// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ /* The driver transmit and receive code */ #include #include #include "ice.h" #define ICE_RX_HDR_SIZE 256 /** * ice_unmap_and_free_tx_buf - Release a Tx buffer * @ring: the ring that owns the buffer * @tx_buf: the buffer to free */ static void ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) { if (tx_buf->skb) { dev_kfree_skb_any(tx_buf->skb); if (dma_unmap_len(tx_buf, len)) dma_unmap_single(ring->dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); } else if (dma_unmap_len(tx_buf, len)) { dma_unmap_page(ring->dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); } tx_buf->next_to_watch = NULL; tx_buf->skb = NULL; dma_unmap_len_set(tx_buf, len, 0); /* tx_buf must be completely set up in the transmit path */ } static struct netdev_queue *txring_txq(const struct ice_ring *ring) { return netdev_get_tx_queue(ring->netdev, ring->q_index); } /** * ice_clean_tx_ring - Free any empty Tx buffers * @tx_ring: ring to be cleaned */ void ice_clean_tx_ring(struct ice_ring *tx_ring) { u16 i; /* ring already cleared, nothing to do */ if (!tx_ring->tx_buf) return; /* Free all the Tx ring sk_bufss */ for (i = 0; i < tx_ring->count; i++) ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); /* Zero out the descriptor ring */ memset(tx_ring->desc, 0, tx_ring->size); tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; if (!tx_ring->netdev) return; /* cleanup Tx queue statistics */ netdev_tx_reset_queue(txring_txq(tx_ring)); } /** * ice_free_tx_ring - Free Tx resources per queue * @tx_ring: Tx descriptor ring for a specific queue * * Free all transmit software resources */ void ice_free_tx_ring(struct ice_ring *tx_ring) { ice_clean_tx_ring(tx_ring); devm_kfree(tx_ring->dev, tx_ring->tx_buf); tx_ring->tx_buf = NULL; if (tx_ring->desc) { dmam_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, tx_ring->dma); tx_ring->desc = NULL; } } /** * ice_clean_tx_irq - Reclaim resources after transmit completes * @vsi: the VSI we care about * @tx_ring: Tx ring to clean * @napi_budget: Used to determine if we are in netpoll * * Returns true if there's any budget left (e.g. the clean is finished) */ static bool ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring, int napi_budget) { unsigned int total_bytes = 0, total_pkts = 0; unsigned int budget = vsi->work_lmt; s16 i = tx_ring->next_to_clean; struct ice_tx_desc *tx_desc; struct ice_tx_buf *tx_buf; tx_buf = &tx_ring->tx_buf[i]; tx_desc = ICE_TX_DESC(tx_ring, i); i -= tx_ring->count; do { struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; /* if next_to_watch is not set then there is no work pending */ if (!eop_desc) break; smp_rmb(); /* prevent any other reads prior to eop_desc */ /* if the descriptor isn't done, no work yet to do */ if (!(eop_desc->cmd_type_offset_bsz & cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) break; /* clear next_to_watch to prevent false hangs */ tx_buf->next_to_watch = NULL; /* update the statistics for this packet */ total_bytes += tx_buf->bytecount; total_pkts += tx_buf->gso_segs; /* free the skb */ napi_consume_skb(tx_buf->skb, napi_budget); /* unmap skb header data */ dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); /* clear tx_buf data */ tx_buf->skb = NULL; dma_unmap_len_set(tx_buf, len, 0); /* unmap remaining buffers */ while (tx_desc != eop_desc) { tx_buf++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buf = tx_ring->tx_buf; tx_desc = ICE_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buf, len)) { dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buf, len, 0); } } /* move us one more past the eop_desc for start of next pkt */ tx_buf++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buf = tx_ring->tx_buf; tx_desc = ICE_TX_DESC(tx_ring, 0); } prefetch(tx_desc); /* update budget accounting */ budget--; } while (likely(budget)); i += tx_ring->count; tx_ring->next_to_clean = i; u64_stats_update_begin(&tx_ring->syncp); tx_ring->stats.bytes += total_bytes; tx_ring->stats.pkts += total_pkts; u64_stats_update_end(&tx_ring->syncp); tx_ring->q_vector->tx.total_bytes += total_bytes; tx_ring->q_vector->tx.total_pkts += total_pkts; netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { /* Make sure that anybody stopping the queue after this * sees the new next_to_clean. */ smp_mb(); if (__netif_subqueue_stopped(tx_ring->netdev, tx_ring->q_index) && !test_bit(__ICE_DOWN, vsi->state)) { netif_wake_subqueue(tx_ring->netdev, tx_ring->q_index); ++tx_ring->tx_stats.restart_q; } } return !!budget; } /** * ice_setup_tx_ring - Allocate the Tx descriptors * @tx_ring: the Tx ring to set up * * Return 0 on success, negative on error */ int ice_setup_tx_ring(struct ice_ring *tx_ring) { struct device *dev = tx_ring->dev; if (!dev) return -ENOMEM; /* warn if we are about to overwrite the pointer */ WARN_ON(tx_ring->tx_buf); tx_ring->tx_buf = devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count, GFP_KERNEL); if (!tx_ring->tx_buf) return -ENOMEM; /* round up to nearest page */ tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), PAGE_SIZE); tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, GFP_KERNEL); if (!tx_ring->desc) { dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", tx_ring->size); goto err; } tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; tx_ring->tx_stats.prev_pkt = -1; return 0; err: devm_kfree(dev, tx_ring->tx_buf); tx_ring->tx_buf = NULL; return -ENOMEM; } /** * ice_clean_rx_ring - Free Rx buffers * @rx_ring: ring to be cleaned */ void ice_clean_rx_ring(struct ice_ring *rx_ring) { struct device *dev = rx_ring->dev; u16 i; /* ring already cleared, nothing to do */ if (!rx_ring->rx_buf) return; /* Free all the Rx ring sk_buffs */ for (i = 0; i < rx_ring->count; i++) { struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; if (rx_buf->skb) { dev_kfree_skb(rx_buf->skb); rx_buf->skb = NULL; } if (!rx_buf->page) continue; /* Invalidate cache lines that may have been written to by * device so that we avoid corrupting memory. */ dma_sync_single_range_for_cpu(dev, rx_buf->dma, rx_buf->page_offset, ICE_RXBUF_2048, DMA_FROM_DEVICE); /* free resources associated with mapping */ dma_unmap_page_attrs(dev, rx_buf->dma, PAGE_SIZE, DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); rx_buf->page = NULL; rx_buf->page_offset = 0; } memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count); /* Zero out the descriptor ring */ memset(rx_ring->desc, 0, rx_ring->size); rx_ring->next_to_alloc = 0; rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; } /** * ice_free_rx_ring - Free Rx resources * @rx_ring: ring to clean the resources from * * Free all receive software resources */ void ice_free_rx_ring(struct ice_ring *rx_ring) { ice_clean_rx_ring(rx_ring); devm_kfree(rx_ring->dev, rx_ring->rx_buf); rx_ring->rx_buf = NULL; if (rx_ring->desc) { dmam_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, rx_ring->dma); rx_ring->desc = NULL; } } /** * ice_setup_rx_ring - Allocate the Rx descriptors * @rx_ring: the Rx ring