_TRAIN_PAT1; break; case DP_TRAINING_PATTERN_2: temp |= DP_TP_CTL_LINK_TRAIN_PAT2; break; case DP_TRAINING_PATTERN_3: temp |= DP_TP_CTL_LINK_TRAIN_PAT3; break; case DP_TRAINING_PATTERN_4: temp |= DP_TP_CTL_LINK_TRAIN_PAT4; break; } intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), temp); } static void intel_ddi_set_idle_link_train(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; u32 val; val = intel_de_read(dev_priv, dp_tp_ctl_reg(encoder, crtc_state)); val &= ~DP_TP_CTL_LINK_TRAIN_MASK; val |= DP_TP_CTL_LINK_TRAIN_IDLE; intel_de_write(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), val); /* * Until TGL on PORT_A we can have only eDP in SST mode. There the only * reason we need to set idle transmission mode is to work around a HW * issue where we enable the pipe while not in idle link-training mode. * In this case there is requirement to wait for a minimum number of * idle patterns to be sent. */ if (port == PORT_A && INTEL_GEN(dev_priv) < 12) return; if (intel_de_wait_for_set(dev_priv, dp_tp_status_reg(encoder, crtc_state), DP_TP_STATUS_IDLE_DONE, 1)) drm_err(&dev_priv->drm, "Timed out waiting for DP idle patterns\n"); } static bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { if (cpu_transcoder == TRANSCODER_EDP) return false; if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) return false; return intel_de_read(dev_priv, HSW_AUD_PIN_ELD_CP_VLD) & AUDIO_OUTPUT_ENABLE(cpu_transcoder); } void intel_ddi_compute_min_voltage_level(struct drm_i915_private *dev_priv, struct intel_crtc_state *crtc_state) { if (INTEL_GEN(dev_priv) >= 12 && crtc_state->port_clock > 594000) crtc_state->min_voltage_level = 2; else if (IS_JSL_EHL(dev_priv) && crtc_state->port_clock > 594000) crtc_state->min_voltage_level = 3; else if (INTEL_GEN(dev_priv) >= 11 && crtc_state->port_clock > 594000) crtc_state->min_voltage_level = 1; else if (IS_CANNONLAKE(dev_priv) && crtc_state->port_clock > 594000) crtc_state->min_voltage_level = 2; } static enum transcoder bdw_transcoder_master_readout(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { u32 master_select; if (INTEL_GEN(dev_priv) >= 11) { u32 ctl2 = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL2(cpu_transcoder)); if ((ctl2 & PORT_SYNC_MODE_ENABLE) == 0) return INVALID_TRANSCODER; master_select = REG_FIELD_GET(PORT_SYNC_MODE_MASTER_SELECT_MASK, ctl2); } else { u32 ctl = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)); if ((ctl & TRANS_DDI_PORT_SYNC_ENABLE) == 0) return INVALID_TRANSCODER; master_select = REG_FIELD_GET(TRANS_DDI_PORT_SYNC_MASTER_SELECT_MASK, ctl); } if (master_select == 0) return TRANSCODER_EDP; else return master_select - 1; } static void bdw_get_trans_port_sync_config(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); u32 transcoders = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) | BIT(TRANSCODER_C) | BIT(TRANSCODER_D); enum transcoder cpu_transcoder; crtc_state->master_transcoder = bdw_transcoder_master_readout(dev_priv, crtc_state->cpu_transcoder); for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) { enum intel_display_power_domain power_domain; intel_wakeref_t trans_wakeref; power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); trans_wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!trans_wakeref) continue; if (bdw_transcoder_master_readout(dev_priv, cpu_transcoder) == crtc_state->cpu_transcoder) crtc_state->sync_mode_slaves_mask |= BIT(cpu_transcoder); intel_display_power_put(dev_priv, power_domain, trans_wakeref); } drm_WARN_ON(&dev_priv->drm, crtc_state->master_transcoder != INVALID_TRANSCODER && crtc_state->sync_mode_slaves_mask); } static void intel_ddi_read_func_ctl(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc); enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; u32 temp, flags = 0; temp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)); if (temp & TRANS_DDI_PHSYNC) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (temp & TRANS_DDI_PVSYNC) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; pipe_config->hw.adjusted_mode.flags |= flags; switch (temp & TRANS_DDI_BPC_MASK) { case TRANS_DDI_BPC_6: pipe_config->pipe_bpp = 18; break; case TRANS_DDI_BPC_8: pipe_config->pipe_bpp = 24; break; case TRANS_DDI_BPC_10: pipe_config->pipe_bpp = 30; break; case TRANS_DDI_BPC_12: pipe_config->pipe_bpp = 36; break; default: break; } switch (temp & TRANS_DDI_MODE_SELECT_MASK) { case TRANS_DDI_MODE_SELECT_HDMI: pipe_config->has_hdmi_sink = true; pipe_config->infoframes.enable |= intel_hdmi_infoframes_enabled(encoder, pipe_config); if (pipe_config->infoframes.enable) pipe_config->has_infoframe = true; if (temp & TRANS_DDI_HDMI_SCRAMBLING) pipe_config->hdmi_scrambling = true; if (temp & TRANS_DDI_HIGH_TMDS_CHAR_RATE) pipe_config->hdmi_high_tmds_clock_ratio = true; fallthrough; case TRANS_DDI_MODE_SELECT_DVI: pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI); pipe_config->lane_count = 4; break; case TRANS_DDI_MODE_SELECT_FDI: pipe_config->output_types |= BIT(INTEL_OUTPUT_ANALOG); break; case TRANS_DDI_MODE_SELECT_DP_SST: if (encoder->type == INTEL_OUTPUT_EDP) pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); else pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); pipe_config->lane_count = ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1; intel_dp_get_m_n(intel_crtc, pipe_config); if (INTEL_GEN(dev_priv) >= 11) { i915_reg_t dp_tp_ctl = dp_tp_ctl_reg(encoder, pipe_config); pipe_config->fec_enable = intel_de_read(dev_priv, dp_tp_ctl) & DP_TP_CTL_FEC_ENABLE; drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] Fec status: %u\n", encoder->base.base.id, encoder->base.name, pipe_config->fec_enable); } pipe_config->infoframes.enable |= intel_hdmi_infoframes_enabled(encoder, pipe_config); break; case TRANS_DDI_MODE_SELECT_DP_MST: pipe_config->output_types |= BIT(INTEL_OUTPUT_DP_MST); pipe_config->lane_count = ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1; if (INTEL_GEN(dev_priv) >= 12) pipe_config->mst_master_transcoder = REG_FIELD_GET(TRANS_DDI_MST_TRANSPORT_SELECT_MASK, temp); intel_dp_get_m_n(intel_crtc, pipe_config); pipe_config->infoframes.enable |= intel_hdmi_infoframes_enabled(encoder, pipe_config); break; default: break; } } void intel_ddi_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; /* XXX: DSI transcoder paranoia */ if (drm_WARN_ON(&dev_priv->drm, transcoder_is_dsi(cpu_transcoder))) return; if (pipe_config->bigjoiner_slave) { /* read out pipe settings from master */ enum transcoder save = pipe_config->cpu_transcoder; /* Our own transcoder needs to be disabled when reading it in intel_ddi_read_func_ctl() */ WARN_ON(pipe_config->output_types); pipe_config->cpu_transcoder = (enum transcoder)pipe_config->bigjoiner_linked_crtc->pipe; intel_ddi_read_func_ctl(encoder, pipe_config); pipe_config->cpu_transcoder = save; } else { intel_ddi_read_func_ctl(encoder, pipe_config); } pipe_config->has_audio = intel_ddi_is_audio_enabled(dev_priv, cpu_transcoder); if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp && pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { /* * This is a big fat ugly