/* * Based on arch/arm/mm/context.c * * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved. * Copyright (C) 2012 ARM Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include static u32 asid_bits; static DEFINE_RAW_SPINLOCK(cpu_asid_lock); static atomic64_t asid_generation; static unsigned long *asid_map; static DEFINE_PER_CPU(atomic64_t, active_asids); static DEFINE_PER_CPU(u64, reserved_asids); static cpumask_t tlb_flush_pending; #define ASID_MASK (~GENMASK(asid_bits - 1, 0)) #define ASID_FIRST_VERSION (1UL << asid_bits) #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 #define NUM_USER_ASIDS (ASID_FIRST_VERSION >> 1) #define asid2idx(asid) (((asid) & ~ASID_MASK) >> 1) #define idx2asid(idx) (((idx) << 1) & ~ASID_MASK) #else #define NUM_USER_ASIDS (ASID_FIRST_VERSION) #define asid2idx(asid) ((asid) & ~ASID_MASK) #define idx2asid(idx) asid2idx(idx) #endif /* Get the ASIDBits supported by the current CPU */ static u32 get_cpu_asid_bits(void) { u32 asid; int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1), ID_AA64MMFR0_ASID_SHIFT); switch (fld) { default: pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n", smp_processor_id(), fld); /* Fallthrough */ case 0: asid = 8; break; case 2: asid = 16; } return asid; } /* Check if the current cpu's ASIDBits is compatible with asid_bits */ void verify_cpu_asid_bits(void) { u32 asid = get_cpu_asid_bits(); if (asid < asid_bits) { /* * We cannot decrease the ASID size at runtime, so panic if we support * fewer ASID bits than the boot CPU. */ pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n", smp_processor_id(), asid, asid_bits); cpu_panic_kernel(); } } static void flush_context(unsigned int cpu) { int i; u64 asid; /* Update the list of reserved ASIDs and the ASID bitmap. */ bitmap_clear(asid_map, 0, NUM_USER_ASIDS); for_each_possible_cpu(i) { asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0); /* * If this CPU has already been through a * rollover, but hasn't run another task in * the meantime, we must preserve its reserved * ASID, as this is the only trace we have of * the process it is still running. */ if (asid == 0) asid = per_cpu(reserved_asids, i); __set_bit(asid2idx(asid), asid_map); per_cpu(reserved_asids, i) = asid; } /* * Queue a TLB invalidation for each CPU to perform on next * context-switch */ cpumask_setall(&tlb_flush_pending); } static bool check_update_reserved_asid(u64 asid, u64 newasid) { int cpu; bool hit = false; /* * Iterate over the set of reserved ASIDs looking for a match. * If we find one, then we can update our mm to use newasid * (i.e. the same ASID in the current generation) but we can't * exit the loop early, since we need to ensure that all copies * of the old ASID are updated to reflect the mm. Failure to do * so could result in us missing the reserved ASID in a future * generation. */ for_each_possible_cpu(cpu) { if (per_cpu(reserved_asids, cpu) == asid) { hit = true; per_cpu(reserved_asids, cpu) = newasid; } } return hit; } static u64 new_context(struct mm_struct *mm, unsigned int cpu) { static u32 cur_idx = 1; u64 asid = atomic64_read(&mm->context.id); u64 generation = atomic64_read(&asid_generation); if (asid != 0) { u64 newasid = generation | (asid & ~ASID_MASK); /* * If our current ASID was active during a rollover, we * can continue to use it and this was just a false alarm. */ if (check_update_reserved_asid(asid, newasid)) return newasid; /* * We had a valid ASID in a previous life, so try to re-use * it if possible. */ if (!__test_and_set_bit(asid2idx(asid), asid_map)) return newasid; } /* * Allocate a free ASID. If we can't find one, take a note of the * currently active ASIDs and mark the TLBs as requiring flushes. We * always count from ASID #2 (index 1), as we use ASID #0 when setting * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd * pairs. */ asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx); if (asid != NUM_USER_ASIDS) goto set_asid; /* We're out of ASIDs, so increment the global generation count */ generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION, &asid_generation); flush_context(cpu); /* We have more ASIDs than CPUs, so this will always succeed */ asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1); set_asid: __set_bit(asid, asid_map); cur_idx = asid; return idx2asid(asid) | generation; } void check_and_switch_context(struct mm_struct *mm, unsigned int cpu) { unsigned long flags; u64 asid; asid = atomic64_read(&mm->context.id); /* * The memory ordering here is subtle. * If our ASID matches the current generation, then we update * our active_asids entry with a relaxed xchg. Racing with a * concurrent rollover means that either: * * - We get a zero back from the xchg and end up waiting on the * lock. Taking the lock synchronises with the rollover and so * we are forced to see the updated generation. * * - We get a valid ASID back from the xchg, which means the * relaxed xchg in flush_context will treat us as reserved * because atomic RmWs are totally ordered for a given location. */ if (!((asid ^ atomic64_read(&asid_generation)) >> asid_bits) && atomic64_xchg_relaxed(&per_cpu(active_asids, cpu), asid)) goto switch_mm_fastpath; raw_spin_lock_irqsave(&cpu_asid_lock, flags); /* Check that our ASID belongs to the current generation. */ asid = atomic64_read(&mm->context.id); if ((asid ^ atomic64_read(&asid_generation)) >> asid_bits) { asid = new_context(mm, cpu); atomic64_set(&mm->context.id, asid); } if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending)) local_flush_tlb_all(); atomic64_set(&per_cpu(active_asids, cpu), asid); raw_spin_unlock_irqrestore(&cpu_asid_lock, flags); switch_mm_fastpath: /* * Defer TTBR0_EL1 setting for user threads to uaccess_enable() when * emulating PAN. */ if (!system_uses_ttbr0_pan()) cpu_switch_mm(mm->pgd, mm); } static int asids_init(void) { asid_bits = get_cpu_asid_bits(); /* * Expect allocation after rollover to fail if we don't have at least * one more ASID than CPUs. ASID #0 is reserved for init_mm. */ WARN_ON(NUM_USER_ASIDS - 1 <= num_possible_cpus()); atomic64_set(&asid_generation, ASID_FIRST_VERSION); asid_map = kzalloc(BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(*asid_map), GFP_KERNEL); if (!asid_map) panic("Failed to allocate bitmap for %lu ASIDs\n", NUM_USER_ASIDS); pr_info("ASID allocator initialised with %lu entries\n", NUM_USER_ASIDS); return 0; } early_initcall(asids_init);