to set up * * Return 0 on success, negative on error */ int ice_setup_rx_ring(struct ice_ring *rx_ring) { struct device *dev = rx_ring->dev; if (!dev) return -ENOMEM; /* warn if we are about to overwrite the pointer */ WARN_ON(rx_ring->rx_buf); rx_ring->rx_buf = devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count, GFP_KERNEL); if (!rx_ring->rx_buf) return -ENOMEM; /* round up to nearest page */ rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), PAGE_SIZE); rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, GFP_KERNEL); if (!rx_ring->desc) { dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", rx_ring->size); goto err; } rx_ring->next_to_use = 0; rx_ring->next_to_clean = 0; return 0; err: devm_kfree(dev, rx_ring->rx_buf); rx_ring->rx_buf = NULL; return -ENOMEM; } /** * ice_release_rx_desc - Store the new tail and head values * @rx_ring: ring to bump * @val: new head index */ static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val) { rx_ring->next_to_use = val; /* update next to alloc since we have filled the ring */ rx_ring->next_to_alloc = val; /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); writel(val, rx_ring->tail); } /** * ice_alloc_mapped_page - recycle or make a new page * @rx_ring: ring to use * @bi: rx_buf struct to modify * * Returns true if the page was successfully allocated or * reused. */ static bool ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) { struct page *page = bi->page; dma_addr_t dma; /* since we are recycling buffers we should seldom need to alloc */ if (likely(page)) { rx_ring->rx_stats.page_reuse_count++; return true; } /* alloc new page for storage */ page = alloc_page(GFP_ATOMIC | __GFP_NOWARN); if (unlikely(!page)) { rx_ring->rx_stats.alloc_page_failed++; return false; } /* map page for use */ dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); /* if mapping failed free memory back to system since * there isn't much point in holding memory we can't use */ if (dma_mapping_error(rx_ring->dev, dma)) { __free_pages(page, 0); rx_ring->rx_stats.alloc_page_failed++; return false; } bi->dma = dma; bi->page = page; bi->page_offset = 0; page_ref_add(page, USHRT_MAX - 1); bi->pagecnt_bias = USHRT_MAX; return true; } /** * ice_alloc_rx_bufs - Replace used receive buffers * @rx_ring: ring to place buffers on * @cleaned_count: number of buffers to replace * * Returns false if all allocations were successful, true if any fail */ bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) { union ice_32b_rx_flex_desc *rx_desc; u16 ntu = rx_ring->next_to_use; struct ice_rx_buf *bi; /* do nothing if no valid netdev defined */ if (!rx_ring->netdev || !cleaned_count) return false; /* get the RX descriptor and buffer based on next_to_use */ rx_desc = ICE_RX_DESC(rx_ring, ntu); bi = &rx_ring->rx_buf[ntu]; do { if (!ice_alloc_mapped_page(rx_ring, bi)) goto no_bufs; /* sync the buffer for use by the device */ dma_sync_single_range_for_device(rx_ring->dev, bi->dma, bi->page_offset, ICE_RXBUF_2048, DMA_FROM_DEVICE); /* Refresh the desc even if buffer_addrs didn't change * because each write-back erases this info. */ rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); rx_desc++; bi++; ntu++; if (unlikely(ntu == rx_ring->count)) { rx_desc = ICE_RX_DESC(rx_ring, 0); bi = rx_ring->rx_buf; ntu = 0; } /* clear the status bits for the next_to_use descriptor */ rx_desc->wb.status_error0 = 0; cleaned_count--; } while (cleaned_count); if (rx_ring->next_to_use != ntu) ice_release_rx_desc(rx_ring, ntu); return false; no_bufs: if (rx_ring->next_to_use != ntu) ice_release_rx_desc(rx_ring, ntu); /* make sure to come back via polling to try again after * allocation failure */ return true; } /** * ice_page_is_reserved - check if reuse is possible * @page: page struct to check */ static bool ice_page_is_reserved(struct page *page) { return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); } /** * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse * @rx_buf: Rx buffer to adjust * @size: Size of adjustment * * Update the offset within page so that Rx buf will be ready to be reused. * For systems with PAGE_SIZE < 8192 this function will flip the page offset * so the second half of page assigned to Rx buffer will be used, otherwise * the offset is moved by the @size bytes */ static void ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) { #if (PAGE_SIZE < 8192) /* flip page offset to other buffer */ rx_buf->page_offset ^= size; #else /* move offset up to the next cache line */ rx_buf->page_offset += size; #endif } /** * ice_can_reuse_rx_page - Determine if page can be reused for another Rx * @rx_buf: buffer containing the page * * If page is reusable, we have a green light for calling ice_reuse_rx_page, * which will assign the current buffer to the buffer that next_to_alloc is * pointing to; otherwise, the DMA mapping needs to be destroyed and * page freed */ static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf) { #if (PAGE_SIZE >= 8192) unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048; #endif unsigned int pagecnt_bias = rx_buf->pagecnt_bias; struct page *page = rx_buf->page; /* avoid re-using remote pages */ if (unlikely(ice_page_is_reserved(page))) return false; #if (PAGE_SIZE < 8192) /* if we are only owner of page we can reuse it */ if (unlikely((page_count(page) - pagecnt_bias) > 1)) return false; #else if (rx_buf->page_offset > last_offset) return false; #endif /* PAGE_SIZE < 8192) */ /* If we have drained the page fragment pool we need to update * the pagecnt_bias and page count so that we fully restock the * number of references the driver holds. */ if (unlikely(pagecnt_bias == 1)) { page_ref_add(page, USHRT_MAX - 1); rx_buf->pagecnt_bias = USHRT_MAX; } return true; } /** * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag * @rx_buf: buffer containing page to add * @skb: sk_buff to place the data into * @size: packet length from rx_desc * * This function will add the data contained in rx_buf->page to the skb. * It will just attach the page as a frag to the skb. * The function will then update the page offset. */ static void ice_add_rx_frag(struct ice_rx_buf *rx_buf, struct sk_buff *skb, unsigned int size) { #if (PAGE_SIZE >= 8192) unsigned int truesize = SKB_DATA_ALIGN(size); #else unsigned int truesize = ICE_RXBUF_2048; #endif skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, rx_buf->page_offset, size, truesize); /* page is being used so we must update the page offset */ ice_rx_buf_adjust_pg_offset(rx_buf, truesize); } /** * ice_reuse_rx_page - page flip buffer and store it back on the ring * @rx_ring: Rx descriptor ring to store buffers on * @old_buf: donor buffer to have page reused * * Synchronizes page for reuse by the adapter */ static void ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) { u16 nta = rx_ring->next_to_alloc; struct ice_rx_buf *new_buf; new_buf = &rx_ring->rx_buf[nta]; /* update, and store next to alloc */ nta++; rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; /* Transfer page from old