/* * Afatech AF9033 demodulator driver * * Copyright (C) 2009 Antti Palosaari * Copyright (C) 2012 Antti Palosaari * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "af9033_priv.h" struct af9033_state { struct i2c_adapter *i2c; struct dvb_frontend fe; struct af9033_config cfg; u32 bandwidth_hz; bool ts_mode_parallel; bool ts_mode_serial; u32 ber; u32 ucb; unsigned long last_stat_check; }; /* write multiple registers */ static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val, int len) { int ret; u8 buf[3 + len]; struct i2c_msg msg[1] = { { .addr = state->cfg.i2c_addr, .flags = 0, .len = sizeof(buf), .buf = buf, } }; buf[0] = (reg >> 16) & 0xff; buf[1] = (reg >> 8) & 0xff; buf[2] = (reg >> 0) & 0xff; memcpy(&buf[3], val, len); ret = i2c_transfer(state->i2c, msg, 1); if (ret == 1) { ret = 0; } else { dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \ "len=%d\n", KBUILD_MODNAME, ret, reg, len); ret = -EREMOTEIO; } return ret; } /* read multiple registers */ static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len) { int ret; u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff, (reg >> 0) & 0xff }; struct i2c_msg msg[2] = { { .addr = state->cfg.i2c_addr, .flags = 0, .len = sizeof(buf), .buf = buf }, { .addr = state->cfg.i2c_addr, .flags = I2C_M_RD, .len = len, .buf = val } }; ret = i2c_transfer(state->i2c, msg, 2); if (ret == 2) { ret = 0; } else { dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \ "len=%d\n", KBUILD_MODNAME, ret, reg, len); ret = -EREMOTEIO; } return ret; } /* write single register */ static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val) { return af9033_wr_regs(state, reg, &val, 1); } /* read single register */ static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val) { return af9033_rd_regs(state, reg, val, 1); } /* write single register with mask */ static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val, u8 mask) { int ret; u8 tmp; /* no need for read if whole reg is written */ if (mask != 0xff) { ret = af9033_rd_regs(state, reg, &tmp, 1); if (ret) return ret; val &= mask; tmp &= ~mask; val |= tmp; } return af9033_wr_regs(state, reg, &val, 1); } /* read single register with mask */ static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val, u8 mask) { int ret, i; u8 tmp; ret = af9033_rd_regs(state, reg, &tmp, 1); if (ret) return ret; tmp &= mask; /* find position of the first bit */ for (i = 0; i < 8; i++) { if ((mask >> i) & 0x01) break; } *val = tmp >> i; return 0; } static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x) { u32 r = 0, c = 0, i; dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x); if (a > b) { c = a / b; a = a - c * b; } for (i = 0; i < x; i++) { if (a >= b) { r += 1; a -= b; } a <<= 1; r <<= 1; } r = (c << (u32)x) + r; dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n", __func__, a, b, x, r, r); return r; } static void af9033_release(struct dvb_frontend *fe) { struct af9033_state *state = fe->demodulator_priv; kfree(state); } static int af9033_init(struct dvb_frontend *fe) { struct af9033_state *state = fe->demodulator_priv; int ret, i, len; const struct reg_val *init; u8 buf[4]; u32 adc_cw, clock_cw; struct reg_val_mask tab[] = { { 0x80fb24, 0x00, 0x08 }, { 0x80004c, 0x00, 0xff }, { 0x00f641, state->cfg.tuner, 0xff }, { 0x80f5ca, 0x01, 0x01 }, { 0x80f715, 0x01, 0x01 }, { 0x00f41f, 0x04, 0x04 }, { 0x00f41a, 0x01, 0x01 }, { 0x80f731, 0x00, 0x01 }, { 0x00d91e, 0x00, 0x01 }, { 0x00d919, 0x00, 0x01 }, { 0x80f732, 0x00, 0x01 }, { 0x00d91f, 0x00, 0x01 }, { 0x00d91a, 0x00, 0x01 }, { 0x80f730, 0x00, 0x01 }, { 0x80f778, 0x00, 0xff }, { 0x80f73c, 0x01, 0x01 }, { 0x80f776, 0x00, 0x01 }, { 0x00d8fd, 0x01, 0xff }, { 0x00d830, 0x01, 0xff }, { 0x00d831, 0x00, 0xff }, { 0x00d832, 0x00, 0xff }, { 0x80f985, state->ts_mode_serial, 0x01 }, { 0x80f986, state->ts_mode_parallel, 0x01 }, { 0x00d827, 0x00, 0xff }, { 0x00d829, 0x00, 0xff }, { 0x800045, state->cfg.adc_multiplier, 0xff }, }; /* program