/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include "core.h" #include "debug.h" #include "targaddrs.h" #include "bmi.h" #include "hif.h" #include "htc.h" #include "ce.h" #include "pci.h" enum ath10k_pci_irq_mode { ATH10K_PCI_IRQ_AUTO = 0, ATH10K_PCI_IRQ_LEGACY = 1, ATH10K_PCI_IRQ_MSI = 2, }; enum ath10k_pci_reset_mode { ATH10K_PCI_RESET_AUTO = 0, ATH10K_PCI_RESET_WARM_ONLY = 1, }; static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO; static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO; module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644); MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)"); module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644); MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)"); /* how long wait to wait for target to initialise, in ms */ #define ATH10K_PCI_TARGET_WAIT 3000 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3 #define QCA988X_2_0_DEVICE_ID (0x003c) static DEFINE_PCI_DEVICE_TABLE(ath10k_pci_id_table) = { { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */ {0} }; static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address, u32 *data); static void ath10k_pci_buffer_cleanup(struct ath10k *ar); static int ath10k_pci_cold_reset(struct ath10k *ar); static int ath10k_pci_warm_reset(struct ath10k *ar); static int ath10k_pci_wait_for_target_init(struct ath10k *ar); static int ath10k_pci_init_irq(struct ath10k *ar); static int ath10k_pci_deinit_irq(struct ath10k *ar); static int ath10k_pci_request_irq(struct ath10k *ar); static void ath10k_pci_free_irq(struct ath10k *ar); static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe, struct ath10k_ce_pipe *rx_pipe, struct bmi_xfer *xfer); static const struct ce_attr host_ce_config_wlan[] = { /* CE0: host->target HTC control and raw streams */ { .flags = CE_ATTR_FLAGS, .src_nentries = 16, .src_sz_max = 256, .dest_nentries = 0, }, /* CE1: target->host HTT + HTC control */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 512, .dest_nentries = 512, }, /* CE2: target->host WMI */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 32, }, /* CE3: host->target WMI */ { .flags = CE_ATTR_FLAGS, .src_nentries = 32, .src_sz_max = 2048, .dest_nentries = 0, }, /* CE4: host->target HTT */ { .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES, .src_sz_max = 256, .dest_nentries = 0, }, /* CE5: unused */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 0, .dest_nentries = 0, }, /* CE6: target autonomous hif_memcpy */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 0, .dest_nentries = 0, }, /* CE7: ce_diag, the Diagnostic Window */ { .flags = CE_ATTR_FLAGS, .src_nentries = 2, .src_sz_max = DIAG_TRANSFER_LIMIT, .dest_nentries = 2, }, }; /* Target firmware's Copy Engine configuration. */ static const struct ce_pipe_config target_ce_config_wlan[] = { /* CE0: host->target HTC control and raw streams */ { .pipenum = 0, .pipedir = PIPEDIR_OUT, .nentries = 32, .nbytes_max = 256, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* CE1: target->host HTT + HTC control */ { .pipenum = 1, .pipedir = PIPEDIR_IN, .nentries = 32, .nbytes_max = 512, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* CE2: target->host WMI */ { .pipenum = 2, .pipedir = PIPEDIR_IN, .nentries = 32, .nbytes_max = 2048, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* CE3: host->target WMI */ { .pipenum = 3, .pipedir = PIPEDIR_OUT, .nentries = 32, .nbytes_max = 2048, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* CE4: host->target HTT */ { .pipenum = 4, .pipedir = PIPEDIR_OUT, .nentries = 256, .nbytes_max = 256, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* NB: 50% of src nentries, since tx has 2 frags */ /* CE5: unused */ { .pipenum = 5, .pipedir = PIPEDIR_OUT, .nentries = 32, .nbytes_max = 2048, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* CE6: Reserved for target autonomous hif_memcpy */ { .pipenum = 6, .pipedir = PIPEDIR_INOUT, .nentries = 32, .nbytes_max = 4096, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* CE7 used only by Host */ }; static bool ath10k_pci_irq_pending(struct ath10k *ar) { u32 cause; /* Check if the shared legacy irq is for us */ cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CAUSE_ADDRESS); if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL)) return true; return false; } static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar) { /* IMPORTANT: INTR_CLR register has to be set after * INTR_ENABLE is set to 0, otherwise interrupt can not be * really cleared. */ ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 0); ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS, PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); /* IMPORTANT: this extra read transaction is required to * flush the posted write buffer. */ (void) ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS); } static void ath10k_pci_enable_legacy_irq(struct ath10k *ar) { ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); /* IMPORTANT: this extra read transaction is required to * flush the posted write buffer. */ (void) ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS); } static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); if (ar_pci->num_msi_intrs > 1) return "msi-x"; else if (ar_pci->num_msi_intrs == 1) return "msi"; else return "legacy"; } static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe) { struct ath10k *ar = pipe->hif_ce_state; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; struct sk_buff *skb; dma_addr_t paddr; int ret; lockdep_assert_held(&ar_pci->ce_lock); skb = dev_alloc_skb(pipe->buf_sz); if (!skb) return -ENOMEM; WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb"); paddr = dma_map_single(ar->dev, skb->data, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(ar->dev, paddr))) { ath10k_warn("failed to dma map pci rx buf\n"); dev_kfree_skb_any(skb); return -EIO; } ATH10K_SKB_CB(skb)->paddr = paddr; ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr); if (ret) { ath10k_warn("failed to post pci rx buf: %d\n", ret); dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); dev_kfree_skb_any(skb); return ret; } return 0; } static void __ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe) { struct ath10k *ar = pipe->hif_ce_state; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; int ret, num; lockdep_assert_held(&ar_pci->ce_lock); if (pipe->buf_sz == 0) return; if (!ce_pipe->dest_ring) return; num = __ath10k_ce_rx_num_free_bufs(ce_pipe); while (num--) { ret = __ath10k_pci_rx_post_buf(pipe); if (ret) { ath10k_warn("failed to post pci rx buf: %d\n", ret); mod_timer(&ar_pci->rx_post_retry, jiffies + ATH10K_PCI_RX_POST_RETRY_MS); break; } } } static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe) { struct ath10k *ar = pipe->hif_ce_state; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); spin_lock_bh(&ar_pci->ce_lock); __ath10k_pci_rx_post_pipe(pipe); spin_unlock_bh(&ar_pci->ce_lock); } static void ath10k_pci_rx_post(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int i; spin_lock_bh(&ar_pci->ce_lock); for (i = 0; i < CE_COUNT; i++) __ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]); spin_unlock_bh(&ar_pci->ce_lock); } static void ath10k_pci_rx_replenish_retry(unsigned long ptr) { struct ath10k *ar = (void *)ptr; ath10k_pci_rx_post(ar); } /* * Diagnostic read/write access is provided for startup/config/debug usage. * Caller must guarantee proper alignment, when applicable, and single user * at any moment. */ static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data, int nbytes) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret = 0; u32 buf; unsigned int completed_nbytes, orig_nbytes, remaining_bytes; unsigned int id; unsigned int flags; struct ath10k_ce_pipe *ce_diag; /* Host buffer address in CE space */ u32 ce_data; dma_addr_t ce_data_base = 0; void *data_buf = NULL; int i; /* * This code cannot handle reads to non-memory space. Redirect to the * register read fn but preserve the multi word read capability of * this fn */ if (address < DRAM_BASE_ADDRESS) { if (!IS_ALIGNED(address, 4) || !IS_ALIGNED((unsigned long)data, 4)) return -EIO; while ((nbytes >= 4) && ((ret = ath10k_pci_diag_read_access( ar, address, (u32 *)data)) == 0)) { nbytes -= sizeof(u32); address += sizeof(u32); data += sizeof(u32); } return ret; } ce_diag = ar_pci->ce_diag; /* * Allocate a temporary bounce buffer to hold caller's data * to be DMA'ed from Target. This guarantees * 1) 4-byte alignment * 2) Buffer in DMA-able space */ orig_nbytes = nbytes; data_buf = (unsigned char *)dma_alloc_coherent(ar->dev, orig_nbytes, &ce_data_base, GFP_ATOMIC); if (!data_buf) { ret = -ENOMEM; goto done; } memset(data_buf, 0, orig_nbytes); remaining_bytes = orig_nbytes; ce_data = ce_data_base; while (remaining_bytes) { nbytes = min_t(unsigned int, remaining_bytes, DIAG_TRANSFER_LIMIT); ret = ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data); if (ret != 0) goto done; /* Request CE to send from Target(!) address to Host buffer */ /* * The address supplied by the caller is in the * Target CPU virtual address space. * * In order to use this address with the diagnostic CE, * convert it from Target CPU virtual address space * to CE address space */ address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address); ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0); if (ret) goto done; i = 0; while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf, &completed_nbytes, &id) != 0) { mdelay(1); if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { ret = -EBUSY; goto done; } } if (nbytes != completed_nbytes) { ret = -EIO; goto done; } if (buf != (u32) address) { ret = -EIO; goto done; } i = 0; while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf, &completed_nbytes, &id, &flags) != 0) { mdelay(1); if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { ret = -EBUSY; goto done; } } if (nbytes != completed_nbytes) { ret = -EIO; goto done; } if (buf != ce_data) { ret = -EIO; goto done; } remaining_bytes -= nbytes; address += nbytes; ce_data += nbytes; } done: if (ret == 0) { /* Copy data from allocated DMA buf to caller's buf */ WARN_ON_ONCE(orig_nbytes & 3); for (i = 0; i < orig_nbytes / sizeof(__le32); i++) { ((u32 *)data)[i] = __le32_to_cpu(((__le32 *)data_buf)[i]); } } else ath10k_warn("failed to read diag value at 0x%x: %d\n", address, ret); if (data_buf) dma_free_coherent(ar->dev, orig_nbytes, data_buf, ce_data_base); return ret; } static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value) { return ath10k_pci_diag_read_mem(ar, address, value, sizeof(u32)); } static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest, u32 src, u32 len) { u32 host_addr, addr; int ret; host_addr = host_interest_item_address(src); ret = ath10k_pci_diag_read32(ar, host_addr, &addr); if (ret != 0) { ath10k_warn("failed to get memcpy hi address for firmware address %d: %d\n", src, ret); return ret; } ret = ath10k_pci_diag_read_mem(ar, addr, dest, len); if (ret != 0) { ath10k_warn("failed to memcpy firmware memory from %d (%d B): %d\n", addr, len, ret); return ret; } return 0; } #define ath10k_pci_diag_read_hi(ar, dest, src, len) \ __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len); /* Read 4-byte aligned data from Target memory or register */ static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address, u32 *data) { /* Assume range doesn't cross this boundary */ if (address >= DRAM_BASE_ADDRESS) return ath10k_pci_diag_read32(ar, address, data); *data = ath10k_pci_read32(ar, address); return 0; } static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address, const void *data, int nbytes) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret = 0; u32 buf; unsigned int completed_nbytes, orig_nbytes, remaining_bytes; unsigned int id; unsigned int flags; struct ath10k_ce_pipe *ce_diag; void *data_buf = NULL; u32 ce_data; /* Host buffer address in CE space */ dma_addr_t ce_data_base = 0; int i; ce_diag = ar_pci->ce_diag; /* * Allocate a temporary bounce buffer to hold caller's data * to be DMA'ed to Target. This guarantees * 1) 4-byte alignment * 2) Buffer in DMA-able space */ orig_nbytes = nbytes; data_buf = (unsigned char *)dma_alloc_coherent(ar->dev, orig_nbytes, &ce_data_base, GFP_ATOMIC); if (!data_buf) { ret = -ENOMEM; goto done; } /* Copy caller's data to allocated DMA buf */ WARN_ON_ONCE(orig_nbytes & 3); for (i = 0; i < orig_nbytes / sizeof(__le32); i++) ((__le32 *)data_buf)[i] = __cpu_to_le32(((u32 *)data)[i]); /* * The address supplied by the caller is in the * Target CPU virtual address space. * * In order to use this address with the diagnostic CE, * convert it from * Target CPU virtual address space * to * CE address space */ address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address); remaining_bytes = orig_nbytes; ce_data = ce_data_base; while (remaining_bytes) { /* FIXME: check cast */ nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT); /* Set up to receive directly into Target(!) address */ ret = ath10k_ce_rx_post_buf(ce_diag, NULL, address); if (ret != 0) goto done; /* * Request CE to send caller-supplied data that * was copied to bounce buffer to Target(!) address. */ ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data, nbytes, 0, 0); if (ret != 0) goto done; i = 0; while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf, &completed_nbytes, &id) != 0) { mdelay(1); if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { ret = -EBUSY; goto done; } } if (nbytes != completed_nbytes) { ret = -EIO; goto done; } if (buf != ce_data) { ret = -EIO; goto done; } i = 0; while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf, &completed_nbytes, &id, &flags) != 0) { mdelay(1); if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { ret = -EBUSY; goto done; } } if (nbytes != completed_nbytes) { ret = -EIO; goto done; } if (buf != address) { ret = -EIO; goto done; } remaining_bytes -= nbytes; address += nbytes; ce_data += nbytes; } done: if (data_buf) { dma_free_coherent(ar->dev, orig_nbytes, data_buf, ce_data_base); } if (ret != 0) ath10k_warn("failed to write diag value at 0x%x: %d\n", address, ret); return ret; } /* Write 4B data to Target memory or