/* * arch/arch/mach-tegra/timer.c * * Copyright (C) 2010 Google, Inc. * * Author: * Colin Cross * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "board.h" #include "clock.h" #define RTC_SECONDS 0x08 #define RTC_SHADOW_SECONDS 0x0c #define RTC_MILLISECONDS 0x10 #define TIMERUS_CNTR_1US 0x10 #define TIMERUS_USEC_CFG 0x14 #define TIMERUS_CNTR_FREEZE 0x4c #define TIMER1_BASE 0x0 #define TIMER2_BASE 0x8 #define TIMER3_BASE 0x50 #define TIMER4_BASE 0x58 #define TIMER_PTV 0x0 #define TIMER_PCR 0x4 static void __iomem *timer_reg_base = IO_ADDRESS(TEGRA_TMR1_BASE); static void __iomem *rtc_base = IO_ADDRESS(TEGRA_RTC_BASE); static struct timespec persistent_ts; static u64 persistent_ms, last_persistent_ms; #define timer_writel(value, reg) \ __raw_writel(value, (u32)timer_reg_base + (reg)) #define timer_readl(reg) \ __raw_readl((u32)timer_reg_base + (reg)) static int tegra_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { u32 reg; reg = 0x80000000 | ((cycles > 1) ? (cycles-1) : 0); timer_writel(reg, TIMER3_BASE + TIMER_PTV); return 0; } static void tegra_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { u32 reg; timer_writel(0, TIMER3_BASE + TIMER_PTV); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: reg = 0xC0000000 | ((1000000/HZ)-1); timer_writel(reg, TIMER3_BASE + TIMER_PTV); break; case CLOCK_EVT_MODE_ONESHOT: break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_RESUME: break; } } static cycle_t tegra_clocksource_read(struct clocksource *cs) { return timer_readl(TIMERUS_CNTR_1US); } static struct clock_event_device tegra_clockevent = { .name = "timer0", .rating = 300, .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .set_next_event = tegra_timer_set_next_event, .set_mode = tegra_timer_set_mode, }; static struct clocksource tegra_clocksource = { .name = "timer_us", .rating = 300, .read = tegra_clocksource_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static DEFINE_CLOCK_DATA(cd); /* * Constants generated by clocks_calc_mult_shift(m, s, 1MHz, NSEC_PER_SEC, 60). * This gives a resolution of about 1us and a wrap period of about 1h11min. */ #define SC_MULT 4194304000u #define SC_SHIFT 22 unsigned long long notrace sched_clock(void) { u32 cyc = timer_readl(TIMERUS_CNTR_1US); return cyc_to_fixed_sched_clock(&cd, cyc, (u32)~0, SC_MULT, SC_SHIFT); } static void notrace tegra_update_sched_clock(void) { u32 cyc = timer_readl(TIMERUS_CNTR_1US); update_sched_clock(&cd, cyc, (u32)~0); } /* * tegra_rtc_read - Reads the Tegra RTC registers * Care must be taken that this funciton is not called while the * tegra_rtc driver could be executing to avoid race conditions * on the RTC shadow register */ u64 tegra_rtc_read_ms(void) { u32 ms = readl(rtc_base + RTC_MILLISECONDS); u32 s = readl(rtc_base + RTC_SHADOW_SECONDS); return (u64)s * MSEC_PER_SEC + ms; } /* * read_persistent_clock - Return time from a persistent clock. * * Reads the time from a source which isn't disabled during PM, the * 32k sync timer. Convert the cycles elapsed since last read into * nsecs and adds to a monotonically increasing timespec. * Care must be taken that this funciton is not called while the * tegra_rtc driver could be executing to avoid race conditions * on the RTC shadow register */ void read_persistent_clock(struct timespec *ts) { u64 delta; struct timespec *tsp = &persistent_ts; last_persistent_ms = persistent_ms; persistent_ms = tegra_rtc_read_ms(); delta = persistent_ms - last_persistent_ms; timespec_add_ns(tsp, delta * NSEC_PER_MSEC); *ts = *tsp; } static irqreturn_t tegra_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = (struct clock_event_device *)dev_id; timer_writel(1<<30, TIMER3_BASE + TIMER_PCR); evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction tegra_timer_irq = { .name = "timer0", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_TRIGGER_HIGH, .handler = tegra_timer_interrupt, .dev_id = &tegra_clockevent, .irq = INT_TMR3, }; static void __init tegra_init_timer(void) { unsigned long rate = clk_measure_input_freq(); int ret; #ifdef CONFIG_HAVE_ARM_TWD twd_base = IO_ADDRESS(TEGRA_ARM_PERIF_BASE + 0x600); #endif switch (rate) { case 12000000: timer_writel(0x000b, TIMERUS_USEC_CFG); break; case 13000000: timer_writel(0x000c, TIMERUS_USEC_CFG); break; case 19200000: timer_writel(0x045f, TIMERUS_USEC_CFG); break; case 26000000: timer_writel(0x0019, TIMERUS_USEC_CFG); break; default: WARN(1, "Unknown clock rate"); } init_fixed_sched_clock(&cd, tegra_update_sched_clock, 32, 1000000, SC_MULT, SC_SHIFT); if (clocksource_register_hz(&tegra_clocksource, 1000000)) { printk(KERN_ERR "Failed to register clocksource\n"); BUG(); } ret = setup_irq(tegra_timer_irq.irq, &tegra_timer_irq); if (ret) { printk(KERN_ERR "Failed to register timer IRQ: %d\n", ret); BUG(); } clockevents_calc_mult_shift(&tegra_clockevent, 1000000, 5); tegra_clockevent.max_delta_ns = clockevent_delta2ns(0x1fffffff, &tegra_clockevent); tegra_clockevent.min_delta_ns = clockevent_delta2ns(0x1, &tegra_clockevent); tegra_clockevent.cpumask = cpu_all_mask; tegra_clockevent.irq = tegra_timer_irq.irq; clockevents_register_device(&tegra_clockevent); return; } struct sys_timer tegra_timer = { .init = tegra_init_timer, }; #ifdef CONFIG_PM static u32 usec_config; void tegra_timer_suspend(void) { usec_config = timer_readl(TIMERUS_USEC_CFG); } void tegra_timer_resume(void) { timer_writel(usec_config, TIMERUS_USEC_CFG); } #endif