clock control */ clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul); buf[0] = (clock_cw >> 0) & 0xff; buf[1] = (clock_cw >> 8) & 0xff; buf[2] = (clock_cw >> 16) & 0xff; buf[3] = (clock_cw >> 24) & 0xff; dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n", __func__, state->cfg.clock, clock_cw); ret = af9033_wr_regs(state, 0x800025, buf, 4); if (ret < 0) goto err; /* program ADC control */ for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) { if (clock_adc_lut[i].clock == state->cfg.clock) break; } adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul); buf[0] = (adc_cw >> 0) & 0xff; buf[1] = (adc_cw >> 8) & 0xff; buf[2] = (adc_cw >> 16) & 0xff; dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n", __func__, clock_adc_lut[i].adc, adc_cw); ret = af9033_wr_regs(state, 0x80f1cd, buf, 3); if (ret < 0) goto err; /* program register table */ for (i = 0; i < ARRAY_SIZE(tab); i++) { ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val, tab[i].mask); if (ret < 0) goto err; } /* settings for TS interface */ if (state->cfg.ts_mode == AF9033_TS_MODE_USB) { ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01); if (ret < 0) goto err; ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01); if (ret < 0) goto err; } else { ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01); if (ret < 0) goto err; ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01); if (ret < 0) goto err; } /* load OFSM settings */ dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__); switch (state->cfg.tuner) { case AF9033_TUNER_IT9135_38: case AF9033_TUNER_IT9135_51: case AF9033_TUNER_IT9135_52: len = ARRAY_SIZE(ofsm_init_it9135_v1); init = ofsm_init_it9135_v1; break; case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: len = ARRAY_SIZE(ofsm_init_it9135_v2); init = ofsm_init_it9135_v2; break; default: len = ARRAY_SIZE(ofsm_init); init = ofsm_init; break; } for (i = 0; i < len; i++) { ret = af9033_wr_reg(state, init[i].reg, init[i].val); if (ret < 0) goto err; } /* load tuner specific settings */ dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n", __func__); switch (state->cfg.tuner) { case AF9033_TUNER_TUA9001: len = ARRAY_SIZE(tuner_init_tua9001); init = tuner_init_tua9001; break; case AF9033_TUNER_FC0011: len = ARRAY_SIZE(tuner_init_fc0011); init = tuner_init_fc0011; break; case AF9033_TUNER_MXL5007T: len = ARRAY_SIZE(tuner_init_mxl5007t); init = tuner_init_mxl5007t; break; case AF9033_TUNER_TDA18218: len = ARRAY_SIZE(tuner_init_tda18218); init = tuner_init_tda18218; break; case AF9033_TUNER_FC2580: len = ARRAY_SIZE(tuner_init_fc2580); init = tuner_init_fc2580; break; case AF9033_TUNER_FC0012: len = ARRAY_SIZE(tuner_init_fc0012); init = tuner_init_fc0012; break; case AF9033_TUNER_IT9135_38: len = ARRAY_SIZE(tuner_init_it9135_38); init = tuner_init_it9135_38; break; case AF9033_TUNER_IT9135_51: len = ARRAY_SIZE(tuner_init_it9135_51); init = tuner_init_it9135_51; break; case AF9033_TUNER_IT9135_52: len = ARRAY_SIZE(tuner_init_it9135_52); init = tuner_init_it9135_52; break; case AF9033_TUNER_IT9135_60: len = ARRAY_SIZE(tuner_init_it9135_60); init = tuner_init_it9135_60; break; case AF9033_TUNER_IT9135_61: len = ARRAY_SIZE(tuner_init_it9135_61); init = tuner_init_it9135_61; break; case AF9033_TUNER_IT9135_62: len = ARRAY_SIZE(tuner_init_it9135_62); init = tuner_init_it9135_62; break; default: dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n", __func__, state->cfg.tuner); ret = -ENODEV; goto err; } for (i = 0; i < len; i++) { ret = af9033_wr_reg(state, init[i].reg, init[i].val); if (ret < 0) goto err; } if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) { ret = af9033_wr_reg_mask(state, 0x00d91c, 0x01, 0x01); if (ret < 0) goto err; ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01); if (ret < 0) goto err; ret = af9033_wr_reg_mask(state, 0x00d916, 0x00, 0x01); if (ret < 0) goto err; } switch (state->cfg.tuner) { case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: