/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * DOC: Frame Buffer Compression (FBC) * * FBC tries to save memory bandwidth (and so power consumption) by * compressing the amount of memory used by the display. It is total * transparent to user space and completely handled in the kernel. * * The benefits of FBC are mostly visible with solid backgrounds and * variation-less patterns. It comes from keeping the memory footprint small * and having fewer memory pages opened and accessed for refreshing the display. * * i915 is responsible to reserve stolen memory for FBC and configure its * offset on proper registers. The hardware takes care of all * compress/decompress. However there are many known cases where we have to * forcibly disable it to allow proper screen updates. */ #include #include "i915_drv.h" #include "i915_trace.h" #include "i915_vgpu.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_fbc.h" #include "intel_frontbuffer.h" /* * For SKL+, the plane source size used by the hardware is based on the value we * write to the PLANE_SIZE register. For BDW-, the hardware looks at the value * we wrote to PIPESRC. */ static void intel_fbc_get_plane_source_size(const struct intel_fbc_state_cache *cache, int *width, int *height) { if (width) *width = cache->plane.src_w; if (height) *height = cache->plane.src_h; } static int intel_fbc_calculate_cfb_size(struct drm_i915_private *dev_priv, const struct intel_fbc_state_cache *cache) { int lines; intel_fbc_get_plane_source_size(cache, NULL, &lines); if (DISPLAY_VER(dev_priv) == 7) lines = min(lines, 2048); else if (DISPLAY_VER(dev_priv) >= 8) lines = min(lines, 2560); /* Hardware needs the full buffer stride, not just the active area. */ return lines * cache->fb.stride; } static void i8xx_fbc_deactivate(struct drm_i915_private *dev_priv) { u32 fbc_ctl; /* Disable compression */ fbc_ctl = intel_de_read(dev_priv, FBC_CONTROL); if ((fbc_ctl & FBC_CTL_EN) == 0) return; fbc_ctl &= ~FBC_CTL_EN; intel_de_write(dev_priv, FBC_CONTROL, fbc_ctl); /* Wait for compressing bit to clear */ if (intel_de_wait_for_clear(dev_priv, FBC_STATUS, FBC_STAT_COMPRESSING, 10)) { drm_dbg_kms(&dev_priv->drm, "FBC idle timed out\n"); return; } } static void i8xx_fbc_activate(struct drm_i915_private *dev_priv) { struct intel_fbc_reg_params *params = &dev_priv->fbc.params; int cfb_pitch; int i; u32 fbc_ctl; /* Note: fbc.limit == 1 for i8xx */ cfb_pitch = params->cfb_size / FBC_LL_SIZE; if (params->fb.stride < cfb_pitch) cfb_pitch = params->fb.stride; /* FBC_CTL wants 32B or 64B units */ if (DISPLAY_VER(dev_priv) == 2) cfb_pitch = (cfb_pitch / 32) - 1; else cfb_pitch = (cfb_pitch / 64) - 1; /* Clear old tags */ for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++) intel_de_write(dev_priv, FBC_TAG(i), 0); if (DISPLAY_VER(dev_priv) == 4) { u32 fbc_ctl2; /* Set it up... */ fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM; fbc_ctl2 |= FBC_CTL_PLANE(params->crtc.i9xx_plane); if (params->fence_id >= 0) fbc_ctl2 |= FBC_CTL_CPU_FENCE; intel_de_write(dev_priv, FBC_CONTROL2, fbc_ctl2); intel_de_write(dev_priv, FBC_FENCE_OFF, params->fence_y_offset); } /* enable it... */ fbc_ctl = FBC_CTL_INTERVAL(params->interval); fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC; if (IS_I945GM(dev_priv)) fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */ fbc_ctl |= FBC_CTL_STRIDE(cfb_pitch & 0xff); if (params->fence_id >= 0) fbc_ctl |= FBC_CTL_FENCENO(params->fence_id); intel_de_write(dev_priv, FBC_CONTROL, fbc_ctl); } static bool i8xx_fbc_is_active(struct drm_i915_private *dev_priv) { return intel_de_read(dev_priv, FBC_CONTROL) & FBC_CTL_EN; } static void g4x_fbc_activate(struct drm_i915_private *dev_priv) { struct intel_fbc_reg_params *params = &dev_priv->fbc.params; u32 dpfc_ctl; dpfc_ctl = DPFC_CTL_PLANE(params->crtc.i9xx_plane) | DPFC_SR_EN; if (params->fb.format->cpp[0] == 2) dpfc_ctl |= DPFC_CTL_LIMIT_2X; else dpfc_ctl |= DPFC_CTL_LIMIT_1X; if (params->fence_id >= 0) { dpfc_ctl |= DPFC_CTL_FENCE_EN | params->fence_id; intel_de_write(dev_priv, DPFC_FENCE_YOFF, params->fence_y_offset); } else { intel_de_write(dev_priv, DPFC_FENCE_YOFF, 0); } /* enable it... */ intel_de_write(dev_priv, DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); } static void g4x_fbc_deactivate(struct drm_i915_private *dev_priv) { u32 dpfc_ctl; /* Disable compression */ dpfc_ctl = intel_de_read(dev_priv, DPFC_CONTROL); if (dpfc_ctl & DPFC_CTL_EN) { dpfc_ctl &= ~DPFC_CTL_EN; intel_de_write(dev_priv, DPFC_CONTROL, dpfc_ctl); } } static bool g4x_fbc_is_active(struct drm_i915_private *dev_priv) { return intel_de_read(dev_priv, DPFC_CONTROL) & DPFC_CTL_EN; } static void i8xx_fbc_recompress(struct drm_i915_private *dev_priv) { struct intel_fbc_reg_params *params = &dev_priv->fbc.params; enum i9xx_plane_id i9xx_plane = params->crtc.i9xx_plane; spin_lock_irq(&dev_priv->uncore.lock); intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), intel_de_read_fw(dev_priv, DSPADDR(i9xx_plane))); spin_unlock_irq(&dev_priv->uncore.lock); } static void i965_fbc_recompress(struct drm_i915_private *dev_priv) { struct intel_fbc_reg_params *params = &dev_priv->fbc.params; enum i9xx_plane_id i9xx_plane = params->crtc.i9xx_plane; spin_lock_irq(&dev_priv->uncore.lock); intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), intel_de_read_fw(dev_priv, DSPSURF(i9xx_plane))); spin_unlock_irq(&dev_priv->uncore.lock); } /* This function forces a CFB recompression through the nuke operation. */ static void snb_fbc_recompress(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; trace_intel_fbc_nuke(fbc->crtc); intel_de_write(dev_priv, MSG_FBC_REND_STATE, FBC_REND_NUKE); intel_de_posting_read(dev_priv, MSG_FBC_REND_STATE); } static void intel_fbc_recompress(struct drm_i915_private *dev_priv) { if (DISPLAY_VER(dev_priv) >= 6) snb_fbc_recompress(dev_priv); else if (DISPLAY_VER(dev_priv) >= 4) i965_fbc_recompress(dev_priv); else i8xx_fbc_recompress(dev_priv); } static void ilk_fbc_activate(struct drm_i915_private *dev_priv) { struct intel_fbc_reg_params *params = &dev_priv->fbc.params; u32 dpfc_ctl; int limit = dev_priv->fbc.limit; dpfc_ctl = DPFC_CTL_PLANE(params->crtc.i9xx_plane); if (params->fb.format->cpp[0] == 2) limit++; switch (limit) { case 4: case 3: dpfc_ctl |= DPFC_CTL_LIMIT_4X; break; case 2: dpfc_ctl |= DPFC_CTL_LIMIT_2X; break; case 1: dpfc_ctl |= DPFC_CTL_LIMIT_1X; break; } if (params->fence_id >= 0) { dpfc_ctl |= DPFC_CTL_FENCE_EN; if (IS_IRONLAKE(dev_priv)) dpfc_ctl |= params->fence_id; if (IS_SANDYBRIDGE(dev_priv)) { intel_de_write(dev_priv, SNB_DPFC_CTL_SA, SNB_CPU_FENCE_ENABLE | params->fence_id); intel_de_write(dev_priv, DPFC_CPU_FENCE_OFFSET, params->fence_y_offset); } } else { if (IS_SANDYBRIDGE(dev_priv)) { intel_de_write(dev_priv, SNB_DPFC_CTL_SA, 0); intel_de_write(dev_priv, DPFC_CPU_FENCE_OFFSET, 0); } } intel_de_write(dev_priv, ILK_DPFC_FENCE_YOFF, params->fence_y_offset); /* enable it... */ intel_de_write(dev_priv, ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); intel_fbc_recompress(dev_priv); } static void ilk_fbc_deactivate(struct drm_i915_private *dev_priv) { u32 dpfc_ctl; /* Disable compression */ dpfc_ctl = intel_de_read(dev_priv, ILK_DPFC_CONTROL); if (dpfc_ctl & DPFC_CTL_EN) { dpfc_ctl &= ~DPFC_CTL_EN; intel_de_write(dev_priv, ILK_DPFC_CONTROL, dpfc_ctl); } } static bool ilk_fbc_is_active(struct drm_i915_private *dev_priv) { return intel_de_read(dev_priv, ILK_DPFC_CONTROL) & DPFC_CTL_EN; } static void gen7_fbc_activate(struct drm_i915_private *dev_priv) { struct intel_fbc_reg_params *params = &dev_priv->fbc.params; u32 dpfc_ctl; int limit = dev_priv->fbc.limit; /* Display WA #0529: skl, kbl, bxt. */ if (DISPLAY_VER(dev_priv) == 9) { u32 val = intel_de_read(dev_priv, CHICKEN_MISC_4); val &= ~(FBC_STRIDE_OVERRIDE | FBC_STRIDE_MASK); if (params->gen9_wa_cfb_stride) val |= FBC_STRIDE_OVERRIDE | params->gen9_wa_cfb_stride; intel_de_write(dev_priv, CHICKEN_MISC_4, val); } dpfc_ctl = 0; if (IS_IVYBRIDGE(dev_priv)) dpfc_ctl |= IVB_DPFC_CTL_PLANE(params->crtc.i9xx_plane); if (params->fb.format->cpp[0] == 2) limit++; switch (limit) { case 4: case 3: dpfc_ctl |= DPFC_CTL_LIMIT_4X; break; case 2: dpfc_ctl |= DPFC_CTL_LIMIT_2X; break; case 1: dpfc_ctl |= DPFC_CTL_LIMIT_1X; break; } if (params->fence_id >= 0) { dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN; intel_de_write(dev_priv, SNB_DPFC_CTL_SA, SNB_CPU_FENCE_ENABLE | params->fence_id); intel_de_write(dev_priv, DPFC_CPU_FENCE_OFFSET, params->fence_y_offset); } else if (dev_priv->ggtt.num_fences) { intel_de_write(dev_priv, SNB_DPFC_CTL_SA, 0); intel_de_write(dev_priv, DPFC_CPU_FENCE_OFFSET, 0); } if (dev_priv->fbc.false_color) dpfc_ctl |= FBC_CTL_FALSE_COLOR; intel_de_write(dev_priv, ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); intel_fbc_recompress(dev_priv); } static bool intel_fbc_hw_is_active(struct drm_i915_private *dev_priv) { if (DISPLAY_VER(dev_priv) >= 5) return ilk_fbc_is_active(dev_priv); else if (IS_GM45(dev_priv)) return g4x_fbc_is_active(dev_priv); else return i8xx_fbc_is_active(dev_priv); } static void intel_fbc_hw_activate(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; trace_intel_fbc_activate(fbc->crtc); fbc->active = true; fbc->activated = true; if (DISPLAY_VER(dev_priv) >= 7) gen7_fbc_activate(dev_priv); else if (DISPLAY_VER(dev_priv) >= 5) ilk_fbc_activate(dev_priv); else if (IS_GM45(dev_priv)) g4x_fbc_activate(dev_priv); else i8xx_fbc_activate(dev_priv); } static void intel_fbc_hw_deactivate(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; trace_intel_fbc_deactivate(fbc->crtc); fbc->active = false; if (DISPLAY_VER(dev_priv) >= 5) ilk_fbc_deactivate(dev_priv); else if (IS_GM45(dev_priv)) g4x_fbc_deactivate(dev_priv); else i8xx_fbc_deactivate(dev_priv); } /** * intel_fbc_is_active - Is FBC active? * @dev_priv: i915 device instance * * This function is used to verify the current state of FBC. * * FIXME: This should be tracked in the plane config eventually * instead of queried at runtime for most callers. */ bool intel_fbc_is_active(struct drm_i915_private *dev_priv) { return dev_priv->fbc.active; } static void intel_fbc_deactivate(struct drm_i915_private *dev_priv, const char *reason) { struct intel_fbc *fbc = &dev_priv->fbc; drm_WARN_ON(&dev_priv->drm, !mutex_is_locked(&fbc->lock)); if (fbc->active) intel_fbc_hw_deactivate(dev_priv); fbc->no_fbc_reason = reason; } static u64 intel_fbc_cfb_base_max(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 5 || IS_G4X(i915)) return BIT_ULL(28); else return BIT_ULL(32); } static int find_compression_limit(struct drm_i915_private *dev_priv, struct drm_mm_node *node, unsigned int size, unsigned int fb_cpp) { int compression_limit = 1; int ret; u64 end; /* The FBC hardware for BDW/SKL doesn't have access to the stolen * reserved range size, so it always assumes the maximum (8mb) is used. * If we enable FBC using a CFB on that memory range we'll get FIFO * underruns, even if that range is not reserved by the BIOS. */ if (IS_BROADWELL(dev_priv) || (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv))) end = resource_size(&dev_priv->dsm) - 8 * 1024 * 1024; else end = U64_MAX; end = min(end, intel_fbc_cfb_base_max(dev_priv)); /* HACK: This code depends on what we will do in *_enable_fbc. If that * code changes, this code needs to change as well. * * The enable_fbc code will attempt to use one of our 2 compression * limits, therefore, in that case, we only have 1 resort. */ /* Try to over-allocate to reduce reallocations and fragmentation. */ ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size <<= 1, 4096, 0, end); if (ret == 0) return compression_limit; again: /* HW's ability to limit the CFB is 1:4 */ if (compression_limit > 4 || (fb_cpp == 2 && compression_limit == 2)) return 0; ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size >>= 1, 4096, 0, end); if (ret && DISPLAY_VER(dev_priv) <= 4) { return 0; } else if (ret) { compression_limit <<= 1; goto again; } else { return compression_limit; } } static int intel_fbc_alloc_cfb(struct drm_i915_private *dev_priv, unsigned int size, unsigned int fb_cpp) { struct intel_fbc *fbc = &dev_priv->fbc; struct drm_mm_node *compressed_llb; int ret; drm_WARN_ON(&dev_priv->drm, drm_mm_node_allocated(&fbc->compressed_fb)); ret = find_compression_limit(dev_priv, &fbc->compressed_fb, size, fb_cpp); if (!ret) goto err_llb; else if (ret > 1) { drm_info_once(&dev_priv->drm, "Reducing the compressed framebuffer size. This may lead to less power savings than a non-reduced-size. Try to increase stolen memory size if available in BIOS.\n"); } fbc->limit = ret; if (DISPLAY_VER(dev_priv) >= 5) intel_de_write(dev_priv, ILK_DPFC_CB_BASE, fbc->compressed_fb.start); else if (IS_GM45(dev_priv)) { intel_de_write(dev_priv, DPFC_CB_BASE, fbc->compressed_fb.start); } else { compressed_llb = kzalloc(sizeof(*compressed_llb), GFP_KERNEL); if (!compressed_llb) goto err_fb; ret = i915_gem_stolen_insert_node(dev_priv, compressed_llb, 4096, 4096); if (ret) goto err_fb; fbc->compressed_llb = compressed_llb; GEM_BUG_ON(range_overflows_end_t(u64, dev_priv->dsm.start, fbc->compressed_fb.start, U32_MAX)); GEM_BUG_ON(range_overflows_end_t(u64, dev_priv->dsm.start, fbc->compressed_llb->start, U32_MAX)); intel_de_write(dev_priv, FBC_CFB_BASE, dev_priv->dsm.start + fbc->compressed_fb.start); intel_de_write(dev_priv, FBC_LL_BASE, dev_priv->dsm.start + compressed_llb->start); } drm_dbg_kms(&dev_priv->drm, "reserved %llu bytes of contiguous stolen space for FBC, limit: %d\n", fbc->compressed_fb.size, fbc->limit); return 0; err_fb: kfree(compressed_llb); i915_gem_stolen_remove_node(dev_priv, &fbc->compressed_fb); err_llb: if (drm_mm_initialized(&dev_priv->mm.stolen)) drm_info_once(&dev_priv->drm, "not enough stolen space for compressed buffer (need %d more bytes), disabling. Hint: you may be able to increase stolen memory size in the BIOS to avoid this.