/* * KVM Microsoft Hyper-V emulation * * derived from arch/x86/kvm/x86.c * * Copyright (C) 2006 Qumranet, Inc. * Copyright (C) 2008 Qumranet, Inc. * Copyright IBM Corporation, 2008 * Copyright 2010 Red Hat, Inc. and/or its affiliates. * Copyright (C) 2015 Andrey Smetanin * * Authors: * Avi Kivity * Yaniv Kamay * Amit Shah * Ben-Ami Yassour * Andrey Smetanin * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include "x86.h" #include "lapic.h" #include "ioapic.h" #include "hyperv.h" #include #include #include #include #include #include #include "trace.h" static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint) { return atomic64_read(&synic->sint[sint]); } static inline int synic_get_sint_vector(u64 sint_value) { if (sint_value & HV_SYNIC_SINT_MASKED) return -1; return sint_value & HV_SYNIC_SINT_VECTOR_MASK; } static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic, int vector) { int i; for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) return true; } return false; } static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic, int vector) { int i; u64 sint_value; for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { sint_value = synic_read_sint(synic, i); if (synic_get_sint_vector(sint_value) == vector && sint_value & HV_SYNIC_SINT_AUTO_EOI) return true; } return false; } static void synic_update_vector(struct kvm_vcpu_hv_synic *synic, int vector) { if (vector < HV_SYNIC_FIRST_VALID_VECTOR) return; if (synic_has_vector_connected(synic, vector)) __set_bit(vector, synic->vec_bitmap); else __clear_bit(vector, synic->vec_bitmap); if (synic_has_vector_auto_eoi(synic, vector)) __set_bit(vector, synic->auto_eoi_bitmap); else __clear_bit(vector, synic->auto_eoi_bitmap); } static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint, u64 data, bool host) { int vector, old_vector; bool masked; vector = data & HV_SYNIC_SINT_VECTOR_MASK; masked = data & HV_SYNIC_SINT_MASKED; /* * Valid vectors are 16-255, however, nested Hyper-V attempts to write * default '0x10000' value on boot and this should not #GP. We need to * allow zero-initing the register from host as well. */ if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked) return 1; /* * Guest may configure multiple SINTs to use the same vector, so * we maintain a bitmap of vectors handled by synic, and a * bitmap of vectors with auto-eoi behavior. The bitmaps are * updated here, and atomically queried on fast paths. */ old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK; atomic64_set(&synic->sint[sint], data); synic_update_vector(synic, old_vector); synic_update_vector(synic, vector); /* Load SynIC vectors into EOI exit bitmap */ kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic)); return 0; } static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx) { struct kvm_vcpu *vcpu = NULL; int i; if (vpidx >= KVM_MAX_VCPUS) return NULL; vcpu = kvm_get_vcpu(kvm, vpidx); if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx) return vcpu; kvm_for_each_vcpu(i, vcpu, kvm) if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx) return vcpu; return NULL; } static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx) { struct kvm_vcpu *vcpu; struct kvm_vcpu_hv_synic *synic; vcpu = get_vcpu_by_vpidx(kvm, vpidx); if (!vcpu) return NULL; synic = vcpu_to_synic(vcpu); return (synic->active) ? synic : NULL; } static void synic_clear_sint_msg_pending(struct kvm_vcpu_hv_synic *synic, u32 sint) { struct kvm_vcpu *vcpu = synic_to_vcpu(synic); struct page *page; gpa_t gpa; struct hv_message *msg; struct hv_message_page *msg_page; gpa = synic->msg_page & PAGE_MASK; page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); if (is_error_page(page)) { vcpu_err(vcpu, "Hyper-V SynIC can't get msg page, gpa 0x%llx\n", gpa); return; } msg_page = kmap_atomic(page); msg = &msg_page->sint_message[sint]; msg->header.message_flags.msg_pending = 0; kunmap_atomic(msg_page); kvm_release_page_dirty(page); kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); } static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint) { struct kvm *kvm = vcpu->kvm; struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu); struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu); struct kvm_vcpu_hv_stimer *stimer; int gsi, idx, stimers_pending; trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint); if (synic->msg_page & HV_SYNIC_SIMP_ENABLE) synic_clear_sint_msg_pending(synic, sint); /* Try to deliver pending Hyper-V SynIC timers messages */ stimers_pending = 0; for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) { stimer = &hv_vcpu->stimer[idx]; if (stimer->msg_pending && (stimer->config & HV_STIMER_ENABLE) && HV_STIMER_SINT(stimer->config) == sint) { set_bit(stimer->index, hv_vcpu->stimer_pending_bitmap); stimers_pending++; } } if (stimers_pending) kvm_make_request(KVM_REQ_HV_STIMER, vcpu); idx = srcu_read_lock(&kvm->irq_srcu); gsi = atomic_read(&synic->sint_to_gsi[sint]); if (gsi != -1) kvm_notify_acked_gsi(kvm, gsi); srcu_read_unlock(&kvm->irq_srcu, idx); } static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr) { struct kvm_vcpu *vcpu = synic_to_vcpu(synic); struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv; hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC; hv_vcpu->exit.u.synic.msr = msr; hv_vcpu->exit.u.synic.control = synic->control; hv_vcpu->exit.u.synic.evt_page = synic->evt_page; hv_vcpu->exit.u.synic.msg_page = synic->msg_page; kvm_make_request(KVM_REQ_HV_EXIT, vcpu); } static int synic_set_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 data, bool host) { struct kvm_vcpu *vcpu = synic_to_vcpu(synic); int ret; if (!synic->active && !host) return 1; trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host); ret = 0; switch (msr) { case HV_X64_MSR_SCONTROL: synic->control = data; if (!host) synic_exit(synic, msr); break; case HV_X64_MSR_SVERSION: if (!host) { ret = 1; break; } synic->version = data; break; case HV_X64_MSR_SIEFP: if ((data & HV_SYNIC_SIEFP_ENABLE) && !host && !synic->dont_zero_synic_pages) if (kvm_clear_guest(vcpu->kvm, data & PAGE_MASK, PAGE_SIZE)) { ret = 1; break; } synic->evt_page = data; if (!host) synic_exit(synic, msr); break; case HV_X64_MSR_SIMP: if ((data & HV_SYNIC_SIMP_ENABLE) && !host && !synic->dont_zero_synic_pages) if (kvm_clear_guest(vcpu->kvm, data & PAGE_MASK, PAGE_SIZE)) { ret = 1; break; } synic->msg_page = data; if (!host) synic_exit(synic, msr); break; case HV_X64_MSR_EOM: { int i; for (i = 0; i < ARRAY_SIZE(synic->sint); i++) kvm_hv_notify_acked_sint(vcpu, i); break; } case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host); break; default: ret = 1; break; } return ret; } static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata, bool host) { int ret; if (!synic->active && !host) return 1; ret = 0; switch (msr) { case HV_X64_MSR_SCONTROL: *pdata = synic->control; break; case HV_X64_MSR_SVERSION: *pdata = synic->version; break; case HV_X64_MSR_SIEFP: *pdata = synic->evt_page; break; case HV_X64_MSR_SIMP: *pdata = synic->msg_page; break; case HV_X64_MSR_EOM: *pdata = 0; break; case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]); break; default: ret = 1; break; } return ret; } static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint) { struct kvm_vcpu *vcpu = synic_to_vcpu(synic); struct kvm_lapic_irq irq; int ret, vector; if (sint >= ARRAY_SIZE(synic->sint)) return -EINVAL; vector = synic_get_sint_vector(synic_read_sint(synic, sint)); if (vector < 0) return -ENOENT; memset(&irq, 0, sizeof(irq)); irq.shorthand = APIC_DEST_SELF; irq.dest_mode = APIC_DEST_PHYSICAL; irq.delivery_mode = APIC_DM_FIXED; irq.vector = vector; irq.level = 1; ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL); trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret); return ret; } int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint) { struct kvm_vcpu_hv_synic *synic; synic = synic_get(kvm, vpidx); if (!synic) return -EINVAL; return synic_set_irq(synic, sint); } void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector) { struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu); int i; trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector); for (i = 0; i < ARRAY_SIZE(synic->sint); i++) if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) kvm_hv_notify_acked_sint(vcpu, i); } static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi) { struct kvm_vcpu_hv_synic *synic; synic = synic_get(kvm, vpidx); if (!synic) return -EINVAL; if (sint >= ARRAY_SIZE(synic->sint_to_gsi)) return -EINVAL; atomic_set(&synic->sint_to_gsi[sint], gsi); return 0; } void kvm_hv_irq_routing_update(struct kvm *kvm) { struct kvm_irq_routing_table *irq_rt; struct kvm_kernel_irq_routing_entry *e; u32 gsi; irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu, lockdep_is_held(&kvm->irq_lock)); for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) { hlist_for_each_entry(e, &irq_rt->map[gsi], link) { if (e->type == KVM_IRQ_ROUTING_HV_SINT) kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu, e->hv_sint.sint, gsi); } } } static void synic_init(struct kvm_vcpu_hv_synic *synic) { int i; memset(synic, 0, sizeof(*synic)); synic->version = HV_SYNIC_VERSION_1; for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED); atomic_set(&synic->sint_to_gsi[i], -1); } } static u64 get_time_ref_counter(struct kvm *kvm) { struct kvm_hv *hv = &kvm->arch.hyperv; struct kvm_vcpu *vcpu; u64 tsc; /* * The guest has not set up the TSC page or the clock isn't * stable, fall back to get_kvmclock_ns. */ if (!hv->tsc_ref.tsc_sequence) return div_u64(get_kvmclock_ns(kvm), 100); vcpu = kvm_get_vcpu(kvm, 0); tsc = kvm_read_l1_tsc(vcpu, rdtsc()); return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64) + hv->tsc_ref.tsc_offset; } static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, bool vcpu_kick) { struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer); set_bit(stimer->index, vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap); kvm_make_request(KVM_REQ_HV_STIMER, vcpu); if (vcpu_kick) kvm_vcpu_kick(vcpu); } static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer) { struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer); trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id, stimer->index); hrtimer_cancel(&stimer->timer); clear_bit(stimer->index, vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap); stimer->msg_pending = false; stimer->exp_time = 0; } static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer) { struct kvm_vcpu_hv_stimer *stimer; stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer); trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id, stimer->index); stimer_mark_pending(stimer, true); return HRTIMER_NORESTART; } /* * stimer_start() assumptions: * a) stimer->count is not equal to 0 * b) stimer->config has HV_STIMER_ENABLE flag */ static int stimer_start(struct kvm_vcpu_hv_stimer *stimer) { u64 time_now; ktime_t ktime_now; time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm); ktime_now = ktime_get(); if (stimer->config & HV_STIMER_PERIODIC) { if (stimer->exp_time) { if (time_now >= stimer->exp_time) { u64 remainder; div64_u64_rem(time_now - stimer->exp_time, stimer->count, &remainder); stimer->exp_time = time_now + (stimer->count - remainder); } } else stimer->exp_time = time_now + stimer->count; trace_kvm_hv_stimer_start_periodic( stimer_to_vcpu(stimer)->vcpu_id, stimer->index, time_now, stimer->exp_time); hrtimer_start(&stimer->timer, ktime_add_ns(ktime_now, 100 * (stimer->exp_time - time_now)), HRTIMER_MODE_ABS); return 0; } stimer->exp_time = stimer->count; if (time_now >= stimer->count) { /* * Expire timer according to Hypervisor Top-Level Functional * specification v4(15.3.1): * "If a one shot is enabled and the specified count is in * the past, it will expire immediately." */ stimer_mark_pending(stimer, false); return 0; } trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id, stimer->index, time_now, stimer->count); hrtimer_start(&stimer->timer, ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)), HRTIMER_MODE_ABS); return 0; } static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config, bool host) { trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id, stimer->index, config, host); stimer_cleanup(stimer); if ((stimer->config & HV_STIMER_ENABLE) && HV_STIMER_SINT(config) == 0) config &= ~HV_STIMER_ENABLE; stimer->config = config; stimer_mark_pending(stimer, false); return 0; } static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count, bool host) { trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id, stimer->index, count, host); stimer_cleanup(stimer); stimer->count = count; if (stimer->count == 0) stimer->config &= ~HV_STIMER_ENABLE; else if (stimer->config & HV_STIMER_AUTOENABLE) stimer->config |= HV_STIMER_ENABLE; stimer_mark_pending(stimer, false); return 0; } static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig) { *pconfig = stimer->config; return 0; } static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount) { *pcount = stimer->count; return 0; } static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint, struct hv_message *src_msg) { struct kvm_vcpu *vcpu = synic_to_vcpu(synic); struct page *page; gpa_t gpa; struct hv_message *dst_msg; int r; struct hv_message_page *msg_page; if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE)) return -ENOENT; gpa = synic->msg_page & PAGE_MASK; page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); if (is_error_page(page)) return -EFAULT; msg_page = kmap_atomic(page); dst_msg = &msg_page->sint_message[sint]; if (sync_cmpxchg(&dst_msg->header.message_type, HVMSG_NONE, src_msg->header.message_type) != HVMSG_NONE) { dst_msg->header.message_flags.msg_pending = 1; r = -EAGAIN; } else { memcpy(&dst_msg->u.payload, &src_msg->u.payload, src_msg->header.payload_size); dst_msg->header.message_type = src_msg->header.message_type; dst_msg->header.payload_size = src_msg->header.payload_size; r = synic_set_irq(synic, sint); if (r >= 1) r = 0; else if (r == 0) r = -EFAULT; } kunmap_atomic(msg_page); kvm_release_page_dirty(page); kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); return r; } static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer) { struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer); struct hv_message *msg = &stimer->msg; struct hv_timer_message_payload *payload = (struct hv_timer_message_payload *)&msg->u.payload; payload->expiration_time = stimer->exp_time; payload->delivery_time = get_time_ref_counter(vcpu->kvm); return synic_deliver_msg(vcpu_to_synic(vcpu), HV_STIMER_SINT(stimer->config), msg); } static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer) { int r; stimer->msg_pending = true; r = stimer_send_msg(stimer); trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id, stimer->index, r); if (!r) { stimer->msg_pending = false; if (!