/* * SPDX-License-Identifier: MIT * * Copyright © 2008,2010 Intel Corporation */ #include #include #include #include #include #include "display/intel_frontbuffer.h" #include "gem/i915_gem_ioctls.h" #include "gt/intel_context.h" #include "gt/intel_gt.h" #include "gt/intel_gt_buffer_pool.h" #include "gt/intel_gt_pm.h" #include "gt/intel_ring.h" #include "i915_drv.h" #include "i915_gem_clflush.h" #include "i915_gem_context.h" #include "i915_gem_ioctls.h" #include "i915_sw_fence_work.h" #include "i915_trace.h" #include "i915_user_extensions.h" struct eb_vma { struct i915_vma *vma; unsigned int flags; /** This vma's place in the execbuf reservation list */ struct drm_i915_gem_exec_object2 *exec; struct list_head bind_link; struct list_head reloc_link; struct hlist_node node; u32 handle; }; struct eb_vma_array { struct kref kref; struct eb_vma vma[]; }; enum { FORCE_CPU_RELOC = 1, FORCE_GTT_RELOC, FORCE_GPU_RELOC, #define DBG_FORCE_RELOC 0 /* choose one of the above! */ }; #define __EXEC_OBJECT_HAS_PIN BIT(31) #define __EXEC_OBJECT_HAS_FENCE BIT(30) #define __EXEC_OBJECT_NEEDS_MAP BIT(29) #define __EXEC_OBJECT_NEEDS_BIAS BIT(28) #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 28) /* all of the above */ #define __EXEC_HAS_RELOC BIT(31) #define __EXEC_INTERNAL_FLAGS (~0u << 31) #define UPDATE PIN_OFFSET_FIXED #define BATCH_OFFSET_BIAS (256*1024) #define __I915_EXEC_ILLEGAL_FLAGS \ (__I915_EXEC_UNKNOWN_FLAGS | \ I915_EXEC_CONSTANTS_MASK | \ I915_EXEC_RESOURCE_STREAMER) /* Catch emission of unexpected errors for CI! */ #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) #undef EINVAL #define EINVAL ({ \ DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 22; \ }) #endif /** * DOC: User command execution * * Userspace submits commands to be executed on the GPU as an instruction * stream within a GEM object we call a batchbuffer. This instructions may * refer to other GEM objects containing auxiliary state such as kernels, * samplers, render targets and even secondary batchbuffers. Userspace does * not know where in the GPU memory these objects reside and so before the * batchbuffer is passed to the GPU for execution, those addresses in the * batchbuffer and auxiliary objects are updated. This is known as relocation, * or patching. To try and avoid having to relocate each object on the next * execution, userspace is told the location of those objects in this pass, * but this remains just a hint as the kernel may choose a new location for * any object in the future. * * At the level of talking to the hardware, submitting a batchbuffer for the * GPU to execute is to add content to a buffer from which the HW * command streamer is reading. * * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. * Execlists, this command is not placed on the same buffer as the * remaining items. * * 2. Add a command to invalidate caches to the buffer. * * 3. Add a batchbuffer start command to the buffer; the start command is * essentially a token together with the GPU address of the batchbuffer * to be executed. * * 4. Add a pipeline flush to the buffer. * * 5. Add a memory write command to the buffer to record when the GPU * is done executing the batchbuffer. The memory write writes the * global sequence number of the request, ``i915_request::global_seqno``; * the i915 driver uses the current value in the register to determine * if the GPU has completed the batchbuffer. * * 6. Add a user interrupt command to the buffer. This command instructs * the GPU to issue an interrupt when the command, pipeline flush and * memory write are completed. * * 7. Inform the hardware of the additional commands added to the buffer * (by updating the tail pointer). * * Processing an execbuf ioctl is conceptually split up into a few phases. * * 1. Validation - Ensure all the pointers, handles and flags are valid. * 2. Reservation - Assign GPU address space for every object * 3. Relocation - Update any addresses to point to the final locations * 4. Serialisation - Order the request with respect to its dependencies * 5. Construction - Construct a request to execute the batchbuffer * 6. Submission (at some point in the future execution) * * Reserving resources for the execbuf is the most complicated phase. We * neither want to have to migrate the object in the address space, nor do * we want to have to update any relocations pointing to this object. Ideally, * we want to leave the object where it is and for all the existing relocations * to match. If the object is given a new address, or if userspace thinks the * object is elsewhere, we have to parse all the relocation entries and update * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that * all the target addresses in all of its objects match the value in the * relocation entries and that they all match the presumed offsets given by the * list of execbuffer objects. Using this knowledge, we know that if we haven't * moved any buffers, all the relocation entries are valid and we can skip * the update. (If userspace is wrong, the likely outcome is an impromptu GPU * hang.) The requirement for using I915_EXEC_NO_RELOC are: * * The addresses written in the objects must match the corresponding * reloc.presumed_offset which in turn must match the corresponding * execobject.offset. * * Any render targets written to in the batch must be flagged with * EXEC_OBJECT_WRITE. * * To avoid stalling, execobject.offset should match the current * address of that object within the active context. * * The reservation is done is multiple phases. First we try and keep any * object already bound in its current location - so as long as meets the * constraints imposed by the new execbuffer. Any object left unbound after the * first pass is then fitted into any available idle space. If an object does * not fit, all objects are removed from the reservation and the process rerun * after sorting the objects into a priority order (more difficult to fit * objects are tried first). Failing that, the entire VM is cleared and we try * to fit the execbuf once last time before concluding that it simply will not * fit. * * A small complication to all of this is that we allow userspace not only to * specify an alignment and a size for the object in the address space, but * we also allow userspace to specify the exact offset. This objects are * simpler to place (the location is known a priori) all we have to do is make * sure the space is available. * * Once all the objects are in place, patching up the buried pointers to point * to the final locations is a fairly simple job of walking over the relocation * entry arrays, looking up the right address and rewriting the value into * the object. Simple! ... The relocation entries are stored in user memory * and so to access them we have to copy them into a local buffer. That copy * has to avoid taking any pagefaults as they may lead back to a GEM object * requiring the struct_mutex (i.e. recursive deadlock). So once again we split * the relocation into multiple passes. First we try to do everything within an * atomic context (avoid the pagefaults) which requires that we never wait. If * we detect that we may wait, or if we need to fault, then we have to fallback * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm * bells yet?) Dropping the mutex means that we lose all the state we have * built up so far for the execbuf and we must reset any global data. However, * we do leave the objects pinned in their final locations - which is a * potential issue for concurrent execbufs. Once we have left the mutex, we can * allocate and copy all the relocation entries into a large array at our * leisure, reacquire the mutex, reclaim all the objects and other state and * then proceed to update any incorrect addresses with the objects. * * As we process the relocation entries, we maintain a record of whether the * object is being written to. Using NORELOC, we expect userspace to provide * this information instead. We also check whether we can skip the relocation * by comparing the expected value inside the relocation entry with the target's * final address. If they differ, we have to map the current object and rewrite * the 4 or 8 byte pointer within. * * Serialising an execbuf is quite simple according to the rules of the GEM * ABI. Execution within each context is ordered by the order of submission. * Writes to any GEM object are in order of submission and are exclusive. Reads * from a GEM object are unordered with respect to other reads, but ordered by * writes. A write submitted after a read cannot occur before the read, and * similarly any read submitted after a write cannot occur before the write. * Writes are ordered between engines such that only one write occurs at any * time (completing any reads beforehand) - using semaphores where available * and CPU serialisation otherwise. Other GEM access obey the same rules, any * write (either via mmaps using set-domain, or via pwrite) must flush all GPU * reads before starting, and any read (either using set-domain or pread) must * flush all GPU writes before starting. (Note we only employ a barrier before, * we currently rely on userspace not concurrently starting a new execution * whilst reading or writing to an object. This may be an advantage or not * depending on how much you trust userspace not to shoot themselves in the * foot.) Serialisation may just result in the request being inserted into * a DAG awaiting its turn, but most simple is to wait on the CPU until * all dependencies are resolved. * * After all of that, is just a matter of closing the request and handing it to * the hardware (well, leaving it in a queue to be executed). However, we also * offer the ability for batchbuffers to be run with elevated privileges so * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) * Before any batch is given extra privileges