buffer to new buffer. * Move each member individually to avoid possible store * forwarding stalls and unnecessary copy of skb. */ new_buf->dma = old_buf->dma; new_buf->page = old_buf->page; new_buf->page_offset = old_buf->page_offset; new_buf->pagecnt_bias = old_buf->pagecnt_bias; } /** * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use * @rx_ring: Rx descriptor ring to transact packets on * @skb: skb to be used * @size: size of buffer to add to skb * * This function will pull an Rx buffer from the ring and synchronize it * for use by the CPU. */ static struct ice_rx_buf * ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb, const unsigned int size) { struct ice_rx_buf *rx_buf; rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; prefetchw(rx_buf->page); *skb = rx_buf->skb; /* we are reusing so sync this buffer for CPU use */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, rx_buf->page_offset, size, DMA_FROM_DEVICE); /* We have pulled a buffer for use, so decrement pagecnt_bias */ rx_buf->pagecnt_bias--; return rx_buf; } /** * ice_construct_skb - Allocate skb and populate it * @rx_ring: Rx descriptor ring to transact packets on * @rx_buf: Rx buffer to pull data from * @size: the length of the packet * * This function allocates an skb. It then populates it with the page * data from the current receive descriptor, taking care to set up the * skb correctly. */ static struct sk_buff * ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, unsigned int size) { void *va = page_address(rx_buf->page) + rx_buf->page_offset; unsigned int headlen; struct sk_buff *skb; /* prefetch first cache line of first page */ prefetch(va); #if L1_CACHE_BYTES < 128 prefetch((u8 *)va + L1_CACHE_BYTES); #endif /* L1_CACHE_BYTES */ /* allocate a skb to store the frags */ skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, GFP_ATOMIC | __GFP_NOWARN); if (unlikely(!skb)) return NULL; skb_record_rx_queue(skb, rx_ring->q_index); /* Determine available headroom for copy */ headlen = size; if (headlen > ICE_RX_HDR_SIZE) headlen = eth_get_headlen(va, ICE_RX_HDR_SIZE); /* align pull length to size of long to optimize memcpy performance */ memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); /* if we exhaust the linear part then add what is left as a frag */ size -= headlen; if (size) { #if (PAGE_SIZE >= 8192) unsigned int truesize = SKB_DATA_ALIGN(size); #else unsigned int truesize = ICE_RXBUF_2048; #endif skb_add_rx_frag(skb, 0, rx_buf->page, rx_buf->page_offset + headlen, size, truesize); /* buffer is used by skb, update page_offset */ ice_rx_buf_adjust_pg_offset(rx_buf, truesize); } else { /* buffer is unused, reset bias back to rx_buf; data was copied * onto skb's linear part so there's no need for adjusting * page offset and we can reuse this buffer as-is */ rx_buf->pagecnt_bias++; } return skb; } /** * ice_put_rx_buf - Clean up used buffer and either recycle or free * @rx_ring: Rx descriptor ring to transact packets on * @rx_buf: Rx buffer to pull data from * * This function will clean up the contents of the rx_buf. It will * either recycle the buffer or unmap it and free the associated resources. */ static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf) { /* hand second half of page back to the ring */ if (ice_can_reuse_rx_page(rx_buf)) { ice_reuse_rx_page(rx_ring, rx_buf); rx_ring->rx_stats.page_reuse_count++; } else { /* we are not reusing the buffer so unmap it */ dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, PAGE_SIZE, DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); } /* clear contents of buffer_info */ rx_buf->page = NULL; rx_buf->skb = NULL; } /** * ice_cleanup_headers - Correct empty headers * @skb: pointer to current skb being fixed * * Also address the case where we are pulling data in on pages only * and as such no data is present in the skb header. * * In addition if skb is not at least 60 bytes we need to pad it so that * it is large enough to qualify as a valid Ethernet frame. * * Returns true if an error was encountered and skb was freed. */ static bool ice_cleanup_headers(struct sk_buff *skb) { /* if eth_skb_pad returns an error the skb was freed */ if (eth_skb_pad(skb)) return true; return false; } /** * ice_test_staterr - tests bits in Rx descriptor status and error fields * @rx_desc: pointer to receive descriptor (in le64 format) * @stat_err_bits: value to mask * * This function does some fast chicanery in order to return the * value of the mask which is really only used for boolean tests. * The status_error_len doesn't need to be shifted because it begins * at offset zero. */ static bool ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc, const u16 stat_err_bits) { return !!(rx_desc->wb.status_error0 & cpu_to_le16(stat_err_bits)); } /** * ice_is_non_eop - process handling of non-EOP buffers * @rx_ring: Rx ring being processed * @rx_desc: Rx descriptor for current buffer * @skb: Current socket buffer containing buffer in progress * * This function updates next to clean. If the buffer is an EOP buffer * this function exits returning false, otherwise it will place the * sk_buff in the next buffer to be chained and return true indicating * that this is in fact a non-EOP buffer. */ static bool ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb) { u32 ntc = rx_ring->next_to_clean + 1; /* fetch, update, and store next to clean */ ntc = (ntc < rx_ring->count) ? ntc : 0; rx_ring->next_to_clean = ntc; prefetch(ICE_RX_DESC(rx_ring, ntc)); /* if we are the last buffer then there is nothing else to do */ #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) return false; /* place skb in next buffer to be received */ rx_ring->rx_buf[ntc].skb = skb; rx_ring->rx_stats.non_eop_descs++; return true; } /** * ice_ptype_to_htype - get a hash type * @ptype: the ptype value from the descriptor * * Returns a hash type to be used by skb_set_hash */ static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype) { return PKT_HASH_TYPE_NONE; } /** * ice_rx_hash - set the hash value in the skb * @rx_ring: descriptor ring * @rx_desc: specific descriptor * @skb: pointer to current skb * @rx_ptype: the ptype value from the descriptor */ static void ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb, u8 rx_ptype) { struct ice_32b_rx_flex_desc_nic *nic_mdid; u32 hash; if (!(rx_ring->netdev->features & NETIF_F_RXHASH)) return; if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC) return; nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc; hash = le32_to_cpu(nic_mdid->rss_hash); skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype)); } /** * ice_rx_csum - Indicate in skb if checksum is good * @vsi: the VSI we care about * @skb: skb currently being received and modified * @rx_desc: the receive descriptor * @ptype: the packet type decoded by hardware * * skb->protocol must be set before this function is called */ static void ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb, union ice_32b_rx_flex_desc *rx_desc, u8 ptype) { struct ice_rx_ptype_decoded decoded; u32 rx_error, rx_status; bool ipv4, ipv6; rx_status = le16_to_cpu(rx_desc->wb.status_error0); rx_error = rx_status; decoded = ice_decode_rx_desc_ptype(ptype); /* Start with CHECKSUM_NONE and by default csum_level = 0 */ skb->ip_summed = CHECKSUM_NONE; skb_checksum_none_assert(skb); /* check if Rx checksum is enabled */ if (!