/* * linux/include/linux/mtd/nand.h * * Copyright © 2000-2010 David Woodhouse * Steven J. Hill * Thomas Gleixner * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Info: * Contains standard defines and IDs for NAND flash devices * * Changelog: * See git changelog. */ #ifndef __LINUX_MTD_NAND_H #define __LINUX_MTD_NAND_H #include #include #include #include #include struct mtd_info; struct nand_flash_dev; struct device_node; /* Scan and identify a NAND device */ int nand_scan(struct mtd_info *mtd, int max_chips); /* * Separate phases of nand_scan(), allowing board driver to intervene * and override command or ECC setup according to flash type. */ int nand_scan_ident(struct mtd_info *mtd, int max_chips, struct nand_flash_dev *table); int nand_scan_tail(struct mtd_info *mtd); /* Unregister the MTD device and free resources held by the NAND device */ void nand_release(struct mtd_info *mtd); /* Internal helper for board drivers which need to override command function */ void nand_wait_ready(struct mtd_info *mtd); /* locks all blocks present in the device */ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); /* unlocks specified locked blocks */ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); /* The maximum number of NAND chips in an array */ #define NAND_MAX_CHIPS 8 /* * Constants for hardware specific CLE/ALE/NCE function * * These are bits which can be or'ed to set/clear multiple * bits in one go. */ /* Select the chip by setting nCE to low */ #define NAND_NCE 0x01 /* Select the command latch by setting CLE to high */ #define NAND_CLE 0x02 /* Select the address latch by setting ALE to high */ #define NAND_ALE 0x04 #define NAND_CTRL_CLE (NAND_NCE | NAND_CLE) #define NAND_CTRL_ALE (NAND_NCE | NAND_ALE) #define NAND_CTRL_CHANGE 0x80 /* * Standard NAND flash commands */ #define NAND_CMD_READ0 0 #define NAND_CMD_READ1 1 #define NAND_CMD_RNDOUT 5 #define NAND_CMD_PAGEPROG 0x10 #define NAND_CMD_READOOB 0x50 #define NAND_CMD_ERASE1 0x60 #define NAND_CMD_STATUS 0x70 #define NAND_CMD_SEQIN 0x80 #define NAND_CMD_RNDIN 0x85 #define NAND_CMD_READID 0x90 #define NAND_CMD_ERASE2 0xd0 #define NAND_CMD_PARAM 0xec #define NAND_CMD_GET_FEATURES 0xee #define NAND_CMD_SET_FEATURES 0xef #define NAND_CMD_RESET 0xff #define NAND_CMD_LOCK 0x2a #define NAND_CMD_UNLOCK1 0x23 #define NAND_CMD_UNLOCK2 0x24 /* Extended commands for large page devices */ #define NAND_CMD_READSTART 0x30 #define NAND_CMD_RNDOUTSTART 0xE0 #define NAND_CMD_CACHEDPROG 0x15 #define NAND_CMD_NONE -1 /* Status bits */ #define NAND_STATUS_FAIL 0x01 #define NAND_STATUS_FAIL_N1 0x02 #define NAND_STATUS_TRUE_READY 0x20 #define NAND_STATUS_READY 0x40 #define NAND_STATUS_WP 0x80 /* * Constants for ECC_MODES */ typedef enum { NAND_ECC_NONE, NAND_ECC_SOFT, NAND_ECC_HW, NAND_ECC_HW_SYNDROME, NAND_ECC_HW_OOB_FIRST, } nand_ecc_modes_t; enum nand_ecc_algo { NAND_ECC_UNKNOWN, NAND_ECC_HAMMING, NAND_ECC_BCH, }; /* * Constants for Hardware ECC */ /* Reset Hardware ECC for read */ #define NAND_ECC_READ 0 /* Reset Hardware ECC for write */ #define NAND_ECC_WRITE 1 /* Enable Hardware ECC before syndrome is read back from flash */ #define NAND_ECC_READSYN 2 /* * Enable generic NAND 'page erased' check. This check is only done when * ecc.correct() returns -EBADMSG. * Set this flag if your implementation does not fix bitflips in erased * pages and you want to rely on the default implementation. */ #define NAND_ECC_GENERIC_ERASED_CHECK BIT(0) #define NAND_ECC_MAXIMIZE BIT(1) /* * If your controller already sends the required NAND commands when * reading or writing a page, then the framework is not supposed to * send READ0 and SEQIN/PAGEPROG respectively. */ #define NAND_ECC_CUSTOM_PAGE_ACCESS BIT(2) /* Bit mask for flags passed to do_nand_read_ecc */ #define NAND_GET_DEVICE 0x80 /* * Option constants for bizarre disfunctionality and real * features. */ /* Buswidth is 16 bit */ #define NAND_BUSWIDTH_16 0x00000002 /* Chip has cache program function */ #define NAND_CACHEPRG 0x00000008 /* * Chip requires ready check on read (for auto-incremented sequential read). * True only for small page devices; large page devices do not support * autoincrement. */ #define NAND_NEED_READRDY 0x00000100 /* Chip does not allow subpage writes */ #define NAND_NO_SUBPAGE_WRITE 0x00000200 /* Device is one of 'new' xD cards that expose fake nand command set */ #define NAND_BROKEN_XD 0x00000400 /* Device behaves just like nand, but is readonly */ #define NAND_ROM 0x00000800 /* Device supports subpage reads */ #define NAND_SUBPAGE_READ 0x00001000 /* * Some MLC NANDs need data scrambling to limit bitflips caused by repeated * patterns. */ #define NAND_NEED_SCRAMBLING 0x00002000 /* Options valid for Samsung large page devices */ #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG /* Macros to identify the above */ #define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG)) #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ)) #define NAND_HAS_SUBPAGE_WRITE(chip) !