we first must check that it * contains no nefarious instructions, we check that each instruction is from * our whitelist and all registers are also from an allowed list. We first * copy the user's batchbuffer to a shadow (so that the user doesn't have * access to it, either by the CPU or GPU as we scan it) and then parse each * instruction. If everything is ok, we set a flag telling the hardware to run * the batchbuffer in trusted mode, otherwise the ioctl is rejected. */ struct eb_fence { struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ struct dma_fence *dma_fence; u64 value; struct dma_fence_chain *chain_fence; }; struct i915_execbuffer { struct drm_i915_private *i915; /** i915 backpointer */ struct drm_file *file; /** per-file lookup tables and limits */ struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ struct eb_vma *vma; struct intel_engine_cs *engine; /** engine to queue the request to */ struct intel_context *context; /* logical state for the request */ struct i915_gem_context *gem_context; /** caller's context */ struct i915_request *request; /** our request to build */ struct eb_vma *batch; /** identity of the batch obj/vma */ struct i915_vma *trampoline; /** trampoline used for chaining */ /** actual size of execobj[] as we may extend it for the cmdparser */ unsigned int buffer_count; /** list of vma not yet bound during reservation phase */ struct list_head unbound; /** list of vma that have execobj.relocation_count */ struct list_head relocs; /** * Track the most recently used object for relocations, as we * frequently have to perform multiple relocations within the same * obj/page */ struct reloc_cache { struct drm_mm_node node; /** temporary GTT binding */ unsigned long vaddr; /** Current kmap address */ unsigned long page; /** Currently mapped page index */ unsigned int gen; /** Cached value of INTEL_GEN */ bool use_64bit_reloc : 1; bool has_llc : 1; bool has_fence : 1; bool needs_unfenced : 1; struct i915_vma *target; struct i915_request *rq; struct i915_vma *rq_vma; u32 *rq_cmd; unsigned int rq_size; } reloc_cache; u64 invalid_flags; /** Set of execobj.flags that are invalid */ u32 context_flags; /** Set of execobj.flags to insert from the ctx */ u32 batch_start_offset; /** Location within object of batch */ u32 batch_len; /** Length of batch within object */ u32 batch_flags; /** Flags composed for emit_bb_start() */ /** * Indicate either the size of the hastable used to resolve * relocation handles, or if negative that we are using a direct * index into the execobj[]. */ int lut_size; struct hlist_head *buckets; /** ht for relocation handles */ struct eb_vma_array *array; struct eb_fence *fences; unsigned long num_fences; }; static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) { return intel_engine_requires_cmd_parser(eb->engine) || (intel_engine_using_cmd_parser(eb->engine) && eb->args->batch_len); } static struct eb_vma_array *eb_vma_array_create(unsigned int count) { struct eb_vma_array *arr; arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN); if (!arr) return NULL; kref_init(&arr->kref); arr->vma[0].vma = NULL; return arr; } static inline void eb_unreserve_vma(struct eb_vma *ev) { struct i915_vma *vma = ev->vma; if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) __i915_vma_unpin_fence(vma); if (ev->flags & __EXEC_OBJECT_HAS_PIN) __i915_vma_unpin(vma); ev->flags &= ~(__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE); } static void eb_vma_array_destroy(struct kref *kref) { struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref); struct eb_vma *ev = arr->vma; while (ev->vma) { eb_unreserve_vma(ev); i915_vma_put(ev->vma); ev++; } kvfree(arr); } static void eb_vma_array_put(struct eb_vma_array *arr) { kref_put(&arr->kref, eb_vma_array_destroy); } static int eb_create(struct i915_execbuffer *eb) { /* Allocate an extra slot for use by the command parser + sentinel */ eb->array = eb_vma_array_create(eb->buffer_count + 2); if (!eb->array) return -ENOMEM; eb->vma = eb->array->vma; if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { unsigned int size = 1 + ilog2(eb->buffer_count); /* * Without a 1:1 association between relocation handles and * the execobject[] index, we instead create a hashtable. * We size it dynamically based on available memory, starting * first with 1:1 assocative hash and scaling back until * the allocation succeeds. * * Later on we use a positive lut_size to indicate we are * using this hashtable, and a negative value to indicate a * direct lookup. */ do { gfp_t flags; /* While we can still reduce the allocation size, don't * raise a warning and allow the allocation to fail. * On the last pass though, we want to try as hard * as possible to perform the allocation and warn * if it fails. */ flags = GFP_KERNEL; if (size > 1) flags |= __GFP_NORETRY | __GFP_NOWARN; eb->buckets = kzalloc(sizeof(struct hlist_head) << size, flags); if (eb->buckets) break; } while (--size); if (unlikely(!size)) { eb_vma_array_put(eb->array); return -ENOMEM; } eb->lut_size = size; } else { eb->lut_size = -eb->buffer_count; } return 0; } static bool eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, const struct i915_vma *vma, unsigned int flags) { if (vma->node.size < entry->pad_to_size) return true; if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) return true; if (flags & EXEC_OBJECT_PINNED && vma->node.start != entry->offset) return true; if (flags & __EXEC_OBJECT_NEEDS_BIAS && vma->node.start < BATCH_OFFSET_BIAS) return true; if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && (vma->node.start + vma->node.size - 1) >> 32) return true; if (flags & __EXEC_OBJECT_NEEDS_MAP && !i915_vma_is_map_and_fenceable(vma)) return true; return false; } static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, unsigned int exec_flags) { u64 pin_flags = 0; if (exec_flags & EXEC_OBJECT_NEEDS_GTT) pin_flags |= PIN_GLOBAL; /* * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, * limit address to the first 4GBs for unflagged objects. */ if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) pin_flags |= PIN_ZONE_4G; if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) pin_flags |= PIN_MAPPABLE; if (exec_flags & EXEC_OBJECT_PINNED) pin_flags |= entry->offset | PIN_OFFSET_FIXED; else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; return pin_flags; } static inline bool eb_pin_vma(struct i915_execbuffer *eb, const struct drm_i915_gem_exec_object2 *entry, struct eb_vma *ev) { struct i915_vma *vma = ev->vma; u64 pin_flags; if (vma->node.size) pin_flags = vma->node.start; else pin_flags = entry->offset & PIN_OFFSET_MASK; pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) pin_flags |= PIN_GLOBAL; /* Attempt to reuse the current location if available */ if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) { if (entry->flags & EXEC_OBJECT_PINNED) return false; /* Failing that pick any _free_ space if suitable */ if (unlikely(i915_vma_pin(vma, entry->pad_to_size, entry->alignment, eb_pin_flags(entry, ev->flags) | PIN_USER | PIN_NOEVICT))) return false; } if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { if (unlikely(i915_vma_pin_fence(vma))) { i915_vma_unpin(vma); return false; } if (vma->fence) ev->flags |= __EXEC_OBJECT_HAS_FENCE; } ev->flags |= __EXEC_OBJECT_HAS_PIN; return !eb_vma_misplaced(entry, vma, ev->flags); } static int eb_validate_vma(struct i915_execbuffer *eb, struct drm_i915_gem_exec_object2 *entry, struct i915_vma *vma) { if (unlikely(entry->flags & eb->invalid_flags)) return -EINVAL; if (unlikely(entry->alignment && !is_power_of_2_u64(entry->alignment))) return -EINVAL; /* * Offset can be used as input (EXEC_OBJECT_PINNED), reject * any non-page-aligned or non-canonical addresses. */ if (unlikely(entry->flags & EXEC_OBJECT_PINNED && entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) return -EINVAL; /* pad_to_size was once a reserved field, so sanitize it */ if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { if (unlikely(offset_in_page(entry->pad_to_size))) return -EINVAL; } else { entry->pad_to_size = 0; } /* * From drm_mm perspective address space is continuous, * so from this point we're always using non-canonical * form internally. */ entry->offset = gen8_noncanonical_addr(entry->offset); if (!eb->reloc_cache.has_fence) { entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; } else { if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || eb->reloc_cache.needs_unfenced) && i915_gem_object_is_tiled(vma->obj)) entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; } if (!(entry->flags & EXEC_OBJECT_PINNED)) entry->flags |= eb->context_flags; return 0; } static void eb_add_vma(struct i915_execbuffer *eb, unsigned int i, unsigned batch_idx, struct i915_vma *vma) { struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; struct eb_vma *ev = &eb->vma[i]; GEM_BUG_ON(i915_vma_is_closed(vma)); ev->vma = vma; ev->exec = entry; ev->flags = entry->flags; if (eb->lut_size > 0) { ev->handle = entry->handle; hlist_add_head(&ev->node, &eb->buckets[hash_32(entry->handle, eb->lut_size)]); } if (entry->relocation_count) list_add_tail(&ev->reloc_link, &eb->relocs); /* * SNA is doing fancy tricks with compressing batch buffers, which leads * to negative relocation deltas. Usually that works out ok since the * relocate address is still positive, except when the batch is placed * very low in the GTT. Ensure this doesn't happen. * * Note that actual hangs have only been observed on gen7, but for * paranoia do it everywhere. */ if (i == batch_idx) { if (entry->relocation_count && !