hack. * * Some machines in UEFI boot mode provide us a VBT that has 18 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons * unknown we fail to light up. Yet the same BIOS boots up with * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as * max, not what it tells us to use. * * Note: This will still be broken if the eDP panel is not lit * up by the BIOS, and thus we can't get the mode at module * load. */ drm_dbg_kms(&dev_priv->drm, "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; } if (!pipe_config->bigjoiner_slave) intel_ddi_clock_get(encoder, pipe_config); if (IS_GEN9_LP(dev_priv)) pipe_config->lane_lat_optim_mask = bxt_ddi_phy_get_lane_lat_optim_mask(encoder); intel_ddi_compute_min_voltage_level(dev_priv, pipe_config); intel_hdmi_read_gcp_infoframe(encoder, pipe_config); intel_read_infoframe(encoder, pipe_config, HDMI_INFOFRAME_TYPE_AVI, &pipe_config->infoframes.avi); intel_read_infoframe(encoder, pipe_config, HDMI_INFOFRAME_TYPE_SPD, &pipe_config->infoframes.spd); intel_read_infoframe(encoder, pipe_config, HDMI_INFOFRAME_TYPE_VENDOR, &pipe_config->infoframes.hdmi); intel_read_infoframe(encoder, pipe_config, HDMI_INFOFRAME_TYPE_DRM, &pipe_config->infoframes.drm); if (INTEL_GEN(dev_priv) >= 8) bdw_get_trans_port_sync_config(pipe_config); intel_read_dp_sdp(encoder, pipe_config, HDMI_PACKET_TYPE_GAMUT_METADATA); intel_read_dp_sdp(encoder, pipe_config, DP_SDP_VSC); } static void intel_ddi_sync_state(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { if (intel_crtc_has_dp_encoder(crtc_state)) intel_dp_sync_state(encoder, crtc_state); } static bool intel_ddi_initial_fastset_check(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { if (intel_crtc_has_dp_encoder(crtc_state)) return intel_dp_initial_fastset_check(encoder, crtc_state); return true; } static enum intel_output_type intel_ddi_compute_output_type(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { switch (conn_state->connector->connector_type) { case DRM_MODE_CONNECTOR_HDMIA: return INTEL_OUTPUT_HDMI; case DRM_MODE_CONNECTOR_eDP: return INTEL_OUTPUT_EDP; case DRM_MODE_CONNECTOR_DisplayPort: return INTEL_OUTPUT_DP; default: MISSING_CASE(conn_state->connector->connector_type); return INTEL_OUTPUT_UNUSED; } } static int intel_ddi_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; int ret; if (HAS_TRANSCODER(dev_priv, TRANSCODER_EDP) && port == PORT_A) pipe_config->cpu_transcoder = TRANSCODER_EDP; if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) { ret = intel_hdmi_compute_config(encoder, pipe_config, conn_state); } else { ret = intel_dp_compute_config(encoder, pipe_config, conn_state); } if (ret) return ret; if (IS_HASWELL(dev_priv) && crtc->pipe == PIPE_A && pipe_config->cpu_transcoder == TRANSCODER_EDP) pipe_config->pch_pfit.force_thru = pipe_config->pch_pfit.enabled || pipe_config->crc_enabled; if (IS_GEN9_LP(dev_priv)) pipe_config->lane_lat_optim_mask = bxt_ddi_phy_calc_lane_lat_optim_mask(pipe_config->lane_count); intel_ddi_compute_min_voltage_level(dev_priv, pipe_config); return 0; } static bool mode_equal(const struct drm_display_mode *mode1, const struct drm_display_mode *mode2) { return drm_mode_match(mode1, mode2, DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS | DRM_MODE_MATCH_3D_FLAGS) && mode1->clock == mode2->clock; /* we want an exact match */ } static bool m_n_equal(const struct intel_link_m_n *m_n_1, const struct intel_link_m_n *m_n_2) { return m_n_1->tu == m_n_2->tu && m_n_1->gmch_m == m_n_2->gmch_m && m_n_1->gmch_n == m_n_2->gmch_n && m_n_1->link_m == m_n_2->link_m && m_n_1->link_n == m_n_2->link_n; } static bool crtcs_port_sync_compatible(const struct intel_crtc_state *crtc_state1, const struct intel_crtc_state *crtc_state2) { return crtc_state1->hw.active && crtc_state2->hw.active && crtc_state1->output_types == crtc_state2->output_types && crtc_state1->output_format == crtc_state2->output_format && crtc_state1->lane_count == crtc_state2->lane_count && crtc_state1->port_clock == crtc_state2->port_clock && mode_equal(&crtc_state1->hw.adjusted_mode, &crtc_state2->hw.adjusted_mode) && m_n_equal(&crtc_state1->dp_m_n, &crtc_state2->dp_m_n); } static u8 intel_ddi_port_sync_transcoders(const struct intel_crtc_state *ref_crtc_state, int tile_group_id) { struct drm_connector *connector; const struct drm_connector_state *conn_state; struct drm_i915_private *dev_priv = to_i915(ref_crtc_state->uapi.crtc->dev); struct intel_atomic_state *state = to_intel_atomic_state(ref_crtc_state->uapi.state); u8 transcoders = 0; int i; /* * We don't enable port sync on BDW due to missing w/as and * due to not having adjusted the modeset sequence appropriately. */ if (INTEL_GEN(dev_priv) < 9) return 0; if (!intel_crtc_has_type(ref_crtc_state, INTEL_OUTPUT_DP)) return 0; for_each_new_connector_in_state(&state->base, connector, conn_state, i) { struct intel_crtc *crtc = to_intel_crtc(conn_state->crtc); const struct intel_crtc_state *crtc_state; if (!crtc) continue; if (!connector->has_tile || connector->tile_group->id != tile_group_id) continue; crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (!crtcs_port_sync_compatible(ref_crtc_state, crtc_state)) continue; transcoders |= BIT(crtc_state->cpu_transcoder); } return transcoders; } static int intel_ddi_compute_config_late(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct drm_connector *connector = conn_state->connector; u8 port_sync_transcoders = 0; drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] [CRTC:%d:%s]", encoder->base.base.id, encoder->base.name, crtc_state->uapi.crtc->base.id, crtc_state->uapi.crtc->name); if (connector->has_tile) port_sync_transcoders = intel_ddi_port_sync_transcoders(crtc_state, connector->tile_group->id); /* * EDP Transcoders cannot be ensalved * make them a master always when present */ if (port_sync_transcoders & BIT(TRANSCODER_EDP)) crtc_state->master_transcoder = TRANSCODER_EDP; else crtc_state->master_transcoder = ffs(port_sync_transcoders) - 1; if (crtc_state->master_transcoder == crtc_state->cpu_transcoder) { crtc_state->master_transcoder = INVALID_TRANSCODER; crtc_state->sync_mode_slaves_mask = port_sync_transcoders & ~BIT(crtc_state->cpu_transcoder); } return 0; } static void intel_ddi_encoder_destroy(struct drm_encoder *encoder) { struct intel_digital_port *dig_port = enc_to_dig_port(to_intel_encoder(encoder)); intel_dp_encoder_flush_work(encoder); drm_encoder_cleanup(encoder); kfree(dig_port); } static const struct drm_encoder_funcs intel_ddi_funcs = { .reset = intel_dp_encoder_reset, .destroy = intel_ddi_encoder_destroy, }; static struct intel_connector * intel_ddi_init_dp_connector(struct intel_digital_port *dig_port) { struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); struct intel_connector *connector; enum port port = dig_port->base.port; connector = intel_connector_alloc(); if (!connector) return NULL; dig_port->dp.output_reg = DDI_BUF_CTL(port); dig_port->dp.prepare_link_retrain = intel_ddi_prepare_link_retrain; dig_port->dp.set_link_train = intel_ddi_set_link_train; dig_port->dp.set_idle_link_train = intel_ddi_set_idle_link_train; if (INTEL_GEN(dev_priv) >= 