ret = af9033_wr_reg(state, 0x800000, 0x01); if (ret < 0) goto err; } state->bandwidth_hz = 0; /* force to program all parameters */ return 0; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9033_sleep(struct dvb_frontend *fe) { struct af9033_state *state = fe->demodulator_priv; int ret, i; u8 tmp; ret = af9033_wr_reg(state, 0x80004c, 1); if (ret < 0) goto err; ret = af9033_wr_reg(state, 0x800000, 0); if (ret < 0) goto err; for (i = 100, tmp = 1; i && tmp; i--) { ret = af9033_rd_reg(state, 0x80004c, &tmp); if (ret < 0) goto err; usleep_range(200, 10000); } dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i); if (i == 0) { ret = -ETIMEDOUT; goto err; } ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08); if (ret < 0) goto err; /* prevent current leak (?) */ if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) { /* enable parallel TS */ ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01); if (ret < 0) goto err; ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01); if (ret < 0) goto err; } return 0; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9033_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *fesettings) { /* 800 => 2000 because IT9135 v2 is slow to gain lock */ fesettings->min_delay_ms = 2000; fesettings->step_size = 0; fesettings->max_drift = 0; return 0; } static int af9033_set_frontend(struct dvb_frontend *fe) { struct af9033_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int ret, i, spec_inv, sampling_freq; u8 tmp, buf[3], bandwidth_reg_val; u32 if_frequency, freq_cw, adc_freq; dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n", __func__, c->frequency, c->bandwidth_hz); /* check bandwidth */ switch (c->bandwidth_hz) { case 6000000: bandwidth_reg_val = 0x00; break; case 7000000: bandwidth_reg_val = 0x01; break; case 8000000: bandwidth_reg_val = 0x02; break; default: dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n", __func__); ret = -EINVAL; goto err; } /* program tuner */ if (fe->ops.tuner_ops.set_params) fe->ops.tuner_ops.set_params(fe); /* program CFOE coefficients */ if (c->bandwidth_hz != state->bandwidth_hz) { for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) { if (coeff_lut[i].clock == state->cfg.clock && coeff_lut[i].bandwidth_hz == c->bandwidth_hz) { break; } } ret = af9033_wr_regs(state, 0x800001, coeff_lut[i].val, sizeof(coeff_lut[i].val)); } /* program frequency control */ if (c->bandwidth_hz != state->bandwidth_hz) { spec_inv = state->cfg.spec_inv ? -1 : 1; for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) { if (clock_adc_lut[i].clock == state->cfg.clock) break; } adc_freq = clock_adc_lut[i].adc; /* get used IF frequency */ if (fe->ops.tuner_ops.get_if_frequency) fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency); else if_frequency = 0; sampling_freq = if_frequency; while (sampling_freq > (adc_freq / 2)) sampling_freq -= adc_freq; if (sampling_freq >= 0) spec_inv *= -1; else sampling_freq *= -1; freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul); if (spec_inv == -1) freq_cw = 0x800000 - freq_cw; if (state->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X) freq_cw /= 2; buf[0] = (freq_cw >> 0) & 0xff; buf[1] = (freq_cw >> 8) & 0xff; buf[2] = (freq_cw >> 16) & 0x7f; /* FIXME: there seems to be calculation error here... */ if (if_frequency == 0) buf[2] = 0; ret = af9033_wr_regs(state, 0x800029, buf, 3); if (ret < 0) goto err; state->bandwidth_hz = c->bandwidth_hz; } ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03); if (ret < 0) goto err; ret = af9033_wr_reg(state, 0x800040, 0x00); if (ret < 0) goto err; ret = af9033_wr_reg(state, 0x800047, 0x00); if (ret < 0) goto err; ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01); if (ret < 0) goto err; if (c->frequency <= 230000000) tmp = 0x00; /* VHF */ else tmp = 0x01; /* UHF */ ret = af9033_wr_reg(state, 0x80004b, tmp); if (ret < 0) goto err; ret = af9033_wr_reg(state, 0x800000, 0x00); if (ret < 