\n", size); return -ENOSPC; } static void __intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; if (WARN_ON(intel_fbc_hw_is_active(dev_priv))) return; if (!drm_mm_node_allocated(&fbc->compressed_fb)) return; if (fbc->compressed_llb) { i915_gem_stolen_remove_node(dev_priv, fbc->compressed_llb); kfree(fbc->compressed_llb); } i915_gem_stolen_remove_node(dev_priv, &fbc->compressed_fb); } void intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; if (!HAS_FBC(dev_priv)) return; mutex_lock(&fbc->lock); __intel_fbc_cleanup_cfb(dev_priv); mutex_unlock(&fbc->lock); } static bool stride_is_valid(struct drm_i915_private *dev_priv, u64 modifier, unsigned int stride) { /* This should have been caught earlier. */ if (drm_WARN_ON_ONCE(&dev_priv->drm, (stride & (64 - 1)) != 0)) return false; /* Below are the additional FBC restrictions. */ if (stride < 512) return false; if (DISPLAY_VER(dev_priv) == 2 || DISPLAY_VER(dev_priv) == 3) return stride == 4096 || stride == 8192; if (DISPLAY_VER(dev_priv) == 4 && !IS_G4X(dev_priv) && stride < 2048) return false; /* Display WA #1105: skl,bxt,kbl,cfl,glk */ if ((DISPLAY_VER(dev_priv) == 9 || IS_GEMINILAKE(dev_priv)) && modifier == DRM_FORMAT_MOD_LINEAR && stride & 511) return false; if (stride > 16384) return false; return true; } static bool pixel_format_is_valid(struct drm_i915_private *dev_priv, u32 pixel_format) { switch (pixel_format) { case DRM_FORMAT_XRGB8888: case DRM_FORMAT_XBGR8888: return true; case DRM_FORMAT_XRGB1555: case DRM_FORMAT_RGB565: /* 16bpp not supported on gen2 */ if (DISPLAY_VER(dev_priv) == 2) return false; /* WaFbcOnly1to1Ratio:ctg */ if (IS_G4X(dev_priv)) return false; return true; default: return false; } } static bool rotation_is_valid(struct drm_i915_private *dev_priv, u32 pixel_format, unsigned int rotation) { if (DISPLAY_VER(dev_priv) >= 9 && pixel_format == DRM_FORMAT_RGB565 && drm_rotation_90_or_270(rotation)) return false; else if (DISPLAY_VER(dev_priv) <= 4 && !IS_G4X(dev_priv) && rotation != DRM_MODE_ROTATE_0) return false; return true; } /* * For some reason, the hardware tracking starts looking at whatever we * programmed as the display plane base address register. It does not look at * the X and Y offset registers. That's why we include the src x/y offsets * instead of just looking at the plane size. */ static bool intel_fbc_hw_tracking_covers_screen(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; unsigned int effective_w, effective_h, max_w, max_h; if (DISPLAY_VER(dev_priv) >= 10) { max_w = 5120; max_h = 4096; } else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) { max_w = 4096; max_h = 4096; } else if (IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) >= 5) { max_w = 4096; max_h = 2048; } else { max_w = 2048; max_h = 1536; } intel_fbc_get_plane_source_size(&fbc->state_cache, &effective_w, &effective_h); effective_w += fbc->state_cache.plane.adjusted_x; effective_h += fbc->state_cache.plane.adjusted_y; return effective_w <= max_w && effective_h <= max_h; } static bool tiling_is_valid(struct drm_i915_private *dev_priv, u64 modifier) { switch (modifier) { case DRM_FORMAT_MOD_LINEAR: if (DISPLAY_VER(dev_priv) >= 9) return true; return false; case I915_FORMAT_MOD_X_TILED: case I915_FORMAT_MOD_Y_TILED: return true; default: return false; } } static void intel_fbc_update_state_cache(struct intel_crtc *crtc, const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; struct intel_fbc_state_cache *cache = &fbc->state_cache; struct drm_framebuffer *fb = plane_state->hw.fb; cache->plane.visible = plane_state->uapi.visible; if (!cache->plane.visible) return; cache->crtc.mode_flags = crtc_state->hw.adjusted_mode.flags; if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) cache->crtc.hsw_bdw_pixel_rate = crtc_state->pixel_rate; cache->plane.rotation = plane_state->hw.rotation; /* * Src coordinates are already rotated by 270 degrees for * the 90/270 degree plane rotation cases (to match the * GTT mapping), hence no need to account for rotation here. */ cache->plane.src_w = drm_rect_width(&plane_state->uapi.src) >> 16; cache->plane.src_h = drm_rect_height(&plane_state->uapi.src) >> 16; cache->plane.adjusted_x = plane_state->view.color_plane[0].x; cache->plane.adjusted_y = plane_state->view.color_plane[0].y; cache->plane.pixel_blend_mode = plane_state->hw.pixel_blend_mode; cache->fb.format = fb->format; cache->fb.modifier = fb->modifier; /* FIXME is this correct? */ cache->fb.stride = plane_state->view.color_plane[0].stride; if (drm_rotation_90_or_270(plane_state->hw.rotation)) cache->fb.stride *= fb->format->cpp[0]; /* FBC1 compression interval: arbitrary choice of 1 second */ cache->interval = drm_mode_vrefresh(&crtc_state->hw.adjusted_mode); cache->fence_y_offset = intel_plane_fence_y_offset(plane_state); drm_WARN_ON(&dev_priv->drm, plane_state->flags & PLANE_HAS_FENCE && !plane_state->ggtt_vma->fence); if (plane_state->flags & PLANE_HAS_FENCE && plane_state->ggtt_vma->fence) cache->fence_id = plane_state->ggtt_vma->fence->id; else cache->fence_id = -1; cache->psr2_active = crtc_state->has_psr2; } static bool intel_fbc_cfb_size_changed(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; return intel_fbc_calculate_cfb_size(dev_priv, &fbc->state_cache) > fbc->compressed_fb.size * fbc->limit; } static u16 intel_fbc_gen9_wa_cfb_stride(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; struct intel_fbc_state_cache *cache = &fbc->state_cache; if ((DISPLAY_VER(dev_priv) == 9) && cache->fb.modifier != I915_FORMAT_MOD_X_TILED) return DIV_ROUND_UP(cache->plane.src_w, 32 * fbc->limit) * 8; else return 0; } static bool intel_fbc_gen9_wa_cfb_stride_changed(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; return fbc->params.gen9_wa_cfb_stride != intel_fbc_gen9_wa_cfb_stride(dev_priv); } static bool intel_fbc_can_enable(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; if (intel_vgpu_active(dev_priv)) { fbc->no_fbc_reason = "VGPU is active"; return false; } if (!dev_priv->params.enable_fbc) { fbc->no_fbc_reason = "disabled per module param or by default"; return false; } if (fbc->underrun_detected) { fbc->no_fbc_reason = "underrun detected"; return false; } return true; } static bool intel_fbc_can_activate(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; struct intel_fbc_state_cache *cache = &fbc->state_cache; if (!intel_fbc_can_enable(dev_priv)) return false; if (!cache->plane.visible) { fbc->no_fbc_reason = "primary plane not visible"; return false; } /* We don't need to use a state cache here since this information is * global for all CRTC. */ if (fbc->underrun_detected) { fbc->no_fbc_reason = "underrun detected"; return false; } if (cache->crtc.mode_flags & DRM_MODE_FLAG_INTERLACE) { fbc->no_fbc_reason = "incompatible mode"; return false; } if (!intel_fbc_hw_tracking_covers_screen(crtc)) { fbc->no_fbc_reason = "mode too large for compression"; return false; } /* The use of a CPU fence is one of two ways to detect writes by the * CPU to the scanout and trigger updates to the FBC. * * The other method is by software tracking (see * intel_fbc_invalidate/flush()), it will manually notify FBC and nuke * the current compressed buffer and recompress it. * * Note that is possible for a tiled surface to be unmappable (and * so have no fence associated with it) due to aperture constraints * at the time of pinning. * * FIXME with 90/270 degree rotation we should use the fence on * the normal GTT view (the rotated view doesn't even have a * fence). Would need changes to the FBC fence Y offset as well. * For now this will effectively disable FBC with 90/270 degree * rotation. */ if (DISPLAY_VER(dev_priv) < 9 && cache->fence_id < 0) { fbc->no_fbc_reason = "framebuffer not tiled or fenced"; return false; } if (!pixel_format_is_valid(dev_priv, cache->fb.format->format)) { fbc->no_fbc_reason = "pixel format is invalid"; return false; } if (!rotation_is_valid(dev_priv, cache->fb.format->format, cache->plane.rotation)) { fbc->no_fbc_reason = "rotation unsupported"; return false; } if (!tiling_is_valid(dev_priv, cache->fb.modifier)) { fbc->no_fbc_reason = "tiling unsupported"; return false; } if (!stride_is_valid(dev_priv, cache->fb.modifier, cache->fb.stride)) { fbc->no_fbc_reason = "framebuffer stride not supported"; return false; } if (cache->plane.pixel_blend_mode != DRM_MODE_BLEND_PIXEL_NONE && cache->fb.format->has_alpha) { fbc->no_fbc_reason = "per-pixel alpha blending is incompatible with FBC"; return false; } /* WaFbcExceedCdClockThreshold:hsw,bdw */ if ((IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) && cache->crtc.hsw_bdw_pixel_rate >= dev_priv->cdclk.hw.cdclk * 95 / 100) { fbc->no_fbc_reason = "pixel rate is too big"; return false; } /* It is possible for the required CFB size change without a * crtc->disable + crtc->enable since it is possible to change the * stride without triggering a full modeset. Since we try to * over-allocate the CFB, there's a chance we may keep FBC enabled even * if this happens, but if we exceed the current CFB size we'll have to * disable FBC. Notice that it would be possible to disable FBC, wait * for a frame, free the stolen node, then try to reenable FBC in case * we didn't get any invalidate/deactivate calls, but this would require * a lot of tracking just for a specific case. If we conclude it's an * important case, we can implement it later. */ if (intel_fbc_cfb_size_changed(dev_priv)) { fbc->no_fbc_reason = "CFB requirements changed"; return false; } /* * Work around a problem on GEN9+ HW, where enabling FBC on a plane * having a Y offset that isn't divisible by 4 causes FIFO underrun * and screen flicker. */ if (DISPLAY_VER(dev_priv) >= 9 && (fbc->state_cache.plane.adjusted_y & 3)) { fbc->no_fbc_reason = "plane Y offset is misaligned"; return false; } /* Wa_22010751166: icl, ehl, tgl, dg1, rkl */ if (DISPLAY_VER(dev_priv) >= 11 && (cache->plane.src_h + cache->plane.adjusted_y) % 4) { fbc->no_fbc_reason = "plane height + offset is non-modulo of 4"; return false; } /* * Tigerlake is not supporting FBC with PSR2. * Recommendation is to keep this combination disabled * Bspec: 50422 HSD: 14010260002 */ if (fbc->state_cache.psr2_active && IS_TIGERLAKE(dev_priv)) { fbc->no_fbc_reason = "not supported with PSR2"; return false; } return true; } static