/* Copyright 2008 - 2016 Freescale Semiconductor Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fman.h" #include "fman_port.h" #include "mac.h" #include "dpaa_eth.h" /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files * using trace events only need to #include */ #define CREATE_TRACE_POINTS #include "dpaa_eth_trace.h" static int debug = -1; module_param(debug, int, 0444); MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); static u16 tx_timeout = 1000; module_param(tx_timeout, ushort, 0444); MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); #define FM_FD_STAT_RX_ERRORS \ (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ FM_FD_ERR_PRS_HDR_ERR) #define FM_FD_STAT_TX_ERRORS \ (FM_FD_ERR_UNSUPPORTED_FORMAT | \ FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ NETIF_MSG_LINK | NETIF_MSG_IFUP | \ NETIF_MSG_IFDOWN) #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 /* Ingress congestion threshold on FMan ports * The size in bytes of the ingress tail-drop threshold on FMan ports. * Traffic piling up above this value will be rejected by QMan and discarded * by FMan. */ /* Size in bytes of the FQ taildrop threshold */ #define DPAA_FQ_TD 0x200000 #define DPAA_CS_THRESHOLD_1G 0x06000000 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 * The size in bytes of the egress Congestion State notification threshold on * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), * and the larger the frame size, the more acute the problem. * So we have to find a balance between these factors: * - avoiding the device staying congested for a prolonged time (risking * the netdev watchdog to fire - see also the tx_timeout module param); * - affecting performance of protocols such as TCP, which otherwise * behave well under the congestion notification mechanism; * - preventing the Tx cores from tightly-looping (as if the congestion * threshold was too low to be effective); * - running out of memory if the CS threshold is set too high. */ #define DPAA_CS_THRESHOLD_10G 0x10000000 /* The size in bytes of the egress Congestion State notification threshold on * 10G ports, range 0x1000 .. 0x10000000 */ /* Largest value that the FQD's OAL field can hold */ #define FSL_QMAN_MAX_OAL 127 /* Default alignment for start of data in an Rx FD */ #define DPAA_FD_DATA_ALIGNMENT 16 /* Values for the L3R field of the FM Parse Results */ /* L3 Type field: First IP Present IPv4 */ #define FM_L3_PARSE_RESULT_IPV4 0x8000 /* L3 Type field: First IP Present IPv6 */ #define FM_L3_PARSE_RESULT_IPV6 0x4000 /* Values for the L4R field of the FM Parse Results */ /* L4 Type field: UDP */ #define FM_L4_PARSE_RESULT_UDP 0x40 /* L4 Type field: TCP */ #define FM_L4_PARSE_RESULT_TCP 0x20 /* FD status field indicating whether the FM Parser has attempted to validate * the L4 csum of the frame. * Note that having this bit set doesn't necessarily imply that the checksum * is valid. One would have to check the parse results to find that out. */ #define FM_FD_STAT_L4CV 0x00000004 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ #define FSL_DPAA_BPID_INV 0xff #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 #define DPAA_TX_PRIV_DATA_SIZE 16 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) #define DPAA_TIME_STAMP_SIZE 8 #define DPAA_HASH_RESULTS_SIZE 8 #define DPAA_RX_PRIV_DATA_SIZE (u16)(DPAA_TX_PRIV_DATA_SIZE + \ dpaa_rx_extra_headroom) #define DPAA_ETH_PCD_RXQ_NUM 128 #define DPAA_ENQUEUE_RETRIES 100000 enum port_type {RX, TX}; struct fm_port_fqs { struct dpaa_fq *tx_defq; struct dpaa_fq *tx_errq; struct dpaa_fq *rx_defq; struct dpaa_fq *rx_errq; struct dpaa_fq *rx_pcdq; }; /* All the dpa bps in use at any moment */ static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; /* The raw buffer size must be cacheline aligned */ #define DPAA_BP_RAW_SIZE 4096 /* When using more than one buffer pool, the raw sizes are as follows: * 1 bp: 4KB * 2 bp: 2KB, 4KB * 3 bp: 1KB, 2KB, 4KB * 4 bp: 1KB, 2KB, 4KB, 8KB */ static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt) { size_t res = DPAA_BP_RAW_SIZE / 4; u8 i; for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++) res *= 2; return res; } /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that, * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us * half-page-aligned buffers, so we reserve some more space for start-of-buffer * alignment. */ #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES) static int dpaa_max_frm; static int dpaa_rx_extra_headroom; #define dpaa_get_max_mtu() \ (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) static int dpaa_netdev_init(struct net_device *net_dev, const struct net_device_ops *dpaa_ops, u16 tx_timeout) { struct dpaa_priv *priv = netdev_priv(net_dev); struct device *dev = net_dev->dev.parent; struct dpaa_percpu_priv *percpu_priv; const u8 *mac_addr; int i, err; /* Although we access another CPU's private data here * we do it at initialization so it is safe */ for_each_possible_cpu(i) { percpu_priv = per_cpu_ptr(priv->percpu_priv, i); percpu_priv->net_dev = net_dev; } net_dev->netdev_ops = dpaa_ops; mac_addr = priv->mac_dev->addr; net_dev->mem_start = priv->mac_dev->res->start; net_dev->mem_end = priv->mac_dev->res->end; net_dev->min_mtu = ETH_MIN_MTU; net_dev->max_mtu = dpaa_get_max_mtu(); net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_LLTX | NETIF_F_RXHASH); net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; /* The kernels enables GSO automatically, if we declare NETIF_F_SG. * For conformity, we'll still declare GSO explicitly. */ net_dev->features |= NETIF_F_GSO; net_dev->features |= NETIF_F_RXCSUM; net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; /* we do not want shared skbs on TX */ net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; net_dev->features |= net_dev->hw_features; net_dev->vlan_features = net_dev->features; memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); net_dev->ethtool_ops = &dpaa_ethtool_ops; net_dev->needed_headroom = priv->tx_headroom; net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout); /* start without the RUNNING flag, phylib controls it later */ netif_carrier_off(net_dev); err = register_netdev(net_dev); if (err < 0) { dev_err(dev, "register_netdev() = %d\n", err); return err; } return 0; } static int dpaa_stop(struct net_device *net_dev) { struct mac_device *mac_dev; struct dpaa_priv *priv; int i, err, error; priv = netdev_priv(net_dev); mac_dev = priv->mac_dev; netif_tx_stop_all_queues(net_dev); /* Allow the Fman (Tx) port to process in-flight frames before we * try switching it off. */ usleep_range(5000, 10000); err = mac_dev->stop(mac_dev); if (err < 0) netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n", err); for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { error = fman_port_disable(mac_dev->port[i]); if (error) err = error; } if (net_dev->phydev) phy_disconnect(net_dev->phydev); net_dev->phydev = NULL; return err; } static void dpaa_tx_timeout(struct net_device *net_dev) { struct dpaa_percpu_priv *percpu_priv; const struct dpaa_priv *priv; priv = netdev_priv(net_dev); percpu_priv = this_cpu_ptr(priv->percpu_priv); netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); percpu_priv->stats.tx_errors++; } /* Calculates the statistics for the given device by adding the statistics * collected by each CPU. */ static void dpaa_get_stats64(struct net_device *net_dev, struct rtnl_link_stats64 *s) { int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); struct dpaa_priv *priv = netdev_priv(net_dev); struct dpaa_percpu_priv *percpu_priv; u64 *netstats = (u64 *)s; u64 *cpustats; int i, j; for_each_possible_cpu(i) { percpu_priv = per_cpu_ptr(priv->percpu_priv, i); cpustats = (u64 *)&percpu_priv->stats; /* add stats from all CPUs */ for (j = 0; j < numstats; j++) netstats[j] += cpustats[j]; } } static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type, void *type_data) { struct dpaa_priv *priv = netdev_priv(net_dev); struct tc_mqprio_qopt *mqprio = type_data; u8 num_tc; int i; if (type != TC_SETUP_MQPRIO) return -EOPNOTSUPP; mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; num_tc = mqprio->num_tc; if (num_tc == priv->num_tc) return 0; if (!num_tc) { netdev_reset_tc(net_dev); goto out; } if (num_tc > DPAA_TC_NUM) { netdev_err(net_dev, "Too many traffic classes: max %d supported.