// SPDX-License-Identifier: GPL-2.0-only /* * Mediatek MT7530 DSA Switch driver * Copyright (C) 2017 Sean Wang */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mt7530.h" /* String, offset, and register size in bytes if different from 4 bytes */ static const struct mt7530_mib_desc mt7530_mib[] = { MIB_DESC(1, 0x00, "TxDrop"), MIB_DESC(1, 0x04, "TxCrcErr"), MIB_DESC(1, 0x08, "TxUnicast"), MIB_DESC(1, 0x0c, "TxMulticast"), MIB_DESC(1, 0x10, "TxBroadcast"), MIB_DESC(1, 0x14, "TxCollision"), MIB_DESC(1, 0x18, "TxSingleCollision"), MIB_DESC(1, 0x1c, "TxMultipleCollision"), MIB_DESC(1, 0x20, "TxDeferred"), MIB_DESC(1, 0x24, "TxLateCollision"), MIB_DESC(1, 0x28, "TxExcessiveCollistion"), MIB_DESC(1, 0x2c, "TxPause"), MIB_DESC(1, 0x30, "TxPktSz64"), MIB_DESC(1, 0x34, "TxPktSz65To127"), MIB_DESC(1, 0x38, "TxPktSz128To255"), MIB_DESC(1, 0x3c, "TxPktSz256To511"), MIB_DESC(1, 0x40, "TxPktSz512To1023"), MIB_DESC(1, 0x44, "Tx1024ToMax"), MIB_DESC(2, 0x48, "TxBytes"), MIB_DESC(1, 0x60, "RxDrop"), MIB_DESC(1, 0x64, "RxFiltering"), MIB_DESC(1, 0x6c, "RxMulticast"), MIB_DESC(1, 0x70, "RxBroadcast"), MIB_DESC(1, 0x74, "RxAlignErr"), MIB_DESC(1, 0x78, "RxCrcErr"), MIB_DESC(1, 0x7c, "RxUnderSizeErr"), MIB_DESC(1, 0x80, "RxFragErr"), MIB_DESC(1, 0x84, "RxOverSzErr"), MIB_DESC(1, 0x88, "RxJabberErr"), MIB_DESC(1, 0x8c, "RxPause"), MIB_DESC(1, 0x90, "RxPktSz64"), MIB_DESC(1, 0x94, "RxPktSz65To127"), MIB_DESC(1, 0x98, "RxPktSz128To255"), MIB_DESC(1, 0x9c, "RxPktSz256To511"), MIB_DESC(1, 0xa0, "RxPktSz512To1023"), MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"), MIB_DESC(2, 0xa8, "RxBytes"), MIB_DESC(1, 0xb0, "RxCtrlDrop"), MIB_DESC(1, 0xb4, "RxIngressDrop"), MIB_DESC(1, 0xb8, "RxArlDrop"), }; static int core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad) { struct mii_bus *bus = priv->bus; int value, ret; /* Write the desired MMD Devad */ ret = bus->write(bus, 0, MII_MMD_CTRL, devad); if (ret < 0) goto err; /* Write the desired MMD register address */ ret = bus->write(bus, 0, MII_MMD_DATA, prtad); if (ret < 0) goto err; /* Select the Function : DATA with no post increment */ ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); if (ret < 0) goto err; /* Read the content of the MMD's selected register */ value = bus->read(bus, 0, MII_MMD_DATA); return value; err: dev_err(&bus->dev, "failed to read mmd register\n"); return ret; } static int core_write_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad, u32 data) { struct mii_bus *bus = priv->bus; int ret; /* Write the desired MMD Devad */ ret = bus->write(bus, 0, MII_MMD_CTRL, devad); if (ret < 0) goto err; /* Write the desired MMD register address */ ret = bus->write(bus, 0, MII_MMD_DATA, prtad); if (ret < 0) goto err; /* Select the Function : DATA with no post increment */ ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); if (ret < 0) goto err; /* Write the data into MMD's selected register */ ret = bus->write(bus, 0, MII_MMD_DATA, data); err: if (ret < 0) dev_err(&bus->dev, "failed to write mmd register\n"); return ret; } static void core_write(struct mt7530_priv *priv, u32 reg, u32 val) { struct mii_bus *bus = priv->bus; mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); mutex_unlock(&bus->mdio_lock); } static void core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) { struct mii_bus *bus = priv->bus; u32 val; mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2); val &= ~mask; val |= set; core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); mutex_unlock(&bus->mdio_lock); } static void core_set(struct mt7530_priv *priv, u32 reg, u32 val) { core_rmw(priv, reg, 0, val); } static void core_clear(struct mt7530_priv *priv, u32 reg, u32 val) { core_rmw(priv, reg, val, 0); } static int mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val) { struct mii_bus *bus = priv->bus; u16 page, r, lo, hi; int ret; page = (reg >> 6) & 0x3ff; r = (reg >> 2) & 0xf; lo = val & 0xffff; hi = val >> 16; /* MT7530 uses 31 as the pseudo port */ ret = bus->write(bus, 0x1f, 0x1f, page); if (ret < 0) goto err; ret = bus->write(bus, 0x1f, r, lo); if (ret < 0) goto err; ret = bus->write(bus, 0x1f, 0x10, hi); err: if (ret < 0) dev_err(&bus->dev, "failed to write mt7530 register\n"); return ret; } static u32 mt7530_mii_read(struct mt7530_priv *priv, u32 reg) { struct mii_bus *bus = priv->bus; u16 page, r, lo, hi; int ret; page = (reg >> 6) & 0x3ff; r = (reg >> 2) & 0xf; /* MT7530 uses 31 as the pseudo port */ ret = bus->write(bus, 0x1f, 0x1f, page); if (ret < 0) { dev_err(&bus->dev, "failed to read mt7530 register\n"); return ret; } lo = bus->read(bus, 0x1f, r); hi = bus->read(bus, 0x1f, 0x10); return (hi << 16) | (lo & 0xffff); } static void mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val) { struct mii_bus *bus = priv->bus; mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); mt7530_mii_write(priv, reg, val); mutex_unlock(&bus->mdio_lock); } static u32 _mt7530_unlocked_read(struct mt7530_dummy_poll *p) { return mt7530_mii_read(p->priv, p->reg); } static u32 _mt7530_read(struct mt7530_dummy_poll *p) { struct mii_bus *bus = p->priv->bus; u32 val; mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); val = mt7530_mii_read(p->priv, p->reg); mutex_unlock(&bus->mdio_lock); return val; } static u32 mt7530_read(struct mt7530_priv *priv, u32 reg) { struct mt7530_dummy_poll p; INIT_MT7530_DUMMY_POLL(&p, priv, reg); return _mt7530_read(&p); } static void mt7530_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) { struct mii_bus *bus = priv->bus; u32 val; mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); val = mt7530_mii_read(priv, reg); val &= ~mask; val |= set; mt7530_mii_write(priv, reg, val); mutex_unlock(&bus->mdio_lock); } static void mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val) { mt7530_rmw(priv, reg, 0, val); } static void mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val) { mt7530_rmw(priv, reg, val, 0); } static int mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp) { u32 val; int ret; struct mt7530_dummy_poll p; /* Set the command operating upon the MAC address entries */ val = ATC_BUSY | ATC_MAT(0) | cmd; mt7530_write(priv, MT7530_ATC, val); INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC); ret = readx_poll_timeout(_mt7530_read, &p, val, !(val & ATC_BUSY), 20, 20000); if (ret < 0) { dev_err(priv->dev, "reset timeout\n"); return ret; } /* Additional sanity for read command if the specified * entry is invalid */ val = mt7530_read(priv, MT7530_ATC); if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID)) return -EINVAL; if (rsp) *rsp = val; return 0; } static void mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb) { u32 reg[3]; int i; /* Read from ARL table into an array */ for (i = 0; i < 3; i++) { reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4)); dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n", __func__, __LINE__, i, reg[i]); } fdb->vid = (reg[1] >> CVID) & CVID_MASK; fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK; fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK; fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK; fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK; fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK; fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK; fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK; fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK; fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT; } static void mt7530_fdb_write(struct mt7530_priv *priv, u16 vid, u8 port_mask, const u8 *mac, u8 aging, u8 type) { u32 reg[3] = { 0 }; int i; reg[1] |= vid & CVID_MASK; reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER; reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP; /* STATIC_ENT indicate that entry is static wouldn't * be aged out and STATIC_EMP specified as erasing an * entry */ reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS; reg[1] |= mac[5] << MAC_BYTE_5; reg[1] |= mac[4] << MAC_BYTE_4; reg[0] |= mac[3] << MAC_BYTE_3; reg[0] |= mac[2] << MAC_BYTE_2; reg[0] |= mac[1] << MAC_BYTE_1; reg[0] |= mac[0] << MAC_BYTE_0; /* Write array into the ARL table */ for (i = 0; i < 3; i++) mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]); } /* Setup TX circuit including relevant PAD and driving */ static int mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; u32 ncpo1, ssc_delta, trgint, i, xtal; xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK; if (xtal == HWTRAP_XTAL_20MHZ) { dev_err(priv->dev, "%s: MT7530 with a 20MHz XTAL is not supported!