void intel_fbc_get_reg_params(struct intel_crtc *crtc, struct intel_fbc_reg_params *params) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; struct intel_fbc_state_cache *cache = &fbc->state_cache; /* Since all our fields are integer types, use memset here so the * comparison function can rely on memcmp because the padding will be * zero. */ memset(params, 0, sizeof(*params)); params->fence_id = cache->fence_id; params->fence_y_offset = cache->fence_y_offset; params->interval = cache->interval; params->crtc.pipe = crtc->pipe; params->crtc.i9xx_plane = to_intel_plane(crtc->base.primary)->i9xx_plane; params->fb.format = cache->fb.format; params->fb.modifier = cache->fb.modifier; params->fb.stride = cache->fb.stride; params->cfb_size = intel_fbc_calculate_cfb_size(dev_priv, cache); params->gen9_wa_cfb_stride = cache->gen9_wa_cfb_stride; params->plane_visible = cache->plane.visible; } static bool intel_fbc_can_flip_nuke(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_fbc *fbc = &dev_priv->fbc; const struct intel_fbc_state_cache *cache = &fbc->state_cache; const struct intel_fbc_reg_params *params = &fbc->params; if (drm_atomic_crtc_needs_modeset(&crtc_state->uapi)) return false; if (!params->plane_visible) return false; if (!intel_fbc_can_activate(crtc)) return false; if (params->fb.format != cache->fb.format) return false; if (params->fb.modifier != cache->fb.modifier) return false; if (params->fb.stride != cache->fb.stride) return false; if (params->cfb_size != intel_fbc_calculate_cfb_size(dev_priv, cache)) return false; if (params->gen9_wa_cfb_stride != cache->gen9_wa_cfb_stride) return false; return true; } bool intel_fbc_pre_update(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_plane *plane = to_intel_plane(crtc->base.primary); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct intel_plane_state *plane_state = intel_atomic_get_new_plane_state(state, plane); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; const char *reason = "update pending"; bool need_vblank_wait = false; if (!plane->has_fbc || !plane_state) return need_vblank_wait; mutex_lock(&fbc->lock); if (fbc->crtc != crtc) goto unlock; intel_fbc_update_state_cache(crtc, crtc_state, plane_state); fbc->flip_pending = true; if (!intel_fbc_can_flip_nuke(crtc_state)) { intel_fbc_deactivate(dev_priv, reason); /* * Display WA #1198: glk+ * Need an extra vblank wait between FBC disable and most plane * updates. Bspec says this is only needed for plane disable, but * that is not true. Touching most plane registers will cause the * corruption to appear. Also SKL/derivatives do not seem to be * affected. * * TODO: could optimize this a bit by sampling the frame * counter when we disable FBC (if it was already done earlier) * and skipping the extra vblank wait before the plane update * if at least one frame has already passed. */ if (fbc->activated && DISPLAY_VER(dev_priv) >= 10) need_vblank_wait = true; fbc->activated = false; } unlock: mutex_unlock(&fbc->lock); return need_vblank_wait; } /** * __intel_fbc_disable - disable FBC * @dev_priv: i915 device instance * * This is the low level function that actually disables FBC. Callers should * grab the FBC lock. */ static void __intel_fbc_disable(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; struct intel_crtc *crtc = fbc->crtc; drm_WARN_ON(&dev_priv->drm, !mutex_is_locked(&fbc->lock)); drm_WARN_ON(&dev_priv->drm, !fbc->crtc); drm_WARN_ON(&dev_priv->drm, fbc->active); drm_dbg_kms(&dev_priv->drm, "Disabling FBC on pipe %c\n", pipe_name(crtc->pipe)); __intel_fbc_cleanup_cfb(dev_priv); fbc->crtc = NULL; } static void __intel_fbc_post_update(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; drm_WARN_ON(&dev_priv->drm, !mutex_is_locked(&fbc->lock)); if (fbc->crtc != crtc) return; fbc->flip_pending = false; if (!dev_priv->params.enable_fbc) { intel_fbc_deactivate(dev_priv, "disabled at runtime per module param"); __intel_fbc_disable(dev_priv); return; } intel_fbc_get_reg_params(crtc, &fbc->params); if (!intel_fbc_can_activate(crtc)) return; if (!fbc->busy_bits) intel_fbc_hw_activate(dev_priv); else intel_fbc_deactivate(dev_priv, "frontbuffer write"); } void intel_fbc_post_update(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_plane *plane = to_intel_plane(crtc->base.primary); const struct intel_plane_state *plane_state = intel_atomic_get_new_plane_state(state, plane); struct intel_fbc *fbc = &dev_priv->fbc; if (!plane->has_fbc || !plane_state) return; mutex_lock(&fbc->lock); __intel_fbc_post_update(crtc); mutex_unlock(&fbc->lock); } static unsigned int intel_fbc_get_frontbuffer_bit(struct intel_fbc *fbc) { if (fbc->crtc) return to_intel_plane(fbc->crtc->base.primary)->frontbuffer_bit; else return fbc->possible_framebuffer_bits; } void intel_fbc_invalidate(struct drm_i915_private *dev_priv, unsigned int