((chip)->options & NAND_NO_SUBPAGE_WRITE) /* Non chip related options */ /* This option skips the bbt scan during initialization. */ #define NAND_SKIP_BBTSCAN 0x00010000 /* * This option is defined if the board driver allocates its own buffers * (e.g. because it needs them DMA-coherent). */ #define NAND_OWN_BUFFERS 0x00020000 /* Chip may not exist, so silence any errors in scan */ #define NAND_SCAN_SILENT_NODEV 0x00040000 /* * Autodetect nand buswidth with readid/onfi. * This suppose the driver will configure the hardware in 8 bits mode * when calling nand_scan_ident, and update its configuration * before calling nand_scan_tail. */ #define NAND_BUSWIDTH_AUTO 0x00080000 /* * This option could be defined by controller drivers to protect against * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers */ #define NAND_USE_BOUNCE_BUFFER 0x00100000 /* * In case your controller is implementing ->cmd_ctrl() and is relying on the * default ->cmdfunc() implementation, you may want to let the core handle the * tCCS delay which is required when a column change (RNDIN or RNDOUT) is * requested. * If your controller already takes care of this delay, you don't need to set * this flag. */ #define NAND_WAIT_TCCS 0x00200000 /* Options set by nand scan */ /* Nand scan has allocated controller struct */ #define NAND_CONTROLLER_ALLOC 0x80000000 /* Cell info constants */ #define NAND_CI_CHIPNR_MSK 0x03 #define NAND_CI_CELLTYPE_MSK 0x0C #define NAND_CI_CELLTYPE_SHIFT 2 /* Keep gcc happy */ struct nand_chip; /* ONFI features */ #define ONFI_FEATURE_16_BIT_BUS (1 << 0) #define ONFI_FEATURE_EXT_PARAM_PAGE (1 << 7) /* ONFI timing mode, used in both asynchronous and synchronous mode */ #define ONFI_TIMING_MODE_0 (1 << 0) #define ONFI_TIMING_MODE_1 (1 << 1) #define ONFI_TIMING_MODE_2 (1 << 2) #define ONFI_TIMING_MODE_3 (1 << 3) #define ONFI_TIMING_MODE_4 (1 << 4) #define ONFI_TIMING_MODE_5 (1 << 5) #define ONFI_TIMING_MODE_UNKNOWN (1 << 6) /* ONFI feature address */ #define ONFI_FEATURE_ADDR_TIMING_MODE 0x1 /* Vendor-specific feature address (Micron) */ #define ONFI_FEATURE_ADDR_READ_RETRY 0x89 /* ONFI subfeature parameters length */ #define ONFI_SUBFEATURE_PARAM_LEN 4 /* ONFI optional commands SET/GET FEATURES supported? */ #define ONFI_OPT_CMD_SET_GET_FEATURES (1 << 2) struct nand_onfi_params { /* rev info and features block */ /* 'O' 'N' 'F' 'I' */ u8 sig[4]; __le16 revision; __le16 features; __le16 opt_cmd; u8 reserved0[2]; __le16 ext_param_page_length; /* since ONFI 2.1 */ u8 num_of_param_pages; /* since ONFI 2.1 */ u8 reserved1[17]; /* manufacturer information block */ char manufacturer[12]; char model[20]; u8 jedec_id; __le16 date_code; u8 reserved2[13]; /* memory organization block */ __le32 byte_per_page; __le16 spare_bytes_per_page; __le32 data_bytes_per_ppage; __le16 spare_bytes_per_ppage; __le32 pages_per_block; __le32 blocks_per_lun; u8 lun_count; u8 addr_cycles; u8 bits_per_cell; __le16 bb_per_lun; __le16 block_endurance; u8 guaranteed_good_blocks; __le16 guaranteed_block_endurance; u8 programs_per_page; u8 ppage_attr; u8 ecc_bits; u8 interleaved_bits; u8 interleaved_ops; u8 reserved3[13]; /* electrical parameter block */ u8 io_pin_capacitance_max; __le16 async_timing_mode; __le16 program_cache_timing_mode; __le16 t_prog; __le16 t_bers; __le16 t_r; __le16 t_ccs; __le16 src_sync_timing_mode; u8 src_ssync_features; __le16 clk_pin_capacitance_typ; __le16 io_pin_capacitance_typ; __le16 input_pin_capacitance_typ; u8 input_pin_capacitance_max; u8 driver_strength_support; __le16 t_int_r; __le16 t_adl; u8 reserved4[8]; /* vendor */ __le16 vendor_revision; u8 vendor[88]; __le16 crc; } __packed; #define ONFI_CRC_BASE 0x4F4E /* Extended ECC information Block Definition (since ONFI 2.1) */ struct onfi_ext_ecc_info { u8 ecc_bits; u8 codeword_size; __le16 bb_per_lun; __le16 block_endurance; u8 reserved[2]; } __packed; #define ONFI_SECTION_TYPE_0 0 /* Unused section. */ #define ONFI_SECTION_TYPE_1 1 /* for additional sections. */ #define ONFI_SECTION_TYPE_2 2 /* for ECC information. */ struct onfi_ext_section { u8 type; u8 length; } __packed; #define ONFI_EXT_SECTION_MAX 8 /* Extended Parameter Page Definition (since ONFI 2.1) */ struct onfi_ext_param_page { __le16 crc; u8 sig[4]; /* 'E' 'P' 'P' 'S' */ u8 reserved0[10]; struct onfi_ext_section sections[ONFI_EXT_SECTION_MAX]; /* * The actual size of the Extended Parameter Page is in * @ext_param_page_length of nand_onfi_params{}. * The following are the variable length sections. * So we do not add any fields