(ev->flags & EXEC_OBJECT_PINNED)) ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; if (eb->reloc_cache.has_fence) ev->flags |= EXEC_OBJECT_NEEDS_FENCE; eb->batch = ev; } if (eb_pin_vma(eb, entry, ev)) { if (entry->offset != vma->node.start) { entry->offset = vma->node.start | UPDATE; eb->args->flags |= __EXEC_HAS_RELOC; } } else { eb_unreserve_vma(ev); list_add_tail(&ev->bind_link, &eb->unbound); } } static inline int use_cpu_reloc(const struct reloc_cache *cache, const struct drm_i915_gem_object *obj) { if (!i915_gem_object_has_struct_page(obj)) return false; if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) return true; if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) return false; return (cache->has_llc || obj->cache_dirty || obj->cache_level != I915_CACHE_NONE); } static int eb_reserve_vma(const struct i915_execbuffer *eb, struct eb_vma *ev, u64 pin_flags) { struct drm_i915_gem_exec_object2 *entry = ev->exec; struct i915_vma *vma = ev->vma; int err; if (drm_mm_node_allocated(&vma->node) && eb_vma_misplaced(entry, vma, ev->flags)) { err = i915_vma_unbind(vma); if (err) return err; } err = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, eb_pin_flags(entry, ev->flags) | pin_flags); if (err) return err; if (entry->offset != vma->node.start) { entry->offset = vma->node.start | UPDATE; eb->args->flags |= __EXEC_HAS_RELOC; } if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { err = i915_vma_pin_fence(vma); if (unlikely(err)) { i915_vma_unpin(vma); return err; } if (vma->fence) ev->flags |= __EXEC_OBJECT_HAS_FENCE; } ev->flags |= __EXEC_OBJECT_HAS_PIN; GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); return 0; } static int eb_reserve(struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; unsigned int pin_flags = PIN_USER | PIN_NONBLOCK; struct list_head last; struct eb_vma *ev; unsigned int i, pass; int err = 0; /* * Attempt to pin all of the buffers into the GTT. * This is done in 3 phases: * * 1a. Unbind all objects that do not match the GTT constraints for * the execbuffer (fenceable, mappable, alignment etc). * 1b. Increment pin count for already bound objects. * 2. Bind new objects. * 3. Decrement pin count. * * This avoid unnecessary unbinding of later objects in order to make * room for the earlier objects *unless* we need to defragment. */ if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex)) return -EINTR; pass = 0; do { list_for_each_entry(ev, &eb->unbound, bind_link) { err = eb_reserve_vma(eb, ev, pin_flags); if (err) break; } if (!(err == -ENOSPC || err == -EAGAIN)) break; /* Resort *all* the objects into priority order */ INIT_LIST_HEAD(&eb->unbound); INIT_LIST_HEAD(&last); for (i = 0; i < count; i++) { unsigned int flags; ev = &eb->vma[i]; flags = ev->flags; if (flags & EXEC_OBJECT_PINNED && flags & __EXEC_OBJECT_HAS_PIN) continue; eb_unreserve_vma(ev); if (flags & EXEC_OBJECT_PINNED) /* Pinned must have their slot */ list_add(&ev->bind_link, &eb->unbound); else if (flags & __EXEC_OBJECT_NEEDS_MAP) /* Map require the lowest 256MiB (aperture) */ list_add_tail(&ev->bind_link, &eb->unbound); else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) /* Prioritise 4GiB region for restricted bo */ list_add(&ev->bind_link, &last); else list_add_tail(&ev->bind_link, &last); } list_splice_tail(&last, &eb->unbound); if (err == -EAGAIN) { mutex_unlock(&eb->i915->drm.struct_mutex); flush_workqueue(eb->i915->mm.userptr_wq); mutex_lock(&eb->i915->drm.struct_mutex); continue; } switch (pass++) { case 0: break; case 1: /* Too fragmented, unbind everything and retry */ mutex_lock(&eb->context->vm->mutex); err = i915_gem_evict_vm(eb->context->vm); mutex_unlock(&eb->context->vm->mutex); if (err) goto unlock; break; default: err = -ENOSPC; goto unlock; } pin_flags = PIN_USER; } while (1); unlock: mutex_unlock(&eb->i915->drm.struct_mutex); return err; } static unsigned int eb_batch_index(const struct i915_execbuffer *eb) { if (eb->args->flags & I915_EXEC_BATCH_FIRST) return 0; else return eb->buffer_count - 1; } static int eb_select_context(struct i915_execbuffer *eb) { struct i915_gem_context *ctx; ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); if (unlikely(!ctx)) return -ENOENT; eb->gem_context = ctx; if (rcu_access_pointer(ctx->vm)) eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; eb->context_flags = 0; if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags)) eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; return 0; } static int __eb_add_lut(struct i915_execbuffer *eb, u32 handle, struct i915_vma *vma) { struct i915_gem_context *ctx = eb->gem_context; struct i915_lut_handle *lut; int err; lut = i915_lut_handle_alloc(); if (unlikely(!lut)) return -ENOMEM; i915_vma_get(vma); if (!atomic_fetch_inc(&vma->open_count)) i915_vma_reopen(vma); lut->handle = handle; lut->ctx = ctx; /* Check that the context hasn't been closed in the meantime */ err = -EINTR; if (!mutex_lock_interruptible(&ctx->lut_mutex)) { struct i915_address_space *vm = rcu_access_pointer(ctx->vm); if (unlikely(vm && vma->vm != vm)) err = -EAGAIN; /* user racing with ctx set-vm */ else if (likely(!i915_gem_context_is_closed(ctx))) err = radix_tree_insert(&ctx->handles_vma, handle, vma); else err = -ENOENT; if (err == 0) { /* And nor has this handle */ struct drm_i915_gem_object *obj = vma->obj; spin_lock(&obj->lut_lock); if (idr_find(&eb->file->object_idr, handle) == obj) { list_add(&lut->obj_link, &obj->lut_list); } else { radix_tree_delete(&ctx->handles_vma, handle); err = -ENOENT; } spin_unlock(&obj->lut_lock); } mutex_unlock(&ctx->lut_mutex); } if (unlikely(err)) goto err; return 0; err: i915_vma_close(vma); i915_vma_put(vma); i915_lut_handle_free(lut); return err; } static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) { struct i915_address_space *vm = eb->context->vm; do { struct drm_i915_gem_object *obj; struct i915_vma *vma; int err; rcu_read_lock(); vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); if (likely(vma && vma->vm == vm)) vma = i915_vma_tryget(vma); rcu_read_unlock(); if (likely(vma)) return vma; obj = i915_gem_object_lookup(eb->file, handle); if (unlikely(!obj)) return ERR_PTR(-ENOENT); vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { i915_gem_object_put(obj); return vma; } err = __eb_add_lut(eb, handle, vma); if (likely(!err)) return vma; i915_gem_object_put(obj); if (err != -EEXIST) return ERR_PTR(err); } while (1); } static int eb_lookup_vmas(struct i915_execbuffer *eb) { unsigned int batch = eb_batch_index(eb); unsigned int i; int err = 0; INIT_LIST_HEAD(&eb->relocs); INIT_LIST_HEAD(&eb->unbound); for (i = 0; i < eb->buffer_count; i++) { struct i915_vma *vma; vma = eb_lookup_vma(eb, eb->exec[i].handle); if (IS_ERR(vma)) { err = PTR_ERR(vma); break; } err = eb_validate_vma(eb, &eb->exec[i], vma); if (unlikely(err)) { i915_vma_put(vma); break; } eb_add_vma(eb, i, batch, vma); } eb->vma[i].vma = NULL; return err; } static struct eb_vma * eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) { if (eb->lut_size < 0) { if (handle >= -eb->lut_size) return NULL; return &eb->vma[handle]; } else { struct hlist_head *head; struct eb_vma *ev; head = &eb->buckets[hash_32(handle, eb->lut_size)]; hlist_for_each_entry(ev, head, node) { if (ev->handle == handle) return ev; } return NULL; } } static void eb_destroy(const struct i915_execbuffer *eb) { GEM_BUG_ON(eb->reloc_cache.rq); if (eb->array) eb_vma_array_put(eb->array); if (eb->lut_size > 0) kfree(eb->buckets); } static inline u64 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, const struct i915_vma *target) { return gen8_canonical_addr((int)reloc->delta + target->node.start); } static void reloc_cache_init(struct reloc_cache *cache, struct drm_i915_private *i915) { cache->page = -1; cache->vaddr = 0; /* Must be a variable in the struct to allow GCC to unroll. */ cache->gen = INTEL_GEN(i915); cache->has_llc = HAS_LLC(i915); cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); cache->has_fence = cache->gen < 4; cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; cache->node.flags = 0; cache->rq = NULL; cache->target = NULL; } static inline void *unmask_page(unsigned long p) { return (void *)(uintptr_t)(p & PAGE_MASK); } static inline unsigned int unmask_flags(unsigned long p) { return p & ~PAGE_MASK; } #define KMAP 0x4 /* after CLFLUSH_FLAGS */ static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) { struct drm_i915_private *i915 = container_of(cache, struct i915_execbuffer, reloc_cache)->i915; return &i915->ggtt; } #define RELOC_TAIL 4 static int reloc_gpu_chain(struct reloc_cache *cache) { struct intel_gt_buffer_pool_node *pool; struct i915_request *rq = cache->rq; struct i915_vma *batch; u32 *cmd; int err; pool = intel_gt_get_buffer_pool(rq->engine->gt, PAGE_SIZE); if (IS_ERR(pool)) return PTR_ERR(pool); batch = i915_vma_instance(pool->obj, rq->context->vm, NULL); if (IS_ERR(batch)) { err = PTR_ERR(batch); goto out_pool; } err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK); if (err) goto out_pool; GEM_BUG_ON(cache->rq_size + RELOC_TAIL > PAGE_SIZE / sizeof(u32)); cmd = cache->rq_cmd + cache->rq_size; *cmd++ = MI_ARB_CHECK; if (cache->gen >= 8) *cmd++ = MI_BATCH_BUFFER_START_GEN8; else if (cache->gen >= 6) *cmd++ = MI_BATCH_BUFFER_START; else *cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT; *cmd++ = lower_32_bits(batch->node.start); *cmd++ = upper_32_bits(batch->node.start); /* Always 0 for gen<8 */ i915_gem_object_flush_map(cache->rq_vma->obj); i915_gem_object_unpin_map(cache->rq_vma->obj); cache->rq_vma = NULL; err = intel_gt_buffer_pool_mark_active(pool, rq); if (err == 0) { i915_vma_lock(batch); err = i915_request_await_object(rq, batch->obj, false); if (err == 0) err = i915_vma_move_to_active(batch, rq, 0); i915_vma_unlock(batch); } i915_vma_unpin(batch); if (err) goto out_pool; cmd = i915_gem_object_pin_map(batch->obj, cache->has_llc ? I915_MAP_FORCE_WB : I915_MAP_FORCE_WC); if (IS_ERR(cmd)) { err = PTR_ERR(cmd); goto out_pool; } /* Return with batch mapping (cmd) still pinned */ cache->rq_cmd = cmd; cache->rq_size = 0; cache->rq_vma = batch; out_pool: intel_gt_buffer_pool_put(pool); return err; } static unsigned int reloc_bb_flags(const struct reloc_cache *cache) { return cache->gen > 5 ? 