(stimer->config & HV_STIMER_PERIODIC)) stimer->config &= ~HV_STIMER_ENABLE; } } void kvm_hv_process_stimers(struct kvm_vcpu *vcpu) { struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu); struct kvm_vcpu_hv_stimer *stimer; u64 time_now, exp_time; int i; for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) { stimer = &hv_vcpu->stimer[i]; if (stimer->config & HV_STIMER_ENABLE) { exp_time = stimer->exp_time; if (exp_time) { time_now = get_time_ref_counter(vcpu->kvm); if (time_now >= exp_time) stimer_expiration(stimer); } if ((stimer->config & HV_STIMER_ENABLE) && stimer->count) { if (!stimer->msg_pending) stimer_start(stimer); } else stimer_cleanup(stimer); } } } void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu) { struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu); int i; for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) stimer_cleanup(&hv_vcpu->stimer[i]); } static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer) { struct hv_message *msg = &stimer->msg; struct hv_timer_message_payload *payload = (struct hv_timer_message_payload *)&msg->u.payload; memset(&msg->header, 0, sizeof(msg->header)); msg->header.message_type = HVMSG_TIMER_EXPIRED; msg->header.payload_size = sizeof(*payload); payload->timer_index = stimer->index; payload->expiration_time = 0; payload->delivery_time = 0; } static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index) { memset(stimer, 0, sizeof(*stimer)); stimer->index = timer_index; hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); stimer->timer.function = stimer_timer_callback; stimer_prepare_msg(stimer); } void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu) { struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu); int i; synic_init(&hv_vcpu->synic); bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) stimer_init(&hv_vcpu->stimer[i], i); } void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu) { struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu); hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu); } int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages) { struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu); /* * Hyper-V SynIC auto EOI SINT's are * not compatible with APICV, so deactivate APICV */ kvm_vcpu_deactivate_apicv(vcpu); synic->active = true; synic->dont_zero_synic_pages = dont_zero_synic_pages; return 0; } static bool kvm_hv_msr_partition_wide(u32 msr) { bool r = false; switch (msr) { case HV_X64_MSR_GUEST_OS_ID: case HV_X64_MSR_HYPERCALL: case HV_X64_MSR_REFERENCE_TSC: case HV_X64_MSR_TIME_REF_COUNT: case HV_X64_MSR_CRASH_CTL: case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: case HV_X64_MSR_RESET: case HV_X64_MSR_REENLIGHTENMENT_CONTROL: case HV_X64_MSR_TSC_EMULATION_CONTROL: case HV_X64_MSR_TSC_EMULATION_STATUS: r = true; break; } return r; } static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu, u32 index, u64 *pdata) { struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param))) return -EINVAL; *pdata = hv->hv_crash_param[index]; return 0; } static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata) { struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; *pdata = hv->hv_crash_ctl; return 0; } static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host) { struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; if (host) hv->hv_crash_ctl = data & HV_X64_MSR_CRASH_CTL_NOTIFY; if (!host && (data & HV_X64_MSR_CRASH_CTL_NOTIFY)) { vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n", hv->hv_crash_param[0], hv->hv_crash_param[1], hv->hv_crash_param[2], hv->hv_crash_param[3], hv->hv_crash_param[4]); /* Send notification about crash to user space */ kvm_make_request(KVM_REQ_HV_CRASH, vcpu); } return 0; } static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu, u32 index, u64 data) { struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param))) return -EINVAL; hv->hv_crash_param[index] = data; return 0; } /* * The kvmclock and Hyper-V TSC page use similar formulas, and converting * between them is possible: * * kvmclock formula: * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32) * + system_time * * Hyper-V formula: * nsec/100 = ticks * scale / 2^64 + offset * * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula. * By dividing the kvmclock formula by 100 and equating what's left we get: * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100 * * Now expand the kvmclock formula and divide by 100: * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32) * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) * + system_time * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100 * + system_time / 100 * * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64: * nsec/100 = ticks * scale / 2^64 * - tsc_timestamp * scale / 2^64 * + system_time / 100 * * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out: * offset = system_time / 100 - tsc_timestamp * scale / 2^64 * * These two equivalencies are implemented in this function. */ static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock, HV_REFERENCE_TSC_PAGE *tsc_ref) { u64 max_mul; if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT)) return false; /* * check if scale would overflow, if so we use the time ref counter * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift) * tsc_to_system_mul >= 100 * 2^(32-tsc_shift) */ max_mul = 100ull << (32 - hv_clock->tsc_shift); if (hv_clock->tsc_to_system_mul >= max_mul) return false; /* * Otherwise compute the scale and offset according to the formulas * derived above. */ tsc_ref->tsc_scale = mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift), hv_clock->tsc_to_system_mul, 100); tsc_ref->tsc_offset = hv_clock->system_time; do_div(tsc_ref->tsc_offset, 100); tsc_ref->tsc_offset -= mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64); return true; } void kvm_hv_setup_tsc_page(struct kvm *kvm, struct pvclock_vcpu_time_info *hv_clock) { struct kvm_hv *hv = &kvm->arch.hyperv; u32 tsc_seq; u64 gfn; BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence)); BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0); if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)) return; mutex_lock(&kvm->arch.hyperv.hv_lock); if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)) goto out_unlock; gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; /* * Because the TSC parameters only vary when there is a * change in the master clock, do not bother with caching. */ if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn), &tsc_seq, sizeof(tsc_seq)))) goto out_unlock; /* * While we're computing and writing the parameters, force the * guest to use the time reference count MSR. */ hv->tsc_ref.tsc_sequence = 0; if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence))) goto out_unlock; if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref)) goto out_unlock; /* Ensure sequence is zero before writing the rest of the struct. */ smp_wmb(); if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref))) goto out_unlock; /* * Now switch to the TSC page mechanism by writing the sequence. */ tsc_seq++; if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0) tsc_seq = 1; /* Write the struct entirely before the non-zero sequence. */ smp_wmb(); hv->tsc_ref.tsc_sequence = tsc_seq; kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)); out_unlock: mutex_unlock(&kvm->arch.hyperv.hv_lock); } static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) { struct kvm *kvm = vcpu->kvm; struct kvm_hv *hv = &kvm->arch.hyperv; switch (msr) { case HV_X64_MSR_GUEST_OS_ID: hv->hv_guest_os_id = data; /* setting guest os id to zero disables hypercall page */ if (!hv->hv_guest_os_id) hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; break; case HV_X64_MSR_HYPERCALL: { u64 gfn; unsigned long addr; u8 instructions[4]; /* if guest os id is not set hypercall should remain disabled */ if (!hv->hv_guest_os_id) break; if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { hv->hv_hypercall = data; break; } gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; addr = gfn_to_hva(kvm, gfn); if (kvm_is_error_hva(addr)) return 1; kvm_x86_ops->patch_hypercall(vcpu, instructions); ((unsigned char *)instructions)[3] = 0xc3; /* ret */ if (__copy_to_user((void __user *)addr, instructions, 4)) return 1; hv->hv_hypercall = data; mark_page_dirty(kvm, gfn); break; } case HV_X64_MSR_REFERENCE_TSC: hv->hv_tsc_page = data; if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); break; case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: return kvm_hv_msr_set_crash_data(vcpu, msr - HV_X64_MSR_CRASH_P0, data); case HV_X64_MSR_CRASH_CTL: return kvm_hv_msr_set_crash_ctl(vcpu, data, host); case HV_X64_MSR_RESET: if (data == 1) { vcpu_debug(vcpu, "hyper-v reset requested\n"); kvm_make_request(KVM_REQ_HV_RESET, vcpu); } break; case HV_X64_MSR_REENLIGHTENMENT_CONTROL: hv->hv_reenlightenment_control = data; break; case HV_X64_MSR_TSC_EMULATION_CONTROL: hv->hv_tsc_emulation_control = data; break; case HV_X64_MSR_TSC_EMULATION_STATUS: hv->hv_tsc_emulation_status = data; break; case HV_X64_MSR_TIME_REF_COUNT: /* read-only, but still ignore it if host-initiated */ if (!host) return 1; break; default: vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n", msr, data); return 1; } return 0; } /* Calculate cpu time spent by current task in 100ns