12) dig_port->dp.set_signal_levels = tgl_set_signal_levels; else if (INTEL_GEN(dev_priv) >= 11) dig_port->dp.set_signal_levels = icl_set_signal_levels; else if (IS_CANNONLAKE(dev_priv)) dig_port->dp.set_signal_levels = cnl_set_signal_levels; else if (IS_GEN9_LP(dev_priv)) dig_port->dp.set_signal_levels = bxt_set_signal_levels; else dig_port->dp.set_signal_levels = hsw_set_signal_levels; dig_port->dp.voltage_max = intel_ddi_dp_voltage_max; dig_port->dp.preemph_max = intel_ddi_dp_preemph_max; if (!intel_dp_init_connector(dig_port, connector)) { kfree(connector); return NULL; } return connector; } static int modeset_pipe(struct drm_crtc *crtc, struct drm_modeset_acquire_ctx *ctx) { struct drm_atomic_state *state; struct drm_crtc_state *crtc_state; int ret; state = drm_atomic_state_alloc(crtc->dev); if (!state) return -ENOMEM; state->acquire_ctx = ctx; crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto out; } crtc_state->connectors_changed = true; ret = drm_atomic_commit(state); out: drm_atomic_state_put(state); return ret; } static int intel_hdmi_reset_link(struct intel_encoder *encoder, struct drm_modeset_acquire_ctx *ctx) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder); struct intel_connector *connector = hdmi->attached_connector; struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); struct drm_connector_state *conn_state; struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; u8 config; int ret; if (!connector || connector->base.status != connector_status_connected) return 0; ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, ctx); if (ret) return ret; conn_state = connector->base.state; crtc = to_intel_crtc(conn_state->crtc); if (!crtc) return 0; ret = drm_modeset_lock(&crtc->base.mutex, ctx); if (ret) return ret; crtc_state = to_intel_crtc_state(crtc->base.state); drm_WARN_ON(&dev_priv->drm, !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)); if (!crtc_state->hw.active) return 0; if (!crtc_state->hdmi_high_tmds_clock_ratio && !crtc_state->hdmi_scrambling) return 0; if (conn_state->commit && !try_wait_for_completion(&conn_state->commit->hw_done)) return 0; ret = drm_scdc_readb(adapter, SCDC_TMDS_CONFIG, &config); if (ret < 0) { drm_err(&dev_priv->drm, "Failed to read TMDS config: %d\n", ret); return 0; } if (!!(config & SCDC_TMDS_BIT_CLOCK_RATIO_BY_40) == crtc_state->hdmi_high_tmds_clock_ratio && !!(config & SCDC_SCRAMBLING_ENABLE) == crtc_state->hdmi_scrambling) return 0; /* * HDMI 2.0 says that one should not send scrambled data * prior to configuring the sink scrambling, and that * TMDS clock/data transmission should be suspended when * changing the TMDS clock rate in the sink. So let's * just do a full modeset here, even though some sinks * would be perfectly happy if were to just reconfigure * the SCDC settings on the fly. */ return modeset_pipe(&crtc->base, ctx); } static enum intel_hotplug_state intel_ddi_hotplug(struct intel_encoder *encoder, struct intel_connector *connector) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); enum phy phy = intel_port_to_phy(i915, encoder->port); bool is_tc = intel_phy_is_tc(i915, phy); struct drm_modeset_acquire_ctx ctx; enum intel_hotplug_state state; int ret; state = intel_encoder_hotplug(encoder, connector); drm_modeset_acquire_init(&ctx, 0); for (;;) { if (connector->base.connector_type == DRM_MODE_CONNECTOR_HDMIA) ret = intel_hdmi_reset_link(encoder, &ctx); else ret = intel_dp_retrain_link(encoder, &ctx); if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); continue; } break; } drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); drm_WARN(encoder->base.dev, ret, "Acquiring