0) goto err; return 0; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9033_get_frontend(struct dvb_frontend *fe) { struct af9033_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int ret; u8 buf[8]; dev_dbg(&state->i2c->dev, "%s:\n", __func__); /* read all needed registers */ ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf)); if (ret < 0) goto err; switch ((buf[0] >> 0) & 3) { case 0: c->transmission_mode = TRANSMISSION_MODE_2K; break; case 1: c->transmission_mode = TRANSMISSION_MODE_8K; break; } switch ((buf[1] >> 0) & 3) { case 0: c->guard_interval = GUARD_INTERVAL_1_32; break; case 1: c->guard_interval = GUARD_INTERVAL_1_16; break; case 2: c->guard_interval = GUARD_INTERVAL_1_8; break; case 3: c->guard_interval = GUARD_INTERVAL_1_4; break; } switch ((buf[2] >> 0) & 7) { case 0: c->hierarchy = HIERARCHY_NONE; break; case 1: c->hierarchy = HIERARCHY_1; break; case 2: c->hierarchy = HIERARCHY_2; break; case 3: c->hierarchy = HIERARCHY_4; break; } switch ((buf[3] >> 0) & 3) { case 0: c->modulation = QPSK; break; case 1: c->modulation = QAM_16; break; case 2: c->modulation = QAM_64; break; } switch ((buf[4] >> 0) & 3) { case 0: c->bandwidth_hz = 6000000; break; case 1: c->bandwidth_hz = 7000000; break; case 2: c->bandwidth_hz = 8000000; break; } switch ((buf[6] >> 0) & 7) { case 0: c->code_rate_HP = FEC_1_2; break; case 1: c->code_rate_HP = FEC_2_3; break; case 2: c->code_rate_HP = FEC_3_4; break; case 3: c->code_rate_HP = FEC_5_6; break; case 4: c->code_rate_HP = FEC_7_8; break; case 5: c->code_rate_HP = FEC_NONE; break; } switch ((buf[7] >> 0) & 7) { case 0: c->code_rate_LP = FEC_1_2; break; case 1: c->code_rate_LP = FEC_2_3; break; case 2: c->code_rate_LP = FEC_3_4; break; case 3: c->code_rate_LP = FEC_5_6; break; case 4: c->code_rate_LP = FEC_7_8; break; case 5: c->code_rate_LP = FEC_NONE; break; } return 0; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status) { struct af9033_state *state = fe->demodulator_priv; int ret; u8 tmp; *status = 0; /* radio channel status, 0=no result, 1=has signal, 2=no signal */ ret = af9033_rd_reg(state, 0x800047, &tmp); if (ret < 0) goto err; /* has signal */ if (tmp == 0x01) *status |= FE_HAS_SIGNAL; if (tmp != 0x02) { /* TPS lock */ ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01); if (ret < 0) goto err; if (tmp) *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI; /* full lock */ ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01); if (ret < 0) goto err; if (tmp) *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; } return 0; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr) { struct af9033_state *state = fe->demodulator_priv; int ret, i, len; u8 buf[3], tmp; u32 snr_val; const struct val_snr *uninitialized_var(snr_lut); /* read value */ ret = af9033_rd_regs(state, 0x80002c, buf, 3); if (ret < 0) goto err; snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0]; /* read current modulation */ ret = af9033_rd_reg(state, 0x80f903, &tmp); if (ret < 0) goto err; switch ((tmp >> 0) & 3) { case 0: len = ARRAY_SIZE(qpsk_snr_lut); snr_lut = qpsk_snr_lut; break; case 1: len = ARRAY_SIZE(qam16_snr_lut); snr_lut = qam16_snr_lut; break; case 2: len = ARRAY_SIZE(qam64_snr_lut); snr_lut = qam64_snr_lut; break; default: goto err; } for (i = 0; i < len; i++) { tmp = snr_lut[i].snr; if (snr_val < snr_lut[i].val) break; } *snr = tmp * 10; /* dB/10 */ return 0; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct af9033_state *state = fe->demodulator_priv; int ret; u8 strength2; /* read signal strength of 0-100 scale */ ret = af9033_rd_reg(state, 0x800048, &strength2); if (ret < 0) goto err; /* scale value to 0x0000-0xffff */ *strength = strength2 * 0xffff / 100; return 0; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9033_update_ch_stat(struct af9033_state *state) { int ret = 0; u32 err_cnt, bit_cnt; u16 abort_cnt; u8 buf[7]; /* only update data every half second */ if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) { ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf)); if (ret < 0) goto err; /* in 8 byte packets? */ abort_cnt = (buf[1] << 8) + buf[0]; /* in bits */ err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2]; /* in 8 byte packets? always(?) 