below. Please see the ONFI spec. */ } __packed; struct jedec_ecc_info { u8 ecc_bits; u8 codeword_size; __le16 bb_per_lun; __le16 block_endurance; u8 reserved[2]; } __packed; /* JEDEC features */ #define JEDEC_FEATURE_16_BIT_BUS (1 << 0) struct nand_jedec_params { /* rev info and features block */ /* 'J' 'E' 'S' 'D' */ u8 sig[4]; __le16 revision; __le16 features; u8 opt_cmd[3]; __le16 sec_cmd; u8 num_of_param_pages; u8 reserved0[18]; /* manufacturer information block */ char manufacturer[12]; char model[20]; u8 jedec_id[6]; u8 reserved1[10]; /* memory organization block */ __le32 byte_per_page; __le16 spare_bytes_per_page; u8 reserved2[6]; __le32 pages_per_block; __le32 blocks_per_lun; u8 lun_count; u8 addr_cycles; u8 bits_per_cell; u8 programs_per_page; u8 multi_plane_addr; u8 multi_plane_op_attr; u8 reserved3[38]; /* electrical parameter block */ __le16 async_sdr_speed_grade; __le16 toggle_ddr_speed_grade; __le16 sync_ddr_speed_grade; u8 async_sdr_features; u8 toggle_ddr_features; u8 sync_ddr_features; __le16 t_prog; __le16 t_bers; __le16 t_r; __le16 t_r_multi_plane; __le16 t_ccs; __le16 io_pin_capacitance_typ; __le16 input_pin_capacitance_typ; __le16 clk_pin_capacitance_typ; u8 driver_strength_support; __le16 t_adl; u8 reserved4[36]; /* ECC and endurance block */ u8 guaranteed_good_blocks; __le16 guaranteed_block_endurance; struct jedec_ecc_info ecc_info[4]; u8 reserved5[29]; /* reserved */ u8 reserved6[148]; /* vendor */ __le16 vendor_rev_num; u8 reserved7[88]; /* CRC for Parameter Page */ __le16 crc; } __packed; /** * struct nand_id - NAND id structure * @data: buffer containing the id bytes. Currently 8 bytes large, but can * be extended if required. * @len: ID length. */ struct nand_id { u8 data[8]; int len; }; /** * struct nand_hw_control - Control structure for hardware controller (e.g ECC generator) shared among independent devices * @lock: protection lock * @active: the mtd device which holds the controller currently * @wq: wait queue to sleep on if a NAND operation is in * progress used instead of the per chip wait queue * when a hw controller is available. */ struct nand_hw_control { spinlock_t lock; struct nand_chip *active; wait_queue_head_t wq; }; static inline void nand_hw_control_init(struct nand_hw_control *nfc) { nfc->active = NULL; spin_lock_init(&nfc->lock); init_waitqueue_head(&nfc->wq); } /** * struct nand_ecc_ctrl - Control structure for ECC * @mode: ECC mode * @algo: ECC algorithm * @steps: number of ECC steps per page * @size: data bytes per ECC step * @bytes: ECC bytes per step * @strength: max number of correctible bits per ECC step * @total: total number of ECC bytes per page * @prepad: padding information for syndrome based ECC generators * @postpad: padding information for syndrome based ECC generators * @options: ECC specific options (see NAND_ECC_XXX flags defined above) * @priv: pointer to private ECC control data * @hwctl: function to control hardware ECC generator. Must only * be provided if an hardware ECC is available * @calculate: function for ECC calculation or readback from ECC hardware * @correct: function for ECC correction, matching to ECC generator (sw/hw). * Should return a positive number representing the number of * corrected bitflips, -EBADMSG if the number of bitflips exceed * ECC strength, or any other error code if the error is not * directly related to correction. * If -EBADMSG is returned the input buffers should be left * untouched. * @read_page_raw: function to read a raw page without ECC. This function * should hide the specific layout used by the ECC * controller and always return contiguous in-band and * out-of-band data even if they're not stored * contiguously on the NAND chip (e.g. * NAND_ECC_HW_SYNDROME interleaves in-band and * out-of-band data). * @write_page_raw: function to write a raw page without ECC. This function * should hide the specific layout used by the ECC * controller and consider the passed data as contiguous * in-band and out-of-band data. ECC controller is * responsible for doing the appropriate transformations * to adapt to its specific layout (e.g. * NAND_ECC_HW_SYNDROME interleaves in-band and * out-of-band data). * @read_page: function to read a page according to the ECC generator * requirements; returns maximum number of bitflips corrected in * any single ECC step, 0 if bitflips uncorrectable, -EIO hw error * @read_subpage: function to read parts of the page covered by ECC; * returns same as read_page() * @write_subpage: function to write parts of the page covered by ECC. * @write_page: function to write a page according to the ECC generator * requirements. * @write_oob_raw: function to write chip OOB data without ECC * @read_oob_raw: function to read chip OOB data