frontbuffer_bits, enum fb_op_origin origin) { struct intel_fbc *fbc = &dev_priv->fbc; if (!HAS_FBC(dev_priv)) return; if (origin == ORIGIN_GTT || origin == ORIGIN_FLIP) return; mutex_lock(&fbc->lock); fbc->busy_bits |= intel_fbc_get_frontbuffer_bit(fbc) & frontbuffer_bits; if (fbc->crtc && fbc->busy_bits) intel_fbc_deactivate(dev_priv, "frontbuffer write"); mutex_unlock(&fbc->lock); } void intel_fbc_flush(struct drm_i915_private *dev_priv, unsigned int frontbuffer_bits, enum fb_op_origin origin) { struct intel_fbc *fbc = &dev_priv->fbc; if (!HAS_FBC(dev_priv)) return; /* * GTT tracking does not nuke the entire cfb * so don't clear busy_bits set for some other * reason. */ if (origin == ORIGIN_GTT) return; mutex_lock(&fbc->lock); fbc->busy_bits &= ~frontbuffer_bits; if (origin == ORIGIN_FLIP) goto out; if (!fbc->busy_bits && fbc->crtc && (frontbuffer_bits & intel_fbc_get_frontbuffer_bit(fbc))) { if (fbc->active) intel_fbc_recompress(dev_priv); else if (!fbc->flip_pending) __intel_fbc_post_update(fbc->crtc); } out: mutex_unlock(&fbc->lock); } /** * intel_fbc_choose_crtc - select a CRTC to enable FBC on * @dev_priv: i915 device instance * @state: the atomic state structure * * This function looks at the proposed state for CRTCs and planes, then chooses * which pipe is going to have FBC by setting intel_crtc_state->enable_fbc to * true. * * Later, intel_fbc_enable is going to look for state->enable_fbc and then maybe * enable FBC for the chosen CRTC. If it does, it will set dev_priv->fbc.crtc. */ void intel_fbc_choose_crtc(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) { struct intel_fbc *fbc = &dev_priv->fbc; struct intel_plane *plane; struct intel_plane_state *plane_state; bool crtc_chosen = false; int i; mutex_lock(&fbc->lock); /* Does this atomic commit involve the CRTC currently tied to FBC? */ if (fbc->crtc && !intel_atomic_get_new_crtc_state(state, fbc->crtc)) goto out; if (!intel_fbc_can_enable(dev_priv)) goto out; /* Simply choose the first CRTC that is compatible and has a visible * plane. We could go for fancier schemes such as checking the plane * size, but this would just affect the few platforms that don't tie FBC * to pipe or plane A. */ for_each_new_intel_plane_in_state(state, plane, plane_state, i) { struct intel_crtc_state *crtc_state; struct intel_crtc *crtc = to_intel_crtc(plane_state->hw.crtc); if (!plane->has_fbc) continue; if (!plane_state->uapi.visible) continue; crtc_state = intel_atomic_get_new_crtc_state(state, crtc); crtc_state->enable_fbc = true; crtc_chosen = true; break; } if (!crtc_chosen) fbc->no_fbc_reason = "no suitable CRTC for FBC"; out: mutex_unlock(&fbc->lock); } /** * intel_fbc_enable: tries to enable FBC on the CRTC * @crtc: the CRTC * @state: corresponding &drm_crtc_state for @crtc * * This function checks if the given CRTC was chosen for FBC, then enables it if * possible. Notice that it doesn't activate FBC. It is valid to call * intel_fbc_enable multiple times for the same pipe without an * intel_fbc_disable in the middle, as long as it is deactivated. */ void intel_fbc_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_plane *plane = to_intel_plane(crtc->base.primary); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct intel_plane_state *plane_state = intel_atomic_get_new_plane_state(state, plane); struct intel_fbc *fbc = &dev_priv->fbc; struct intel_fbc_state_cache *cache = &fbc->state_cache; if (!plane->has_fbc || !plane_state) return; mutex_lock(&fbc->lock); if (fbc->crtc) { if (fbc->crtc != crtc || (!intel_fbc_cfb_size_changed(dev_priv) && !intel_fbc_gen9_wa_cfb_stride_changed(dev_priv))) goto out; __intel_fbc_disable(dev_priv); } drm_WARN_ON(&dev_priv->drm, fbc->active); intel_fbc_update_state_cache(crtc, crtc_state, plane_state); /* FIXME crtc_state->enable_fbc lies :( */ if (!cache->plane.visible) goto out; if (intel_fbc_alloc_cfb(dev_priv, intel_fbc_calculate_cfb_size(dev_priv, cache), plane_state->hw.fb->format->cpp[0])) { cache->plane.visible = false; fbc->no_fbc_reason = "not enough stolen memory"; goto out; } cache->gen9_wa_cfb_stride = intel_fbc_gen9_wa_cfb_stride(dev_priv); drm_dbg_kms(&dev_priv->drm, "Enabling FBC on pipe %c\n", pipe_name(crtc->pipe)); fbc->no_fbc_reason = "FBC enabled but not active yet\n"; fbc->crtc = crtc; out: mutex_unlock(&fbc->lock); } /** * intel_fbc_disable - disable FBC if it's associated with crtc * @crtc: the CRTC * * This function disables FBC if it's associated with the provided CRTC. */ void intel_fbc_disable(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_plane *plane = to_intel_plane(crtc->base.primary); struct intel_fbc *fbc = &dev_priv->fbc; if (!plane->has_fbc) return; mutex_lock(&fbc->lock); if (fbc->crtc == crtc) __intel_fbc_disable(dev_priv); mutex_unlock(&fbc->lock); } /** * intel_fbc_global_disable - globally disable FBC * @dev_priv: i915 device instance * * This function disables FBC regardless of which CRTC is associated with it. */ void intel_fbc_global_disable(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; if (!HAS_FBC(dev_priv)) return; mutex_lock(&fbc->lock); if (fbc->crtc) { drm_WARN_ON(&dev_priv->drm, fbc->crtc->active); __intel_fbc_disable(dev_priv); } mutex_unlock(&fbc->lock); } static void intel_fbc_underrun_work_fn(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, struct drm_i915_private, fbc.underrun_work); struct intel_fbc *fbc = &dev_priv->fbc; mutex_lock(&fbc->lock); /* Maybe we were scheduled twice. */ if (fbc->underrun_detected || !fbc->crtc) goto out; drm_dbg_kms(&dev_priv->drm, "Disabling FBC due to FIFO underrun.\n"); fbc->underrun_detected = true; intel_fbc_deactivate(dev_priv, "FIFO underrun"); out: mutex_unlock(&fbc->lock); } /* * intel_fbc_reset_underrun - reset FBC fifo underrun status. * @dev_priv: i915 device instance * * See intel_fbc_handle_fifo_underrun_irq(). For automated testing we * want to re-enable FBC after an underrun to increase test coverage. */ int intel_fbc_reset_underrun(struct drm_i915_private *dev_priv) { int ret; cancel_work_sync(&dev_priv->fbc.underrun_work); ret = mutex_lock_interruptible(&dev_priv->fbc.lock); if (ret) return ret; if (dev_priv->fbc.underrun_detected) { drm_dbg_kms(&dev_priv->drm, "Re-allowing FBC after fifo underrun\n"); dev_priv->fbc.no_fbc_reason = "FIFO underrun cleared"; } dev_priv->fbc.underrun_detected = false; mutex_unlock(&dev_priv->fbc.lock); return 0; } /** * intel_fbc_handle_fifo_underrun_irq - disable FBC when we get a FIFO underrun * @dev_priv: i915 device instance * * Without FBC, most underruns are harmless and don't really cause too many * problems, except for an annoying message on dmesg. With FBC, underruns can * become black screens or even worse, especially when paired with bad * watermarks. So in order for us to be on the safe side, completely disable FBC * in case we ever detect a FIFO underrun on any pipe. An underrun on any pipe * already suggests that watermarks may be bad, so try to be as safe as * possible. * * This function is called from the IRQ handler. */ void intel_fbc_handle_fifo_underrun_irq(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; if (!HAS_FBC(dev_priv)) return; /* There's no guarantee that underrun_detected won't be set to true * right after this check and before the work is scheduled, but that's * not a problem since we'll check it again under the work function * while FBC is locked. This check here is just to prevent us from * unnecessarily scheduling the work, and it relies on the fact that we * never switch underrun_detect back to false after it's true. */ if (READ_ONCE(fbc->underrun_detected)) return; schedule_work(&fbc->underrun_work); } /* * The DDX driver changes its behavior depending on the value it reads from * i915.enable_fbc, so sanitize it by translating the default value into either * 0 or 1 in order to allow it to know what's going on. * * Notice that this is done at driver initialization and we still allow user * space to change the value during runtime without sanitizing it again. IGT * relies on being able to change i915.enable_fbc at runtime. */ static int intel_sanitize_fbc_option(struct drm_i915_private *dev_priv) { if (dev_priv->params.enable_fbc >= 0) return !!dev_priv->params.enable_fbc; if (!HAS_FBC(dev_priv)) return 0; if (IS_BROADWELL(dev_priv) || DISPLAY_VER(dev_priv) >= 9) return 1; return 0; } static bool need_fbc_vtd_wa(struct drm_i915_private *dev_priv) { /* WaFbcTurnOffFbcWhenHyperVisorIsUsed:skl,bxt */ if (intel_vtd_active() && (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv))) { drm_info(&dev_priv->drm, "Disabling framebuffer compression (FBC) to prevent screen flicker with VT-d enabled\n"); return true; } return false; } /** * intel_fbc_init - Initialize FBC * @dev_priv: the i915 device * * This function might be called during PM init process. */ void intel_fbc_init(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; INIT_WORK(&fbc->underrun_work, intel_fbc_underrun_work_fn); mutex_init(&fbc->lock); fbc->active = false; if (!drm_mm_initialized(&dev_priv->mm.stolen)) mkwrite_device_info(dev_priv)->display.has_fbc = false; if (need_fbc_vtd_wa(dev_priv)) mkwrite_device_info(dev_priv)->display.has_fbc = false; dev_priv->params.enable_fbc = intel_sanitize_fbc_option(dev_priv); drm_dbg_kms(&dev_priv->drm, "Sanitized enable_fbc value: %d\n", dev_priv->params.enable_fbc); if (!HAS_FBC(dev_priv)) { fbc->no_fbc_reason = "unsupported by this chipset"; return; } /* We still don't have any sort of hardware state readout for FBC, so * deactivate it in case the BIOS activated it to make sure software * matches the hardware state. */ if (intel_fbc_hw_is_active(dev_priv)) intel_fbc_hw_deactivate(dev_priv); }