0 : I915_DISPATCH_SECURE; } static int reloc_gpu_flush(struct reloc_cache *cache) { struct i915_request *rq; int err; rq = fetch_and_zero(&cache->rq); if (!rq) return 0; if (cache->rq_vma) { struct drm_i915_gem_object *obj = cache->rq_vma->obj; GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32)); cache->rq_cmd[cache->rq_size++] = MI_BATCH_BUFFER_END; __i915_gem_object_flush_map(obj, 0, sizeof(u32) * cache->rq_size); i915_gem_object_unpin_map(obj); } err = 0; if (rq->engine->emit_init_breadcrumb) err = rq->engine->emit_init_breadcrumb(rq); if (!err) err = rq->engine->emit_bb_start(rq, rq->batch->node.start, PAGE_SIZE, reloc_bb_flags(cache)); if (err) i915_request_set_error_once(rq, err); intel_gt_chipset_flush(rq->engine->gt); i915_request_add(rq); return err; } static void reloc_cache_reset(struct reloc_cache *cache) { void *vaddr; if (!cache->vaddr) return; vaddr = unmask_page(cache->vaddr); if (cache->vaddr & KMAP) { if (cache->vaddr & CLFLUSH_AFTER) mb(); kunmap_atomic(vaddr); i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm); } else { struct i915_ggtt *ggtt = cache_to_ggtt(cache); intel_gt_flush_ggtt_writes(ggtt->vm.gt); io_mapping_unmap_atomic((void __iomem *)vaddr); if (drm_mm_node_allocated(&cache->node)) { ggtt->vm.clear_range(&ggtt->vm, cache->node.start, cache->node.size); mutex_lock(&ggtt->vm.mutex); drm_mm_remove_node(&cache->node); mutex_unlock(&ggtt->vm.mutex); } else { i915_vma_unpin((struct i915_vma *)cache->node.mm); } } cache->vaddr = 0; cache->page = -1; } static void *reloc_kmap(struct drm_i915_gem_object *obj, struct reloc_cache *cache, unsigned long pageno) { void *vaddr; struct page *page; if (cache->vaddr) { kunmap_atomic(unmask_page(cache->vaddr)); } else { unsigned int flushes; int err; err = i915_gem_object_prepare_write(obj, &flushes); if (err) return ERR_PTR(err); BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); cache->vaddr = flushes | KMAP; cache->node.mm = (void *)obj; if (flushes) mb(); } page = i915_gem_object_get_page(obj, pageno); if (!obj->mm.dirty) set_page_dirty(page); vaddr = kmap_atomic(page); cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; cache->page = pageno; return vaddr; } static void *reloc_iomap(struct drm_i915_gem_object *obj, struct reloc_cache *cache, unsigned long page) { struct i915_ggtt *ggtt = cache_to_ggtt(cache); unsigned long offset; void *vaddr; if (cache->vaddr) { intel_gt_flush_ggtt_writes(ggtt->vm.gt); io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); } else { struct i915_vma *vma; int err; if (i915_gem_object_is_tiled(obj)) return ERR_PTR(-EINVAL); if (use_cpu_reloc(cache, obj)) return NULL; i915_gem_object_lock(obj); err = i915_gem_object_set_to_gtt_domain(obj, true); i915_gem_object_unlock(obj); if (err) return ERR_PTR(err); vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE | PIN_NONBLOCK /* NOWARN */ | PIN_NOEVICT); if (IS_ERR(vma)) { memset(&cache->node, 0, sizeof(cache->node)); mutex_lock(&ggtt->vm.mutex); err = drm_mm_insert_node_in_range (&ggtt->vm.mm, &cache->node, PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 0, ggtt->mappable_end, DRM_MM_INSERT_LOW); mutex_unlock(&ggtt->vm.mutex); if (err) /* no inactive aperture space, use cpu reloc */ return NULL; } else { cache->node.start = vma->node.start; cache->node.mm = (void *)vma; } } offset = cache->node.start; if (drm_mm_node_allocated(&cache->node)) { ggtt->vm.insert_page(&ggtt->vm, i915_gem_object_get_dma_address(obj, page), offset, I915_CACHE_NONE, 0); } else { offset += page << PAGE_SHIFT; } vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, offset); cache->page = page; cache->vaddr = (unsigned long)vaddr; return vaddr; } static void *reloc_vaddr(struct drm_i915_gem_object *obj, struct reloc_cache *cache, unsigned long page) { void *vaddr; if (cache->page == page) { vaddr = unmask_page(cache->vaddr); } else { vaddr = NULL; if ((cache->vaddr & KMAP) == 0) vaddr = reloc_iomap(obj, cache, page); if (!vaddr) vaddr = reloc_kmap(obj, cache, page); } return vaddr; } static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) { if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { if (flushes & CLFLUSH_BEFORE) { clflushopt(addr); mb(); } *addr = value; /* * Writes to the same cacheline are serialised by the CPU * (including clflush). On the write path, we only require * that it hits memory in an orderly fashion and place * mb barriers at the start and end of the relocation phase * to ensure ordering of clflush wrt to the system. */ if (flushes & CLFLUSH_AFTER) clflushopt(addr); } else *addr = value; } static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma) { struct drm_i915_gem_object *obj = vma->obj; int err; i915_vma_lock(vma); if (obj->cache_dirty & ~obj->cache_coherent) i915_gem_clflush_object(obj, 0); obj->write_domain = 0; err = i915_request_await_object(rq, vma->obj, true); if (err == 0) err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); i915_vma_unlock(vma); return err; } static int __reloc_gpu_alloc(struct i915_execbuffer *eb, struct intel_engine_cs *engine, unsigned int len) { struct reloc_cache *cache = &eb->reloc_cache; struct intel_gt_buffer_pool_node *pool; struct i915_request *rq; struct i915_vma *batch; u32 *cmd; int err; pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE); if (IS_ERR(pool)) return PTR_ERR(pool); cmd = i915_gem_object_pin_map(pool->obj, cache->has_llc ? I915_MAP_FORCE_WB : I915_MAP_FORCE_WC); if (IS_ERR(cmd)) { err = PTR_ERR(cmd); goto out_pool; } batch = i915_vma_instance(pool->obj, eb->context->vm, NULL); if (IS_ERR(batch)) { err = PTR_ERR(batch); goto err_unmap; } err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK); if (err) goto err_unmap; if (engine == eb->context->engine) { rq = i915_request_create(eb->context); } else { struct intel_context *ce; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto err_unpin; } i915_vm_put(ce->vm); ce->vm = i915_vm_get(eb->context->vm); rq = intel_context_create_request(ce); intel_context_put(ce); } if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_unpin; } err = intel_gt_buffer_pool_mark_active(pool, rq); if (err) goto err_request; i915_vma_lock(batch); err = i915_request_await_object(rq, batch->obj, false); if (err == 0) err = i915_vma_move_to_active(batch, rq, 0); i915_vma_unlock(batch); if (err) goto skip_request; rq->batch = batch; i915_vma_unpin(batch); cache->rq = rq; cache->rq_cmd = cmd; cache->rq_size = 0; cache->rq_vma = batch; /* Return with batch mapping (cmd) still pinned */ goto out_pool; skip_request: i915_request_set_error_once(rq, err); err_request: i915_request_add(rq); err_unpin: i915_vma_unpin(batch); err_unmap: i915_gem_object_unpin_map(pool->obj); out_pool: intel_gt_buffer_pool_put(pool); return err; } static bool reloc_can_use_engine(const struct intel_engine_cs *engine) { return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6); } static u32 *reloc_gpu(struct i915_execbuffer *eb, struct i915_vma *vma, unsigned int len) { struct reloc_cache *cache = &eb->reloc_cache; u32 *cmd; int err; if (unlikely(!cache->rq)) { struct intel_engine_cs *engine = eb->engine; if (!reloc_can_use_engine(engine)) { engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0]; if (!engine) return ERR_PTR(-ENODEV); } err = __reloc_gpu_alloc(eb, engine, len); if (unlikely(err)) return ERR_PTR(err); } if (vma != cache->target) { err = reloc_move_to_gpu(cache->rq, vma); if (unlikely(err)) { i915_request_set_error_once(cache->rq, err); return ERR_PTR(err); } cache->target = vma; } if (unlikely(cache->rq_size + len > PAGE_SIZE / sizeof(u32) - RELOC_TAIL)) { err = reloc_gpu_chain(cache); if (unlikely(err)) { i915_request_set_error_once(cache->rq, err); return ERR_PTR(err); } } GEM_BUG_ON(cache->rq_size + len >= PAGE_SIZE / sizeof(u32)); cmd = cache->rq_cmd + cache->rq_size; cache->rq_size += len; return cmd; } static inline bool use_reloc_gpu(struct i915_vma *vma) { if (DBG_FORCE_RELOC == FORCE_GPU_RELOC) return true; if (DBG_FORCE_RELOC) return false; return !dma_resv_test_signaled_rcu(vma->resv, true); } static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset) { struct page *page; unsigned long addr; GEM_BUG_ON(vma->pages != vma->obj->mm.pages); page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT); addr = PFN_PHYS(page_to_pfn(page)); GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */ return addr + offset_in_page(offset); } static bool __reloc_entry_gpu(struct i915_execbuffer *eb, struct i915_vma *vma, u64 offset, u64 target_addr) { const unsigned int gen = eb->reloc_cache.gen; unsigned int len; u32 *batch; u64 addr; if (gen >= 8) len = offset & 7 ? 8 : 5; else if (gen >= 4) len = 4; else len = 3; batch = reloc_gpu(eb, vma, len); if (IS_ERR(batch)) return false; addr = gen8_canonical_addr(vma->node.start + offset); if (gen >= 8) { if (offset & 7) { *batch++ = MI_STORE_DWORD_IMM_GEN4; *batch++ = lower_32_bits(addr); *batch++ = upper_32_bits(addr); *batch++ = lower_32_bits(target_addr); addr = gen8_canonical_addr(addr + 4); *batch++ = MI_STORE_DWORD_IMM_GEN4; *batch++ = lower_32_bits(addr); *batch++ = upper_32_bits(addr); *batch++ = upper_32_bits(target_addr); } else { *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; *batch++ = lower_32_bits(addr); *batch++ = upper_32_bits(addr); *batch++ = lower_32_bits(target_addr); *batch++ = upper_32_bits(target_addr); } } else if (gen >= 6) { *batch++ = MI_STORE_DWORD_IMM_GEN4; *batch++ = 0; *batch++ = addr; *batch++ = target_addr; } else if (IS_I965G(eb->i915)) { *batch++ = MI_STORE_DWORD_IMM_GEN4; *batch++ = 0; *batch++ = vma_phys_addr(vma, offset); *batch++ = target_addr; } else if (gen >= 4) { *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *batch++ = 0; *batch++ = addr; *batch++ = target_addr; } else if (gen >= 3 && !