register */ static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address, u32 data) { /* Assume range doesn't cross this boundary */ if (address >= DRAM_BASE_ADDRESS) return ath10k_pci_diag_write_mem(ar, address, &data, sizeof(u32)); ath10k_pci_write32(ar, address, data); return 0; } static bool ath10k_pci_is_awake(struct ath10k *ar) { u32 val = ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS); return RTC_STATE_V_GET(val) == RTC_STATE_V_ON; } static int ath10k_pci_wake_wait(struct ath10k *ar) { int tot_delay = 0; int curr_delay = 5; while (tot_delay < PCIE_WAKE_TIMEOUT) { if (ath10k_pci_is_awake(ar)) return 0; udelay(curr_delay); tot_delay += curr_delay; if (curr_delay < 50) curr_delay += 5; } return -ETIMEDOUT; } static int ath10k_pci_wake(struct ath10k *ar) { ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_V_MASK); return ath10k_pci_wake_wait(ar); } static void ath10k_pci_sleep(struct ath10k *ar) { ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_RESET); } /* Called by lower (CE) layer when a send to Target completes. */ static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current; void *transfer_context; u32 ce_data; unsigned int nbytes; unsigned int transfer_id; while (ath10k_ce_completed_send_next(ce_state, &transfer_context, &ce_data, &nbytes, &transfer_id) == 0) { /* no need to call tx completion for NULL pointers */ if (transfer_context == NULL) continue; cb->tx_completion(ar, transfer_context, transfer_id); } } /* Called by lower (CE) layer when data is received from the Target. */ static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current; struct sk_buff *skb; void *transfer_context; u32 ce_data; unsigned int nbytes, max_nbytes; unsigned int transfer_id; unsigned int flags; while (ath10k_ce_completed_recv_next(ce_state, &transfer_context, &ce_data, &nbytes, &transfer_id, &flags) == 0) { skb = transfer_context; max_nbytes = skb->len + skb_tailroom(skb); dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr, max_nbytes, DMA_FROM_DEVICE); if (unlikely(max_nbytes < nbytes)) { ath10k_warn("rxed more than expected (nbytes %d, max %d)", nbytes, max_nbytes); dev_kfree_skb_any(skb); continue; } skb_put(skb, nbytes); cb->rx_completion(ar, skb, pipe_info->pipe_num); } ath10k_pci_rx_post_pipe(pipe_info); } static int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id, struct ath10k_hif_sg_item *items, int n_items) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id]; struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl; struct ath10k_ce_ring *src_ring = ce_pipe->src_ring; unsigned int nentries_mask; unsigned int sw_index; unsigned int write_index; int err, i = 0; spin_lock_bh(&ar_pci->ce_lock); nentries_mask = src_ring->nentries_mask; sw_index = src_ring->sw_index; write_index = src_ring->write_index; if (unlikely(CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) < n_items)) { err = -ENOBUFS; goto err; } for (i = 0; i < n_items - 1; i++) { ath10k_dbg(ATH10K_DBG_PCI, "pci tx item %d paddr 0x%08x len %d n_items %d\n", i, items[i].paddr, items[i].len, n_items); ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL, "item data: ", items[i].vaddr, items[i].len); err = ath10k_ce_send_nolock(ce_pipe, items[i].transfer_context, items[i].paddr, items[i].len, items[i].transfer_id, CE_SEND_FLAG_GATHER); if (err) goto err; } /* `i` is equal to `n_items -1` after for() */ ath10k_dbg(ATH10K_DBG_PCI, "pci tx item %d paddr 0x%08x len %d n_items %d\n", i, items[i].paddr, items[i].len, n_items); ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL, "item data: ", items[i].vaddr, items[i].len); err = ath10k_ce_send_nolock(ce_pipe, items[i].transfer_context, items[i].paddr, items[i].len, items[i].transfer_id, 0); if (err) goto err; spin_unlock_bh(&ar_pci->ce_lock); return 0; err: for (; i > 0; i--) __ath10k_ce_send_revert(ce_pipe); spin_unlock_bh(&ar_pci->ce_lock); return err; } static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); ath10k_dbg(ATH10K_DBG_PCI, "pci hif get free queue number\n"); return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl); } static void ath10k_pci_dump_registers(struct ath10k *ar, struct ath10k_fw_crash_data *crash_data) { u32 i, reg_dump_values[REG_DUMP_COUNT_QCA988X] = {}; int ret; lockdep_assert_held(&ar->data_lock); ret = ath10k_pci_diag_read_hi(ar, ®_dump_values[0], hi_failure_state, REG_DUMP_COUNT_QCA988X * sizeof(u32)); if (ret) { ath10k_err("failed to read firmware dump area: %d\n", ret); return; } BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4); ath10k_err("firmware register dump:\n"); for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4) ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, reg_dump_values[i], reg_dump_values[i + 1], reg_dump_values[i + 2], reg_dump_values[i + 3]); /* crash_data is in little endian */ for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++) crash_data->registers[i] = cpu_to_le32(reg_dump_values[i]); } static void ath10k_pci_fw_crashed_dump(struct ath10k *ar) { struct ath10k_fw_crash_data *crash_data; char uuid[50]; spin_lock_bh(&ar->data_lock); crash_data = ath10k_debug_get_new_fw_crash_data(ar); if (crash_data) scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid); else scnprintf(uuid, sizeof(uuid), "n/a"); ath10k_err("firmware crashed! (uuid %s)\n", uuid); ath10k_print_driver_info(ar); if (!crash_data) goto exit; ath10k_pci_dump_registers(ar, crash_data); exit: spin_unlock_bh(&ar->data_lock); queue_work(ar->workqueue, &ar->restart_work); } static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe, int force) { ath10k_dbg(ATH10K_DBG_PCI, "pci hif send complete check\n"); if (!force) { int resources; /* * Decide whether to actually poll for completions, or just * wait for a later chance. * If there seem to be plenty of resources left, then just wait * since checking involves reading a CE register, which is a * relatively expensive operation. */ resources = ath10k_pci_hif_get_free_queue_number(ar, pipe); /* * If at least 50% of the total resources are still available, * don't bother checking again yet. */ if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1)) return; } ath10k_ce_per_engine_service(ar, pipe); } static void ath10k_pci_hif_set_callbacks(struct ath10k *ar, struct ath10k_hif_cb *callbacks) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); ath10k_dbg(ATH10K_DBG_PCI, "pci hif set callbacks\n"); memcpy(&ar_pci->msg_callbacks_current, callbacks, sizeof(ar_pci->msg_callbacks_current)); } static void ath10k_pci_kill_tasklet(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int i; tasklet_kill(&ar_pci->intr_tq); tasklet_kill(&ar_pci->msi_fw_err); for (i = 0; i < CE_COUNT; i++) tasklet_kill(&ar_pci->pipe_info[i].intr); del_timer_sync(&ar_pci->rx_post_retry); } /* TODO - temporary mapping while we have too few CE's */ static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id, u8 *ul_pipe, u8 *dl_pipe, int *ul_is_polled, int *dl_is_polled) { int ret = 0; ath10k_dbg(ATH10K_DBG_PCI, "pci hif map service\n"); /* polling for received messages not supported */ *dl_is_polled = 0; switch (service_id) { case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: /* * Host->target HTT gets its own pipe, so it can be polled * while other pipes are interrupt driven. */ *ul_pipe = 4; /* * Use the same target->host pipe for HTC ctrl, HTC raw * streams, and HTT. */ *dl_pipe = 1; break; case ATH10K_HTC_SVC_ID_RSVD_CTRL: case ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS: /* * Note: HTC_RAW_STREAMS_SVC is currently unused, and * HTC_CTRL_RSVD_SVC could share the same pipe as the * WMI services. So, if another CE is needed, change * this to *ul_pipe = 3, which frees up CE 0. */ /* *ul_pipe = 3; */ *ul_pipe = 0; *dl_pipe = 1; break; case ATH10K_HTC_SVC_ID_WMI_DATA_BK: case ATH10K_HTC_SVC_ID_WMI_DATA_BE: case ATH10K_HTC_SVC_ID_WMI_DATA_VI: case ATH10K_HTC_SVC_ID_WMI_DATA_VO: case ATH10K_HTC_SVC_ID_WMI_CONTROL: *ul_pipe = 3; *dl_pipe = 2; break; /* pipe 5 unused */ /* pipe 6 reserved */ /* pipe 7 reserved */ default: ret = -1; break; } *ul_is_polled = (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0; return ret; } static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar, u8 *ul_pipe, u8 *dl_pipe) { int ul_is_polled, dl_is_polled; ath10k_dbg(ATH10K_DBG_PCI, "pci hif get default pipe\n"); (void)ath10k_pci_hif_map_service_to_pipe(ar, ATH10K_HTC_SVC_ID_RSVD_CTRL, ul_pipe, dl_pipe, &ul_is_polled, &dl_is_polled); } static void ath10k_pci_irq_disable(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int i; ath10k_ce_disable_interrupts(ar); /* Regardless how many interrupts were assigned for MSI the first one * is always used for firmware indications (crashes). There's no way to * mask the irq in the device so call disable_irq(). Legacy (shared) * interrupts can be masked on the device though. */ if (ar_pci->num_msi_intrs > 0) disable_irq(ar_pci->pdev->irq); else ath10k_pci_disable_and_clear_legacy_irq(ar); for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++) synchronize_irq(ar_pci->pdev->irq + i); } static void ath10k_pci_irq_enable(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); ath10k_ce_enable_interrupts(ar); /* See comment in ath10k_pci_irq_disable() */ if (ar_pci->num_msi_intrs > 0) enable_irq(ar_pci->pdev->irq); else ath10k_pci_enable_legacy_irq(ar); } static int ath10k_pci_hif_start(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); ath10k_dbg(ATH10K_DBG_BOOT, "boot hif start\n"); ath10k_pci_irq_enable(ar); ath10k_pci_rx_post(ar); ar_pci->started = 1; return 0; } static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info) { struct ath10k *ar; struct ath10k_pci *ar_pci; struct ath10k_ce_pipe *ce_hdl; u32 buf_sz; struct sk_buff *netbuf; u32 ce_data; buf_sz = pipe_info->buf_sz; /* Unused Copy Engine */ if (buf_sz == 0) return; ar = pipe_info->hif_ce_state; ar_pci = ath10k_pci_priv(ar); if (!ar_pci->started) return; ce_hdl = pipe_info->ce_hdl; while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf, &ce_data) == 0) { dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr, netbuf->len + skb_tailroom(netbuf), DMA_FROM_DEVICE); dev_kfree_skb_any(netbuf); } } static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info) { struct ath10k *ar; struct ath10k_pci *ar_pci; struct ath10k_ce_pipe *ce_hdl; struct sk_buff *netbuf; u32 ce_data; unsigned int nbytes; unsigned int id; u32 buf_sz; buf_sz = pipe_info->buf_sz; /* Unused Copy Engine */ if (buf_sz == 0) return; ar = pipe_info->hif_ce_state; ar_pci = ath10k_pci_priv(ar); if (!ar_pci->started) return; ce_hdl = pipe_info->ce_hdl; while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf, &ce_data, &nbytes, &id) == 0) { /* no need to call tx completion for NULL pointers */ if (!netbuf) continue; ar_pci->msg_callbacks_current.tx_completion(ar, netbuf, id); } } /* * Cleanup residual buffers for device shutdown: * buffers that were enqueued for receive * buffers that were to be sent * Note: Buffers that had completed but which were * not yet processed are on a completion queue. They * are handled when the completion thread shuts down. */ static void ath10k_pci_buffer_cleanup(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int pipe_num; for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { struct ath10k_pci_pipe *pipe_info; pipe_info = &ar_pci->pipe_info[pipe_num]; ath10k_pci_rx_pipe_cleanup(pipe_info); ath10k_pci_tx_pipe_cleanup(pipe_info); } } static void ath10k_pci_ce_deinit(struct ath10k *ar) { int i; for (i = 0; i < CE_COUNT; i++) ath10k_ce_deinit_pipe(ar, i); } static void ath10k_pci_flush(struct ath10k *ar) { ath10k_pci_kill_tasklet(ar); ath10k_pci_buffer_cleanup(ar); } static void ath10k_pci_hif_stop(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); ath10k_dbg(ATH10K_DBG_BOOT, "boot hif stop\n"); if (WARN_ON(!ar_pci->started)) return; ath10k_pci_irq_disable(ar); ath10k_pci_flush(ar); /* Most likely the device has HTT Rx ring configured. The only way to * prevent the device from accessing (and possible corrupting) host * memory is to reset the chip now. */ ath10k_pci_warm_reset(ar); ar_pci->started = 0; } static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar, void *req, u32 req_len, void *resp, u32 *resp_len) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG]; struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST]; struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl; struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl; dma_addr_t req_paddr = 0; dma_addr_t resp_paddr = 0; struct bmi_xfer xfer = {}; void *treq, *tresp = NULL; int ret = 0; might_sleep(); if (resp && !resp_len) return -EINVAL; if (resp && resp_len && *resp_len == 0) return -EINVAL; treq = kmemdup(req, req_len, GFP_KERNEL); if (!treq) return -ENOMEM; req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE); ret = dma_mapping_error(ar->dev, req_paddr); if (ret) goto err_dma; if (resp && resp_len) { tresp = kzalloc(*resp_len, GFP_KERNEL); if (!tresp) { ret = -ENOMEM; goto err_req; } resp_paddr = dma_map_single(ar->dev, tresp, *resp_len, DMA_FROM_DEVICE); ret = dma_mapping_error(ar->dev, resp_paddr); if (ret) goto err_req; xfer.wait_for_resp = true; xfer.resp_len = 0; ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr); } ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0); if (ret) goto err_resp; ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer); if (ret) { u32 unused_buffer; unsigned int unused_nbytes; unsigned int unused_id; ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer, &unused_nbytes, &unused_id); } else { /* non-zero means we did not time out */ ret = 0; } err_resp: if (resp) { u32 unused_buffer; ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer); dma_unmap_single(ar->dev, resp_paddr, *resp_len, DMA_FROM_DEVICE); } err_req: dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE); if (ret == 0 && resp_len) { *resp_len = min(*resp_len, xfer.resp_len); memcpy(resp, tresp, xfer.resp_len); } err_dma: kfree(treq); kfree(tresp); return ret; } static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state) { struct bmi_xfer *xfer; u32 ce_data; unsigned int nbytes; unsigned int