modeset locks failed with %i\n", ret); /* * Unpowered type-c dongles can take some time to boot and be * responsible, so here giving some time to those dongles to power up * and then retrying the probe. * * On many platforms the HDMI live state signal is known to be * unreliable, so we can't use it to detect if a sink is connected or * not. Instead we detect if it's connected based on whether we can * read the EDID or not. That in turn has a problem during disconnect, * since the HPD interrupt may be raised before the DDC lines get * disconnected (due to how the required length of DDC vs. HPD * connector pins are specified) and so we'll still be able to get a * valid EDID. To solve this schedule another detection cycle if this * time around we didn't detect any change in the sink's connection * status. * * Type-c connectors which get their HPD signal deasserted then * reasserted, without unplugging/replugging the sink from the * connector, introduce a delay until the AUX channel communication * becomes functional. Retry the detection for 5 seconds on type-c * connectors to account for this delay. */ if (state == INTEL_HOTPLUG_UNCHANGED && connector->hotplug_retries < (is_tc ? 5 : 1) && !dig_port->dp.is_mst) state = INTEL_HOTPLUG_RETRY; return state; } static bool lpt_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin]; return intel_de_read(dev_priv, SDEISR) & bit; } static bool hsw_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin]; return intel_de_read(dev_priv, DEISR) & bit; } static bool bdw_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin]; return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit; } static struct intel_connector * intel_ddi_init_hdmi_connector(struct intel_digital_port *dig_port) { struct intel_connector *connector; enum port port = dig_port->base.port; connector = intel_connector_alloc(); if (!connector) return NULL; dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port); intel_hdmi_init_connector(dig_port, connector); return connector; } static bool intel_ddi_a_force_4_lanes(struct intel_digital_port *dig_port) { struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); if (dig_port->base.port != PORT_A) return false; if (dig_port->saved_port_bits & DDI_A_4_LANES) return false; /* Broxton/Geminilake: Bspec says that DDI_A_4_LANES is the only * supported configuration */ if (IS_GEN9_LP(dev_priv)) return true; /* Cannonlake: Most of SKUs don't support DDI_E, and the only * one who does also have a full A/E split called * DDI_F what makes DDI_E useless. However for this * case let's trust VBT info. */ if (IS_CANNONLAKE(dev_priv) && !intel_bios_is_port_present(dev_priv, PORT_E)) return true; return false; } static int intel_ddi_max_lanes(struct intel_digital_port *dig_port) { struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); enum port port = dig_port->base.port; int max_lanes = 4; if (INTEL_GEN(dev_priv) >= 11) return max_lanes; if (port == PORT_A || port == PORT_E) { if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) max_lanes = port == PORT_A ? 