units */ static u64 current_task_runtime_100ns(void) { u64 utime, stime; task_cputime_adjusted(current, &utime, &stime); return div_u64(utime + stime, 100); } static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) { struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv; switch (msr) { case HV_X64_MSR_VP_INDEX: { struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; int vcpu_idx = kvm_vcpu_get_idx(vcpu); u32 new_vp_index = (u32)data; if (!host || new_vp_index >= KVM_MAX_VCPUS) return 1; if (new_vp_index == hv_vcpu->vp_index) return 0; /* * The VP index is initialized to vcpu_index by * kvm_hv_vcpu_postcreate so they initially match. Now the * VP index is changing, adjust num_mismatched_vp_indexes if * it now matches or no longer matches vcpu_idx. */ if (hv_vcpu->vp_index == vcpu_idx) atomic_inc(&hv->num_mismatched_vp_indexes); else if (new_vp_index == vcpu_idx) atomic_dec(&hv->num_mismatched_vp_indexes); hv_vcpu->vp_index = new_vp_index; break; } case HV_X64_MSR_VP_ASSIST_PAGE: { u64 gfn; unsigned long addr; if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) { hv_vcpu->hv_vapic = data; if (kvm_lapic_enable_pv_eoi(vcpu, 0)) return 1; break; } gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT; addr = kvm_vcpu_gfn_to_hva(vcpu, gfn); if (kvm_is_error_hva(addr)) return 1; if (__clear_user((void __user *)addr, PAGE_SIZE)) return 1; hv_vcpu->hv_vapic = data; kvm_vcpu_mark_page_dirty(vcpu, gfn); if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED)) return 1; break; } case HV_X64_MSR_EOI: return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); case HV_X64_MSR_ICR: return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); case HV_X64_MSR_TPR: return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); case HV_X64_MSR_VP_RUNTIME: if (!host) return 1; hv_vcpu->runtime_offset = data - current_task_runtime_100ns(); break; case HV_X64_MSR_SCONTROL: case HV_X64_MSR_SVERSION: case HV_X64_MSR_SIEFP: case HV_X64_MSR_SIMP: case HV_X64_MSR_EOM: case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host); case HV_X64_MSR_STIMER0_CONFIG: case HV_X64_MSR_STIMER1_CONFIG: case HV_X64_MSR_STIMER2_CONFIG: case HV_X64_MSR_STIMER3_CONFIG: { int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; return stimer_set_config(vcpu_to_stimer(vcpu, timer_index), data, host); } case HV_X64_MSR_STIMER0_COUNT: case HV_X64_MSR_STIMER1_COUNT: case HV_X64_MSR_STIMER2_COUNT: case HV_X64_MSR_STIMER3_COUNT: { int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; return stimer_set_count(vcpu_to_stimer(vcpu, timer_index), data, host); } case HV_X64_MSR_TSC_FREQUENCY: case HV_X64_MSR_APIC_FREQUENCY: /* read-only, but still ignore it if host-initiated */ if (!host) return 1; break; default: vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n", msr, data); return 1; } return 0; } static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 data = 0; struct kvm *kvm = vcpu->kvm; struct kvm_hv *hv = &kvm->arch.hyperv; switch (msr) { case HV_X64_MSR_GUEST_OS_ID: data = hv->hv_guest_os_id; break; case HV_X64_MSR_HYPERCALL: data = hv->hv_hypercall; break; case HV_X64_MSR_TIME_REF_COUNT: data = get_time_ref_counter(kvm); break; case HV_X64_MSR_REFERENCE_TSC: data = hv->hv_tsc_page; break; case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: return kvm_hv_msr_get_crash_data(vcpu, msr - HV_X64_MSR_CRASH_P0, pdata); case HV_X64_MSR_CRASH_CTL: return kvm_hv_msr_get_crash_ctl(vcpu, pdata); case HV_X64_MSR_RESET: data = 0; break; case HV_X64_MSR_REENLIGHTENMENT_CONTROL: data = hv->hv_reenlightenment_control; break; case HV_X64_MSR_TSC_EMULATION_CONTROL: data = hv->hv_tsc_emulation_control; break; case HV_X64_MSR_TSC_EMULATION_STATUS: data = hv->hv_tsc_emulation_status; break; default: vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); return 1; } *pdata = data; return 0; } static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) { u64 data = 0; struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv; switch (msr) { case HV_X64_MSR_VP_INDEX: data = hv_vcpu->vp_index; break; case HV_X64_MSR_EOI: return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); case HV_X64_MSR_ICR: return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); case HV_X64_MSR_TPR: return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); case HV_X64_MSR_VP_ASSIST_PAGE: data = hv_vcpu->hv_vapic; break; case HV_X64_MSR_VP_RUNTIME: data = current_task_runtime_100ns() + hv_vcpu->runtime_offset; break; case HV_X64_MSR_SCONTROL: case HV_X64_MSR_SVERSION: case HV_X64_MSR_SIEFP: case HV_X64_MSR_SIMP: case HV_X64_MSR_EOM: case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host); case HV_X64_MSR_STIMER0_CONFIG: case HV_X64_MSR_STIMER1_CONFIG: case HV_X64_MSR_STIMER2_CONFIG: case HV_X64_MSR_STIMER3_CONFIG: { int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; return