\n", __func__); return -EINVAL; } switch (interface) { case PHY_INTERFACE_MODE_RGMII: trgint = 0; /* PLL frequency: 125MHz */ ncpo1 = 0x0c80; break; case PHY_INTERFACE_MODE_TRGMII: trgint = 1; if (priv->id == ID_MT7621) { /* PLL frequency: 150MHz: 1.2GBit */ if (xtal == HWTRAP_XTAL_40MHZ) ncpo1 = 0x0780; if (xtal == HWTRAP_XTAL_25MHZ) ncpo1 = 0x0a00; } else { /* PLL frequency: 250MHz: 2.0Gbit */ if (xtal == HWTRAP_XTAL_40MHZ) ncpo1 = 0x0c80; if (xtal == HWTRAP_XTAL_25MHZ) ncpo1 = 0x1400; } break; default: dev_err(priv->dev, "xMII interface %d not supported\n", interface); return -EINVAL; } if (xtal == HWTRAP_XTAL_25MHZ) ssc_delta = 0x57; else ssc_delta = 0x87; mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(trgint)); /* Lower Tx Driving for TRGMII path */ for (i = 0 ; i < NUM_TRGMII_CTRL ; i++) mt7530_write(priv, MT7530_TRGMII_TD_ODT(i), TD_DM_DRVP(8) | TD_DM_DRVN(8)); /* Setup core clock for MT7530 */ if (!trgint) { /* Disable MT7530 core clock */ core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); /* Disable PLL, since phy_device has not yet been created * provided for phy_[read,write]_mmd_indirect is called, we * provide our own core_write_mmd_indirect to complete this * function. */ core_write_mmd_indirect(priv, CORE_GSWPLL_GRP1, MDIO_MMD_VEND2, 0); /* Set core clock into 500Mhz */ core_write(priv, CORE_GSWPLL_GRP2, RG_GSWPLL_POSDIV_500M(1) | RG_GSWPLL_FBKDIV_500M(25)); /* Enable PLL */ core_write(priv, CORE_GSWPLL_GRP1, RG_GSWPLL_EN_PRE | RG_GSWPLL_POSDIV_200M(2) | RG_GSWPLL_FBKDIV_200M(32)); /* Enable MT7530 core clock */ core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); } /* Setup the MT7530 TRGMII Tx Clock */ core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1)); core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0)); core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta)); core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta)); core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN); core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1)); core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN); core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN | REG_TRGMIICK_EN); if (!trgint) for (i = 0 ; i < NUM_TRGMII_CTRL; i++) mt7530_rmw(priv, MT7530_TRGMII_RD(i), RD_TAP_MASK, RD_TAP(16)); return 0; } static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv) { u32 val; val = mt7530_read(priv, MT7531_TOP_SIG_SR); return (val & PAD_DUAL_SGMII_EN) != 0; } static int mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; u32 top_sig; u32 hwstrap; u32 xtal; u32 val; if (mt7531_dual_sgmii_supported(priv)) return 0; val = mt7530_read(priv, MT7531_CREV); top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR); hwstrap = mt7530_read(priv, MT7531_HWTRAP); if ((val & CHIP_REV_M) > 0) xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ : HWTRAP_XTAL_FSEL_25MHZ; else xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK; /* Step 1 : Disable MT7531 COREPLL */ val = mt7530_read(priv, MT7531_PLLGP_EN); val &= ~EN_COREPLL; mt7530_write(priv, MT7531_PLLGP_EN, val); /* Step 2: switch to XTAL output */ val = mt7530_read(priv, MT7531_PLLGP_EN); val |= SW_CLKSW; mt7530_write(priv, MT7531_PLLGP_EN, val); val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_EN; mt7530_write(priv, MT7531_PLLGP_CR0, val); /* Step 3: disable PLLGP and enable program PLLGP */ val = mt7530_read(priv, MT7531_PLLGP_EN); val |= SW_PLLGP; mt7530_write(priv, MT7531_PLLGP_EN, val); /* Step 4: program COREPLL output frequency to 500MHz */ val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_POSDIV_M; val |= 2 << RG_COREPLL_POSDIV_S; mt7530_write(priv, MT7531_PLLGP_CR0, val); usleep_range(25, 35); switch (xtal) { case HWTRAP_XTAL_FSEL_25MHZ: val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_SDM_PCW_M; val |= 0x140000 << RG_COREPLL_SDM_PCW_S; mt7530_write(priv, MT7531_PLLGP_CR0, val); break; case HWTRAP_XTAL_FSEL_40MHZ: val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_SDM_PCW_M; val |= 0x190000 << RG_COREPLL_SDM_PCW_S; mt7530_write(priv, MT7531_PLLGP_CR0, val); break; } /* Set feedback divide ratio update signal to high */ val = mt7530_read(priv, MT7531_PLLGP_CR0); val |= RG_COREPLL_SDM_PCW_CHG; mt7530_write(priv, MT7531_PLLGP_CR0, val); /* Wait for at least 16 XTAL clocks */ usleep_range(10, 20); /* Step 5: set feedback divide ratio update signal to low */ val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_SDM_PCW_CHG; mt7530_write(priv, MT7531_PLLGP_CR0, val); /* Enable 325M clock for SGMII */ mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000); /* Enable 250SSC clock for RGMII */ mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000); /* Step 6: Enable MT7531 PLL */ val = mt7530_read(priv, MT7531_PLLGP_CR0); val |= RG_COREPLL_EN; mt7530_write(priv, MT7531_PLLGP_CR0, val); val = mt7530_read(priv, MT7531_PLLGP_EN); val |= EN_COREPLL; mt7530_write(priv, MT7531_PLLGP_EN, val); usleep_range(25, 35); return 0; } static void mt7530_mib_reset(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH); mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE); } static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum) { struct mt7530_priv *priv = ds->priv; return mdiobus_read_nested(priv->bus, port, regnum); } static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val) { struct mt7530_priv *priv = ds->priv; return mdiobus_write_nested(priv->bus, port, regnum, val); } static int mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad, int regnum) { struct mii_bus *bus = priv->bus; struct mt7530_dummy_poll p; u32 reg, val; int ret; INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_DEV_ADDR(devad) | regnum; mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_DEV_ADDR(devad); mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } ret = val & MT7531_MDIO_RW_DATA_MASK; out: mutex_unlock(&bus->mdio_lock); return ret; } static int mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad, int regnum, u32 data) { struct mii_bus *bus = priv->bus; struct mt7530_dummy_poll p; u32 val, reg; int ret; INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_DEV_ADDR(devad) | regnum; mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_DEV_ADDR(devad) | data; mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } out: mutex_unlock(&bus->mdio_lock); return ret; } static int mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum) { struct mii_bus *bus = priv->bus; struct mt7530_dummy_poll p; int ret; u32 val; INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_REG_ADDR(regnum); mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } ret = val & MT7531_MDIO_RW_DATA_MASK; out: mutex_unlock(&bus->mdio_lock); return ret; } static int mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum, u16 data) { struct mii_bus *bus = priv->bus; struct mt7530_dummy_poll p; int ret; u32 reg; INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, !