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) { *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; *batch++ = addr; *batch++ = target_addr; } else { *batch++ = MI_STORE_DWORD_IMM; *batch++ = vma_phys_addr(vma, offset); *batch++ = target_addr; } return true; } static bool reloc_entry_gpu(struct i915_execbuffer *eb, struct i915_vma *vma, u64 offset, u64 target_addr) { if (eb->reloc_cache.vaddr) return false; if (!use_reloc_gpu(vma)) return false; return __reloc_entry_gpu(eb, vma, offset, target_addr); } static u64 relocate_entry(struct i915_vma *vma, const struct drm_i915_gem_relocation_entry *reloc, struct i915_execbuffer *eb, const struct i915_vma *target) { u64 target_addr = relocation_target(reloc, target); u64 offset = reloc->offset; if (!reloc_entry_gpu(eb, vma, offset, target_addr)) { bool wide = eb->reloc_cache.use_64bit_reloc; void *vaddr; repeat: vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); clflush_write32(vaddr + offset_in_page(offset), lower_32_bits(target_addr), eb->reloc_cache.vaddr); if (wide) { offset += sizeof(u32); target_addr >>= 32; wide = false; goto repeat; } } return target->node.start | UPDATE; } static u64 eb_relocate_entry(struct i915_execbuffer *eb, struct eb_vma *ev, const struct drm_i915_gem_relocation_entry *reloc) { struct drm_i915_private *i915 = eb->i915; struct eb_vma *target; int err; /* we've already hold a reference to all valid objects */ target = eb_get_vma(eb, reloc->target_handle); if (unlikely(!target)) return -ENOENT; /* Validate that the target is in a valid r/w GPU domain */ if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { drm_dbg(&i915->drm, "reloc with multiple write domains: " "target %d offset %d " "read %08x write %08x", reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return -EINVAL; } if (unlikely((reloc->write_domain | reloc->read_domains) & ~I915_GEM_GPU_DOMAINS)) { drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " "target %d offset %d " "read %08x write %08x", reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return -EINVAL; } if (reloc->write_domain) { target->flags |= EXEC_OBJECT_WRITE; /* * Sandybridge PPGTT errata: We need a global gtt mapping * for MI and pipe_control writes because the gpu doesn't * properly redirect them through the ppgtt for non_secure * batchbuffers. */ if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && IS_GEN(eb->i915, 6)) { err = i915_vma_bind(target->vma, target->vma->obj->cache_level, PIN_GLOBAL, NULL); if (err) return err; } } /* * If the relocation already has the right value in it, no * more work needs to be done. */ if (!DBG_FORCE_RELOC && gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) return 0; /* Check that the relocation address is valid... */ if (unlikely(reloc->offset > ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { drm_dbg(&i915->drm, "Relocation beyond object bounds: " "target %d offset %d size %d.\n", reloc->target_handle, (int)reloc->offset, (int)ev->vma->size); return -EINVAL; } if (unlikely(reloc->offset & 3)) { drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " "target %d offset %d.\n", reloc->target_handle, (int)reloc->offset); return -EINVAL; } /* * If we write into the object, we need to force the synchronisation * barrier, either with an asynchronous clflush or if we executed the * patching using the GPU (though that should be serialised by the * timeline). To be completely sure, and since we are required to * do relocations we are already stalling, disable the user's opt * out of our synchronisation. */ ev->flags &= ~EXEC_OBJECT_ASYNC; /* and update the user's relocation entry */ return relocate_entry(ev->vma, reloc, eb, target->vma); } static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) { #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; const struct drm_i915_gem_exec_object2 *entry = ev->exec; struct drm_i915_gem_relocation_entry __user *urelocs = u64_to_user_ptr(entry->relocs_ptr); unsigned long remain = entry->relocation_count; if (unlikely(remain > N_RELOC(ULONG_MAX))) return -EINVAL; /* * We must check that the entire relocation array is safe * to read. However, if the array is not writable the user loses * the updated relocation values. */ if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) return -EFAULT; do { struct drm_i915_gem_relocation_entry *r = stack; unsigned int count = min_t(unsigned long, remain, ARRAY_SIZE(stack)); unsigned int copied; /* * This is the fast path and we cannot handle a pagefault * whilst holding the struct mutex lest the user pass in the * relocations contained within a mmaped bo. For in such a case * we, the page fault handler would call i915_gem_fault() and * we would try to acquire the struct mutex again. Obviously * this is bad and so lockdep complains vehemently. */ copied = __copy_from_user(r, urelocs, count * sizeof(r[0])); if (unlikely(copied)) { remain = -EFAULT; goto out; } remain -= count; do { u64 offset = eb_relocate_entry(eb, ev, r); if (likely(offset == 0)) { } else if ((s64)offset < 0) { remain = (int)offset; goto out; } else { /* * Note that reporting an error now * leaves everything in an inconsistent * state as we have *already* changed * the relocation value inside the * object. As we have not changed the * reloc.presumed_offset or will not * change the execobject.offset, on the * call we may not rewrite the value * inside the object, leaving it * dangling and causing a GPU hang. Unless * userspace dynamically rebuilds the * relocations on each execbuf rather than * presume a static tree. * * We did previously check if the relocations * were writable (access_ok), an error now * would be a strange race with mprotect, * having already demonstrated that we * can read from this userspace address. */ offset = gen8_canonical_addr(offset & ~UPDATE); __put_user(offset, &urelocs[r - stack].presumed_offset); } } while (r++, --count); urelocs += ARRAY_SIZE(stack); } while (remain); out: reloc_cache_reset(&eb->reloc_cache); return remain; } static int eb_relocate(struct i915_execbuffer *eb) { int err; err = eb_lookup_vmas(eb); if (err) return err; if (!list_empty(&eb->unbound)) { err = eb_reserve(eb); if (err) return err; } /* The objects are in their final locations, apply the relocations. */ if (eb->args->flags & __EXEC_HAS_RELOC) { struct eb_vma *ev; int flush; list_for_each_entry(ev, &eb->relocs, reloc_link) { err = eb_relocate_vma(eb, ev); if (err) break; } flush = reloc_gpu_flush(&eb->reloc_cache); if (!err) err = flush; } return err; } static int eb_move_to_gpu(struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; struct ww_acquire_ctx acquire; unsigned int i; int err = 0; ww_acquire_init(&acquire, &reservation_ww_class); for (i = 0; i < count; i++) { struct eb_vma *ev = &eb->vma[i]; struct i915_vma *vma = ev->vma; err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire); if (err == -EDEADLK) { GEM_BUG_ON(i == 0); do { int j = i - 1; ww_mutex_unlock(&eb->vma[j].vma->resv->lock); swap(eb->vma[i], eb->vma[j]); } while (--i); err = ww_mutex_lock_slow_interruptible(&vma->resv->lock, &acquire); } if (err) break; } ww_acquire_done(&acquire); while (i--) { struct eb_vma *ev = &eb->vma[i]; struct i915_vma *vma = ev->vma; unsigned int flags = ev->flags; struct drm_i915_gem_object *obj = vma->obj; assert_vma_held(vma); if (flags & EXEC_OBJECT_CAPTURE) { struct i915_capture_list *capture; capture = kmalloc(sizeof(*capture), GFP_KERNEL); if (capture) { capture->next = eb->request->capture_list; capture->vma = vma; eb->request->capture_list = capture; } } /* * If the GPU is not _reading_ through the CPU cache, we need * to make sure that any writes (both previous GPU writes from * before a change in snooping levels and normal CPU writes) * caught in that cache are flushed to main memory. * * We want to say * obj->cache_dirty && * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) * but gcc's optimiser doesn't handle that as well and emits * two jumps instead of one. Maybe one day... */ if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { if (i915_gem_clflush_object(obj, 0)) flags &= ~EXEC_OBJECT_ASYNC; } if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { err = i915_request_await_object (eb->request, obj, flags & EXEC_OBJECT_WRITE); } if (err == 0) err = i915_vma_move_to_active(vma, eb->request, flags); i915_vma_unlock(vma); eb_unreserve_vma(ev); } ww_acquire_fini(&acquire); eb_vma_array_put(fetch_and_zero(&eb->array)); if (unlikely(err)) goto err_skip; /* Unconditionally flush any chipset caches (for streaming writes). */ intel_gt_chipset_flush(eb->engine->gt); return 0; err_skip: i915_request_set_error_once(eb->request, err); return err; } static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) { if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) return -EINVAL; /* Kernel clipping was a DRI1 misfeature */ if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | I915_EXEC_USE_EXTENSIONS))) { if (exec->num_cliprects || exec->cliprects_ptr) return -EINVAL; } if (exec->DR4 == 0xffffffff) { DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); exec->DR4 = 0; } if (exec->DR1 || exec->DR4) return -EINVAL; if ((exec->batch_start_offset | exec->batch_len) & 0x7) return -EINVAL; return 0; } static int i915_reset_gen7_sol_offsets(struct i915_request *rq) { u32 *cs; int i; if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) { drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); return -EINVAL; } cs = intel_ring_begin(rq, 4 * 2 + 2); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_LOAD_REGISTER_IMM(4); for (i = 0; i < 4; i++) { *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); *cs++ = 0; } *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static struct i915_vma * shadow_batch_pin(struct drm_i915_gem_object *obj, struct i915_address_space *vm, unsigned int flags) { struct i915_vma *vma; int err; vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) return vma; err = i915_vma_pin(vma, 0, 0, flags); if (err) return ERR_PTR(err); return vma; } struct eb_parse_work { struct dma_fence_work base; struct intel_engine_cs *engine; struct i915_vma *batch; struct i915_vma *shadow; struct i915_vma *trampoline; unsigned int batch_offset; unsigned int batch_length; }; static int __eb_parse(struct dma_fence_work *work) { struct eb_parse_work *pw = container_of(work, typeof(*pw), base); return intel_engine_cmd_parser(pw->engine, pw->batch, pw->batch_offset, pw->batch_length, pw->shadow, pw->trampoline); } static void __eb_parse_release(struct dma_fence_work *work) { struct eb_parse_work *pw = container_of(work, typeof(*pw), base); if (pw->trampoline) i915_active_release(&pw->trampoline->active); i915_active_release(&pw->shadow->active); i915_active_release(&pw->batch->active); } static const struct dma_fence_work_ops eb_parse_ops = { .name = "eb_parse", .work = __eb_parse, .release = __eb_parse_release, }; static inline int __parser_mark_active(struct i915_vma *vma, struct intel_timeline *tl, struct dma_fence *fence) { struct intel_gt_buffer_pool_node *node = vma->private; return i915_active_ref(&node->active, tl->fence_context, fence); } static int parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl) { int err; mutex_lock(&tl->mutex); err = __parser_mark_active(pw->shadow, tl, &pw->base.dma); if (err) goto unlock; if (pw->trampoline) { err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma); if (err) goto unlock; } unlock: mutex_unlock(&tl->mutex); return err; } static int eb_parse_pipeline(struct i915_execbuffer *eb, struct i915_vma *shadow, struct i915_vma *trampoline) { struct eb_parse_work *pw; int err; pw = kzalloc(sizeof(*pw), GFP_KERNEL); if (!pw) return -ENOMEM; err = i915_active_acquire(&eb->batch->vma->active); if (err) goto err_free; err = i915_active_acquire(&shadow->active); if (err) goto err_batch; if (trampoline) { err = i915_active_acquire(&trampoline->active); if (err) goto err_shadow; } dma_fence_work_init(&pw->base, &eb_parse_ops); pw->engine = eb->engine; pw->batch = eb->batch->vma; pw->batch_offset = eb->batch_start_offset; pw->batch_length = eb->batch_len; pw->shadow = shadow; pw->trampoline = trampoline; /* Mark active refs early for this worker, in case we get interrupted */ err = parser_mark_active(pw, eb->context->timeline); if (err) goto err_commit; err = dma_resv_lock_interruptible(pw->batch->resv, NULL); if (err) goto err_commit; err = dma_resv_reserve_shared(pw->batch->resv, 1); if (err) goto err_commit_unlock; /* Wait for all writes (and relocs) into the batch to complete */ err = i915_sw_fence_await_reservation(&pw->base.chain, pw->batch->resv, NULL, false, 0, I915_FENCE_GFP); if (err < 0) goto err_commit_unlock; /* Keep the batch alive and unwritten as we parse */ dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma); dma_resv_unlock(pw->batch->resv); /* Force execution to wait for completion of the parser */ dma_resv_lock(shadow->resv, NULL); dma_resv_add_excl_fence(shadow->resv, &pw->base.dma); dma_resv_unlock(shadow->resv); dma_fence_work_commit_imm(&pw->base); return 0; err_commit_unlock: dma_resv_unlock(pw->batch->resv); err_commit: i915_sw_fence_set_error_once(&pw->base.chain, err); dma_fence_work_commit_imm(&pw->base); return err; err_shadow: i915_active_release(&shadow->active); err_batch: i915_active_release(&eb->batch->vma->active); err_free: kfree(pw); return err; } static int eb_parse(struct i915_execbuffer *eb) { struct drm_i915_private *i915 = eb->i915; struct intel_gt_buffer_pool_node *pool; struct i915_vma *shadow, *trampoline; unsigned int len; int err; if (!eb_use_cmdparser(eb)) return 0; len = eb->batch_len; if (!CMDPARSER_USES_GGTT(eb->i915)) { /* * ppGTT backed shadow buffers must be mapped RO, to prevent * post-scan tampering */ if (!eb->context->vm->has_read_only) { drm_dbg(&i915->drm, "Cannot prevent post-scan tampering without RO capable vm\n"); return -EINVAL; } } else { len += I915_CMD_PARSER_TRAMPOLINE_SIZE; } pool = intel_gt_get_buffer_pool(eb->engine->gt, len); if (IS_ERR(pool)) return PTR_ERR(pool); shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER); if (IS_ERR(shadow)) { err = PTR_ERR(shadow); goto err; } i915_gem_object_set_readonly(shadow->obj); shadow->private = pool; trampoline = NULL; if (CMDPARSER_USES_GGTT(eb->i915)) { trampoline = shadow; shadow = shadow_batch_pin(pool->obj, &eb->engine->gt->ggtt->vm, PIN_GLOBAL); if (IS_ERR(shadow)) { err = PTR_ERR(shadow); shadow = trampoline; goto err_shadow; } shadow->private = pool; eb->batch_flags |= I915_DISPATCH_SECURE; } err = eb_parse_pipeline(eb, shadow, trampoline); if (err) goto err_trampoline; eb->vma[eb->buffer_count].vma = i915_vma_get(shadow); eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN; eb->batch = &eb->vma[eb->buffer_count++]; eb->vma[eb->buffer_count].vma = NULL; eb->trampoline = trampoline; eb->batch_start_offset = 0; return 0; err_trampoline: if (trampoline) i915_vma_unpin(trampoline); err_shadow: i915_vma_unpin(shadow); err: intel_gt_buffer_pool_put(pool); return err; } static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch) { int err; err = eb_move_to_gpu(eb); if (err) return err; if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { err = i915_reset_gen7_sol_offsets(eb->request); if (err) return err; } /* * After we completed waiting for other engines (using HW semaphores) * then we can signal that this request/batch is ready to run. This * allows us to determine if the batch is still waiting on the GPU * or actually running by checking the breadcrumb. */ if (eb->engine->emit_init_breadcrumb) { err = eb->engine->emit_init_breadcrumb(eb->request); if (err) return err; } err = eb->engine->emit_bb_start(eb->request, batch->node.start + eb->batch_start_offset, eb->batch_len, eb->batch_flags); if (err) return err; if (eb->trampoline) { GEM_BUG_ON(eb->batch_start_offset); err = eb->engine->emit_bb_start(eb->request, eb->trampoline->node.start + eb->batch_len, 0, 0); if (err) return err; } if (intel_context_nopreempt(eb->context)) __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags); return 0; } static int num_vcs_engines(const struct drm_i915_private *i915) { return hweight64(VDBOX_MASK(&i915->gt)); } /* * Find one BSD ring to dispatch the corresponding BSD command. * The engine index is returned. */ static unsigned int gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; /* Check whether the file_priv has already selected one ring. */ if ((int)file_priv->bsd_engine < 0) file_priv->bsd_engine = get_random_int() % num_vcs_engines(dev_priv); return file_priv->bsd_engine; } static const enum intel_engine_id user_ring_map[] = { [I915_EXEC_DEFAULT] = RCS0, [I915_EXEC_RENDER] = RCS0, [I915_EXEC_BLT] = BCS0, [I915_EXEC_BSD] = VCS0, [I915_EXEC_VEBOX] = VECS0 }; static struct i915_request *eb_throttle(struct intel_context *ce) { struct intel_ring *ring = ce->ring; struct intel_timeline *tl = ce->timeline; struct i915_request *rq; /* * Completely unscientific finger-in-the-air estimates for suitable * maximum user request size (to avoid blocking) and then backoff. */ if (intel_ring_update_space(ring) >= PAGE_SIZE) return NULL; /* * Find a request that after waiting upon, there will be at least half * the ring available. The hysteresis allows us to compete for the * shared ring and should mean that we sleep less often prior to * claiming our resources, but not so long that the ring completely * drains before we can submit our next request. */ list_for_each_entry(rq, &tl->requests, link) { if (rq->ring != ring) continue; if (__intel_ring_space(rq->postfix, ring->emit, ring->size) > ring->size / 2) break; } if (&rq->link == &tl->requests) return NULL; /* weird, we will check again later for real */ return i915_request_get(rq); } static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce) { struct intel_timeline *tl; struct i915_request *rq; int err; /* * ABI: Before userspace accesses the GPU (e.g. execbuffer), report * EIO if the GPU is already wedged. */ err = intel_gt_terminally_wedged(ce->engine->gt); if (err) return err; if (unlikely(intel_context_is_banned(ce))) return -EIO; /* * Pinning the contexts may generate requests in order to acquire * GGTT space, so do this first before we reserve a seqno for * ourselves. */ err = intel_context_pin(ce); if (err) return err; /* * Take a local wakeref for preparing to dispatch the execbuf as * we expect to access the hardware fairly frequently in the * process, and require the engine to be kept awake between accesses. * Upon dispatch, we acquire another prolonged wakeref that we hold * until the timeline is idle, which in turn releases the wakeref * taken on the engine, and the parent device. */ tl = intel_context_timeline_lock(ce); if (IS_ERR(tl)) { err = PTR_ERR(tl); goto err_unpin; } intel_context_enter(ce); rq = eb_throttle(ce); intel_context_timeline_unlock(tl); if (rq) { bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; long timeout; timeout = MAX_SCHEDULE_TIMEOUT; if (nonblock) timeout = 0; timeout = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, timeout); i915_request_put(rq); if (timeout < 0) { err = nonblock ? -EWOULDBLOCK : timeout; goto err_exit; } } eb->engine = ce->engine; eb->context = ce; return 0; err_exit: mutex_lock(&tl->mutex); intel_context_exit(ce); intel_context_timeline_unlock(tl); err_unpin: intel_context_unpin(ce); return err; } static void eb_unpin_engine(struct i915_execbuffer *eb) { struct intel_context *ce = eb->context; struct intel_timeline *tl = ce->timeline; mutex_lock(&tl->mutex); intel_context_exit(ce); mutex_unlock(&tl->mutex); intel_context_unpin(ce); } static unsigned int eb_select_legacy_ring(struct i915_execbuffer *eb, struct drm_file *file, struct drm_i915_gem_execbuffer2 *args) { struct drm_i915_private *i915 = eb->i915; unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; if (user_ring_id != I915_EXEC_BSD && (args->flags & I915_EXEC_BSD_MASK)) { drm_dbg(&i915->drm, "execbuf with non bsd ring but with invalid " "bsd dispatch flags: %d\n", (int)(args->flags)); return -1; } if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; if (bsd_idx == I915_EXEC_BSD_DEFAULT) { bsd_idx = gen8_dispatch_bsd_engine(i915, file); } else if (bsd_idx >= I915_EXEC_BSD_RING1 && bsd_idx <= I915_EXEC_BSD_RING2) { bsd_idx >>= I915_EXEC_BSD_SHIFT; bsd_idx--; } else { drm_dbg(&i915->drm, "execbuf with unknown bsd ring: %u\n", bsd_idx); return -1; } return _VCS(bsd_idx); } if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", user_ring_id); return -1; } return user_ring_map[user_ring_id]; } static int eb_pin_engine(struct i915_execbuffer *eb, struct drm_file *file, struct drm_i915_gem_execbuffer2 *args) { struct intel_context *ce; unsigned int idx; int err; if (i915_gem_context_user_engines(eb->gem_context)) idx = args->flags & I915_EXEC_RING_MASK; else idx = eb_select_legacy_ring(eb, file, args); ce = i915_gem_context_get_engine(eb->gem_context, idx); if (IS_ERR(ce)) return PTR_ERR(ce); err = __eb_pin_engine(eb, ce); intel_context_put(ce); return err; } static void __free_fence_array(struct eb_fence *fences, unsigned int n) { while (n--) { drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); dma_fence_put(fences[n].dma_fence); kfree(fences[n].chain_fence); } kvfree(fences); } static int add_timeline_fence_array(struct i915_execbuffer *eb, const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) { struct drm_i915_gem_exec_fence __user *user_fences; u64 __user *user_values; struct eb_fence *f; u64 nfences; int err = 0; nfences = timeline_fences->fence_count; if (!nfences) return 0; /* Check multiplication overflow for access_ok() and kvmalloc_array() */ BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); if (nfences > min_t(unsigned long, ULONG_MAX / sizeof(*user_fences), SIZE_MAX / sizeof(*f)) - eb->num_fences) return -EINVAL; user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); if (!access_ok(user_fences, nfences * sizeof(*user_fences))) return -EFAULT; user_values = u64_to_user_ptr(timeline_fences->values_ptr); if (!access_ok(user_values, nfences * sizeof(*user_values))) return -EFAULT; f = krealloc(eb->fences, (eb->num_fences + nfences) * sizeof(*f), __GFP_NOWARN | GFP_KERNEL); if (!f) return -ENOMEM; eb->fences = f; f += eb->num_fences; BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); while (nfences--) { struct drm_i915_gem_exec_fence user_fence; struct drm_syncobj *syncobj; struct dma_fence *fence = NULL; u64 point; if (__copy_from_user(&user_fence, user_fences++, sizeof(user_fence))) return -EFAULT; if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) return -EINVAL; if (__get_user(point, user_values++)) return -EFAULT; syncobj = drm_syncobj_find(eb->file, user_fence.handle); if (!syncobj) { DRM_DEBUG("Invalid syncobj handle provided\n"); return -ENOENT; } fence = drm_syncobj_fence_get(syncobj); if (!fence && user_fence.flags && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { DRM_DEBUG("Syncobj handle has no fence\n"); drm_syncobj_put(syncobj); return -EINVAL; } if (fence) err = dma_fence_chain_find_seqno(&fence, point); if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); dma_fence_put(fence); drm_syncobj_put(syncobj); return err; } /* * A point might have been signaled already and * garbage collected from the timeline. In this case * just ignore the point and carry on. */ if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { drm_syncobj_put(syncobj); continue; } /* * For timeline syncobjs we need to preallocate chains for * later signaling. */ if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { /* * Waiting and signaling the same point (when point != * 0) would break the timeline. */ if (user_fence.flags & I915_EXEC_FENCE_WAIT) { DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); dma_fence_put(fence); drm_syncobj_put(syncobj); return -EINVAL; } f->chain_fence = kmalloc(sizeof(*f->chain_fence), GFP_KERNEL); if (!f->chain_fence) { drm_syncobj_put(syncobj); dma_fence_put(fence); return -ENOMEM; } } else { f->chain_fence = NULL; } f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); f->dma_fence = fence; f->value = point; f++; eb->num_fences++; } return 0; } static int add_fence_array(struct i915_execbuffer *eb) { struct drm_i915_gem_execbuffer2 *args = eb->args; struct drm_i915_gem_exec_fence __user *user; unsigned long num_fences = args->num_cliprects; struct eb_fence *f; if (!(args->flags & I915_EXEC_FENCE_ARRAY)) return 0; if (!num_fences) return 0; /* Check multiplication overflow for access_ok() and kvmalloc_array() */ BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); if (num_fences > min_t(unsigned long, ULONG_MAX / sizeof(*user), SIZE_MAX / sizeof(*f) - eb->num_fences)) return -EINVAL; user = u64_to_user_ptr(args->cliprects_ptr); if (!access_ok(user, num_fences * sizeof(*user))) return -EFAULT; f = krealloc(eb->fences, (eb->num_fences + num_fences) * sizeof(*f), __GFP_NOWARN | GFP_KERNEL); if (!f) return -ENOMEM; eb->fences = f; f += eb->num_fences; while (num_fences--) { struct drm_i915_gem_exec_fence user_fence; struct drm_syncobj *syncobj; struct dma_fence *fence = NULL; if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) return -EFAULT; if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) return -EINVAL; syncobj = drm_syncobj_find(eb->file, user_fence.handle); if (!syncobj) { DRM_DEBUG("Invalid syncobj handle provided\n"); return -ENOENT; } if (user_fence.flags & I915_EXEC_FENCE_WAIT) { fence = drm_syncobj_fence_get(syncobj); if (!fence) { DRM_DEBUG("Syncobj handle has no fence\n"); drm_syncobj_put(syncobj); return -EINVAL; } } BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); f->dma_fence = fence; f->value = 0; f->chain_fence = NULL; f++; eb->num_fences++; } return 0; } static void put_fence_array(struct eb_fence *fences, int num_fences) { if (fences) __free_fence_array(fences, num_fences); } static int await_fence_array(struct i915_execbuffer *eb) { unsigned int n; int err; for (n = 0; n < eb->num_fences; n++) { struct drm_syncobj *syncobj; unsigned int flags; syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); if (!eb->fences[n].dma_fence) continue; err = i915_request_await_dma_fence(eb->request, eb->fences[n].dma_fence); if (err < 0) return err; } return 0; } static void signal_fence_array(const struct i915_execbuffer *eb) { struct dma_fence * const fence = &eb->request->fence; unsigned int n; for (n = 0; n < eb->num_fences; n++) { struct drm_syncobj *syncobj; unsigned int flags; syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); if (!(flags & I915_EXEC_FENCE_SIGNAL)) continue; if (eb->fences[n].chain_fence) { drm_syncobj_add_point(syncobj, eb->fences[n].chain_fence, fence, eb->fences[n].value); /* * The chain's ownership is transferred to the * timeline. */ eb->fences[n].chain_fence = NULL; } else { drm_syncobj_replace_fence(syncobj, fence); } } } static int parse_timeline_fences(struct i915_user_extension __user *ext, void *data) { struct i915_execbuffer *eb = data; struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) return -EFAULT; return add_timeline_fence_array(eb, &timeline_fences); } static void retire_requests(struct intel_timeline *tl, struct i915_request *end) { struct i915_request *rq, *rn; list_for_each_entry_safe(rq, rn, &tl->requests, link) if (rq == end || !i915_request_retire(rq)) break; } static void eb_request_add(struct i915_execbuffer *eb) { struct i915_request *rq = eb->request; struct intel_timeline * const tl = i915_request_timeline(rq); struct i915_sched_attr attr = {}; struct i915_request *prev; lockdep_assert_held(&tl->mutex); lockdep_unpin_lock(&tl->mutex, rq->cookie); trace_i915_request_add(rq); prev = __i915_request_commit(rq); /* Check that the context wasn't destroyed before submission */ if (likely(!intel_context_is_closed(eb->context))) { attr = eb->gem_context->sched; } else { /* Serialise with context_close via the add_to_timeline */ i915_request_set_error_once(rq, -ENOENT); __i915_request_skip(rq); } __i915_request_queue(rq, &attr); /* Try to clean up the client's timeline after submitting the request */ if (prev) retire_requests(tl, prev); mutex_unlock(&tl->mutex); } static const i915_user_extension_fn execbuf_extensions[] = { [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, }; static int parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, struct i915_execbuffer *eb) { if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) return 0; /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot * have another flag also using it at the same time. */ if (eb->args->flags & I915_EXEC_FENCE_ARRAY) return -EINVAL; if (args->num_cliprects != 0) return -EINVAL; return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), execbuf_extensions, ARRAY_SIZE(execbuf_extensions), eb); } static int i915_gem_do_execbuffer(struct drm_device *dev, struct drm_file *file, struct drm_i915_gem_execbuffer2 *args, struct drm_i915_gem_exec_object2 *exec) { struct drm_i915_private *i915 = to_i915(dev); struct i915_execbuffer eb; struct dma_fence *in_fence = NULL; struct sync_file *out_fence = NULL; struct i915_vma *batch; int out_fence_fd = -1; int err; BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS); eb.i915 = i915; eb.file = file; eb.args = args; if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) args->flags |= __EXEC_HAS_RELOC; eb.exec = exec; eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; reloc_cache_init(&eb.reloc_cache, eb.i915); eb.buffer_count = args->buffer_count; eb.batch_start_offset = args->batch_start_offset; eb.batch_len = args->batch_len; eb.trampoline = NULL; eb.fences = NULL; eb.num_fences = 0; eb.batch_flags = 0; if (args->flags & I915_EXEC_SECURE) { if (INTEL_GEN(i915) >= 11) return -ENODEV; /* Return -EPERM to trigger