transfer_id; if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer, &ce_data, &nbytes, &transfer_id)) return; xfer->tx_done = true; } static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state) { struct bmi_xfer *xfer; u32 ce_data; unsigned int nbytes; unsigned int transfer_id; unsigned int flags; if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data, &nbytes, &transfer_id, &flags)) return; if (!xfer->wait_for_resp) { ath10k_warn("unexpected: BMI data received; ignoring\n"); return; } xfer->resp_len = nbytes; xfer->rx_done = true; } static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe, struct ath10k_ce_pipe *rx_pipe, struct bmi_xfer *xfer) { unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; while (time_before_eq(jiffies, timeout)) { ath10k_pci_bmi_send_done(tx_pipe); ath10k_pci_bmi_recv_data(rx_pipe); if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) return 0; schedule(); } return -ETIMEDOUT; } /* * Map from service/endpoint to Copy Engine. * This table is derived from the CE_PCI TABLE, above. * It is passed to the Target at startup for use by firmware. */ static const struct service_to_pipe target_service_to_ce_map_wlan[] = { { ATH10K_HTC_SVC_ID_WMI_DATA_VO, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { ATH10K_HTC_SVC_ID_WMI_DATA_VO, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { ATH10K_HTC_SVC_ID_WMI_DATA_BK, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { ATH10K_HTC_SVC_ID_WMI_DATA_BK, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { ATH10K_HTC_SVC_ID_WMI_DATA_BE, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { ATH10K_HTC_SVC_ID_WMI_DATA_BE, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { ATH10K_HTC_SVC_ID_WMI_DATA_VI, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { ATH10K_HTC_SVC_ID_WMI_DATA_VI, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { ATH10K_HTC_SVC_ID_WMI_CONTROL, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { ATH10K_HTC_SVC_ID_WMI_CONTROL, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { ATH10K_HTC_SVC_ID_RSVD_CTRL, PIPEDIR_OUT, /* out = UL = host -> target */ 0, /* could be moved to 3 (share with WMI) */ }, { ATH10K_HTC_SVC_ID_RSVD_CTRL, PIPEDIR_IN, /* in = DL = target -> host */ 1, }, { ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */ PIPEDIR_OUT, /* out = UL = host -> target */ 0, }, { ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */ PIPEDIR_IN, /* in = DL = target -> host */ 1, }, { ATH10K_HTC_SVC_ID_HTT_DATA_MSG, PIPEDIR_OUT, /* out = UL = host -> target */ 4, }, { ATH10K_HTC_SVC_ID_HTT_DATA_MSG, PIPEDIR_IN, /* in = DL = target -> host */ 1, }, /* (Additions here) */ { /* Must be last */ 0, 0, 0, }, }; /* * Send an interrupt to the device to wake up the Target CPU * so it has an opportunity to notice any changed state. */ static int ath10k_pci_wake_target_cpu(struct ath10k *ar) { int ret; u32 core_ctrl; ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS, &core_ctrl); if (ret) { ath10k_warn("failed to read core_ctrl: %d\n", ret); return ret; } /* A_INUM_FIRMWARE interrupt to Target CPU */ core_ctrl |= CORE_CTRL_CPU_INTR_MASK; ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS, core_ctrl); if (ret) { ath10k_warn("failed to set target CPU interrupt mask: %d\n", ret); return ret; } return 0; } static int ath10k_pci_init_config(struct ath10k *ar) { u32 interconnect_targ_addr; u32 pcie_state_targ_addr = 0; u32 pipe_cfg_targ_addr = 0; u32 svc_to_pipe_map = 0; u32 pcie_config_flags = 0; u32 ealloc_value; u32 ealloc_targ_addr; u32 flag2_value; u32 flag2_targ_addr; int ret = 0; /* Download to Target the CE Config and the service-to-CE map */ interconnect_targ_addr = host_interest_item_address(HI_ITEM(hi_interconnect_state)); /* Supply Target-side CE configuration */ ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr, &pcie_state_targ_addr); if (ret != 0) { ath10k_err("Failed to get pcie state addr: %d\n", ret); return ret; } if (pcie_state_targ_addr == 0) { ret = -EIO; ath10k_err("Invalid pcie state addr\n"); return ret; } ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + offsetof(struct pcie_state, pipe_cfg_addr), &pipe_cfg_targ_addr); if (ret != 0) { ath10k_err("Failed to get pipe cfg addr: %d\n", ret); return ret; } if (pipe_cfg_targ_addr == 0) { ret = -EIO; ath10k_err("Invalid pipe cfg addr\n"); return ret; } ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr, target_ce_config_wlan, sizeof(target_ce_config_wlan)); if (ret != 0) { ath10k_err("Failed to write pipe cfg: %d\n", ret); return ret; } ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + offsetof(struct pcie_state, svc_to_pipe_map), &svc_to_pipe_map); if (ret != 0) { ath10k_err("Failed to get svc/pipe map: %d\n", ret); return ret; } if (svc_to_pipe_map == 0) { ret = -EIO; ath10k_err("Invalid svc_to_pipe map\n"); return ret; } ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map, target_service_to_ce_map_wlan, sizeof(target_service_to_ce_map_wlan)); if (ret != 0) { ath10k_err("Failed to write svc/pipe map: %d\n", ret); return ret; } ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + offsetof(struct pcie_state, config_flags), &pcie_config_flags); if (ret != 0) { ath10k_err("Failed to get pcie config_flags: %d\n", ret); return ret; } pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1; ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr + offsetof(struct pcie_state, config_flags), &pcie_config_flags, sizeof(pcie_config_flags)); if (ret != 0) { ath10k_err("Failed to write pcie config_flags: %d\n", ret); return ret; } /* configure early allocation */ ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc)); ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value); if (ret != 0) { ath10k_err("Faile to get early alloc val: %d\n", ret); return ret; } /* first bank is switched to IRAM */ ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) & HI_EARLY_ALLOC_MAGIC_MASK); ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) & HI_EARLY_ALLOC_IRAM_BANKS_MASK); ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value); if (ret != 0) { ath10k_err("Failed to set early alloc val: %d\n", ret); return ret; } /* Tell Target to proceed with initialization */ flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2)); ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value); if (ret != 0) { ath10k_err("Failed to get option val: %d\n", ret); return ret; } flag2_value |= HI_OPTION_EARLY_CFG_DONE; ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value); if (ret != 0) { ath10k_err("Failed to set option val: %d\n", ret); return ret; } return 0; } static int ath10k_pci_alloc_ce(struct ath10k *ar) { int i, ret; for (i = 0; i < CE_COUNT; i++) { ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]); if (ret) { ath10k_err("failed to allocate copy engine pipe %d: %d\n", i, ret); return ret; } } return 0; } static void ath10k_pci_free_ce(struct ath10k *ar) { int i; for (i = 0; i < CE_COUNT; i++) ath10k_ce_free_pipe(ar, i); } static int ath10k_pci_ce_init(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pipe_info; const struct ce_attr *attr; int pipe_num, ret; for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { pipe_info = &ar_pci->pipe_info[pipe_num]; pipe_info->ce_hdl = &ar_pci->ce_states[pipe_num]; pipe_info->pipe_num = pipe_num; pipe_info->hif_ce_state = ar; attr = &host_ce_config_wlan[pipe_num]; ret = ath10k_ce_init_pipe(ar, pipe_num, attr, ath10k_pci_ce_send_done, ath10k_pci_ce_recv_data); if (ret) { ath10k_err("failed to initialize copy engine pipe %d: %d\n", pipe_num, ret); return ret; } if (pipe_num == CE_COUNT - 1) { /* * Reserve the ultimate CE for * diagnostic Window support */ ar_pci->ce_diag = pipe_info->ce_hdl; continue; } pipe_info->buf_sz = (size_t) (attr->src_sz_max); } return 0; } static bool ath10k_pci_has_fw_crashed(struct ath10k *ar) { return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) & FW_IND_EVENT_PENDING; } static void ath10k_pci_fw_crashed_clear(struct ath10k *ar) { u32 val; val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); val &= ~FW_IND_EVENT_PENDING; ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val); } /* this function effectively clears target memory controller assert line */ static void ath10k_pci_warm_reset_si0(struct ath10k *ar) { u32 val; val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, val | SOC_RESET_CONTROL_SI0_RST_MASK); val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); msleep(10); val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, val & ~SOC_RESET_CONTROL_SI0_RST_MASK); val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); msleep(10); } static int ath10k_pci_warm_reset(struct ath10k *ar) { u32 val; ath10k_dbg(ATH10K_DBG_BOOT, "boot warm reset\n"); /* debug */ val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CAUSE_ADDRESS); ath10k_dbg(ATH10K_DBG_BOOT, "boot host cpu intr cause: 0x%08x\n", val); val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CPU_INTR_ADDRESS); ath10k_dbg(ATH10K_DBG_BOOT, "boot target cpu intr cause: 0x%08x\n", val); /* disable pending irqs */ ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 0); ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS, ~0); msleep(100); /* clear fw indicator */ ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0); /* clear target LF timer interrupts */ val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + SOC_LF_TIMER_CONTROL0_ADDRESS); ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_LF_TIMER_CONTROL0_ADDRESS, val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK); /* reset CE */ val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS); ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS, val | SOC_RESET_CONTROL_CE_RST_MASK); val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS); msleep(10); /* unreset CE */ ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS, val & ~SOC_RESET_CONTROL_CE_RST_MASK); val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS); msleep(10); ath10k_pci_warm_reset_si0(ar); /* debug */ val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CAUSE_ADDRESS); ath10k_dbg(ATH10K_DBG_BOOT, "boot host cpu intr cause: 0x%08x\n", val); val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CPU_INTR_ADDRESS); ath10k_dbg(ATH10K_DBG_BOOT, "boot target cpu intr cause: 0x%08x\n", val); /* CPU warm reset */ val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS); ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS, val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK); val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS); ath10k_dbg(ATH10K_DBG_BOOT, "boot target reset state: 0x%08x\n", val); msleep(100); ath10k_dbg(ATH10K_DBG_BOOT, "boot warm reset complete\n"); return 0; } static int __ath10k_pci_hif_power_up(struct ath10k *ar, bool cold_reset) { int ret; /* * Bring the target up cleanly. * * The target may be in an undefined state with an AUX-powered Target * and a Host in WoW mode. If the Host crashes, loses power, or is * restarted (without unloading the driver) then the Target is left * (aux) powered and running. On a subsequent driver load, the Target * is in an unexpected state. We try to catch that here in order to * reset the Target and retry the probe. */ if (cold_reset) ret = ath10k_pci_cold_reset(ar); else ret = ath10k_pci_warm_reset(ar); if (ret) { ath10k_err("failed to reset target: %d\n", ret); goto err; } ret = ath10k_pci_ce_init(ar); if (ret) { ath10k_err("failed to initialize CE: %d\n", ret); goto err; } ret = ath10k_pci_wait_for_target_init(ar); if (ret) { ath10k_err("failed to wait for target to init: %d\n", ret); goto err_ce; } ret = ath10k_pci_init_config(ar); if (ret) { ath10k_err("failed to setup init config: %d\n", ret); goto err_ce; } ret = ath10k_pci_wake_target_cpu(ar); if (ret) { ath10k_err("could not wake up target CPU: %d\n", ret); goto err_ce; } return 0; err_ce: ath10k_pci_ce_deinit(ar); ath10k_pci_warm_reset(ar); err: return ret; } static int ath10k_pci_hif_power_up_warm(struct ath10k *ar) { int i, ret; /* * Sometime warm reset succeeds after retries. * * FIXME: It might be possible to tune ath10k_pci_warm_reset() to work * at first try. */ for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) { ret = __ath10k_pci_hif_power_up(ar, false); if (ret == 0) break; ath10k_warn("failed to warm reset (attempt %d out of %d): %d\n", i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS, ret); } return ret; } static int ath10k_pci_hif_power_up(struct ath10k *ar) { int ret; ath10k_dbg(ATH10K_DBG_BOOT, "boot hif power up\n"); /* * Hardware CUS232 version 2 has some issues with cold reset and the * preferred (and safer) way to perform a device reset is through a * warm reset. * * Warm reset doesn't always work though so fall back to cold reset may * be necessary. */ ret = ath10k_pci_hif_power_up_warm(ar); if (ret) { ath10k_warn("failed to power up target using warm reset: %d\n", ret); if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) return ret; ath10k_warn("trying cold reset\n"); ret = __ath10k_pci_hif_power_up(ar, true); if (ret) { ath10k_err("failed to power up target using cold reset too (%d)\n", ret); return ret; } } return 0; } static void ath10k_pci_hif_power_down(struct ath10k *ar) { ath10k_dbg(ATH10K_DBG_BOOT, "boot hif power down\n"); ath10k_pci_warm_reset(ar); } #ifdef CONFIG_PM #define ATH10K_PCI_PM_CONTROL 0x44 static int ath10k_pci_hif_suspend(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct pci_dev *pdev = ar_pci->pdev; u32 val; pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val); if ((val & 0x000000ff) != 0x3) { pci_save_state(pdev); pci_disable_device(pdev); pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL, (val & 0xffffff00) | 0x03); } return 0; } static int ath10k_pci_hif_resume(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct pci_dev *pdev = ar_pci->pdev; u32 val; pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val); if ((val & 0x000000ff) != 0) { pci_restore_state(pdev); pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL, val & 0xffffff00); /* * Suspend/Resume resets the PCI configuration space, * so we have to re-disable the RETRY_TIMEOUT register (0x41) * to keep PCI Tx retries from interfering with C3 CPU state */ pci_read_config_dword(pdev, 0x40, &val); if ((val & 0x0000ff00) != 0) pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); } return 0; } #endif static const struct ath10k_hif_ops ath10k_pci_hif_ops = { .tx_sg = ath10k_pci_hif_tx_sg, .