without ECC * @read_oob: function to read chip OOB data * @write_oob: function to write chip OOB data */ struct nand_ecc_ctrl { nand_ecc_modes_t mode; enum nand_ecc_algo algo; int steps; int size; int bytes; int total; int strength; int prepad; int postpad; unsigned int options; void *priv; void (*hwctl)(struct mtd_info *mtd, int mode); int (*calculate)(struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code); int (*correct)(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc); int (*read_page_raw)(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page); int (*write_page_raw)(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page); int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page); int (*read_subpage)(struct mtd_info *mtd, struct nand_chip *chip, uint32_t offs, uint32_t len, uint8_t *buf, int page); int (*write_subpage)(struct mtd_info *mtd, struct nand_chip *chip, uint32_t offset, uint32_t data_len, const uint8_t *data_buf, int oob_required, int page); int (*write_page)(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page); int (*write_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip, int page); int (*read_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip, int page); int (*read_oob)(struct mtd_info *mtd, struct nand_chip *chip, int page); int (*write_oob)(struct mtd_info *mtd, struct nand_chip *chip, int page); }; static inline int nand_standard_page_accessors(struct nand_ecc_ctrl *ecc) { return !(ecc->options & NAND_ECC_CUSTOM_PAGE_ACCESS); } /** * struct nand_buffers - buffer structure for read/write * @ecccalc: buffer pointer for calculated ECC, size is oobsize. * @ecccode: buffer pointer for ECC read from flash, size is oobsize. * @databuf: buffer pointer for data, size is (page size + oobsize). * * Do not change the order of buffers. databuf and oobrbuf must be in * consecutive order. */ struct nand_buffers { uint8_t *ecccalc; uint8_t *ecccode; uint8_t *databuf; }; /** * struct nand_sdr_timings - SDR NAND chip timings * * This struct defines the timing requirements of a SDR NAND chip. * These information can be found in every NAND datasheets and the timings * meaning are described in the ONFI specifications: * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing * Parameters) * * All these timings are expressed in picoseconds. * * @tBERS_max: Block erase time * @tCCS_min: Change column setup time * @tPROG_max: Page program time * @tR_max: Page read time * @tALH_min: ALE hold time * @tADL_min: ALE to data loading time * @tALS_min: ALE setup time * @tAR_min: ALE to RE# delay * @tCEA_max: CE# access time * @tCEH_min: CE# high hold time * @tCH_min: CE# hold time * @tCHZ_max: CE# high to output hi-Z * @tCLH_min: CLE hold time * @tCLR_min: CLE to RE# delay * @tCLS_min: CLE setup time * @tCOH_min: CE# high to output hold * @tCS_min: CE# setup time * @tDH_min: Data hold time * @tDS_min: Data setup time * @tFEAT_max: Busy time for Set Features and Get Features * @tIR_min: Output hi-Z to RE# low * @tITC_max: Interface and Timing Mode Change time * @tRC_min: RE# cycle time * @tREA_max: RE# access time * @tREH_min: RE# high hold time * @tRHOH_min: RE# high to output hold * @tRHW_min: RE# high to WE# low * @tRHZ_max: RE# high to output hi-Z * @tRLOH_min: RE# low to output hold * @tRP_min: RE# pulse width * @tRR_min: Ready to RE# low (data only) * @tRST_max: Device reset time, measured from the falling edge of R/B# to the * rising edge of R/B#. * @tWB_max: WE# high to SR[6] low * @tWC_min: WE# cycle time * @tWH_min: WE# high hold time * @tWHR_min: WE# high to RE# low * @tWP_min: WE# pulse width * @tWW_min: WP# transition to WE# low */ struct nand_sdr_timings { u32 tBERS_max; u32 tCCS_min; u32 tPROG_max; u32 tR_max; u32 tALH_min; u32 tADL_min; u32 tALS_min; u32 tAR_min; u32 tCEA_max; u32 tCEH_min; u32 tCH_min; u32 tCHZ_max; u32 tCLH_min; u32 tCLR_min; u32 tCLS_min; u32 tCOH_min; u32 tCS_min; u32 tDH_min; u32 tDS_min; u32 tFEAT_max; u32 tIR_min; u32 tITC_max; u32 tRC_min; u32 tREA_max; u32 tREH_min; u32 tRHOH_min; u32 tRHW_min; u32 tRHZ_max; u32 tRLOH_min; u32 tRP_min; u32 tRR_min; u64 tRST_max; u32 tWB_max; u32 tWC_min; u32 tWH_min; u32 tWHR_min; u32 tWP_min; u32 tWW_min; }; /** * enum nand_data_interface_type - NAND interface timing type * @NAND_SDR_IFACE: Single Data Rate interface */ enum nand_data_interface_type { NAND_SDR_IFACE, }; /** * struct nand_data_interface - NAND interface timing * @type: type of the timing * @timings: The timing, type according to @type */ struct nand_data_interface { enum nand_data_interface_type type; union { struct nand_sdr_timings sdr; } timings; }; /** * nand_get_sdr_timings - get SDR timing from data interface * @conf: The data interface */ static inline const struct nand_sdr_timings * nand_get_sdr_timings(const struct nand_data_interface *conf) { if (conf->type != NAND_SDR_IFACE) return ERR_PTR(-EINVAL); return &conf->timings.sdr; } /** * struct nand_manufacturer_ops - NAND Manufacturer operations * @detect: detect the NAND memory organization and capabilities * @init: initialize all vendor specific fields (like the ->read_retry() * implementation) if any. * @cleanup: the ->init() function may have allocated resources, ->cleanup() * is here to let vendor specific code release those resources. */ struct nand_manufacturer_ops { void (*detect)(struct nand_chip *chip); int (*init)(struct nand_chip *chip); void (*cleanup)(struct nand_chip *chip); }; /** * struct nand_chip - NAND Private Flash Chip Data * @mtd: MTD device registered to the MTD framework * @IO_ADDR_R: [BOARDSPECIFIC] address to read the 8 I/O lines of the * flash device * @IO_ADDR_W: [BOARDSPECIFIC] address to write the 8 I/O lines of the * flash device. * @read_byte: [REPLACEABLE] read one byte from the chip * @read_word: [REPLACEABLE] read one word from the chip * @write_byte: [REPLACEABLE] write a single byte to the chip on the * low 8 I/O lines * @write_buf: [REPLACEABLE] write data from the buffer to the chip * @read_buf: [REPLACEABLE] read data from the chip into the buffer * @select_chip: [REPLACEABLE] select chip nr * @block_bad: [REPLACEABLE] check if a block is bad, using OOB markers * @block_markbad: [REPLACEABLE] mark a block bad * @cmd_ctrl: [BOARDSPECIFIC] hardwarespecific function for controlling * ALE/CLE/nCE. Also used to write command and address * @dev_ready: [BOARDSPECIFIC] hardwarespecific function for accessing * device ready/busy line. If set to NULL no access to * ready/busy is available and the ready/busy information * is read from the chip status register. * @cmdfunc: [REPLACEABLE] hardwarespecific function for writing * commands to the chip. * @waitfunc: [REPLACEABLE] hardwarespecific function for wait on * ready. * @setup_read_retry: [FLASHSPECIFIC] flash (vendor) specific function for * setting the read-retry mode. Mostly needed for MLC NAND. * @ecc: [BOARDSPECIFIC] ECC control structure * @buffers: buffer structure for read/write * @hwcontrol: platform-specific hardware control structure * @erase: [REPLACEABLE] erase function * @scan_bbt: [REPLACEABLE] function to scan bad block table * @chip_delay: [BOARDSPECIFIC] chip dependent delay for transferring * data from array to read regs (tR). * @state: [INTERN] the current state of the NAND device * @oob_poi: "poison value buffer," used for laying out OOB data * before writing * @page_shift: [INTERN] number of address bits in a page (column * address bits). * @phys_erase_shift: [INTERN] number of address bits in a physical eraseblock * @bbt_erase_shift: [INTERN] number of address bits in a bbt entry * @chip_shift: [INTERN] number of address bits in one chip * @options: [BOARDSPECIFIC] various chip options. They can partly * be set to inform nand_scan about special functionality. * See the defines for further explanation. * @bbt_options: [INTERN] bad block specific options. All options used * here must come from bbm.h. By default, these options * will be copied to the appropriate nand_bbt_descr's. * @badblockpos: [INTERN] position of the bad block marker in the oob * area. * @badblockbits: [INTERN] minimum number of set bits in a good block's * bad block marker position; i.e., BBM == 11110111b is * not bad when badblockbits == 7 * @bits_per_cell: [INTERN] number of bits per cell. i.e., 1 means SLC. * @ecc_strength_ds: [INTERN] ECC correctability from the datasheet. * Minimum amount of bit errors per @ecc_step_ds guaranteed * to be correctable. If unknown, set to zero. * @ecc_step_ds: [INTERN] ECC step required by the @ecc_strength_ds, * also from the datasheet. It is the recommended ECC step * size, if known; if unknown, set to zero. * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is * set to the actually used ONFI mode if the chip is * ONFI compliant or deduced from the datasheet if * the NAND chip is not ONFI compliant. * @numchips: [INTERN] number of physical chips * @chipsize: [INTERN] the size of one chip for multichip arrays * @pagemask: [INTERN] page number mask = number of (pages / chip) - 1 * @pagebuf: [INTERN] holds the pagenumber which is currently in * data_buf. * @pagebuf_bitflips: [INTERN] holds the bitflip count for the page which is * currently in data_buf. * @subpagesize: [INTERN] holds the subpagesize * @id: [INTERN] holds NAND ID * @onfi_version: [INTERN] holds the chip ONFI version (BCD encoded), * non 0 if ONFI supported. * @jedec_version: [INTERN] holds the chip JEDEC version (BCD encoded), * non 0 if JEDEC supported. * @onfi_params: [INTERN] holds the ONFI page