\n", DPAA_TC_NUM); return -EINVAL; } netdev_set_num_tc(net_dev, num_tc); for (i = 0; i < num_tc; i++) netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM, i * DPAA_TC_TXQ_NUM); out: priv->num_tc = num_tc ? : 1; netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); return 0; } static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) { struct dpaa_eth_data *eth_data; struct device *dpaa_dev; struct mac_device *mac_dev; dpaa_dev = &pdev->dev; eth_data = dpaa_dev->platform_data; if (!eth_data) { dev_err(dpaa_dev, "eth_data missing\n"); return ERR_PTR(-ENODEV); } mac_dev = eth_data->mac_dev; if (!mac_dev) { dev_err(dpaa_dev, "mac_dev missing\n"); return ERR_PTR(-EINVAL); } return mac_dev; } static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) { const struct dpaa_priv *priv; struct mac_device *mac_dev; struct sockaddr old_addr; int err; priv = netdev_priv(net_dev); memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); err = eth_mac_addr(net_dev, addr); if (err < 0) { netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); return err; } mac_dev = priv->mac_dev; err = mac_dev->change_addr(mac_dev->fman_mac, (enet_addr_t *)net_dev->dev_addr); if (err < 0) { netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", err); /* reverting to previous address */ eth_mac_addr(net_dev, &old_addr); return err; } return 0; } static void dpaa_set_rx_mode(struct net_device *net_dev) { const struct dpaa_priv *priv; int err; priv = netdev_priv(net_dev); if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { priv->mac_dev->promisc = !priv->mac_dev->promisc; err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, priv->mac_dev->promisc); if (err < 0) netif_err(priv, drv, net_dev, "mac_dev->set_promisc() = %d\n", err); } err = priv->mac_dev->set_multi(net_dev, priv->mac_dev); if (err < 0) netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n", err); } static struct dpaa_bp *dpaa_bpid2pool(int bpid) { if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) return NULL; return dpaa_bp_array[bpid]; } /* checks if this bpool is already allocated */ static bool dpaa_bpid2pool_use(int bpid) { if (dpaa_bpid2pool(bpid)) { atomic_inc(&dpaa_bp_array[bpid]->refs); return true; } return false; } /* called only once per bpid by dpaa_bp_alloc_pool() */ static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) { dpaa_bp_array[bpid] = dpaa_bp; atomic_set(&dpaa_bp->refs, 1); } static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) { int err; if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", __func__); return -EINVAL; } /* If the pool is already specified, we only create one per bpid */ if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && dpaa_bpid2pool_use(dpaa_bp->bpid)) return 0; if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { dpaa_bp->pool = bman_new_pool(); if (!dpaa_bp->pool) { pr_err("%s: bman_new_pool() failed\n", __func__); return -ENODEV; } dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool); } if (dpaa_bp->seed_cb) { err = dpaa_bp->seed_cb(dpaa_bp); if (err) goto pool_seed_failed; } dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp); return 0; pool_seed_failed: pr_err("%s: pool seeding failed\n", __func__); bman_free_pool(dpaa_bp->pool); return err; } /* remove and free all the buffers from the given buffer pool */ static void dpaa_bp_drain(struct dpaa_bp *bp) { u8 num = 8; int ret; do { struct bm_buffer bmb[8]; int i; ret = bman_acquire(bp->pool, bmb, num); if (ret < 0) { if (num == 8) { /* we have less than 8 buffers left; * drain them one by one */ num = 1; ret = 1; continue; } else { /* Pool is fully drained */ break; } } if (bp->free_buf_cb) for (i = 0; i < num; i++) bp->free_buf_cb(bp, &bmb[i]); } while (ret > 0); } static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) { struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid); /* the mapping between bpid and dpaa_bp is done very late in the * allocation procedure; if something failed before the mapping, the bp * was not configured, therefore we don't need the below instructions */ if (!bp) return; if (!atomic_dec_and_test(&bp->refs)) return; if (bp->free_buf_cb) dpaa_bp_drain(bp); dpaa_bp_array[bp->bpid] = NULL; bman_free_pool(bp->pool); } static void dpaa_bps_free(struct dpaa_priv *priv) { int i; for (i = 0; i < DPAA_BPS_NUM; i++) dpaa_bp_free(priv->dpaa_bps[i]); } /* Use multiple WQs for FQ assignment: * - Tx Confirmation queues go to WQ1. * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance * to be scheduled, in case there are many more FQs in WQ6). * - Rx Default goes to WQ6. * - Tx queues go to different WQs depending on their priority. Equal * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and * WQ0 (highest priority). * This ensures that Tx-confirmed buffers are timely released. In particular, * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they * are greatly outnumbered by other FQs in the system, while * dequeue scheduling is round-robin. */ static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx) { switch (fq->fq_type) { case FQ_TYPE_TX_CONFIRM: case FQ_TYPE_TX_CONF_MQ: fq->wq = 1; break; case FQ_TYPE_RX_ERROR: case FQ_TYPE_TX_ERROR: fq->wq = 5; break; case FQ_TYPE_RX_DEFAULT: case FQ_TYPE_RX_PCD: fq->wq = 6; break; case FQ_TYPE_TX: switch (idx / DPAA_TC_TXQ_NUM) { case 0: /* Low priority (best effort) */ fq->wq = 6; break; case 1: /* Medium priority */ fq->wq = 2; break; case 2: /* High priority */ fq->wq = 1; break; case 3: /* Very high priority */ fq->wq = 0; break; default: WARN(1, "Too many TX FQs: more than %d!\n", DPAA_ETH_TXQ_NUM); } break; default: WARN(1, "Invalid FQ type %d for FQID %d!\n", fq->fq_type, fq->fqid); } } static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, u32 start, u32 count, struct list_head *list, enum dpaa_fq_type fq_type) { struct dpaa_fq *dpaa_fq; int i; dpaa_fq = devm_kzalloc(dev, sizeof(*dpaa_fq) * count, GFP_KERNEL); if (!dpaa_fq) return NULL; for (i = 0; i < count; i++) { dpaa_fq[i].fq_type = fq_type; dpaa_fq[i].fqid = start ? start + i : 0; list_add_tail(&dpaa_fq[i].list, list); } for (i = 0; i < count; i++) dpaa_assign_wq(dpaa_fq + i, i); return dpaa_fq; } static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, struct fm_port_fqs *port_fqs) { struct dpaa_fq *dpaa_fq; u32 fq_base, fq_base_aligned, i; dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR); if (!dpaa_fq) goto fq_alloc_failed; port_fqs->rx_errq = &dpaa_fq[0]; dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT); if (!dpaa_fq) goto fq_alloc_failed; port_fqs->rx_defq = &dpaa_fq[0]; /* the PCD FQIDs range needs to be aligned for correct operation */ if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM)) goto fq_alloc_failed; fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM); for (i = fq_base; i < fq_base_aligned; i++) qman_release_fqid(i); for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM; i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++) qman_release_fqid(i); dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM, list, FQ_TYPE_RX_PCD); if (!dpaa_fq) goto fq_alloc_failed; port_fqs->rx_pcdq = &dpaa_fq[0]; if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ)) goto fq_alloc_failed; dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR); if (!dpaa_fq) goto fq_alloc_failed; port_fqs->tx_errq = &dpaa_fq[0]; dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM); if (!dpaa_fq) goto fq_alloc_failed; port_fqs->tx_defq = &dpaa_fq[0]; if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX)) goto fq_alloc_failed; return 0; fq_alloc_failed: dev_err(dev, "dpaa_fq_alloc() failed\n"); return -ENOMEM; } static u32 rx_pool_channel; static DEFINE_SPINLOCK(rx_pool_channel_init); static int dpaa_get_channel(void) { spin_lock(&rx_pool_channel_init); if (!rx_pool_channel) { u32 pool; int ret; ret = qman_alloc_pool(&pool); if (!ret) rx_pool_channel = pool; } spin_unlock(&rx_pool_channel_init); if (!rx_pool_channel) return -ENOMEM; return rx_pool_channel; } static void dpaa_release_channel(void) { qman_release_pool(rx_pool_channel); } static void dpaa_eth_add_channel(u16 channel) { u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); const cpumask_t *cpus = qman_affine_cpus(); struct qman_portal *portal; int cpu; for_each_cpu(cpu, cpus) { portal = qman_get_affine_portal(cpu); qman_p_static_dequeue_add(portal, pool); } } /* Congestion group state change notification callback. * Stops the device's egress queues while they are congested and * wakes them upon exiting congested state. * Also updates some CGR-related stats. */ static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, int congested) { struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, struct dpaa_priv, cgr_data.cgr); if (congested) { priv->cgr_data.congestion_start_jiffies = jiffies; netif_tx_stop_all_queues(priv->net_dev); priv->cgr_data.cgr_congested_count++; } else { priv->cgr_data.congested_jiffies += (jiffies - priv->cgr_data.congestion_start_jiffies); netif_tx_wake_all_queues(priv->net_dev); } } static int dpaa_eth_cgr_init(struct dpaa_priv *priv) { struct qm_mcc_initcgr initcgr; u32 cs_th; int err; err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); if (err < 0) { if (netif_msg_drv(priv)) pr_err("%s: Error %d allocating CGR ID\n", __func__, err); goto out_error; } priv->cgr_data.cgr.cb = dpaa_eth_cgscn; /* Enable Congestion State Change Notifications and CS taildrop */ memset(&initcgr, 0, sizeof(initcgr)); initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); initcgr.cgr.cscn_en = QM_CGR_EN; /* Set different thresholds based on the MAC speed. * This may turn suboptimal if the MAC is reconfigured at a speed * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link. * In such cases, we ought to reconfigure the threshold, too. */ if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full) cs_th = DPAA_CS_THRESHOLD_10G; else cs_th = DPAA_CS_THRESHOLD_1G; qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); initcgr.cgr.cstd_en = QM_CGR_EN; err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, &initcgr); if (err < 0) { if (netif_msg_drv(priv)) pr_err("%s: Error %d creating CGR with ID %d\n", __func__, err, priv->cgr_data.cgr.cgrid); qman_release_cgrid(priv->cgr_data.cgr.cgrid); goto out_error; } if (netif_msg_drv(priv)) pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, priv->cgr_data.cgr.chan); out_error: return err; } static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, struct dpaa_fq *fq, const struct qman_fq *template) { fq->fq_base = *template; fq->net_dev = priv->net_dev; fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; fq->channel = priv->channel; } static inline void dpaa_setup_egress(const struct dpaa_priv *priv, struct dpaa_fq *fq, struct fman_port *port, const struct qman_fq *template) { fq->fq_base = *template; fq->net_dev = priv->net_dev; if (port) { fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; fq->channel = (u16)fman_port_get_qman_channel_id(port); } else { fq->flags = QMAN_FQ_FLAG_NO_MODIFY; } } static void dpaa_fq_setup(struct dpaa_priv *priv, const struct dpaa_fq_cbs *fq_cbs, struct fman_port *tx_port) { int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu; const cpumask_t *affine_cpus = qman_affine_cpus(); u16 channels[NR_CPUS]; struct dpaa_fq *fq; for_each_cpu(cpu, affine_cpus) channels[num_portals++] = qman_affine_channel(cpu); if (num_portals == 0) dev_err(priv->net_dev->dev.parent, "No Qman software (affine) channels found"); /* Initialize each FQ in the list */ list_for_each_entry(fq, &priv->dpaa_fq_list, list) { switch (fq->fq_type) { case FQ_TYPE_RX_DEFAULT: dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); break; case FQ_TYPE_RX_ERROR: dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq); break; case FQ_TYPE_RX_PCD: if (!num_portals) continue; dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); fq->channel = channels[portal_cnt++ % num_portals]; break; case FQ_TYPE_TX: dpaa_setup_egress(priv, fq, tx_port, &fq_cbs->egress_ern); /* If we have more Tx queues than the number of cores, * just ignore the extra ones. */ if (egress_cnt < DPAA_ETH_TXQ_NUM) priv->egress_fqs[egress_cnt++] = &fq->fq_base; break; case FQ_TYPE_TX_CONF_MQ: priv->conf_fqs[conf_cnt++] = &fq->fq_base; /* fall through */ case FQ_TYPE_TX_CONFIRM: dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq); break; case FQ_TYPE_TX_ERROR: dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq); break; default: dev_warn(priv->net_dev->dev.parent, "Unknown FQ type detected!\n"); break; } } /* Make sure all CPUs receive a corresponding Tx queue. */ while (egress_cnt < DPAA_ETH_TXQ_NUM) { list_for_each_entry(fq, &priv->dpaa_fq_list, list) { if (fq->fq_type != FQ_TYPE_TX) continue; priv->egress_fqs[egress_cnt++] = &fq->fq_base; if (egress_cnt == DPAA_ETH_TXQ_NUM) break; } } } static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, struct qman_fq *tx_fq) { int i; for (i = 0; i < DPAA_ETH_TXQ_NUM; i++) if (priv->egress_fqs[i] == tx_fq) return i; return -EINVAL; } static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) { const struct dpaa_priv *priv; struct qman_fq *confq = NULL; struct qm_mcc_initfq initfq; struct device *dev; struct qman_fq *fq; int queue_id; int err; priv = netdev_priv(dpaa_fq->net_dev); dev = dpaa_fq->net_dev->dev.parent; if (dpaa_fq->fqid == 0) dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base); if (err) { dev_err(dev, "qman_create_fq() failed\n"); return err; } fq = &dpaa_fq->fq_base; if (dpaa_fq->init) { memset(&initfq, 0, sizeof(initfq)); initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); /* Note: we may get to keep an empty FQ in cache */ initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); /* Try to reduce the number of portal interrupts for * Tx Confirmation FQs. */ if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK); /* FQ placement */ initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq); /* Put all egress queues in a congestion group of their own. * Sensu stricto, the Tx confirmation queues are Rx FQs, * rather than Tx - but they nonetheless account for the * memory footprint on behalf of egress traffic. We therefore * place them in the netdev's CGR, along with the Tx FQs. */ if (dpaa_fq->fq_type == FQ_TYPE_TX || dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; /* Set a fixed overhead accounting, in an attempt to * reduce the impact of fixed-size skb shells and the * driver's needed headroom on system memory. This is * especially the case when the egress traffic is * composed of small datagrams. * Unfortunately, QMan's OAL value is capped to an * insufficient value, but even that is better than * no overhead accounting at all. */ initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); qm_fqd_set_oal(&initfq.fqd, min(sizeof(struct sk_buff) + priv->tx_headroom, (size_t)FSL_QMAN_MAX_OAL)); } if (td_enable) { initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1); initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); } if (dpaa_fq->fq_type == FQ_TYPE_TX) { queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base); if (queue_id >= 0) confq = priv->conf_fqs[queue_id]; if (confq) { initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) * A2V=1 (contextA A2 field is valid) * A0V=1 (contextA A0 field is valid) * B0V=1 (contextB field is valid) * ContextA A2: EBD=1 (deallocate buffers inside FMan) * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) */ qm_fqd_context_a_set64(&initfq.fqd, 0x1e00000080000000ULL); } } /* Put all the