(reg & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_REG_ADDR(regnum) | data; mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, !(reg & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } out: mutex_unlock(&bus->mdio_lock); return ret; } static int mt7531_ind_phy_read(struct dsa_switch *ds, int port, int regnum) { struct mt7530_priv *priv = ds->priv; int devad; int ret; if (regnum & MII_ADDR_C45) { devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; ret = mt7531_ind_c45_phy_read(priv, port, devad, regnum & MII_REGADDR_C45_MASK); } else { ret = mt7531_ind_c22_phy_read(priv, port, regnum); } return ret; } static int mt7531_ind_phy_write(struct dsa_switch *ds, int port, int regnum, u16 data) { struct mt7530_priv *priv = ds->priv; int devad; int ret; if (regnum & MII_ADDR_C45) { devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; ret = mt7531_ind_c45_phy_write(priv, port, devad, regnum & MII_REGADDR_C45_MASK, data); } else { ret = mt7531_ind_c22_phy_write(priv, port, regnum, data); } return ret; } static void mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *data) { int i; if (stringset != ETH_SS_STATS) return; for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name, ETH_GSTRING_LEN); } static void mt7530_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { struct mt7530_priv *priv = ds->priv; const struct mt7530_mib_desc *mib; u32 reg, i; u64 hi; for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) { mib = &mt7530_mib[i]; reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset; data[i] = mt7530_read(priv, reg); if (mib->size == 2) { hi = mt7530_read(priv, reg + 4); data[i] |= hi << 32; } } } static int mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset) { if (sset != ETH_SS_STATS) return 0; return ARRAY_SIZE(mt7530_mib); } static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; u8 tx_delay = 0; int val; mutex_lock(&priv->reg_mutex); val = mt7530_read(priv, MT7530_MHWTRAP); val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS; val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL; switch (priv->p5_intf_sel) { case P5_INTF_SEL_PHY_P0: /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */ val |= MHWTRAP_PHY0_SEL; fallthrough; case P5_INTF_SEL_PHY_P4: /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */ val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS; /* Setup the MAC by default for the cpu port */ mt7530_write(priv, MT7530_PMCR_P(5), 0x56300); break; case P5_INTF_SEL_GMAC5: /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */ val &= ~MHWTRAP_P5_DIS; break; case P5_DISABLED: interface = PHY_INTERFACE_MODE_NA; break; default: dev_err(ds->dev, "Unsupported p5_intf_sel %d\n", priv->p5_intf_sel); goto unlock_exit; } /* Setup RGMII settings */ if (phy_interface_mode_is_rgmii(interface)) { val |= MHWTRAP_P5_RGMII_MODE; /* P5 RGMII RX Clock Control: delay setting for 1000M */ mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN); /* Don't set delay in DSA mode */ if (!dsa_is_dsa_port(priv->ds, 5) && (interface == PHY_INTERFACE_MODE_RGMII_TXID || interface == PHY_INTERFACE_MODE_RGMII_ID)) tx_delay = 4; /* n * 0.5 ns */ /* P5 RGMII TX Clock Control: delay x */ mt7530_write(priv, MT7530_P5RGMIITXCR, CSR_RGMII_TXC_CFG(0x10 + tx_delay)); /* reduce P5 RGMII Tx driving, 8mA */ mt7530_write(priv, MT7530_IO_DRV_CR, P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1)); } mt7530_write(priv, MT7530_MHWTRAP, val); dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n", val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface)); priv->p5_interface = interface; unlock_exit: mutex_unlock(&priv->reg_mutex); } static int mt753x_cpu_port_enable(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; int ret; /* Setup max capability of CPU port at first */ if (priv->info->cpu_port_config) { ret = priv->info->cpu_port_config(ds, port); if (ret) return ret; } /* Enable Mediatek header mode on the cpu port */ mt7530_write(priv, MT7530_PVC_P(port), PORT_SPEC_TAG); /* Unknown multicast frame forwarding to the cpu port */ mt7530_rmw(priv, MT7530_MFC, UNM_FFP_MASK, UNM_FFP(BIT(port))); /* Set CPU port number */ if (priv->id == ID_MT7621) mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port)); /* CPU port gets connected to all user ports of * the switch. */ mt7530_write(priv, MT7530_PCR_P(port), PCR_MATRIX(dsa_user_ports(priv->ds))); return 0; } static int mt7530_port_enable(struct dsa_switch *ds, int port, struct phy_device *phy) { struct mt7530_priv *priv = ds->priv; if (!dsa_is_user_port(ds, port)) return 0; mutex_lock(&priv->reg_mutex); /* Allow the user port gets connected to the cpu port and also * restore the port matrix if the port is the member of a certain * bridge. */ priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT)); priv->ports[port].enable = true; mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, priv->ports[port].pm); mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); mutex_unlock(&priv->reg_mutex); return 0; } static void mt7530_port_disable(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; if (!dsa_is_user_port(ds, port)) return; mutex_lock(&priv->reg_mutex); /* Clear up all port matrix which could be restored in the next * enablement for the port. */ priv->ports[port].enable = false; mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, PCR_MATRIX_CLR); mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); mutex_unlock(&priv->reg_mutex); } static void mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state) { struct mt7530_priv *priv = ds->priv; u32 stp_state; switch (state) { case BR_STATE_DISABLED: stp_state = MT7530_STP_DISABLED; break; case BR_STATE_BLOCKING: stp_state = MT7530_STP_BLOCKING; break; case BR_STATE_LISTENING: stp_state = MT7530_STP_LISTENING; break; case BR_STATE_LEARNING: stp_state = MT7530_STP_LEARNING; break; case BR_STATE_FORWARDING: default: stp_state = MT7530_STP_FORWARDING; break; } mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state); } static int mt7530_port_bridge_join(struct dsa_switch *ds, int port, struct net_device *bridge) { struct mt7530_priv *priv = ds->priv; u32 port_bitmap = BIT(MT7530_CPU_PORT); int i; mutex_lock(&priv->reg_mutex); for (i = 0; i < MT7530_NUM_PORTS; i++) { /* Add this port to the port matrix of the other ports in the * same bridge. If the port is disabled, port matrix is kept * and not being setup until the port becomes enabled. */ if (dsa_is_user_port(ds, i) && i != port) { if (dsa_to_port(ds, i)->bridge_dev != bridge) continue; if (priv->ports[i].enable) mt7530_set(priv, MT7530_PCR_P(i), PCR_MATRIX(BIT(port))); priv->ports[i].pm |= PCR_MATRIX(BIT(port)); port_bitmap |= BIT(i); } } /* Add the all other ports to this port matrix. */ if (priv->ports[port].enable) mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap)); priv->ports[port].pm |= PCR_MATRIX(port_bitmap); mutex_unlock(&priv->reg_mutex); return 0; } static void mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; bool all_user_ports_removed = true; int i; /* When a port is removed from the bridge, the port would be set up * back to the default as is at initial boot which is a VLAN-unaware * port. */ mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, MT7530_PORT_MATRIX_MODE); mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, VLAN_ATTR(MT7530_VLAN_TRANSPARENT) | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); for (i = 0; i < MT7530_NUM_PORTS; i++) { if (dsa_is_user_port(ds, i) && dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { all_user_ports_removed = false; break; } } /* CPU port also does the same thing until all user ports belonging to * the CPU port get out of VLAN filtering mode. */ if (all_user_ports_removed) { mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT), PCR_MATRIX(dsa_user_ports(priv->ds))); mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); } } static void mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; /* The real fabric path would be decided on the membership in the * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS * means potential VLAN can be consisting of certain subset of all * ports. */ mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS)); /* Trapped into security mode allows packet forwarding through VLAN * table lookup. CPU port is set to fallback mode to let untagged * frames pass through. */ if (dsa_is_cpu_port(ds, port)) mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, MT7530_PORT_FALLBACK_MODE); else mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, MT7530_PORT_SECURITY_MODE); /* Set the port as a user port which is to be able to recognize VID * from incoming packets before fetching entry within the VLAN table. */ mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, VLAN_ATTR(MT7530_VLAN_USER) | PVC_EG_TAG(MT7530_VLAN_EG_DISABLED)); } static void mt7530_port_bridge_leave(struct dsa_switch *ds, int port, struct net_device *bridge) { struct mt7530_priv *priv = ds->priv; int i; mutex_lock(&priv->reg_mutex); for (i = 0; i < MT7530_NUM_PORTS; i++) { /* Remove this port from the port matrix of the other ports * in the same bridge. If the port is disabled, port matrix * is kept and not being setup until the port becomes enabled. * And the other port's port matrix cannot be broken when the * other port is still a VLAN-aware port. */ if (dsa_is_user_port(ds, i) && i != port && !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { if (dsa_to_port(ds, i)->bridge_dev != bridge) continue; if (priv->ports[i].enable) mt7530_clear(priv, MT7530_PCR_P(i), PCR_MATRIX(BIT(port))); priv->ports[i].pm &= ~PCR_MATRIX(BIT(port)); } } /* Set the cpu port to be the only one in the port matrix of * this port. */ if (priv->ports[port].enable) mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, PCR_MATRIX(BIT(MT7530_CPU_PORT))); priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT)); mutex_unlock(&priv->reg_mutex); } static int mt7530_port_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct mt7530_priv *priv = ds->priv; int ret; u8 port_mask = BIT(port); mutex_lock(&priv->reg_mutex); mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); mutex_unlock(&priv->reg_mutex); return ret; } static int mt7530_port_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct mt7530_priv *priv = ds->priv; int ret; u8 port_mask = BIT(port); mutex_lock(&priv->reg_mutex); mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP); ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); mutex_unlock(&priv->reg_mutex); return ret; } static int mt7530_port_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb, void *data) { struct mt7530_priv *priv = ds->priv; struct mt7530_fdb _fdb = { 0 }; int cnt = MT7530_NUM_FDB_RECORDS; int ret = 0; u32 rsp = 0; mutex_lock(&priv->reg_mutex); ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp); if (ret < 0) goto err; do { if (rsp & ATC_SRCH_HIT) { mt7530_fdb_read(priv, &_fdb); if (_fdb.port_mask & BIT(port)) { ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp, data); if (ret < 0) break; } } } while (--cnt && !(rsp & ATC_SRCH_END) && !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp)); err: mutex_unlock(&priv->reg_mutex); return 0; } static int mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid) { struct mt7530_dummy_poll p; u32 val; int ret; val = VTCR_BUSY | VTCR_FUNC(cmd) | vid; mt7530_write(priv, MT7530_VTCR, val); INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR); ret = readx_poll_timeout(_mt7530_read, &p, val, !(val & VTCR_BUSY), 20, 20000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); return ret; } val = mt7530_read(priv, MT7530_VTCR); if (val & VTCR_INVALID) { dev_err(priv->dev, "read VTCR invalid\n"); return -EINVAL; } return 0; } static int mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering, struct switchdev_trans *trans) { if (switchdev_trans_ph_prepare(trans)) return 0; if (vlan_filtering) { /* The port is being kept as VLAN-unaware port when bridge is * set up with vlan_filtering not being set, Otherwise, the * port and the corresponding CPU port is required the setup * for becoming a VLAN-aware port. */ mt7530_port_set_vlan_aware(ds, port); mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT); } else { mt7530_port_set_vlan_unaware(ds, port); } return 0; } static int mt7530_port_vlan_prepare(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { /* nothing needed */ return 0; } static void mt7530_hw_vlan_add(struct mt7530_priv *priv, struct mt7530_hw_vlan_entry *entry) { u8 new_members; u32 val; new_members = entry->old_members | BIT(entry->port) | BIT(MT7530_CPU_PORT); /* Validate the entry with independent learning, create egress tag per * VLAN and joining the port as one of the port members. */ val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID; mt7530_write(priv, MT7530_VAWD1, val); /* Decide whether adding tag or not for those outgoing packets from the * port inside the VLAN. */ val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG : MT7530_VLAN_EGRESS_TAG; mt7530_rmw(priv, MT7530_VAWD2, ETAG_CTRL_P_MASK(entry->port), ETAG_CTRL_P(entry->port, val)); /* CPU port is always taken as a tagged port for serving more than one * VLANs across and also being applied with egress type stack mode for * that VLAN tags would be appended after hardware special tag used as * DSA tag. */ mt7530_rmw(priv, MT7530_VAWD2, ETAG_CTRL_P_MASK(MT7530_CPU_PORT), ETAG_CTRL_P(MT7530_CPU_PORT, MT7530_VLAN_EGRESS_STACK)); } static void mt7530_hw_vlan_del(struct mt7530_priv *priv, struct mt7530_hw_vlan_entry *entry) { u8 new_members; u32 val; new_members = entry->old_members & ~BIT(entry->port); val = mt7530_read(priv, MT7530_VAWD1); if (!(val & VLAN_VALID)) { dev_err(priv->dev, "Cannot be deleted due to invalid entry\n"); return; } /* If certain member apart from CPU port is still alive in the VLAN, * the entry would be kept valid. Otherwise, the entry is got to be * disabled. */ if (new_members && new_members != BIT(MT7530_CPU_PORT)) { val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID; mt7530_write(priv, MT7530_VAWD1, val); } else { mt7530_write(priv, MT7530_VAWD1, 0); mt7530_write(priv, MT7530_VAWD2, 0); } } static void mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid, struct mt7530_hw_vlan_entry *entry, mt7530_vlan_op vlan_op) { u32 val; /* Fetch entry */ mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid); val = mt7530_read(priv, MT7530_VAWD1); entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK; /* Manipulate entry */ vlan_op(priv, entry); /* Flush result to hardware */ mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid); } static void mt7530_port_vlan_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; struct mt7530_hw_vlan_entry new_entry; struct mt7530_priv *priv = ds->priv; u16 vid; mutex_lock(&priv->reg_mutex); for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { mt7530_hw_vlan_entry_init(&new_entry, port, untagged); mt7530_hw_vlan_update(priv, vid, &new_entry, mt7530_hw_vlan_add); } if (pvid) { mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, G0_PORT_VID(vlan->vid_end)); priv->ports[port].pvid = vlan->vid_end; } mutex_unlock(&priv->reg_mutex); } static int mt7530_port_vlan_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct mt7530_hw_vlan_entry target_entry; struct mt7530_priv *priv = ds->priv; u16 vid, pvid; mutex_lock(&priv->reg_mutex); pvid = priv->ports[port].pvid; for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { mt7530_hw_vlan_entry_init(&target_entry, port, 0); mt7530_hw_vlan_update(priv, vid, &target_entry, mt7530_hw_vlan_del); /* PVID is being restored to the default whenever the PVID port * is being removed from the VLAN. */ if (pvid == vid) pvid = G0_PORT_VID_DEF; } mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid); priv->ports[port].pvid = pvid; mutex_unlock(&priv->reg_mutex); return 0; } static int mt753x_mirror_port_get(unsigned int id, u32 val) { return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) : MIRROR_PORT(val); } static int mt753x_mirror_port_set(unsigned int id, u32 val) { return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) : MIRROR_PORT(val); } static int mt753x_port_mirror_add(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror, bool ingress) { struct mt7530_priv *priv = ds->priv; int monitor_port; u32 val; /* Check for existent entry */ if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port)) return -EEXIST; val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); /* MT7530 only supports one monitor port */ monitor_port = mt753x_mirror_port_get(priv->id, val); if (val & MT753X_MIRROR_EN(priv->id) && monitor_port != mirror->to_local_port) return -EEXIST; val |= MT753X_MIRROR_EN(priv->id); val &= ~MT753X_MIRROR_MASK(priv->id); val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port); mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); val = mt7530_read(priv, MT7530_PCR_P(port)); if (ingress) { val |= PORT_RX_MIR; priv->mirror_rx |= BIT(port); } else { val |= PORT_TX_MIR; priv->mirror_tx |= BIT(port); } mt7530_write(priv, MT7530_PCR_P(port), val); return 0; } static void mt753x_port_mirror_del(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror) { struct mt7530_priv *priv = ds->priv; u32 val; val = mt7530_read(priv, MT7530_PCR_P(port)); if (mirror->ingress) { val &= ~PORT_RX_MIR; priv->mirror_rx &= ~BIT(port); } else { val &= ~PORT_TX_MIR; priv->mirror_tx &= ~BIT(port); } mt7530_write(priv, MT7530_PCR_P(port), val); if (!priv->mirror_rx && !priv->mirror_tx) { val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); val &= ~MT753X_MIRROR_EN(priv->id); mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); } } static enum dsa_tag_protocol mtk_get_tag_protocol(struct dsa_switch *ds, int port, enum dsa_tag_protocol mp) { struct mt7530_priv *priv = ds->priv; if (port != MT7530_CPU_PORT) { dev_warn(priv->dev, "port not matched with tagging CPU port\n"); return DSA_TAG_PROTO_NONE; } else { return DSA_TAG_PROTO_MTK; } } static int mt7530_setup(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; struct device_node *phy_node; struct device_node *mac_np; struct mt7530_dummy_poll p; phy_interface_t interface; struct device_node *dn; u32 id, val; int ret, i; /* The parent node of master netdev which holds the common system * controller also is the container for two GMACs nodes representing * as two netdev instances. */ dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent; ds->configure_vlan_while_not_filtering = true; if (priv->id == ID_MT7530) { regulator_set_voltage(priv->core_pwr, 1000000, 1000000); ret = regulator_enable(priv->core_pwr); if (ret < 0) { dev_err(priv->dev, "Failed to enable core power: %d\n", ret); return ret; } regulator_set_voltage(priv->io_pwr, 3300000, 3300000); ret = regulator_enable(priv->io_pwr); if (ret < 0) { dev_err(priv->dev, "Failed to enable io pwr: %d\n", ret); return ret; } } /* Reset whole chip through gpio pin or memory-mapped registers for * different type of hardware */ if (priv->mcm) { reset_control_assert(priv->rstc); usleep_range(1000, 1100); reset_control_deassert(priv->rstc); } else { gpiod_set_value_cansleep(priv->reset, 0); usleep_range(1000, 1100); gpiod_set_value_cansleep(priv->reset, 1); } /* Waiting for MT7530 got to stable */ INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 20, 1000000); if (ret < 0) { dev_err(priv->dev, "reset timeout\n"); return ret; } id = mt7530_read(priv, MT7530_CREV); id >>= CHIP_NAME_SHIFT; if (id != MT7530_ID) { dev_err(priv->dev, "chip %x can't be supported\n", id); return -ENODEV; } /* Reset the switch through internal reset */ mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | SYS_CTRL_REG_RST); /* Enable Port 6 only; P5 as GMAC5 which currently is not supported */ val = mt7530_read(priv, MT7530_MHWTRAP); val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS; val |= MHWTRAP_MANUAL; mt7530_write(priv, MT7530_MHWTRAP, val); priv->p6_interface = PHY_INTERFACE_MODE_NA; /* Enable and reset MIB counters */ mt7530_mib_reset(ds); for (i = 0; i < MT7530_NUM_PORTS; i++) { /* Disable forwarding by default on all ports */ mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, PCR_MATRIX_CLR); if (dsa_is_cpu_port(ds, i)) { ret = mt753x_cpu_port_enable(ds, i); if (ret) return ret; } else mt7530_port_disable(ds, i); /* Enable consistent egress tag */ mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); } /* Setup port 5 */ priv->p5_intf_sel = P5_DISABLED; interface = PHY_INTERFACE_MODE_NA; if (!dsa_is_unused_port(ds, 5)) { priv->p5_intf_sel = P5_INTF_SEL_GMAC5; ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface); if (ret && ret != -ENODEV) return ret; } else { /* Scan the ethernet nodes. look for GMAC1, lookup used phy */ for_each_child_of_node(dn, mac_np) { if (!of_device_is_compatible(mac_np, "mediatek,eth-mac")) continue; ret = of_property_read_u32(mac_np, "reg", &id); if (ret < 0 || id != 1) continue; phy_node = of_parse_phandle(mac_np, "phy-handle", 0); if (!phy_node) continue; if (phy_node->parent == priv->dev->of_node->parent) { ret = of_get_phy_mode(mac_np, &interface); if (ret && ret != -ENODEV) { of_node_put(mac_np); return ret; } id = of_mdio_parse_addr(ds->dev, phy_node); if (id == 0) priv->p5_intf_sel = P5_INTF_SEL_PHY_P0; if (id == 4) priv->p5_intf_sel = P5_INTF_SEL_PHY_P4; } of_node_put(mac_np); of_node_put(phy_node); break; } } mt7530_setup_port5(ds, interface); /* Flush the FDB table */ ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); if (ret < 0) return ret; return 0; } static int mt7531_setup(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; struct mt7530_dummy_poll p; u32 val, id; int ret, i; /* Reset whole chip through gpio pin or memory-mapped registers for * different type of hardware */ if (priv->mcm) { reset_control_assert(priv->rstc); usleep_range(1000, 1100); reset_control_deassert(priv->rstc); } else { gpiod_set_value_cansleep(priv->reset, 0); usleep_range(1000, 1100); gpiod_set_value_cansleep(priv->reset, 1); } /* Waiting for MT7530 got to stable */ INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 20, 1000000); if (ret < 0) { dev_err(priv->dev, "reset timeout\n"); return ret; } id = mt7530_read(priv, MT7531_CREV); id >>= CHIP_NAME_SHIFT; if (id != MT7531_ID) { dev_err(priv->dev, "chip %x can't be supported\n", id); return -ENODEV; } /* Reset the switch through internal reset */ mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | SYS_CTRL_REG_RST); if (mt7531_dual_sgmii_supported(priv)) { priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII; /* Let ds->slave_mii_bus be able to access external phy. */ mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK, MT7531_EXT_P_MDC_11); mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK, MT7531_EXT_P_MDIO_12); } else { priv->p5_intf_sel = P5_INTF_SEL_GMAC5; } dev_dbg(ds->dev, "P5 support %s interface\n", p5_intf_modes(priv->p5_intf_sel)); mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK, MT7531_GPIO0_INTERRUPT); /* Let phylink decide the interface later. */ priv->p5_interface = PHY_INTERFACE_MODE_NA; priv->p6_interface = PHY_INTERFACE_MODE_NA; /* Enable PHY core PLL, since phy_device has not yet been created * provided for phy_[read,write]_mmd_indirect is called, we provide * our own mt7531_ind_mmd_phy_[read,write] to complete this * function. */ val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2, CORE_PLL_GROUP4); val |= MT7531_PHY_PLL_BYPASS_MODE; val &= ~MT7531_PHY_PLL_OFF; mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2, CORE_PLL_GROUP4, val); /* BPDU to CPU port */ mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK, BIT(MT7530_CPU_PORT)); mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK, MT753X_BPDU_CPU_ONLY); /* Enable and reset MIB counters */ mt7530_mib_reset(ds); for (i = 0; i < MT7530_NUM_PORTS; i++) { /* Disable forwarding by default on all ports */ mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, PCR_MATRIX_CLR); mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR); if (dsa_is_cpu_port(ds, i)) { ret = mt753x_cpu_port_enable(ds, i); if (ret) return ret; } else mt7530_port_disable(ds, i); /* Enable consistent egress tag */ mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); } ds->configure_vlan_while_not_filtering = true; /* Flush the FDB table */ ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); if (ret < 0) return ret; return 0; } static bool mt7530_phy_mode_supported(struct dsa_switch *ds, int port, const struct phylink_link_state *state) { struct mt7530_priv *priv = ds->priv; switch (port) { case 0 ... 4: /* Internal phy */ if (state->interface != PHY_INTERFACE_MODE_GMII) return false; break; case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ if (!phy_interface_mode_is_rgmii(state->interface) && state->interface != PHY_INTERFACE_MODE_MII && state->interface != PHY_INTERFACE_MODE_GMII) return false; break; case 6: /* 1st cpu port */ if (state->interface != PHY_INTERFACE_MODE_RGMII && state->interface != PHY_INTERFACE_MODE_TRGMII) return false; break; default: dev_err(priv->dev, "%s: unsupported port: %i\n", __func__, port); return false; } return true; } static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port) { return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII); } static bool mt7531_phy_mode_supported(struct dsa_switch *ds, int port, const struct phylink_link_state *state) { struct mt7530_priv *priv = ds->priv; switch (port) { case 0 ... 4: /* Internal phy */ if (state->interface != PHY_INTERFACE_MODE_GMII) return false; break; case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */ if (mt7531_is_rgmii_port(priv, port)) return phy_interface_mode_is_rgmii(state->interface); fallthrough; case 6: /* 1st cpu port supports sgmii/8023z only */ if (state->interface != PHY_INTERFACE_MODE_SGMII && !phy_interface_mode_is_8023z(state->interface)) return false; break; default: dev_err(priv->dev, "%s: unsupported port: %i\n", __func__, port); return false; } return true; } static bool mt753x_phy_mode_supported(struct dsa_switch *ds, int port, const struct phylink_link_state *state) { struct mt7530_priv *priv = ds->priv; return priv->info->phy_mode_supported(ds, port, state); } static int mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state) { struct mt7530_priv *priv = ds->priv; return priv->info->pad_setup(ds, state->interface); } static int mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; /* Only need to setup port5. */ if (port != 5) return 0; mt7530_setup_port5(priv->ds, interface); return 0; } static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port, phy_interface_t interface, struct phy_device *phydev) { u32 val; if (!mt7531_is_rgmii_port(priv, port)) { dev_err(priv->dev, "RGMII mode is not available for port %d\n", port); return -EINVAL; } val = mt7530_read(priv, MT7531_CLKGEN_CTRL); val |= GP_CLK_EN; val &= ~GP_MODE_MASK; val |= GP_MODE(MT7531_GP_MODE_RGMII); val &= ~CLK_SKEW_IN_MASK; val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG); val &= ~CLK_SKEW_OUT_MASK; val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG); val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY; /* Do not adjust rgmii delay when vendor phy driver presents. */ if (!phydev || phy_driver_is_genphy(phydev)) { val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY); switch (interface) { case PHY_INTERFACE_MODE_RGMII: val |= TXCLK_NO_REVERSE; val |= RXCLK_NO_DELAY; break; case PHY_INTERFACE_MODE_RGMII_RXID: val |= TXCLK_NO_REVERSE; break; case PHY_INTERFACE_MODE_RGMII_TXID: val |= RXCLK_NO_DELAY; break; case PHY_INTERFACE_MODE_RGMII_ID: break; default: return -EINVAL; } } mt7530_write(priv, MT7531_CLKGEN_CTRL, val); return 0; } static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port, unsigned long *supported) { /* Port5 supports ethier RGMII or SGMII. * Port6 supports SGMII only. */ switch (port) { case 5: if (mt7531_is_rgmii_port(priv, port)) break; fallthrough; case 6: phylink_set(supported, 1000baseX_Full); phylink_set(supported, 2500baseX_Full); phylink_set(supported, 2500baseT_Full); } } static void mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface, int speed, int duplex) { struct mt7530_priv *priv = ds->priv; unsigned int val; /* For adjusting speed and duplex of SGMII force mode. */ if (interface != PHY_INTERFACE_MODE_SGMII || phylink_autoneg_inband(mode)) return; /* SGMII force mode setting */ val = mt7530_read(priv, MT7531_SGMII_MODE(port)); val &= ~MT7531_SGMII_IF_MODE_MASK; switch (speed) { case SPEED_10: val |= MT7531_SGMII_FORCE_SPEED_10; break; case SPEED_100: val |= MT7531_SGMII_FORCE_SPEED_100; break; case SPEED_1000: val |= MT7531_SGMII_FORCE_SPEED_1000; break; } /* MT7531 SGMII 1G force mode can only work in full duplex mode, * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. */ if ((speed == SPEED_10 || speed == SPEED_100) && duplex != DUPLEX_FULL) val |= MT7531_SGMII_FORCE_HALF_DUPLEX; mt7530_write(priv, MT7531_SGMII_MODE(port), val); } static bool mt753x_is_mac_port(u32 port) { return (port == 5 || port == 6); } static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port, phy_interface_t interface) { u32 val; if (!mt753x_is_mac_port(port)) return -EINVAL; mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), MT7531_SGMII_PHYA_PWD); val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port)); val &= ~MT7531_RG_TPHY_SPEED_MASK; /* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B * encoding. */ val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ? MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G; mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val); mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); /* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. */ mt7530_rmw(priv, MT7531_SGMII_MODE(port), MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS, MT7531_SGMII_FORCE_SPEED_1000); mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); return 0; } static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port, phy_interface_t interface) { if (!mt753x_is_mac_port(port)) return -EINVAL; mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), MT7531_SGMII_PHYA_PWD); mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port), MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G); mt7530_set(priv, MT7531_SGMII_MODE(port), MT7531_SGMII_REMOTE_FAULT_DIS | MT7531_SGMII_SPEED_DUPLEX_AN); mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port), MT7531_SGMII_TX_CONFIG_MASK, 1); mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART); mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); return 0; } static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; u32 val; /* Only restart AN when AN is enabled */ val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); if (val & MT7531_SGMII_AN_ENABLE) { val |= MT7531_SGMII_AN_RESTART; mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val); } } static int mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; struct phy_device *phydev; struct dsa_port *dp; if (!mt753x_is_mac_port(port)) { dev_err(priv->dev, "port %d is not a MAC port\n", port); return -EINVAL; } switch (interface) { case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: dp = dsa_to_port(ds, port); phydev = dp->slave->phydev; return mt7531_rgmii_setup(priv, port, interface, phydev); case PHY_INTERFACE_MODE_SGMII: return mt7531_sgmii_setup_mode_an(priv, port, interface); case PHY_INTERFACE_MODE_NA: case PHY_INTERFACE_MODE_1000BASEX: case PHY_INTERFACE_MODE_2500BASEX: if (phylink_autoneg_inband(mode)) return -EINVAL; return mt7531_sgmii_setup_mode_force(priv, port, interface); default: return -EINVAL; } return -EINVAL; } static int mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode, const struct phylink_link_state *state) { struct mt7530_priv *priv = ds->priv; return priv->info->mac_port_config(ds, port, mode, state->interface); } static void mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode, const struct phylink_link_state *state) { struct mt7530_priv *priv = ds->priv; u32 mcr_cur, mcr_new; if (!mt753x_phy_mode_supported(ds, port, state)) goto unsupported; switch (port) { case 0 ... 4: /* Internal phy */ if (state->interface != PHY_INTERFACE_MODE_GMII) goto unsupported; break; case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ if (priv->p5_interface == state->interface) break; if (mt753x_mac_config(ds, port, mode, state) < 0) goto unsupported; if (priv->p5_intf_sel != P5_DISABLED) priv->p5_interface = state->interface; break; case 6: /* 1st cpu port */ if (priv->p6_interface == state->interface) break; mt753x_pad_setup(ds, state); if (mt753x_mac_config(ds, port, mode, state) < 0) goto unsupported; priv->p6_interface = state->interface; break; default: unsupported: dev_err(ds->dev, "%s: unsupported %s port: %i\n", __func__, phy_modes(state->interface), port); return; } if (phylink_autoneg_inband(mode) && state->interface != PHY_INTERFACE_MODE_SGMII) { dev_err(ds->dev, "%s: in-band negotiation unsupported\n", __func__); return; } mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port)); mcr_new = mcr_cur; mcr_new &= ~PMCR_LINK_SETTINGS_MASK; mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN | PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id); /* Are we connected to external phy */ if (port == 5 && dsa_is_user_port(ds, 5)) mcr_new |= PMCR_EXT_PHY; if (mcr_new != mcr_cur) mt7530_write(priv, MT7530_PMCR_P(port), mcr_new); } static void mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; if (!priv->info->mac_pcs_an_restart) return; priv->info->mac_pcs_an_restart(ds, port); } static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); } static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface, int speed, int duplex) { struct mt7530_priv *priv = ds->priv; if (!priv->info->mac_pcs_link_up) return; priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex); } static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface, struct phy_device *phydev, int speed, int duplex, bool tx_pause, bool rx_pause) { struct mt7530_priv *priv = ds->priv; u32 mcr; mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex); mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK; /* MT753x MAC works in 1G full duplex mode for all up-clocked * variants. */ if (interface == PHY_INTERFACE_MODE_TRGMII || (phy_interface_mode_is_8023z(interface))) { speed = SPEED_1000; duplex = DUPLEX_FULL; } switch (speed) { case SPEED_1000: mcr |= PMCR_FORCE_SPEED_1000; break; case SPEED_100: mcr |= PMCR_FORCE_SPEED_100; break; } if (duplex == DUPLEX_FULL) { mcr |= PMCR_FORCE_FDX; if (tx_pause) mcr |= PMCR_TX_FC_EN; if (rx_pause) mcr |= PMCR_RX_FC_EN; } mt7530_set(priv, MT7530_PMCR_P(port), mcr); } static int mt7531_cpu_port_config(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; phy_interface_t interface; int speed; int ret; switch (port) { case 5: if (mt7531_is_rgmii_port(priv, port)) interface = PHY_INTERFACE_MODE_RGMII; else interface = PHY_INTERFACE_MODE_2500BASEX; priv->p5_interface = interface; break; case 6: interface = PHY_INTERFACE_MODE_2500BASEX; mt7531_pad_setup(ds, interface); priv->p6_interface = interface; break; default: return -EINVAL; } if (interface == PHY_INTERFACE_MODE_2500BASEX) speed = SPEED_2500; else speed = SPEED_1000; ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface); if (ret) return ret; mt7530_write(priv, MT7530_PMCR_P(port), PMCR_CPU_PORT_SETTING(priv->id)); mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL, speed, DUPLEX_FULL, true, true); return 0; } static void mt7530_mac_port_validate(struct dsa_switch *ds, int port, unsigned long *supported) { if (port == 5) phylink_set(supported, 1000baseX_Full); } static void mt7531_mac_port_validate(struct dsa_switch *ds, int port, unsigned long *supported) { struct mt7530_priv *priv = ds->priv; mt7531_sgmii_validate(priv, port, supported); } static void mt753x_phylink_validate(struct dsa_switch *ds, int port, unsigned long *supported, struct phylink_link_state *state) { __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; struct mt7530_priv *priv = ds->priv; if (state->interface != PHY_INTERFACE_MODE_NA && !mt753x_phy_mode_supported(ds, port, state)) { linkmode_zero(supported); return; } phylink_set_port_modes(mask); if (state->interface != PHY_INTERFACE_MODE_TRGMII || !phy_interface_mode_is_8023z(state->interface)) { phylink_set(mask, 10baseT_Half); phylink_set(mask, 10baseT_Full); phylink_set(mask, 100baseT_Half); phylink_set(mask, 100baseT_Full); phylink_set(mask, Autoneg); } /* This switch only supports 1G full-duplex. */ if (state->interface != PHY_INTERFACE_MODE_MII) phylink_set(mask, 1000baseT_Full); priv->info->mac_port_validate(ds, port, mask); phylink_set(mask, Pause); phylink_set(mask, Asym_Pause); linkmode_and(supported, supported, mask); linkmode_and(state->advertising, state->advertising, mask); /* We can only operate at 2500BaseX or 1000BaseX. If requested * to advertise both, only report advertising at 2500BaseX. */ phylink_helper_basex_speed(state); } static int mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port, struct phylink_link_state *state) { struct mt7530_priv *priv = ds->priv; u32 pmsr; if (port < 0 || port >= MT7530_NUM_PORTS) return -EINVAL; pmsr = mt7530_read(priv, MT7530_PMSR_P(port)); state->link = (pmsr & PMSR_LINK); state->an_complete = state->link; state->duplex = !!