parameter when ONFI is * supported, 0 otherwise. * @jedec_params: [INTERN] holds the JEDEC parameter page when JEDEC is * supported, 0 otherwise. * @max_bb_per_die: [INTERN] the max number of bad blocks each die of a * this nand device will encounter their life times. * @blocks_per_die: [INTERN] The number of PEBs in a die * @data_interface: [INTERN] NAND interface timing information * @read_retries: [INTERN] the number of read retry modes supported * @onfi_set_features: [REPLACEABLE] set the features for ONFI nand * @onfi_get_features: [REPLACEABLE] get the features for ONFI nand * @setup_data_interface: [OPTIONAL] setup the data interface and timing * @bbt: [INTERN] bad block table pointer * @bbt_td: [REPLACEABLE] bad block table descriptor for flash * lookup. * @bbt_md: [REPLACEABLE] bad block table mirror descriptor * @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial * bad block scan. * @controller: [REPLACEABLE] a pointer to a hardware controller * structure which is shared among multiple independent * devices. * @priv: [OPTIONAL] pointer to private chip data * @errstat: [OPTIONAL] hardware specific function to perform * additional error status checks (determine if errors are * correctable). * @write_page: [REPLACEABLE] High-level page write function * @manufacturer: [INTERN] Contains manufacturer information */ struct nand_chip { struct mtd_info mtd; void __iomem *IO_ADDR_R; void __iomem *IO_ADDR_W; uint8_t (*read_byte)(struct mtd_info *mtd); u16 (*read_word)(struct mtd_info *mtd); void (*write_byte)(struct mtd_info *mtd, uint8_t byte); void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len); void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len); void (*select_chip)(struct mtd_info *mtd, int chip); int (*block_bad)(struct mtd_info *mtd, loff_t ofs); int (*block_markbad)(struct mtd_info *mtd, loff_t ofs); void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl); int (*dev_ready)(struct mtd_info *mtd); void (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column, int page_addr); int(*waitfunc)(struct mtd_info *mtd, struct nand_chip *this); int (*erase)(struct mtd_info *mtd, int page); int (*scan_bbt)(struct mtd_info *mtd); int (*errstat)(struct mtd_info *mtd, struct nand_chip *this, int state, int status, int page); int (*write_page)(struct mtd_info *mtd, struct nand_chip *chip, uint32_t offset, int data_len, const uint8_t *buf, int oob_required, int page, int cached, int raw); int (*onfi_set_features)(struct mtd_info *mtd, struct nand_chip *chip, int feature_addr, uint8_t *subfeature_para); int (*onfi_get_features)(struct mtd_info *mtd, struct nand_chip *chip, int feature_addr, uint8_t *subfeature_para); int (*setup_read_retry)(struct mtd_info *mtd, int retry_mode); int (*setup_data_interface)(struct mtd_info *mtd, const struct nand_data_interface *conf, bool check_only); int chip_delay; unsigned int options; unsigned int bbt_options; int page_shift; int phys_erase_shift; int bbt_erase_shift; int chip_shift; int numchips; uint64_t chipsize; int pagemask; int pagebuf; unsigned int pagebuf_bitflips; int subpagesize; uint8_t bits_per_cell; uint16_t ecc_strength_ds; uint16_t ecc_step_ds; int onfi_timing_mode_default; int badblockpos; int badblockbits; struct nand_id id; int onfi_version; int jedec_version; union { struct nand_onfi_params onfi_params; struct nand_jedec_params jedec_params; }; u16 max_bb_per_die; u32 blocks_per_die; struct nand_data_interface *data_interface; int read_retries; flstate_t state; uint8_t *oob_poi; struct nand_hw_control *controller; struct nand_ecc_ctrl ecc; struct nand_buffers *buffers; struct nand_hw_control hwcontrol; uint8_t *bbt; struct nand_bbt_descr *bbt_td; struct nand_bbt_descr *bbt_md; struct nand_bbt_descr *badblock_pattern; void *priv; struct { const struct nand_manufacturer *desc; void *priv; } manufacturer; }; extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops; extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops; static inline void nand_set_flash_node(struct nand_chip *chip, struct device_node *np) { mtd_set_of_node(&chip->mtd, np); } static inline struct device_node *nand_get_flash_node(struct nand_chip *chip) { return mtd_get_of_node(&chip->mtd); } static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd) { return container_of(mtd, struct nand_chip, mtd); } static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip) { return &chip->mtd; } static inline void *nand_get_controller_data(struct nand_chip *chip) { return chip->priv; } static inline void nand_set_controller_data(struct nand_chip *chip, void *priv) { chip->priv = priv; } static inline void nand_set_manufacturer_data(struct nand_chip *chip, void *priv) { chip->manufacturer.priv = priv; } static