0x2710 = 10000 */ bit_cnt = (buf[6] << 8) + buf[5]; if (bit_cnt < abort_cnt) { abort_cnt = 1000; state->ber = 0xffffffff; } else { /* 8 byte packets, that have not been rejected already */ bit_cnt -= (u32)abort_cnt; if (bit_cnt == 0) { state->ber = 0xffffffff; } else { err_cnt -= (u32)abort_cnt * 8 * 8; bit_cnt *= 8 * 8; state->ber = err_cnt * (0xffffffff / bit_cnt); } } state->ucb += abort_cnt; state->last_stat_check = jiffies; } return 0; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber) { struct af9033_state *state = fe->demodulator_priv; int ret; ret = af9033_update_ch_stat(state); if (ret < 0) return ret; *ber = state->ber; return 0; } static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct af9033_state *state = fe->demodulator_priv; int ret; ret = af9033_update_ch_stat(state); if (ret < 0) return ret; *ucblocks = state->ucb; return 0; } static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { struct af9033_state *state = fe->demodulator_priv; int ret; dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable); ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01); if (ret < 0) goto err; return 0; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static struct dvb_frontend_ops af9033_ops; struct dvb_frontend *af9033_attach(const struct af9033_config *config, struct i2c_adapter *i2c) { int ret; struct af9033_state *state; u8 buf[8]; dev_dbg(&i2c->dev, "%s:\n", __func__); /* allocate memory for the internal state */ state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL); if (state == NULL) goto err; /* setup the state */ state->i2c = i2c; memcpy(&state->cfg, config, sizeof(struct af9033_config)); if (state->cfg.clock != 12000000) { dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \ "only 12000000 Hz is supported currently\n", KBUILD_MODNAME, state->cfg.clock); goto err; } /* firmware version */ ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4); if (ret < 0) goto err; ret = af9033_rd_regs(state, 0x804191, &buf[4], 4); if (ret < 0) goto err; dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \ "OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]); /* FIXME: Do not abuse adc_multiplier for detecting IT9135 */ if (state->cfg.adc_multiplier != AF9033_ADC_MULTIPLIER_2X) { /* sleep */ ret = af9033_wr_reg(state, 0x80004c, 1); if (ret < 0) goto err; ret = af9033_wr_reg(state, 0x800000, 0); if (ret < 0) goto err; } /* configure internal TS mode */ switch (state->cfg.ts_mode) { case AF9033_TS_MODE_PARALLEL: state->ts_mode_parallel = true; break; case AF9033_TS_MODE_SERIAL: state->ts_mode_serial = true; break; case AF9033_TS_MODE_USB: /* usb mode for AF9035 */ default: break; } /* create dvb_frontend */ memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops)); state->fe.demodulator_priv = state; return &state->fe; err: kfree(state); return NULL; } EXPORT_SYMBOL(af9033_attach); static struct dvb_frontend_ops af9033_ops = { .delsys = { SYS_DVBT }, .info = { .name = "Afatech AF9033 (DVB-T)", .frequency_min = 174000000, .frequency_max = 862000000, .frequency_stepsize = 250000, .frequency_tolerance = 0, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS }, .release = af9033_release, .init = af9033_init, .sleep = af9033_sleep, .get_tune_settings = af9033_get_tune_settings, .set_frontend = af9033_set_frontend, .get_frontend = af9033_get_frontend, .read_status = af9033_read_status, .read_snr = af9033_read_snr, .read_signal_strength = af9033_read_signal_strength, .read_ber = af9033_read_ber, .read_ucblocks = af9033_read_ucblocks, .i2c_gate_ctrl = af9033_i2c_gate_ctrl, }; MODULE_AUTHOR("Antti Palosaari "); MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver"); MODULE_LICENSE("GPL");