fallback code on old binaries. */ if (!HAS_SECURE_BATCHES(i915)) return -EPERM; if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) return -EPERM; eb.batch_flags |= I915_DISPATCH_SECURE; } if (args->flags & I915_EXEC_IS_PINNED) eb.batch_flags |= I915_DISPATCH_PINNED; err = parse_execbuf2_extensions(args, &eb); if (err) goto err_ext; err = add_fence_array(&eb); if (err) goto err_ext; #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) if (args->flags & IN_FENCES) { if ((args->flags & IN_FENCES) == IN_FENCES) return -EINVAL; in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); if (!in_fence) { err = -EINVAL; goto err_ext; } } #undef IN_FENCES if (args->flags & I915_EXEC_FENCE_OUT) { out_fence_fd = get_unused_fd_flags(O_CLOEXEC); if (out_fence_fd < 0) { err = out_fence_fd; goto err_in_fence; } } err = eb_create(&eb); if (err) goto err_out_fence; GEM_BUG_ON(!eb.lut_size); err = eb_select_context(&eb); if (unlikely(err)) goto err_destroy; err = eb_pin_engine(&eb, file, args); if (unlikely(err)) goto err_context; err = eb_relocate(&eb); if (err) { /* * If the user expects the execobject.offset and * reloc.presumed_offset to be an exact match, * as for using NO_RELOC, then we cannot update * the execobject.offset until we have completed * relocation. */ args->flags &= ~__EXEC_HAS_RELOC; goto err_vma; } if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) { drm_dbg(&i915->drm, "Attempting to use self-modifying batch buffer\n"); err = -EINVAL; goto err_vma; } if (range_overflows_t(u64, eb.batch_start_offset, eb.batch_len, eb.batch->vma->size)) { drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); err = -EINVAL; goto err_vma; } if (eb.batch_len == 0) eb.batch_len = eb.batch->vma->size - eb.batch_start_offset; err = eb_parse(&eb); if (err) goto err_vma; /* * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure * batch" bit. Hence we need to pin secure batches into the global gtt. * hsw should have this fixed, but bdw mucks it up again. */ batch = eb.batch->vma; if (eb.batch_flags & I915_DISPATCH_SECURE) { struct i915_vma *vma; /* * So on first glance it looks freaky that we pin the batch here * outside of the reservation loop. But: * - The batch is already pinned into the relevant ppgtt, so we * already have the backing storage fully allocated. * - No other BO uses the global gtt (well contexts, but meh), * so we don't really have issues with multiple objects not * fitting due to fragmentation. * So this is actually safe. */ vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_parse; } batch = vma; } /* All GPU relocation batches must be submitted prior to the user rq */ GEM_BUG_ON(eb.reloc_cache.rq); /* Allocate a request for this batch buffer nice and early. */ eb.request = i915_request_create(eb.context); if (IS_ERR(eb.request)) { err = PTR_ERR(eb.request); goto err_batch_unpin; } if (in_fence) { if (args->flags & I915_EXEC_FENCE_SUBMIT) err = i915_request_await_execution(eb.request, in_fence, eb.engine->bond_execute); else err = i915_request_await_dma_fence(eb.request, in_fence); if (err < 0) goto err_request; } if (eb.fences) { err = await_fence_array(&eb); if (err) goto err_request; } if (out_fence_fd != -1) { out_fence = sync_file_create(&eb.request->fence); if (!out_fence) { err = -ENOMEM; goto err_request; } } /* * Whilst this request exists, batch_obj will be on the * active_list, and so will hold the active reference. Only when this * request is retired will the the batch_obj be moved onto the * inactive_list and lose its active reference. Hence we do not need * to explicitly hold another reference here. */ eb.request->batch = batch; if (batch->private) intel_gt_buffer_pool_mark_active(batch->private, eb.request); trace_i915_request_queue(eb.request, eb.batch_flags); err = eb_submit(&eb, batch); err_request: i915_request_get(eb.request); eb_request_add(&eb); if (eb.fences) signal_fence_array(&eb); if (out_fence) { if (err == 0) { fd_install(out_fence_fd, out_fence->file); args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ args->rsvd2 |= (u64)out_fence_fd << 32; out_fence_fd = -1; } else { fput(out_fence->file); } } i915_request_put(eb.request); err_batch_unpin: if (eb.batch_flags & I915_DISPATCH_SECURE) i915_vma_unpin(batch); err_parse: if (batch->private) intel_gt_buffer_pool_put(batch->private); err_vma: if (eb.trampoline) i915_vma_unpin(eb.trampoline); eb_unpin_engine(&eb); err_context: i915_gem_context_put(eb.gem_context); err_destroy: eb_destroy(&eb); err_out_fence: if (out_fence_fd != -1) put_unused_fd(out_fence_fd); err_in_fence: dma_fence_put(in_fence); err_ext: put_fence_array(eb.fences, eb.num_fences); return err; } static size_t eb_element_size(void) { return sizeof(struct drm_i915_gem_exec_object2); } static bool check_buffer_count(size_t count) { const size_t sz = eb_element_size(); /* * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup * array size (see eb_create()). Otherwise, we can accept an array as * large as can be addressed (though use large arrays at your peril)! */ return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); } /* * Legacy execbuffer just creates an exec2 list from the original exec object * list array and passes it to the real function. */ int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *i915 = to_i915(dev); struct drm_i915_gem_execbuffer *args = data; struct drm_i915_gem_execbuffer2 exec2; struct drm_i915_gem_exec_object *exec_list = NULL; struct drm_i915_gem_exec_object2 *exec2_list = NULL; const size_t count = args->buffer_count; unsigned int i; int err; if (!check_buffer_count(count)) { drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); return -EINVAL; } exec2.buffers_ptr = args->buffers_ptr; exec2.buffer_count = args->buffer_count; exec2.batch_start_offset = args->batch_start_offset; exec2.batch_len = args->batch_len; exec2.DR1 = args->DR1; exec2.DR4 = args->DR4; exec2.num_cliprects = args->num_cliprects; exec2.cliprects_ptr = args->cliprects_ptr; exec2.flags = I915_EXEC_RENDER; i915_execbuffer2_set_context_id(exec2, 0); err = i915_gem_check_execbuffer(&exec2); if (err) return err; /* Copy in the exec list from userland */ exec_list = kvmalloc_array(count, sizeof(*exec_list), __GFP_NOWARN | GFP_KERNEL); exec2_list = kvmalloc_array(count, eb_element_size(), __GFP_NOWARN | GFP_KERNEL); if (exec_list == NULL || exec2_list == NULL) { drm_dbg(&i915->drm, "Failed to allocate exec list for %d buffers\n", args->buffer_count); kvfree(exec_list); kvfree(exec2_list); return -ENOMEM; } err = copy_from_user(exec_list, u64_to_user_ptr(args->buffers_ptr), sizeof(*exec_list) * count); if (err) { drm_dbg(&i915->drm, "copy %d exec entries failed %d\n", args->buffer_count, err); kvfree(exec_list); kvfree(exec2_list); return -EFAULT; } for (i = 0; i < args->buffer_count; i++) { exec2_list[i].handle = exec_list[i].handle; exec2_list[i].relocation_count = exec_list[i].relocation_count; exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; exec2_list[i].alignment = exec_list[i].alignment; exec2_list[i].offset = exec_list[i].offset; if (INTEL_GEN(to_i915(dev)) < 4) exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; else exec2_list[i].flags = 0; } err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list); if (exec2.flags & __EXEC_HAS_RELOC) { struct drm_i915_gem_exec_object __user *user_exec_list = u64_to_user_ptr(args->buffers_ptr); /* Copy the new buffer offsets back to the user's exec list. */ for (i = 0; i < args->buffer_count; i++) { if (!(exec2_list[i].offset & UPDATE)) continue; exec2_list[i].offset = gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); exec2_list[i].offset &= PIN_OFFSET_MASK; if (__copy_to_user(&user_exec_list[i].offset, &exec2_list[i].offset, sizeof(user_exec_list[i].offset))) break; } } kvfree(exec_list); kvfree(exec2_list); return err; } int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *i915 = to_i915(dev); struct drm_i915_gem_execbuffer2 *args = data; struct drm_i915_gem_exec_object2 *exec2_list; const size_t count = args->buffer_count; int err; if (!check_buffer_count(count)) { drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); return -EINVAL; } err = i915_gem_check_execbuffer(args); if (err) return err; exec2_list = kvmalloc_array(count, eb_element_size(), __GFP_NOWARN | GFP_KERNEL); if (exec2_list == NULL) { drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", count); return -ENOMEM; } if (copy_from_user(exec2_list, u64_to_user_ptr(args->buffers_ptr), sizeof(*exec2_list) * count)) { drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); kvfree(exec2_list); return -EFAULT; } err = i915_gem_do_execbuffer(dev, file, args, exec2_list); /* * Now that we have begun execution of the batchbuffer, we ignore * any new error after this point. Also given that we have already * updated the associated relocations, we try to write out the current * object locations irrespective of any error. */ if (args->flags & __EXEC_HAS_RELOC) { struct drm_i915_gem_exec_object2 __user *user_exec_list = u64_to_user_ptr(args->buffers_ptr); unsigned int i; /* Copy the new buffer offsets back to the user's exec list. */ /* * Note: count * sizeof(*user_exec_list) does not overflow, * because we checked 'count' in check_buffer_count(). * * And this range already got effectively checked earlier * when we did the "copy_from_user()" above. */ if (!user_write_access_begin(user_exec_list, count * sizeof(*user_exec_list))) goto end; for (i = 0; i < args->buffer_count; i++) { if (!(exec2_list[i].offset & UPDATE)) continue; exec2_list[i].offset = gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); unsafe_put_user(exec2_list[i].offset, &user_exec_list[i].offset, end_user); } end_user: user_write_access_end(); end:; } args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; kvfree(exec2_list); return err; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/i915_gem_execbuffer.c" #endif