inline void *nand_get_manufacturer_data(struct nand_chip *chip) { return chip->manufacturer.priv; } /* * NAND Flash Manufacturer ID Codes */ #define NAND_MFR_TOSHIBA 0x98 #define NAND_MFR_ESMT 0xc8 #define NAND_MFR_SAMSUNG 0xec #define NAND_MFR_FUJITSU 0x04 #define NAND_MFR_NATIONAL 0x8f #define NAND_MFR_RENESAS 0x07 #define NAND_MFR_STMICRO 0x20 #define NAND_MFR_HYNIX 0xad #define NAND_MFR_MICRON 0x2c #define NAND_MFR_AMD 0x01 #define NAND_MFR_MACRONIX 0xc2 #define NAND_MFR_EON 0x92 #define NAND_MFR_SANDISK 0x45 #define NAND_MFR_INTEL 0x89 #define NAND_MFR_ATO 0x9b #define NAND_MFR_WINBOND 0xef /* The maximum expected count of bytes in the NAND ID sequence */ #define NAND_MAX_ID_LEN 8 /* * A helper for defining older NAND chips where the second ID byte fully * defined the chip, including the geometry (chip size, eraseblock size, page * size). All these chips have 512 bytes NAND page size. */ #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \ { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \ .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) } /* * A helper for defining newer chips which report their page size and * eraseblock size via the extended ID bytes. * * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the * device ID now only represented a particular total chip size (and voltage, * buswidth), and the page size, eraseblock size, and OOB size could vary while * using the same device ID. */ #define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \ { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \ .options = (opts) } #define NAND_ECC_INFO(_strength, _step) \ { .strength_ds = (_strength), .step_ds = (_step) } #define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds) #define NAND_ECC_STEP(type) ((type)->ecc.step_ds) /** * struct nand_flash_dev - NAND Flash Device ID Structure * @name: a human-readable name of the NAND chip * @dev_id: the device ID (the second byte of the full chip ID array) * @mfr_id: manufecturer ID part of the full chip ID array (refers the same * memory address as @id[0]) * @dev_id: device ID part of the full chip ID array (refers the same memory * address as @id[1]) * @id: full device ID array * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as * well as the eraseblock size) is determined from the extended NAND * chip ID array) * @chipsize: total chip size in MiB * @erasesize: eraseblock size in bytes (determined from the extended ID if 0) * @options: stores various chip bit options * @id_len: The valid length of the @id. * @oobsize: OOB size * @ecc: ECC correctability and step information from the datasheet. * @ecc.strength_ds: The ECC correctability from the datasheet, same as the * @ecc_strength_ds in nand_chip{}. * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the * @ecc_step_ds in nand_chip{}, also from the datasheet. * For example, the "4bit ECC for each 512Byte" can be set with * NAND_ECC_INFO(4, 512). * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND * reset. Should be deduced from timings described * in the datasheet. * */ struct nand_flash_dev { char *name; union { struct { uint8_t mfr_id; uint8_t dev_id; }; uint8_t id[NAND_MAX_ID_LEN]; }; unsigned int pagesize; unsigned int chipsize; unsigned int erasesize; unsigned int options; uint16_t id_len; uint16_t oobsize; struct { uint16_t strength_ds; uint16_t step_ds; } ecc; int onfi_timing_mode_default; }; /** * struct nand_manufacturer - NAND Flash Manufacturer structure * @name: Manufacturer name * @id: manufacturer ID code of device. * @ops: manufacturer operations */ struct nand_manufacturer { int id; char *name; const struct nand_manufacturer_ops *ops; }; const struct nand_manufacturer *nand_get_manufacturer(u8 id); static inline const char * nand_manufacturer_name(const struct nand_manufacturer *manufacturer) { return manufacturer ? manufacturer->name : "Unknown"; } extern struct nand_flash_dev nand_flash_ids[]; extern const struct nand_manufacturer_ops toshiba_nand_manuf_ops; extern const struct nand_manufacturer_ops samsung_nand_manuf_ops; extern const struct nand_manufacturer_ops hynix_nand_manuf_ops; extern const struct nand_manufacturer_ops micron_nand_manuf_ops; int nand_default_bbt(struct mtd_info *mtd); int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs); int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs); int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt); int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, int allowbbt); int nand_do_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf); /** * struct platform_nand_chip - chip level device structure * @nr_chips: max. number of chips to scan for * @chip_offset: chip number offset * @nr_partitions: number of partitions pointed to