(vsi->netdev->features & NETIF_F_RXCSUM)) return; /* check if HW has decoded the packet and checksum */ if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))) return; if (!(decoded.known && decoded.outer_ip)) return; ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4); ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6); if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) goto checksum_fail; else if (ipv6 && (rx_status & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S)))) goto checksum_fail; /* check for L4 errors and handle packets that were not able to be * checksummed due to arrival speed */ if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) goto checksum_fail; /* Only report checksum unnecessary for TCP, UDP, or SCTP */ switch (decoded.inner_prot) { case ICE_RX_PTYPE_INNER_PROT_TCP: case ICE_RX_PTYPE_INNER_PROT_UDP: case ICE_RX_PTYPE_INNER_PROT_SCTP: skb->ip_summed = CHECKSUM_UNNECESSARY; default: break; } return; checksum_fail: vsi->back->hw_csum_rx_error++; } /** * ice_process_skb_fields - Populate skb header fields from Rx descriptor * @rx_ring: Rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being populated * @ptype: the packet type decoded by hardware * * This function checks the ring, descriptor, and packet information in * order to populate the hash, checksum, VLAN, protocol, and * other fields within the skb. */ static void ice_process_skb_fields(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb, u8 ptype) { ice_rx_hash(rx_ring, rx_desc, skb, ptype); /* modifies the skb - consumes the enet header */ skb->protocol = eth_type_trans(skb, rx_ring->netdev); ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype); } /** * ice_receive_skb - Send a completed packet up the stack * @rx_ring: Rx ring in play * @skb: packet to send up * @vlan_tag: vlan tag for packet * * This function sends the completed packet (via. skb) up the stack using * gro receive functions (with/without vlan tag) */ static void ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag) { if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && (vlan_tag & VLAN_VID_MASK)) { __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); } napi_gro_receive(&rx_ring->q_vector->napi, skb); } /** * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf * @rx_ring: Rx descriptor ring to transact packets on * @budget: Total limit on number of packets to process * * This function provides a "bounce buffer" approach to Rx interrupt * processing. The advantage to this is that on systems that have * expensive overhead for IOMMU access this provides a means of avoiding * it by maintaining the mapping of the page to the system. * * Returns amount of work completed */ static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) { unsigned int total_rx_bytes = 0, total_rx_pkts = 0; u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); bool failure = false; /* start the loop to process RX packets bounded by 'budget' */ while (likely(total_rx_pkts < (unsigned int)budget)) { union ice_32b_rx_flex_desc *rx_desc; struct ice_rx_buf *rx_buf; struct sk_buff *skb; unsigned int size; u16 stat_err_bits; u16 vlan_tag = 0; u8 rx_ptype; /* return some buffers to hardware, one at a time is too slow */ if (cleaned_count >= ICE_RX_BUF_WRITE) { failure = failure || ice_alloc_rx_bufs(rx_ring, cleaned_count); cleaned_count = 0; } /* get the RX desc from RX ring based on 'next_to_clean' */ rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); /* status_error_len will always be zero for unused descriptors * because it's cleared in cleanup, and overlaps with hdr_addr * which is always zero because packet split isn't used, if the * hardware wrote DD then it will be non-zero */ stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); if (!ice_test_staterr(rx_desc, stat_err_bits)) break; /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc until we know the * DD bit is set. */ dma_rmb(); size = le16_to_cpu(rx_desc->wb.pkt_len) & ICE_RX_FLX_DESC_PKT_LEN_M; rx_buf = ice_get_rx_buf(rx_ring, &skb, size); /* allocate (if needed) and populate skb */ if (skb) ice_add_rx_frag(rx_buf, skb, size); else skb = ice_construct_skb(rx_ring, rx_buf, size); /* exit if we failed to retrieve a buffer */ if (!skb) { rx_ring->rx_stats.alloc_buf_failed++; rx_buf->pagecnt_bias++; break; } ice_put_rx_buf(rx_ring, rx_buf); cleaned_count++; /* skip if it is NOP desc */ if (ice_is_non_eop(rx_ring, rx_desc, skb)) continue; stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { dev_kfree_skb_any(skb); continue; } rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & ICE_RX_FLEX_DESC_PTYPE_M; stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); if (ice_test_staterr(rx_desc, stat_err_bits)) vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); /* correct empty headers and pad skb if needed (to make valid * ethernet frame */ if (ice_cleanup_headers(skb)) { skb = NULL; continue; } /* probably a little skewed due to removing CRC */ total_rx_bytes += skb->len; /* populate checksum, VLAN, and protocol */ ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); /* send completed skb up the stack */ ice_receive_skb(rx_ring, skb, vlan_tag); /* update budget accounting */ total_rx_pkts++; } /* update queue and vector specific stats */ u64_stats_update_begin(&rx_ring->syncp); rx_ring->stats.pkts += total_rx_pkts; rx_ring->stats.bytes += total_rx_bytes; u64_stats_update_end(&rx_ring->syncp); rx_ring->q_vector->rx.total_pkts += total_rx_pkts; rx_ring->q_vector->rx.total_bytes += total_rx_bytes; /* guarantee a trip back through this routine if there was a failure */ return failure ? budget : (int)total_rx_pkts; } static unsigned int ice_itr_divisor(struct ice_port_info *pi) { switch (pi->phy.link_info.link_speed) { case ICE_AQ_LINK_SPEED_40GB: return ICE_ITR_ADAPTIVE_MIN_INC * 1024; case ICE_AQ_LINK_SPEED_25GB: case ICE_AQ_LINK_SPEED_20GB: return ICE_ITR_ADAPTIVE_MIN_INC * 512; case ICE_AQ_LINK_SPEED_100MB: return ICE_ITR_ADAPTIVE_MIN_INC * 32; default: return ICE_ITR_ADAPTIVE_MIN_INC * 256; } } /** * ice_update_itr - update the adaptive ITR value based on statistics * @q_vector: structure containing interrupt and ring information * @rc: structure containing ring performance data * * Stores a new ITR value based on packets and byte * counts during the last interrupt. The advantage of per interrupt * computation is faster updates and more accurate ITR for the current * traffic pattern. Constants in this function were computed * based on theoretical maximum wire speed and thresholds were set based * on testing data as well as attempting to minimize response time * while increasing bulk throughput. */ static void ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc) { unsigned int avg_wire_size, packets, bytes, itr; unsigned long next_update = jiffies; bool container_is_rx; if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting)) return; /* If itr_countdown is set it means we programmed an ITR within * the last 4 interrupt cycles. This has a side effect of us * potentially firing an early interrupt. In order to work around * this we need to throw out any data received for a few * interrupts following the update. */ if (q_vector->itr_countdown) { itr = rc->target_itr; goto clear_counts; } container_is_rx = (&q_vector->rx == rc); /* For Rx we want to push the delay up and default to low latency. * for Tx we want to pull the delay down and default to high latency. */ itr = container_is_rx ? ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY : ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY; /* If we didn't update within up to 1 - 2 jiffies we can assume * that either packets are coming in so slow there hasn't been * any work, or that there is so much work that NAPI is dealing * with interrupt moderation and we don't need to do anything. */ if (time_after(next_update, rc->next_update)) goto clear_counts; packets = rc->total_pkts; bytes = rc->total_bytes; if (container_is_rx) { /* If Rx there are 1 to 4 packets and bytes are less than * 9000 assume insufficient data to use bulk rate limiting * approach unless Tx is already in bulk rate limiting. We * are likely latency driven. */ if (packets && packets < 4 && bytes < 9000 && (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) { itr = ICE_ITR_ADAPTIVE_LATENCY; goto adjust_by_size; } } else if (packets < 4) { /* If we have Tx and Rx ITR maxed and Tx ITR is running in * bulk mode and we are receiving 4 or fewer packets just * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so * that the Rx can relax. */ if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS && (q_vector->rx.target_itr & ICE_ITR_MASK) == ICE_ITR_ADAPTIVE_MAX_USECS) goto clear_counts; } else if (packets > 32) { /* If we have processed over 32 packets in a single interrupt * for Tx assume we need to switch over to "bulk" mode. */ rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY; } /* We have no packets to actually measure against. This means * either one of the other queues on this vector is active or * we are a Tx queue doing TSO with too high of an interrupt rate. * * Between 4 and 56 we can assume that our current interrupt delay * is only slightly too low. As such we should increase it by a small * fixed amount. */ if (packets < 56) { itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC; if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { itr &= ICE_ITR_ADAPTIVE_LATENCY; itr += ICE_ITR_ADAPTIVE_MAX_USECS; } goto clear_counts; } if (packets <= 256) { itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); itr &= ICE_ITR_MASK; /* Between 56 and 112 is our "goldilocks" zone where we are * working out "just right". Just report that our current * ITR is good for us. */ if (packets <= 112) goto clear_counts; /* If packet count is 128 or greater we are likely looking * at a slight overrun of the delay we want. Try halving * our delay to see if that will cut the number of packets * in half per interrupt. */ itr >>= 1; itr &= ICE_ITR_MASK; if (itr < ICE_ITR_ADAPTIVE_MIN_USECS) itr = ICE_ITR_ADAPTIVE_MIN_USECS; goto clear_counts; } /* The paths below assume we are dealing with a bulk ITR since * number of packets is greater than 256. We are just going to have * to compute a value and try to bring the count under control, * though for smaller packet sizes there isn't much we can do as * NAPI polling will likely be kicking in sooner rather than later. */ itr = ICE_ITR_ADAPTIVE_BULK; adjust_by_size: /* If packet counts are 256 or greater we can assume we have a gross * overestimation of what the rate should be. Instead of trying to fine * tune it just use the formula below to try and dial in an exact value * gives the current packet size of the frame. */ avg_wire_size = bytes / packets; /* The following is a crude approximation of: * wmem_default / (size + overhead) = desired_pkts_per_int * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value * * Assuming wmem_default is 212992 and overhead is 640 bytes per * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the * formula down to * * (170 * (size + 24)) / (size + 640) = ITR * * We first do some math on the packet size and then finally bitshift * by 8 after rounding up. We also have to account for PCIe link speed * difference as ITR scales based on this. */ if (avg_wire_size <= 60) { /* Start at 250k ints/sec */ avg_wire_size = 4096; } else if (avg_wire_size <= 380) { /* 250K ints/sec to 60K ints/sec */ avg_wire_size *= 40; avg_wire_size += 1696; } else if (avg_wire_size <= 1084) { /* 60K ints/sec to 36K ints/sec */ avg_wire_size *= 15; avg_wire_size += 11452; } else if (avg_wire_size <= 1980) { /* 36K ints/sec to 30K ints/sec */ avg_wire_size *= 5; avg_wire_size += 22420; } else { /* plateau at a limit of 30K ints/sec */ avg_wire_size = 32256; } /* If we are in low latency mode halve our delay which doubles the * rate to somewhere between 100K to 16K ints/sec */ if (itr & ICE_ITR_ADAPTIVE_LATENCY) avg_wire_size >>= 1; /* Resultant value is 256 times larger than it needs to be. This * gives us room to adjust the value as needed to either increase * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. * * Use addition as we have already recorded the new latency flag * for the ITR value. */ itr += DIV_ROUND_UP(avg_wire_size, ice_itr_divisor(q_vector->vsi->port_info)) * ICE_ITR_ADAPTIVE_MIN_INC; if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { itr &= ICE_ITR_ADAPTIVE_LATENCY; itr += ICE_ITR_ADAPTIVE_MAX_USECS; } clear_counts: /* write back value */ rc->target_itr = itr; /* next update should occur within next jiffy */ rc->next_update = next_update + 1; rc->total_bytes = 0; rc->total_pkts = 0; } /** * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register * @itr_idx: interrupt throttling index * @itr: interrupt throttling value in usecs */ static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) { /* The itr value is reported in microseconds, and the register value is * recorded in 2 microsecond units. For this reason we only need to * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this * granularity as a shift instead of division. The mask makes sure the * ITR value is never odd so we don't accidentally write into the field * prior to the ITR field. */ itr &= ICE_ITR_MASK; return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); } /* The act of updating the ITR will cause it to immediately trigger. In order * to prevent this from throwing off adaptive update statistics we defer the * update so that it can only happen so often. So after either Tx or Rx are * updated we make the adaptive scheme wait until either the ITR completely * expires via the next_update expiration or we have been through at least * 3 interrupts. */ #define ITR_COUNTDOWN_START 3 /** * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt * @vsi: the VSI associated with the q_vector * @q_vector: q_vector for which ITR is being updated and interrupt enabled */ static void ice_update_ena_itr(struct ice_vsi *vsi, struct ice_q_vector *q_vector) { struct ice_ring_container *tx = &q_vector->tx; struct ice_ring_container *rx = &q_vector->rx; u32 itr_val; /* This will do nothing if dynamic updates are not enabled */ ice_update_itr(q_vector, tx); ice_update_itr(q_vector, rx); /* This block of logic allows us to get away with only updating * one ITR value with each interrupt. The idea is to perform a * pseudo-lazy update with the following criteria. * * 1. Rx is given higher priority than Tx if both are in same state * 2. If we must reduce an ITR that is given highest priority. * 3. We then give priority to increasing ITR based on amount. */ if (rx->target_itr < rx->current_itr) { /* Rx ITR needs to be reduced, this is highest priority */ itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); rx->current_itr = rx->target_itr; q_vector->itr_countdown = ITR_COUNTDOWN_START; } else if ((tx->target_itr < tx->current_itr) || ((rx->target_itr - rx->current_itr) < (tx->target_itr - tx->current_itr))) { /* Tx ITR needs to be reduced, this is second priority * Tx ITR needs to be increased more than Rx, fourth priority */ itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr); tx->current_itr = tx->target_itr; q_vector->itr_countdown = ITR_COUNTDOWN_START; } else if (rx->current_itr != rx->target_itr) { /* Rx ITR needs to be increased, third priority */ itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); rx->current_itr = rx->target_itr; q_vector->itr_countdown = ITR_COUNTDOWN_START; } else { /* Still have to re-enable the interrupts */ itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); if (q_vector->itr_countdown) q_vector->itr_countdown--; } if (!test_bit(__ICE_DOWN, vsi->state)) wr32(&vsi->back->hw, GLINT_DYN_CTL(vsi->hw_base_vector + q_vector->v_idx), itr_val); } /** * ice_napi_poll - NAPI polling Rx/Tx cleanup routine * @napi: napi struct with our devices info in it * @budget: amount of work driver is allowed to do this pass, in packets * * This function will clean all queues associated with a q_vector. * * Returns the amount of work done */ int ice_napi_poll(struct napi_struct *napi, int budget) { struct ice_q_vector *q_vector = container_of(napi, struct ice_q_vector, napi); struct ice_vsi *vsi = q_vector->vsi; struct ice_pf *pf = vsi->back; bool clean_complete = true; int budget_per_ring = 0; struct ice_ring *ring; int work_done = 0; /* Since the actual Tx work is minimal, we can give the Tx a larger * budget and be more aggressive about cleaning up the Tx descriptors. */ ice_for_each_ring(ring, q_vector->tx) if (!ice_clean_tx_irq(vsi, ring, budget)) clean_complete = false; /* Handle case where we are called by netpoll with a budget of 0 */ if (budget <= 0) return budget; /* We attempt to distribute budget to each Rx queue fairly, but don't * allow the budget to go below 1 because that would exit polling early. */ if (q_vector->num_ring_rx) budget_per_ring = max(budget / q_vector->num_ring_rx, 1); ice_for_each_ring(ring, q_vector->rx) { int cleaned; cleaned = ice_clean_rx_irq(ring, budget_per_ring); work_done += cleaned; /* if we clean as many as budgeted, we must not be done */ if (cleaned >= budget_per_ring) clean_complete = false; } /* If work not completed, return budget and polling will return */ if (!clean_complete) return budget; /* Exit the polling mode, but don't re-enable interrupts if stack might * poll us due to busy-polling */ if (likely(napi_complete_done(napi, work_done))) if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) ice_update_ena_itr(vsi, q_vector); return min_t(int, work_done, budget - 1); } /* helper function for building cmd/type/offset */ static __le64 build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag) { return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA | (td_cmd << ICE_TXD_QW1_CMD_S) | (td_offset << ICE_TXD_QW1_OFFSET_S) | ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) | (td_tag << ICE_TXD_QW1_L2TAG1_S)); } /** * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions * @tx_ring: the ring to be checked * @size: the size buffer we want to assure is available * * Returns -EBUSY if a stop is needed, else 0 */ static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) { netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); /* Memory barrier before checking head and tail */ smp_mb(); /* Check again in a case another CPU has just made room available. */ if (likely(ICE_DESC_UNUSED(tx_ring) < size)) return -EBUSY; /* A reprieve! - use start_subqueue because it doesn't call schedule */ netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); ++tx_ring->tx_stats.restart_q; return 0; } /** * ice_maybe_stop_tx - 1st level check for Tx stop conditions * @tx_ring: the ring to be checked * @size: the size buffer we want to assure is available * * Returns 0 if stop is not needed */ static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) { if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) return 0; return __ice_maybe_stop_tx(tx_ring, size); } /** * ice_tx_map - Build the Tx descriptor * @tx_ring: ring to send buffer on * @first: first buffer info buffer to use * @off: pointer to struct that holds offload parameters * * This function loops over the skb data pointed to by *first * and gets a physical address for each memory location and programs * it and the length into the transmit descriptor. */ static void ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, struct ice_tx_offload_params *off) { u64 td_offset, td_tag, td_cmd; u16 i = tx_ring->next_to_use; struct skb_frag_struct *frag; unsigned int data_len, size; struct ice_tx_desc *tx_desc; struct ice_tx_buf *tx_buf; struct sk_buff *skb; dma_addr_t dma; td_tag = off->td_l2tag1; td_cmd = off->td_cmd; td_offset = off->td_offset; skb = first->skb; data_len = skb->data_len; size = skb_headlen(skb); tx_desc = ICE_TX_DESC(tx_ring, i); if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> ICE_TX_FLAGS_VLAN_S; } dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); tx_buf = first; for (frag = &skb_shinfo(skb)->frags[0];; frag++) { unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; if (dma_mapping_error(tx_ring->dev, dma)) goto dma_error; /* record length, and DMA address */ dma_unmap_len_set(tx_buf, len, size); dma_unmap_addr_set(tx_buf, dma, dma); /* align size to end of page */ max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); tx_desc->buf_addr = cpu_to_le64(dma); /* account for data chunks larger than the hardware * can handle */ while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, max_data, td_tag); tx_desc++; i++; if (i == tx_ring->count) { tx_desc = ICE_TX_DESC(tx_ring, 0); i = 0; } dma += max_data; size -= max_data; max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; tx_desc->buf_addr = cpu_to_le64(dma); } if (likely(!data_len)) break; tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, size, td_tag); tx_desc++; i++; if (i == tx_ring->count) { tx_desc = ICE_TX_DESC(tx_ring, 0); i = 0; } size = skb_frag_size(frag); data_len -= size; dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, DMA_TO_DEVICE); tx_buf = &tx_ring->tx_buf[i]; } /* record bytecount for BQL */ netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); /* record SW timestamp if HW timestamp is not available */ skb_tx_timestamp(first->skb); i++; if (i == tx_ring->count) i = 0; /* write last descriptor with RS and EOP bits */ td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS); tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, size, td_tag); /* Force memory writes to complete before letting h/w know there * are new descriptors to fetch. * * We also use this memory barrier to make certain all of the * status bits have been updated before next_to_watch is written. */ wmb(); /* set next_to_watch value indicating a packet is present */ first->next_to_watch = tx_desc; tx_ring->next_to_use = i; ice_maybe_stop_tx(tx_ring, DESC_NEEDED); /* notify HW of packet */ if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { writel(i, tx_ring->tail); /* we need this if more than one processor can write to our tail * at a time, it synchronizes IO on IA64/Altix systems */ mmiowb(); } return; dma_error: /* clear dma mappings for failed tx_buf map */ for (;;) { tx_buf = &tx_ring->tx_buf[i]; ice_unmap_and_free_tx_buf(tx_ring, tx_buf); if (tx_buf == first) break; if (i == 0) i = tx_ring->count; i--; } tx_ring->next_to_use = i; } /** * ice_tx_csum - Enable Tx checksum offloads * @first: pointer to the first descriptor * @off: pointer to struct that holds offload parameters * * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. */ static int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) { u32 l4_len = 0, l3_len = 0, l2_len = 0; struct sk_buff *skb = first->skb; union { struct iphdr *v4; struct ipv6hdr *v6; unsigned char *hdr; } ip; union { struct tcphdr *tcp; unsigned char *hdr; } l4; __be16 frag_off, protocol; unsigned char *exthdr; u32 offset, cmd = 0; u8 l4_proto = 0; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; ip.hdr = skb_network_header(skb); l4.hdr = skb_transport_header(skb); /* compute outer L2 header size */ l2_len = ip.hdr - skb->data; offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; if (skb->encapsulation) return -1; /* Enable IP checksum offloads */ protocol = vlan_get_protocol(skb); if (protocol == htons(ETH_P_IP)) { l4_proto = ip.v4->protocol; /* the stack computes the IP header already, the only time we * need the hardware to recompute it is in the case of TSO. */ if (first->tx_flags & ICE_TX_FLAGS_TSO) cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; else cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; } else if (protocol == htons(ETH_P_IPV6)) { cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; exthdr = ip.hdr + sizeof(*ip.v6); l4_proto = ip.v6->nexthdr; if (l4.hdr != exthdr) ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, &frag_off); } else { return -1; } /* compute inner L3 header size */ l3_len = l4.hdr - ip.hdr; offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; /* Enable L4 checksum offloads */ switch (l4_proto) { case IPPROTO_TCP: /* enable checksum offloads */ cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; l4_len = l4.tcp->doff; offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; break; case IPPROTO_UDP: /* enable UDP checksum offload */ cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; l4_len = (sizeof(struct udphdr) >> 2); offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; break; case IPPROTO_SCTP: /* enable SCTP checksum offload */ cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; l4_len = sizeof(struct sctphdr) >> 2; offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; break; default: if (first->tx_flags & ICE_TX_FLAGS_TSO) return -1; skb_checksum_help(skb); return 0; } off->td_cmd |= cmd; off->td_offset |= offset; return 1; } /** * ice_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW * @tx_ring: ring to send buffer on * @first: pointer to struct ice_tx_buf * * Checks the skb and set up correspondingly several generic transmit flags * related to VLAN tagging for the HW, such as VLAN, DCB, etc. * * Returns error code indicate the frame should be dropped upon error and the * otherwise returns 0 to indicate the flags has been set properly. */ static int ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first) { struct sk_buff *skb = first->skb; __be16 protocol = skb->protocol; if (protocol == htons(ETH_P_8021Q) && !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { /* when HW VLAN acceleration is turned off by the user the * stack sets the protocol to 8021q so that the driver * can take any steps required to support the SW only * VLAN handling. In our case the driver doesn't need * to take any further steps so just set the protocol * to the encapsulated ethertype. */ skb->protocol = vlan_get_protocol(skb); goto out; } /* if we have a HW VLAN tag being added, default to the HW one */ if (skb_vlan_tag_present(skb)) { first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; } else if (protocol == htons(ETH_P_8021Q)) { struct vlan_hdr *vhdr, _vhdr; /* for SW VLAN, check the next protocol and store the tag */ vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); if (!vhdr) return -EINVAL; first->tx_flags |= ntohs(vhdr->h_vlan_TCI) << ICE_TX_FLAGS_VLAN_S; first->tx_flags |= ICE_TX_FLAGS_SW_VLAN; } out: return 0; } /** * ice_tso - computes mss and TSO length to prepare for TSO * @first: pointer to struct ice_tx_buf * @off: pointer to struct that holds offload parameters * * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. */ static int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) { struct sk_buff *skb = first->skb; union { struct iphdr *v4; struct ipv6hdr *v6; unsigned char *hdr; } ip; union { struct tcphdr *tcp; unsigned char *hdr; } l4; u64 cd_mss, cd_tso_len; u32 paylen, l4_start; int err; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (!skb_is_gso(skb)) return 0; err = skb_cow_head(skb, 0); if (err < 0) return err; ip.hdr = skb_network_header(skb); l4.hdr = skb_transport_header(skb); /* initialize outer IP header fields */ if (ip.v4->version == 4) { ip.v4->tot_len = 0; ip.v4->check = 0; } else { ip.v6->payload_len = 0; } /* determine offset of transport header */ l4_start = l4.hdr - skb->data; /* remove payload length from checksum */ paylen = skb->len - l4_start; csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); /* compute length of segmentation header */ off->header_len = (l4.tcp->doff * 4) + l4_start; /* update gso_segs and bytecount */ first->gso_segs = skb_shinfo(skb)->gso_segs; first->bytecount += (first->gso_segs - 1) * off->header_len; cd_tso_len = skb->len - off->header_len; cd_mss = skb_shinfo(skb)->gso_size; /* record cdesc_qw1 with TSO parameters */ off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX | (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | (cd_mss << ICE_TXD_CTX_QW1_MSS_S); first->tx_flags |= ICE_TX_FLAGS_TSO; return 1; } /** * ice_txd_use_count - estimate the number of descriptors needed for Tx * @size: transmit request size in bytes * * Due to hardware alignment restrictions (4K alignment), we need to * assume that we can have no more than 12K of data per descriptor, even * though each descriptor can take up to 16K - 1 bytes of aligned memory. * Thus, we need to divide by 12K. But division is slow! Instead, * we decompose the operation into shifts and one relatively cheap * multiply operation. * * To divide by 12K, we first divide by 4K, then divide by 3: * To divide by 4K, shift right by 12 bits * To divide by 3, multiply by 85, then divide by 256 * (Divide by 256 is done by shifting right by 8 bits) * Finally, we add one to round up. Because 256 isn't an exact multiple of * 3, we'll underestimate near each multiple of 12K. This is actually more * accurate as we have 4K - 1 of wiggle room that we can fit into the last * segment. For our purposes this is accurate out to 1M which is orders of * magnitude greater than our largest possible GSO size. * * This would then be implemented as: * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; * * Since multiplication and division are commutative, we can reorder * operations into: * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; */ static unsigned int ice_txd_use_count(unsigned int size) { return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; } /** * ice_xmit_desc_count - calculate number of Tx descriptors needed * @skb: send buffer * * Returns number of data descriptors needed for this skb. */ static unsigned int ice_xmit_desc_count(struct sk_buff *skb) { const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; unsigned int nr_frags = skb_shinfo(skb)->nr_frags; unsigned int count = 0, size = skb_headlen(skb); for (;;) { count += ice_txd_use_count(size); if (!nr_frags--) break; size = skb_frag_size(frag++); } return count; } /** * __ice_chk_linearize - Check if there are more than 8 buffers per packet * @skb: send buffer * * Note: This HW can't DMA more than 8 buffers to build a packet on the wire * and so we need to figure out the cases where we need to linearize the skb. * * For TSO we need to count the TSO header and segment payload separately. * As such we need to check cases where we have 7 fragments or more as we * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for * the segment payload in the first descriptor, and another 7 for the * fragments. */ static bool __ice_chk_linearize(struct sk_buff *skb) { const struct skb_frag_struct *frag, *stale; int nr_frags, sum; /* no need to check if number of frags is less than 7 */ nr_frags = skb_shinfo(skb)->nr_frags; if (nr_frags < (ICE_MAX_BUF_TXD - 1)) return false; /* We need to walk through the list and validate that each group * of 6 fragments totals at least gso_size. */ nr_frags -= ICE_MAX_BUF_TXD - 2; frag = &skb_shinfo(skb)->frags[0]; /* Initialize size to the negative value of gso_size minus 1. We * use this as the worst case scenerio in which the frag ahead * of us only provides one byte which is why we are limited to 6 * descriptors for a single transmit as the header and previous * fragment are already consuming 2 descriptors. */ sum = 1 - skb_shinfo(skb)->gso_size; /* Add size of frags 0 through 4 to create our initial sum */ sum += skb_frag_size(frag++); sum += skb_frag_size(frag++); sum += skb_frag_size(frag++); sum += skb_frag_size(frag++); sum += skb_frag_size(frag++); /* Walk through fragments adding latest fragment, testing it, and * then removing stale fragments from the sum. */ stale = &skb_shinfo(skb)->frags[0]; for (;;) { sum += skb_frag_size(frag++); /* if sum is negative we failed to make sufficient progress */ if (sum < 0) return true; if (!nr_frags--) break; sum -= skb_frag_size(stale++); } return false; } /** * ice_chk_linearize - Check if there are more than 8 fragments per packet * @skb: send buffer * @count: number of buffers used * * Note: Our HW can't scatter-gather more than 8 fragments to build * a packet on the wire and so we need to figure out the cases where we * need to linearize the skb. */ static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) { /* Both TSO and single send will work if count is less than 8 */ if (likely(count < ICE_MAX_BUF_TXD)) return false; if (skb_is_gso(skb)) return __ice_chk_linearize(skb); /* we can support up to 8 data buffers for a single send */ return count != ICE_MAX_BUF_TXD; } /** * ice_xmit_frame_ring - Sends buffer on Tx ring * @skb: send buffer * @tx_ring: ring to send buffer on * * Returns NETDEV_TX_OK if sent, else an error code */ static netdev_tx_t ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) { struct ice_tx_offload_params offload = { 0 }; struct ice_tx_buf *first; unsigned int count; int tso, csum; count = ice_xmit_desc_count(skb); if (ice_chk_linearize(skb, count)) { if (__skb_linearize(skb)) goto out_drop; count = ice_txd_use_count(skb->len); tx_ring->tx_stats.tx_linearize++; } /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, * + 4 desc gap to avoid the cache line where head is, * + 1 desc for context descriptor, * otherwise try next time */ if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_CTX_DESC)) { tx_ring->tx_stats.tx_busy++; return NETDEV_TX_BUSY; } offload.tx_ring = tx_ring; /* record the location of the first descriptor for this packet */ first = &tx_ring->tx_buf[tx_ring->next_to_use]; first->skb = skb; first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); first->gso_segs = 1; first->tx_flags = 0; /* prepare the VLAN tagging flags for Tx */ if (ice_tx_prepare_vlan_flags(tx_ring, first)) goto out_drop; /* set up TSO offload */ tso = ice_tso(first, &offload); if (tso < 0) goto out_drop; /* always set up Tx checksum offload */ csum = ice_tx_csum(first, &offload); if (csum < 0) goto out_drop; if (tso || offload.cd_tunnel_params) { struct ice_tx_ctx_desc *cdesc; int i = tx_ring->next_to_use; /* grab the next descriptor */ cdesc = ICE_TX_CTX_DESC(tx_ring, i); i++; tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; /* setup context descriptor */ cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); cdesc->rsvd = cpu_to_le16(0); cdesc->qw1 = cpu_to_le64(offload.cd_qw1); } ice_tx_map(tx_ring, first, &offload); return NETDEV_TX_OK; out_drop: dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /** * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer * @skb: send buffer * @netdev: network interface device structure * * Returns NETDEV_TX_OK if sent, else an error code */ netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; struct ice_ring *tx_ring; tx_ring = vsi->tx_rings[skb->queue_mapping]; /* hardware can't handle really short frames, hardware padding works * beyond this point */ if (skb_put_padto(skb, ICE_MIN_TX_LEN)) return NETDEV_TX_OK; return ice_xmit_frame_ring(skb, tx_ring); }