stimer_get_config(vcpu_to_stimer(vcpu, timer_index), pdata); } case HV_X64_MSR_STIMER0_COUNT: case HV_X64_MSR_STIMER1_COUNT: case HV_X64_MSR_STIMER2_COUNT: case HV_X64_MSR_STIMER3_COUNT: { int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; return stimer_get_count(vcpu_to_stimer(vcpu, timer_index), pdata); } case HV_X64_MSR_TSC_FREQUENCY: data = (u64)vcpu->arch.virtual_tsc_khz * 1000; break; case HV_X64_MSR_APIC_FREQUENCY: data = APIC_BUS_FREQUENCY; break; default: vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); return 1; } *pdata = data; return 0; } int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) { if (kvm_hv_msr_partition_wide(msr)) { int r; mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock); r = kvm_hv_set_msr_pw(vcpu, msr, data, host); mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock); return r; } else return kvm_hv_set_msr(vcpu, msr, data, host); } int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) { if (kvm_hv_msr_partition_wide(msr)) { int r; mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock); r = kvm_hv_get_msr_pw(vcpu, msr, pdata); mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock); return r; } else return kvm_hv_get_msr(vcpu, msr, pdata, host); } static __always_inline int get_sparse_bank_no(u64 valid_bank_mask, int bank_no) { int i = 0, j; if (!(valid_bank_mask & BIT_ULL(bank_no))) return -1; for (j = 0; j < bank_no; j++) if (valid_bank_mask & BIT_ULL(j)) i++; return i; } static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa, u16 rep_cnt, bool ex) { struct kvm *kvm = current_vcpu->kvm; struct kvm_vcpu_hv *hv_current = ¤t_vcpu->arch.hyperv; struct hv_tlb_flush_ex flush_ex; struct hv_tlb_flush flush; struct kvm_vcpu *vcpu; unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)] = {0}; u64 valid_bank_mask = 0; u64 sparse_banks[64]; int sparse_banks_len, i; bool all_cpus; if (!ex) { if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush)))) return HV_STATUS_INVALID_HYPERCALL_INPUT; trace_kvm_hv_flush_tlb(flush.processor_mask, flush.address_space, flush.flags); sparse_banks[0] = flush.processor_mask; all_cpus = flush.flags & HV_FLUSH_ALL_PROCESSORS; } else { if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex, sizeof(flush_ex)))) return HV_STATUS_INVALID_HYPERCALL_INPUT; trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask, flush_ex.hv_vp_set.format, flush_ex.address_space, flush_ex.flags); valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask; all_cpus = flush_ex.hv_vp_set.format != HV_GENERIC_SET_SPARSE_4K; sparse_banks_len = bitmap_weight((unsigned long *)&valid_bank_mask, 64) * sizeof(sparse_banks[0]); if (!sparse_banks_len && !all_cpus) goto ret_success; if (!all_cpus && kvm_read_guest(kvm, ingpa + offsetof(struct hv_tlb_flush_ex, hv_vp_set.bank_contents), sparse_banks, sparse_banks_len)) return HV_STATUS_INVALID_HYPERCALL_INPUT; } cpumask_clear(&hv_current->tlb_lush); if (all_cpus) { kvm_make_vcpus_request_mask(kvm, KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP, NULL, &hv_current->tlb_lush); goto ret_success; } kvm_for_each_vcpu(i, vcpu, kvm) { struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv; int bank = hv->vp_index / 64, sbank = 0; /* Banks >64 can't be represented */ if (bank >= 64) continue; /* Non-ex hypercalls can only address first 64 vCPUs */ if (!ex && bank) continue; if (ex) { /* * Check is the bank of this vCPU is in sparse * set and get the sparse bank number. */ sbank = get_sparse_bank_no(valid_bank_mask, bank); if (sbank < 0) continue; } if (!(sparse_banks[sbank] & BIT_ULL(hv->vp_index % 64))) continue; /* * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we * can't analyze it here, flush TLB regardless of the specified * address space. */ __set_bit(i, vcpu_bitmap); } kvm_make_vcpus_request_mask(kvm, KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP, vcpu_bitmap, &hv_current->tlb_lush); ret_success: /* We always do full TLB flush, set rep_done = rep_cnt. */ return (u64)HV_STATUS_SUCCESS | ((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET); } bool kvm_hv_hypercall_enabled(struct kvm *kvm) { return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE; } static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) { bool longmode; longmode = is_64_bit_mode(vcpu); if (longmode) kvm_register_write(vcpu, VCPU_REGS_RAX, result); else { kvm_register_write(vcpu, VCPU_REGS_RDX, result >> 32); kvm_register_write(vcpu, VCPU_REGS_RAX, result & 0xffffffff); } } static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result) { kvm_hv_hypercall_set_result(vcpu, result); ++vcpu->stat.hypercalls; return kvm_skip_emulated_instruction(vcpu); } static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu) { return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result); } static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param) { struct