by partitions (or zero) * @partitions: mtd partition list * @chip_delay: R/B delay value in us * @options: Option flags, e.g. 16bit buswidth * @bbt_options: BBT option flags, e.g. NAND_BBT_USE_FLASH * @part_probe_types: NULL-terminated array of probe types */ struct platform_nand_chip { int nr_chips; int chip_offset; int nr_partitions; struct mtd_partition *partitions; int chip_delay; unsigned int options; unsigned int bbt_options; const char **part_probe_types; }; /* Keep gcc happy */ struct platform_device; /** * struct platform_nand_ctrl - controller level device structure * @probe: platform specific function to probe/setup hardware * @remove: platform specific function to remove/teardown hardware * @hwcontrol: platform specific hardware control structure * @dev_ready: platform specific function to read ready/busy pin * @select_chip: platform specific chip select function * @cmd_ctrl: platform specific function for controlling * ALE/CLE/nCE. Also used to write command and address * @write_buf: platform specific function for write buffer * @read_buf: platform specific function for read buffer * @read_byte: platform specific function to read one byte from chip * @priv: private data to transport driver specific settings * * All fields are optional and depend on the hardware driver requirements */ struct platform_nand_ctrl { int (*probe)(struct platform_device *pdev); void (*remove)(struct platform_device *pdev); void (*hwcontrol)(struct mtd_info *mtd, int cmd); int (*dev_ready)(struct mtd_info *mtd); void (*select_chip)(struct mtd_info *mtd, int chip); void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl); void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len); void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len); unsigned char (*read_byte)(struct mtd_info *mtd); void *priv; }; /** * struct platform_nand_data - container structure for platform-specific data * @chip: chip level chip structure * @ctrl: controller level device structure */ struct platform_nand_data { struct platform_nand_chip chip; struct platform_nand_ctrl ctrl; }; /* return the supported features. */ static inline int onfi_feature(struct nand_chip *chip) { return chip->onfi_version ? le16_to_cpu(chip->onfi_params.features) : 0; } /* return the supported asynchronous timing mode. */ static inline int onfi_get_async_timing_mode(struct nand_chip *chip) { if (!chip->onfi_version) return ONFI_TIMING_MODE_UNKNOWN; return le16_to_cpu(chip->onfi_params.async_timing_mode); } /* return the supported synchronous timing mode. */ static inline int onfi_get_sync_timing_mode(struct nand_chip *chip) { if (!chip->onfi_version) return ONFI_TIMING_MODE_UNKNOWN; return le16_to_cpu(chip->onfi_params.src_sync_timing_mode); } int onfi_init_data_interface(struct nand_chip *chip, struct nand_data_interface *iface, enum nand_data_interface_type type, int timing_mode); /* * Check if it is a SLC nand. * The !nand_is_slc() can be used to check the MLC/TLC nand chips. * We do not distinguish the MLC and TLC now. */ static inline bool nand_is_slc(struct nand_chip *chip) { return chip->bits_per_cell == 1; } /** * Check if the opcode's address should be sent only on the lower 8 bits * @command: opcode to check */ static inline int nand_opcode_8bits(unsigned int command) { switch (command) { case NAND_CMD_READID: case NAND_CMD_PARAM: case NAND_CMD_GET_FEATURES: case NAND_CMD_SET_FEATURES: return 1; default: break; } return 0; } /* return the supported JEDEC features. */ static inline int jedec_feature(struct nand_chip *chip) { return chip->jedec_version ? le16_to_cpu(chip->jedec_params.features) : 0; } /* get timing characteristics from ONFI timing mode. */ const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode); /* get data interface from ONFI timing mode 0, used after reset. */ const struct nand_data_interface *nand_get_default_data_interface(void); int nand_check_erased_ecc_chunk(void *data, int datalen, void *ecc, int ecclen, void *extraoob, int extraooblen, int threshold); /* Default write_oob implementation */ int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page); /* Default write_oob syndrome implementation */ int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page); /* Default read_oob implementation */ int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page); /* Default read_oob syndrome implementation */ int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page); /* Reset and initialize a NAND device */ int nand_reset(struct nand_chip *chip, int chipnr); /* Free resources held by the NAND device */ void nand_cleanup(struct nand_chip *chip); /* Default extended ID decoding function */ void nand_decode_ext_id(struct nand_chip *chip); #endif /* __LINUX_MTD_NAND_H */