(pmsr & PMSR_DPX); switch (pmsr & PMSR_SPEED_MASK) { case PMSR_SPEED_10: state->speed = SPEED_10; break; case PMSR_SPEED_100: state->speed = SPEED_100; break; case PMSR_SPEED_1000: state->speed = SPEED_1000; break; default: state->speed = SPEED_UNKNOWN; break; } state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX); if (pmsr & PMSR_RX_FC) state->pause |= MLO_PAUSE_RX; if (pmsr & PMSR_TX_FC) state->pause |= MLO_PAUSE_TX; return 1; } static int mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port, struct phylink_link_state *state) { u32 status, val; u16 config_reg; status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); state->link = !!(status & MT7531_SGMII_LINK_STATUS); if (state->interface == PHY_INTERFACE_MODE_SGMII && (status & MT7531_SGMII_AN_ENABLE)) { val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port)); config_reg = val >> 16; switch (config_reg & LPA_SGMII_SPD_MASK) { case LPA_SGMII_1000: state->speed = SPEED_1000; break; case LPA_SGMII_100: state->speed = SPEED_100; break; case LPA_SGMII_10: state->speed = SPEED_10; break; default: dev_err(priv->dev, "invalid sgmii PHY speed\n"); state->link = false; return -EINVAL; } if (config_reg & LPA_SGMII_FULL_DUPLEX) state->duplex = DUPLEX_FULL; else state->duplex = DUPLEX_HALF; } return 0; } static int mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port, struct phylink_link_state *state) { struct mt7530_priv *priv = ds->priv; if (state->interface == PHY_INTERFACE_MODE_SGMII) return mt7531_sgmii_pcs_get_state_an(priv, port, state); return -EOPNOTSUPP; } static int mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port, struct phylink_link_state *state) { struct mt7530_priv *priv = ds->priv; return priv->info->mac_port_get_state(ds, port, state); } static int mt753x_setup(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; return priv->info->sw_setup(ds); } static int mt753x_phy_read(struct dsa_switch *ds, int port, int regnum) { struct mt7530_priv *priv = ds->priv; return priv->info->phy_read(ds, port, regnum); } static int mt753x_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val) { struct mt7530_priv *priv = ds->priv; return priv->info->phy_write(ds, port, regnum, val); } static const struct dsa_switch_ops mt7530_switch_ops = { .get_tag_protocol = mtk_get_tag_protocol, .setup = mt753x_setup, .get_strings = mt7530_get_strings, .phy_read = mt753x_phy_read, .phy_write = mt753x_phy_write, .get_ethtool_stats = mt7530_get_ethtool_stats, .get_sset_count = mt7530_get_sset_count, .port_enable = mt7530_port_enable, .port_disable = mt7530_port_disable, .port_stp_state_set = mt7530_stp_state_set, .port_bridge_join = mt7530_port_bridge_join, .port_bridge_leave = mt7530_port_bridge_leave, .port_fdb_add = mt7530_port_fdb_add, .port_fdb_del = mt7530_port_fdb_del, .port_fdb_dump = mt7530_port_fdb_dump, .port_vlan_filtering = mt7530_port_vlan_filtering, .port_vlan_prepare = mt7530_port_vlan_prepare, .port_vlan_add = mt7530_port_vlan_add, .port_vlan_del = mt7530_port_vlan_del, .port_mirror_add = mt753x_port_mirror_add, .port_mirror_del = mt753x_port_mirror_del, .phylink_validate = mt753x_phylink_validate, .phylink_mac_link_state = mt753x_phylink_mac_link_state, .phylink_mac_config = mt753x_phylink_mac_config, .phylink_mac_an_restart = mt753x_phylink_mac_an_restart, .phylink_mac_link_down = mt753x_phylink_mac_link_down, .phylink_mac_link_up = mt753x_phylink_mac_link_up, }; static const struct mt753x_info mt753x_table[] = { [ID_MT7621] = { .id = ID_MT7621, .sw_setup = mt7530_setup, .phy_read = mt7530_phy_read, .phy_write = mt7530_phy_write, .pad_setup = mt7530_pad_clk_setup, .phy_mode_supported = mt7530_phy_mode_supported, .mac_port_validate = mt7530_mac_port_validate, .mac_port_get_state = mt7530_phylink_mac_link_state, .mac_port_config = mt7530_mac_config, }, [ID_MT7530] = { .id = ID_MT7530, .sw_setup = mt7530_setup, .phy_read = mt7530_phy_read, .phy_write = mt7530_phy_write, .pad_setup = mt7530_pad_clk_setup, .phy_mode_supported = mt7530_phy_mode_supported, .mac_port_validate = mt7530_mac_port_validate, .mac_port_get_state = mt7530_phylink_mac_link_state, .mac_port_config = mt7530_mac_config, }, [ID_MT7531] = { .id = ID_MT7531, .sw_setup = mt7531_setup, .phy_read = mt7531_ind_phy_read, .phy_write = mt7531_ind_phy_write, .pad_setup = mt7531_pad_setup, .cpu_port_config = mt7531_cpu_port_config, .phy_mode_supported = mt7531_phy_mode_supported, .mac_port_validate = mt7531_mac_port_validate, .mac_port_get_state = mt7531_phylink_mac_link_state, .mac_port_config = mt7531_mac_config, .mac_pcs_an_restart = mt7531_sgmii_restart_an, .mac_pcs_link_up = mt7531_sgmii_link_up_force, }, }; static const struct of_device_id mt7530_of_match[] = { { .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], }, { .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], }, { .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, mt7530_of_match); static int mt7530_probe(struct mdio_device *mdiodev) { struct mt7530_priv *priv; struct device_node *dn; dn = mdiodev->dev.of_node; priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL); if (!priv->ds) return -ENOMEM; priv->ds->dev = &mdiodev->dev; priv->ds->num_ports = DSA_MAX_PORTS; /* Use medatek,mcm property to distinguish hardware type that would * casues a little bit differences on power-on sequence. */ priv->mcm = of_property_read_bool(dn, "mediatek,mcm"); if (priv->mcm) { dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n"); priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm"); if (IS_ERR(priv->rstc)) { dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); return PTR_ERR(priv->rstc); } } /* Get the hardware identifier from the devicetree node. * We will need it for some of the clock and regulator setup. */ priv->info = of_device_get_match_data(&mdiodev->dev); if (!priv->info) return -EINVAL; /* Sanity check if these required device operations are filled * properly. */ if (!priv->info->sw_setup || !priv->info->pad_setup || !priv->info->phy_read || !priv->info->phy_write || !priv->info->phy_mode_supported || !priv->info->mac_port_validate || !priv->info->mac_port_get_state || !priv->info->mac_port_config) return -EINVAL; priv->id = priv->info->id; if (priv->id == ID_MT7530) { priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core"); if (IS_ERR(priv->core_pwr)) return PTR_ERR(priv->core_pwr); priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io"); if (IS_ERR(priv->io_pwr)) return PTR_ERR(priv->io_pwr); } /* Not MCM that indicates switch works as the remote standalone * integrated circuit so the GPIO pin would be used to complete * the reset, otherwise memory-mapped register accessing used * through syscon provides in the case of MCM. */ if (!priv->mcm) { priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(priv->reset)) { dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); return PTR_ERR(priv->reset); } } priv->bus = mdiodev->bus; priv->dev = &mdiodev->dev; priv->ds->priv = priv; priv->ds->ops = &mt7530_switch_ops; mutex_init(&priv->reg_mutex); dev_set_drvdata(&mdiodev->dev, priv); return dsa_register_switch(priv->ds); } static void mt7530_remove(struct mdio_device *mdiodev) { struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev); int ret = 0; ret = regulator_disable(priv->core_pwr); if (ret < 0) dev_err(priv->dev, "Failed to disable core power: %d\n", ret); ret = regulator_disable(priv->io_pwr); if (ret < 0) dev_err(priv->dev, "Failed to disable io pwr: %d\n", ret); dsa_unregister_switch(priv->ds); mutex_destroy(&priv->reg_mutex); } static struct mdio_driver mt7530_mdio_driver = { .probe = mt7530_probe, .remove = mt7530_remove, .mdiodrv.driver = { .name = "mt7530", .of_match_table = mt7530_of_match, }, }; mdio_module_driver(mt7530_mdio_driver); MODULE_AUTHOR("Sean Wang "); MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch"); MODULE_LICENSE("GPL");