eventfd_ctx *eventfd; if (unlikely(!fast)) { int ret; gpa_t gpa = param; if ((gpa & (__alignof__(param) - 1)) || offset_in_page(gpa) + sizeof(param) > PAGE_SIZE) return HV_STATUS_INVALID_ALIGNMENT; ret = kvm_vcpu_read_guest(vcpu, gpa, ¶m, sizeof(param)); if (ret < 0) return HV_STATUS_INVALID_ALIGNMENT; } /* * Per spec, bits 32-47 contain the extra "flag number". However, we * have no use for it, and in all known usecases it is zero, so just * report lookup failure if it isn't. */ if (param & 0xffff00000000ULL) return HV_STATUS_INVALID_PORT_ID; /* remaining bits are reserved-zero */ if (param & ~KVM_HYPERV_CONN_ID_MASK) return HV_STATUS_INVALID_HYPERCALL_INPUT; /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */ rcu_read_lock(); eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param); rcu_read_unlock(); if (!eventfd) return HV_STATUS_INVALID_PORT_ID; eventfd_signal(eventfd, 1); return HV_STATUS_SUCCESS; } int kvm_hv_hypercall(struct kvm_vcpu *vcpu) { u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS; uint16_t code, rep_idx, rep_cnt; bool fast, longmode, rep; /* * hypercall generates UD from non zero cpl and real mode * per HYPER-V spec */ if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } longmode = is_64_bit_mode(vcpu); if (!longmode) { param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); } #ifdef CONFIG_X86_64 else { param = kvm_register_read(vcpu, VCPU_REGS_RCX); ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); } #endif code = param & 0xffff; fast = !!(param & HV_HYPERCALL_FAST_BIT); rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff; rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff; rep = !!(rep_cnt || rep_idx); trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); switch (code) { case HVCALL_NOTIFY_LONG_SPIN_WAIT: if (unlikely(rep)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } kvm_vcpu_on_spin(vcpu, true); break; case HVCALL_SIGNAL_EVENT: if (unlikely(rep)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } ret = kvm_hvcall_signal_event(vcpu, fast, ingpa); if (ret != HV_STATUS_INVALID_PORT_ID) break; /* maybe userspace knows this conn_id: fall through */ case HVCALL_POST_MESSAGE: /* don't bother userspace if it has no way to handle it */ if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } vcpu->run->exit_reason = KVM_EXIT_HYPERV; vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL; vcpu->run->hyperv.u.hcall.input = param; vcpu->run->hyperv.u.hcall.params[0] = ingpa; vcpu->run->hyperv.u.hcall.params[1] = outgpa; vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace; return 0; case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: if (unlikely(fast || !rep_cnt || rep_idx)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false); break; case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: if (unlikely(fast || rep)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false); break; case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: if (unlikely(fast || !rep_cnt || rep_idx)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true); break; case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: if (unlikely(fast || rep)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true); break; default: ret = HV_STATUS_INVALID_HYPERCALL_CODE; break; } return kvm_hv_hypercall_complete(vcpu, ret); } void kvm_hv_init_vm(struct kvm *kvm) { mutex_init(&kvm->arch.hyperv.hv_lock); idr_init(&kvm->arch.hyperv.conn_to_evt); } void kvm_hv_destroy_vm(struct kvm *kvm) { struct eventfd_ctx *eventfd; int i; idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i) eventfd_ctx_put(eventfd); idr_destroy(&kvm->arch.hyperv.conn_to_evt); } static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd) { struct kvm_hv *hv = &kvm->arch.hyperv; struct eventfd_ctx *eventfd; int ret; eventfd = eventfd_ctx_fdget(fd); if (IS_ERR(eventfd)) return PTR_ERR(eventfd); mutex_lock(&hv->hv_lock); ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1, GFP_KERNEL); mutex_unlock(&hv->hv_lock); if (ret >= 0) return 0; if (ret == -ENOSPC) ret = -EEXIST; eventfd_ctx_put(eventfd); return ret; } static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id) { struct kvm_hv *hv = &kvm->arch.hyperv; struct eventfd_ctx *eventfd; mutex_lock(&hv->hv_lock); eventfd = idr_remove(&hv->conn_to_evt, conn_id); mutex_unlock(&hv->hv_lock); if (!eventfd) return -ENOENT; synchronize_srcu(&kvm->srcu); eventfd_ctx_put(eventfd); return 0; } int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args) { if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) || (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK)) return -EINVAL; if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN) return kvm_hv_eventfd_deassign(kvm, args->conn_id); return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd); }