4 : 0; else /* Both A and E share 2 lanes */ max_lanes = 2; } /* * Some BIOS might fail to set this bit on port A if eDP * wasn't lit up at boot. Force this bit set when needed * so we use the proper lane count for our calculations. */ if (intel_ddi_a_force_4_lanes(dig_port)) { drm_dbg_kms(&dev_priv->drm, "Forcing DDI_A_4_LANES for port A\n"); dig_port->saved_port_bits |= DDI_A_4_LANES; max_lanes = 4; } return max_lanes; } static bool hti_uses_phy(struct drm_i915_private *i915, enum phy phy) { return i915->hti_state & HDPORT_ENABLED && (i915->hti_state & HDPORT_PHY_USED_DP(phy) || i915->hti_state & HDPORT_PHY_USED_HDMI(phy)); } static enum hpd_pin dg1_hpd_pin(struct drm_i915_private *dev_priv, enum port port) { if (port >= PORT_TC1) return HPD_PORT_C + port - PORT_TC1; else return HPD_PORT_A + port - PORT_A; } static enum hpd_pin tgl_hpd_pin(struct drm_i915_private *dev_priv, enum port port) { if (port >= PORT_TC1) return HPD_PORT_TC1 + port - PORT_TC1; else return HPD_PORT_A + port - PORT_A; } static enum hpd_pin rkl_hpd_pin(struct drm_i915_private *dev_priv, enum port port) { if (HAS_PCH_TGP(dev_priv)) return tgl_hpd_pin(dev_priv, port); if (port >= PORT_TC1) return HPD_PORT_C + port - PORT_TC1; else return HPD_PORT_A + port - PORT_A; } static enum hpd_pin icl_hpd_pin(struct drm_i915_private *dev_priv, enum port port) { if (port >= PORT_C) return HPD_PORT_TC1 + port - PORT_C; else return HPD_PORT_A + port - PORT_A; } static enum hpd_pin ehl_hpd_pin(struct drm_i915_private *dev_priv, enum port port) { if (port == PORT_D) return HPD_PORT_A; if (HAS_PCH_MCC(dev_priv)) return icl_hpd_pin(dev_priv, port); return HPD_PORT_A + port - PORT_A; } static enum hpd_pin cnl_hpd_pin(struct drm_i915_private *dev_priv, enum port port) { if (port == PORT_F) return HPD_PORT_E; return HPD_PORT_A + port - PORT_A; } #define port_tc_name(port) ((port) - PORT_TC1 + '1') #define tc_port_name(tc_port) ((tc_port) - TC_PORT_1 + '1') void intel_ddi_init(struct drm_i915_private *dev_priv, enum port port) { struct intel_digital_port *dig_port; struct intel_encoder *encoder; bool init_hdmi, init_dp; enum phy phy = intel_port_to_phy(dev_priv, port); /* * On platforms with HTI (aka HDPORT), if it's enabled at boot it may * have taken over some of the PHYs and made them unavailable to the * driver. In that case we should skip initializing the corresponding * outputs. */ if (hti_uses_phy(dev_priv, phy)) { drm_dbg_kms(&dev_priv->drm, "PORT %c / PHY %c reserved by HTI\n", port_name(port), phy_name(phy)); return; } init_hdmi = intel_bios_port_supports_dvi(dev_priv, port) || intel_bios_port_supports_hdmi(dev_priv, port); init_dp = intel_bios_port_supports_dp(dev_priv, port); if (intel_bios_is_lspcon_present(dev_priv, port)) { /* * Lspcon device needs to be driven with DP connector * with special detection sequence. So make sure DP * is initialized before lspcon. */ init_dp = true; init_hdmi = false; drm_dbg_kms(&dev_priv->drm, "VBT says port %c has lspcon\n", port_name(port)); } if (!init_dp && !init_hdmi) { drm_dbg_kms(&dev_priv->drm, "VBT says port %c is not DVI/HDMI/DP compatible, respect it\n", port_name(port)); return; } dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL); if (!dig_port) return; encoder = &dig_port->base; if (INTEL_GEN(dev_priv) >= 12) { enum tc_port tc_port = intel_port_to_tc(dev_priv, port); drm_encoder_init(&dev_priv->drm, &encoder->base, &intel_ddi_funcs, DRM_MODE_ENCODER_TMDS, "DDI %s%c/PHY %s%c", port >= PORT_TC1 ? "TC" : "", port >= PORT_TC1 ? port_tc_name(port) : port_name(port), tc_port != TC_PORT_NONE ? "TC" : "", tc_port != TC_PORT_NONE ? tc_port_name(tc_port) : phy_name(phy)); } else if (INTEL_GEN(dev_priv) >= 11) { enum tc_port tc_port = intel_port_to_tc(dev_priv, port); drm_encoder_init(&dev_priv->drm, &encoder->base, &intel_ddi_funcs, DRM_MODE_ENCODER_TMDS, "DDI %c%s/PHY %s%c", port_name(port), port >= PORT_C ? " (TC)" : "", tc_port != TC_PORT_NONE ? "TC" : "", tc_port != TC_PORT_NONE ? tc_port_name(tc_port) : phy_name(phy)); } else { drm_encoder_init(&dev_priv->drm, &encoder->base, &intel_ddi_funcs, DRM_MODE_ENCODER_TMDS, "DDI %c/PHY %c", port_name(port), phy_name(phy)); } mutex_init(&dig_port->hdcp_mutex); dig_port->num_hdcp_streams = 0; encoder->hotplug = intel_ddi_hotplug; encoder->compute_output_type = intel_ddi_compute_output_type; encoder->compute_config = intel_ddi_compute_config; encoder->compute_config_late = intel_ddi_compute_config_late; encoder->enable = intel_enable_ddi; encoder->pre_pll_enable = intel_ddi_pre_pll_enable; encoder->pre_enable = intel_ddi_pre_enable; encoder->disable = intel_disable_ddi; encoder->post_disable = intel_ddi_post_disable; encoder->update_pipe = intel_ddi_update_pipe; encoder->get_hw_state = intel_ddi_get_hw_state; encoder->get_config = intel_ddi_get_config; encoder->sync_state = intel_ddi_sync_state; encoder->initial_fastset_check = intel_ddi_initial_fastset_check; encoder->suspend = intel_dp_encoder_suspend; encoder->shutdown = intel_dp_encoder_shutdown; encoder->get_power_domains = intel_ddi_get_power_domains; encoder->type = INTEL_OUTPUT_DDI; encoder->power_domain = intel_port_to_power_domain(port); encoder->port = port; encoder->cloneable = 0; encoder->pipe_mask = ~0; if (IS_DG1(dev_priv)) encoder->hpd_pin = dg1_hpd_pin(dev_priv, port); else if (IS_ROCKETLAKE(dev_priv)) encoder->hpd_pin = rkl_hpd_pin(dev_priv, port); else if (INTEL_GEN(dev_priv) >= 12) encoder->hpd_pin = tgl_hpd_pin(dev_priv, port); else if (IS_JSL_EHL(dev_priv)) encoder->hpd_pin = ehl_hpd_pin(dev_priv, port); else if (IS_GEN(dev_priv, 11)) encoder->hpd_pin = icl_hpd_pin(dev_priv, port); else if (IS_GEN(dev_priv, 10)) encoder->hpd_pin = cnl_hpd_pin(dev_priv, port); else encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); if (INTEL_GEN(dev_priv) >= 11) dig_port->saved_port_bits = intel_de_read(dev_priv, DDI_BUF_CTL(port)) & DDI_BUF_PORT_REVERSAL; else dig_port->saved_port_bits = intel_de_read(dev_priv, DDI_BUF_CTL(port)) & (DDI_BUF_PORT_REVERSAL | DDI_A_4_LANES); dig_port->dp.output_reg = INVALID_MMIO_REG; dig_port->max_lanes = intel_ddi_max_lanes(dig_port); dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); if (intel_phy_is_tc(dev_priv, phy)) { bool is_legacy = !intel_bios_port_supports_typec_usb(dev_priv, port) && !intel_bios_port_supports_tbt(dev_priv, port); intel_tc_port_init(dig_port, is_legacy); encoder->update_prepare = intel_ddi_update_prepare; encoder->update_complete = intel_ddi_update_complete; } drm_WARN_ON(&dev_priv->drm, port > PORT_I); dig_port->ddi_io_power_domain = POWER_DOMAIN_PORT_DDI_A_IO + port - PORT_A; if (init_dp) { if (!intel_ddi_init_dp_connector(dig_port)) goto err; dig_port->hpd_pulse = intel_dp_hpd_pulse; } /* In theory we don't need the encoder->type check, but leave it just in * case we have some really bad VBTs... */ if (encoder->type != INTEL_OUTPUT_EDP && init_hdmi) { if (!intel_ddi_init_hdmi_connector(dig_port)) goto err; } if (INTEL_GEN(dev_priv) >= 11) { if (intel_phy_is_tc(dev_priv, phy)) dig_port->connected = intel_tc_port_connected; else dig_port->connected = lpt_digital_port_connected; } else if (INTEL_GEN(dev_priv) >= 8) { if (port == PORT_A || IS_GEN9_LP(dev_priv)) dig_port->connected = bdw_digital_port_connected; else dig_port->connected = lpt_digital_port_connected; } else { if (port == PORT_A) dig_port->connected = hsw_digital_port_connected; else dig_port->connected = lpt_digital_port_connected; } intel_infoframe_init(dig_port); return; err: drm_encoder_cleanup(&encoder->base); kfree(dig_port); }