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg, .start = ath10k_pci_hif_start, .stop = ath10k_pci_hif_stop, .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe, .get_default_pipe = ath10k_pci_hif_get_default_pipe, .send_complete_check = ath10k_pci_hif_send_complete_check, .set_callbacks = ath10k_pci_hif_set_callbacks, .get_free_queue_number = ath10k_pci_hif_get_free_queue_number, .power_up = ath10k_pci_hif_power_up, .power_down = ath10k_pci_hif_power_down, #ifdef CONFIG_PM .suspend = ath10k_pci_hif_suspend, .resume = ath10k_pci_hif_resume, #endif }; static void ath10k_pci_ce_tasklet(unsigned long ptr) { struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr; struct ath10k_pci *ar_pci = pipe->ar_pci; ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num); } static void ath10k_msi_err_tasklet(unsigned long data) { struct ath10k *ar = (struct ath10k *)data; if (!ath10k_pci_has_fw_crashed(ar)) { ath10k_warn("received unsolicited fw crash interrupt\n"); return; } ath10k_pci_fw_crashed_clear(ar); ath10k_pci_fw_crashed_dump(ar); } /* * Handler for a per-engine interrupt on a PARTICULAR CE. * This is used in cases where each CE has a private MSI interrupt. */ static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg) { struct ath10k *ar = arg; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL; if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) { ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id); return IRQ_HANDLED; } /* * NOTE: We are able to derive ce_id from irq because we * use a one-to-one mapping for CE's 0..5. * CE's 6 & 7 do not use interrupts at all. * * This mapping must be kept in sync with the mapping * used by firmware. */ tasklet_schedule(&ar_pci->pipe_info[ce_id].intr); return IRQ_HANDLED; } static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg) { struct ath10k *ar = arg; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); tasklet_schedule(&ar_pci->msi_fw_err); return IRQ_HANDLED; } /* * Top-level interrupt handler for all PCI interrupts from a Target. * When a block of MSI interrupts is allocated, this top-level handler * is not used; instead, we directly call the correct sub-handler. */ static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg) { struct ath10k *ar = arg; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); if (ar_pci->num_msi_intrs == 0) { if (!ath10k_pci_irq_pending(ar)) return IRQ_NONE; ath10k_pci_disable_and_clear_legacy_irq(ar); } tasklet_schedule(&ar_pci->intr_tq); return IRQ_HANDLED; } static void ath10k_pci_tasklet(unsigned long data) { struct ath10k *ar = (struct ath10k *)data; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); if (ath10k_pci_has_fw_crashed(ar)) { ath10k_pci_fw_crashed_clear(ar); ath10k_pci_fw_crashed_dump(ar); return; } ath10k_ce_per_engine_service_any(ar); /* Re-enable legacy irq that was disabled in the irq handler */ if (ar_pci->num_msi_intrs == 0) ath10k_pci_enable_legacy_irq(ar); } static int ath10k_pci_request_irq_msix(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret, i; ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ath10k_pci_msi_fw_handler, IRQF_SHARED, "ath10k_pci", ar); if (ret) { ath10k_warn("failed to request MSI-X fw irq %d: %d\n", ar_pci->pdev->irq + MSI_ASSIGN_FW, ret); return ret; } for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) { ret = request_irq(ar_pci->pdev->irq + i, ath10k_pci_per_engine_handler, IRQF_SHARED, "ath10k_pci", ar); if (ret) { ath10k_warn("failed to request MSI-X ce irq %d: %d\n", ar_pci->pdev->irq + i, ret); for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--) free_irq(ar_pci->pdev->irq + i, ar); free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar); return ret; } } return 0; } static int ath10k_pci_request_irq_msi(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; ret = request_irq(ar_pci->pdev->irq, ath10k_pci_interrupt_handler, IRQF_SHARED, "ath10k_pci", ar); if (ret) { ath10k_warn("failed to request MSI irq %d: %d\n", ar_pci->pdev->irq, ret); return ret; } return 0; } static int ath10k_pci_request_irq_legacy(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; ret = request_irq(ar_pci->pdev->irq, ath10k_pci_interrupt_handler, IRQF_SHARED, "ath10k_pci", ar); if (ret) { ath10k_warn("failed to request legacy irq %d: %d\n", ar_pci->pdev->irq, ret); return ret; } return 0; } static int ath10k_pci_request_irq(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); switch (ar_pci->num_msi_intrs) { case 0: return ath10k_pci_request_irq_legacy(ar); case 1: return ath10k_pci_request_irq_msi(ar); case MSI_NUM_REQUEST: return ath10k_pci_request_irq_msix(ar); } ath10k_warn("unknown irq configuration upon request\n"); return -EINVAL; } static void ath10k_pci_free_irq(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int i; /* There's at least one interrupt irregardless whether its legacy INTR * or MSI or MSI-X */ for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++) free_irq(ar_pci->pdev->irq + i, ar); } static void ath10k_pci_init_irq_tasklets(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int i; tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar); tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet, (unsigned long)ar); for (i = 0; i < CE_COUNT; i++) { ar_pci->pipe_info[i].ar_pci = ar_pci; tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet, (unsigned long)&ar_pci->pipe_info[i]); } } static int ath10k_pci_init_irq(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; ath10k_pci_init_irq_tasklets(ar); if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO) ath10k_info("limiting irq mode to: %d\n", ath10k_pci_irq_mode); /* Try MSI-X */ if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) { ar_pci->num_msi_intrs = MSI_NUM_REQUEST; ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs, ar_pci->num_msi_intrs); if (ret > 0) return 0; /* fall-through */ } /* Try MSI */ if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) { ar_pci->num_msi_intrs = 1; ret = pci_enable_msi(ar_pci->pdev); if (ret == 0) return 0; /* fall-through */ } /* Try legacy irq * * A potential race occurs here: The CORE_BASE write * depends on target correctly decoding AXI address but * host won't know when target writes BAR to CORE_CTRL. * This write might get lost if target has NOT written BAR. * For now, fix the race by repeating the write in below * synchronization checking. */ ar_pci->num_msi_intrs = 0; ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); return 0; } static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar) { ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 0); } static int ath10k_pci_deinit_irq(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); switch (ar_pci->num_msi_intrs) { case 0: ath10k_pci_deinit_irq_legacy(ar); return 0; case 1: /* fall-through */ case MSI_NUM_REQUEST: pci_disable_msi(ar_pci->pdev); return 0; default: pci_disable_msi(ar_pci->pdev); } ath10k_warn("unknown irq configuration upon deinit\n"); return -EINVAL; } static int ath10k_pci_wait_for_target_init(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); unsigned long timeout; u32 val; ath10k_dbg(ATH10K_DBG_BOOT, "boot waiting target to initialise\n"); timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT); do { val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); ath10k_dbg(ATH10K_DBG_BOOT, "boot target indicator %x\n", val); /* target should never return this */ if (val == 0xffffffff) continue; /* the device has crashed so don't bother trying anymore */ if (val & FW_IND_EVENT_PENDING) break; if (val & FW_IND_INITIALIZED) break; if (ar_pci->num_msi_intrs == 0) /* Fix potential race by repeating CORE_BASE writes */ ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); mdelay(10); } while (time_before(jiffies, timeout)); if (val == 0xffffffff) { ath10k_err("failed to read device register, device is gone\n"); return -EIO; } if (val & FW_IND_EVENT_PENDING) { ath10k_warn("device has crashed during init\n"); ath10k_pci_fw_crashed_clear(ar); ath10k_pci_fw_crashed_dump(ar); return -ECOMM; } if (!(val & FW_IND_INITIALIZED)) { ath10k_err("failed to receive initialized event from target: %08x\n", val); return -ETIMEDOUT; } ath10k_dbg(ATH10K_DBG_BOOT, "boot target initialised\n"); return 0; } static int ath10k_pci_cold_reset(struct ath10k *ar) { int i; u32 val; ath10k_dbg(ATH10K_DBG_BOOT, "boot cold reset\n"); /* Put Target, including PCIe, into RESET. */ val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS); val |= 1; ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) { if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) & RTC_STATE_COLD_RESET_MASK) break; msleep(1); } /* Pull Target, including PCIe, out of RESET. */ val &= ~1; ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) { if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) & RTC_STATE_COLD_RESET_MASK)) break; msleep(1); } ath10k_dbg(ATH10K_DBG_BOOT, "boot cold reset complete\n"); return 0; } static int ath10k_pci_claim(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct pci_dev *pdev = ar_pci->pdev; u32 lcr_val; int ret; pci_set_drvdata(pdev, ar); ret = pci_enable_device(pdev); if (ret) { ath10k_err("failed to enable pci device: %d\n", ret); return ret; } ret = pci_request_region(pdev, BAR_NUM, "ath"); if (ret) { ath10k_err("failed to request region BAR%d: %d\n", BAR_NUM, ret); goto err_device; } /* Target expects 32 bit DMA. Enforce it. */ ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (ret) { ath10k_err("failed to set dma mask to 32-bit: %d\n", ret); goto err_region; } ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (ret) { ath10k_err("failed to set consistent dma mask to 32-bit: %d\n", ret); goto err_region; } pci_set_master(pdev); /* Workaround: Disable ASPM */ pci_read_config_dword(pdev, 0x80, &lcr_val); pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00)); /* Arrange for access to Target SoC registers. */ ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0); if (!ar_pci->mem) { ath10k_err("failed to iomap BAR%d\n", BAR_NUM); ret = -EIO; goto err_master; } ath10k_dbg(ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem); return 0; err_master: pci_clear_master(pdev); err_region: pci_release_region(pdev, BAR_NUM); err_device: pci_disable_device(pdev); return ret; } static void ath10k_pci_release(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct pci_dev *pdev = ar_pci->pdev; pci_iounmap(pdev, ar_pci->mem); pci_release_region(pdev, BAR_NUM); pci_clear_master(pdev); pci_disable_device(pdev); } static int ath10k_pci_probe(struct pci_dev *pdev, const struct pci_device_id *pci_dev) { int ret = 0; struct ath10k *ar; struct ath10k_pci *ar_pci; u32 chip_id; ath10k_dbg(ATH10K_DBG_PCI, "pci probe\n"); ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, &ath10k_pci_hif_ops); if (!ar) { ath10k_err("failed to allocate core\n"); return -ENOMEM; } ar_pci = ath10k_pci_priv(ar); ar_pci->pdev = pdev; ar_pci->dev = &pdev->dev; ar_pci->ar = ar; spin_lock_init(&ar_pci->ce_lock); setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, (unsigned long)ar); ret = ath10k_pci_claim(ar); if (ret) { ath10k_err("failed to claim device: %d\n", ret); goto err_core_destroy; } ret = ath10k_pci_wake(ar); if (ret) { ath10k_err("failed to wake up: %d\n", ret); goto err_release; } chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS); if (chip_id == 0xffffffff) { ath10k_err("failed to get chip id\n"); goto err_sleep; } ret = ath10k_pci_alloc_ce(ar); if (ret) { ath10k_err("failed to allocate copy engine pipes: %d\n", ret); goto err_sleep; } ath10k_pci_ce_deinit(ar); ret = ath10k_ce_disable_interrupts(ar); if (ret) { ath10k_err("failed to disable copy engine interrupts: %d\n", ret); goto err_free_ce; } /* Workaround: There's no known way to mask all possible interrupts via * device CSR. The only way to make sure device doesn't assert * interrupts is to reset it. Interrupts are then disabled on host * after handlers are registered. */ ath10k_pci_warm_reset(ar); ret = ath10k_pci_init_irq(ar); if (ret) { ath10k_err("failed to init irqs: %d\n", ret); goto err_free_ce; } ath10k_info("pci irq %s interrupts %d irq_mode %d reset_mode %d\n", ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs, ath10k_pci_irq_mode, ath10k_pci_reset_mode); ret = ath10k_pci_request_irq(ar); if (ret) { ath10k_warn("failed to request irqs: %d\n", ret); goto err_deinit_irq; } /* This shouldn't race as the device has been reset above. */ ath10k_pci_irq_disable(ar); ret = ath10k_core_register(ar, chip_id); if (ret) { ath10k_err("failed to register driver core: %d\n", ret); goto err_free_irq; } return 0; err_free_irq: ath10k_pci_free_irq(ar); err_deinit_irq: ath10k_pci_deinit_irq(ar); err_free_ce: ath10k_pci_free_ce(ar); err_sleep: ath10k_pci_sleep(ar); err_release: ath10k_pci_release(ar); err_core_destroy: ath10k_core_destroy(ar); return ret; } static void ath10k_pci_remove(struct pci_dev *pdev) { struct ath10k *ar = pci_get_drvdata(pdev); struct ath10k_pci *ar_pci; ath10k_dbg(ATH10K_DBG_PCI, "pci remove\n"); if (!ar) return; ar_pci = ath10k_pci_priv(ar); if (!ar_pci) return; ath10k_core_unregister(ar); ath10k_pci_free_irq(ar); ath10k_pci_deinit_irq(ar); ath10k_pci_ce_deinit(ar); ath10k_pci_free_ce(ar); ath10k_pci_sleep(ar); ath10k_pci_release(ar); ath10k_core_destroy(ar); } MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table); static struct pci_driver ath10k_pci_driver = { .name = "ath10k_pci", .id_table = ath10k_pci_id_table, .probe = ath10k_pci_probe, .remove = ath10k_pci_remove, }; static int __init ath10k_pci_init(void) { int ret; ret = pci_register_driver(&ath10k_pci_driver); if (ret) ath10k_err("failed to register PCI driver: %d\n", ret); return ret; } module_init(ath10k_pci_init); static void __exit ath10k_pci_exit(void) { pci_unregister_driver(&ath10k_pci_driver); } module_exit(ath10k_pci_exit); MODULE_AUTHOR("Qualcomm Atheros"); MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_3_FILE); MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);