ingress queues in our "ingress CGR". */ if (priv->use_ingress_cgr && (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || dpaa_fq->fq_type == FQ_TYPE_RX_ERROR || dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) { initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; /* Set a fixed overhead accounting, just like for the * egress CGR. */ initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); qm_fqd_set_oal(&initfq.fqd, min(sizeof(struct sk_buff) + priv->tx_headroom, (size_t)FSL_QMAN_MAX_OAL)); } /* Initialization common to all ingress queues */ if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE | QM_FQCTRL_CTXASTASHING); initfq.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | QM_STASHING_EXCL_ANNOTATION; qm_fqd_set_stashing(&initfq.fqd, 1, 2, DIV_ROUND_UP(sizeof(struct qman_fq), 64)); } err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq); if (err < 0) { dev_err(dev, "qman_init_fq(%u) = %d\n", qman_fq_fqid(fq), err); qman_destroy_fq(fq); return err; } } dpaa_fq->fqid = qman_fq_fqid(fq); return 0; } static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) { const struct dpaa_priv *priv; struct dpaa_fq *dpaa_fq; int err, error; err = 0; dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); priv = netdev_priv(dpaa_fq->net_dev); if (dpaa_fq->init) { err = qman_retire_fq(fq, NULL); if (err < 0 && netif_msg_drv(priv)) dev_err(dev, "qman_retire_fq(%u) = %d\n", qman_fq_fqid(fq), err); error = qman_oos_fq(fq); if (error < 0 && netif_msg_drv(priv)) { dev_err(dev, "qman_oos_fq(%u) = %d\n", qman_fq_fqid(fq), error); if (err >= 0) err = error; } } qman_destroy_fq(fq); list_del(&dpaa_fq->list); return err; } static int dpaa_fq_free(struct device *dev, struct list_head *list) { struct dpaa_fq *dpaa_fq, *tmp; int err, error; err = 0; list_for_each_entry_safe(dpaa_fq, tmp, list, list) { error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq); if (error < 0 && err >= 0) err = error; } return err; } static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, struct dpaa_fq *defq, struct dpaa_buffer_layout *buf_layout) { struct fman_buffer_prefix_content buf_prefix_content; struct fman_port_params params; int err; memset(¶ms, 0, sizeof(params)); memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); buf_prefix_content.priv_data_size = buf_layout->priv_data_size; buf_prefix_content.pass_prs_result = true; buf_prefix_content.pass_hash_result = true; buf_prefix_content.pass_time_stamp = false; buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; params.specific_params.non_rx_params.err_fqid = errq->fqid; params.specific_params.non_rx_params.dflt_fqid = defq->fqid; err = fman_port_config(port, ¶ms); if (err) { pr_err("%s: fman_port_config failed\n", __func__); return err; } err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); if (err) { pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", __func__); return err; } err = fman_port_init(port); if (err) pr_err("%s: fm_port_init failed\n", __func__); return err; } static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps, size_t count, struct dpaa_fq *errq, struct dpaa_fq *defq, struct dpaa_fq *pcdq, struct dpaa_buffer_layout *buf_layout) { struct fman_buffer_prefix_content buf_prefix_content; struct fman_port_rx_params *rx_p; struct fman_port_params params; int i, err; memset(¶ms, 0, sizeof(params)); memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); buf_prefix_content.priv_data_size = buf_layout->priv_data_size; buf_prefix_content.pass_prs_result = true; buf_prefix_content.pass_hash_result = true; buf_prefix_content.pass_time_stamp = false; buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; rx_p = ¶ms.specific_params.rx_params; rx_p->err_fqid = errq->fqid; rx_p->dflt_fqid = defq->fqid; if (pcdq) { rx_p->pcd_base_fqid = pcdq->fqid; rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM; } count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count); rx_p->ext_buf_pools.num_of_pools_used = (u8)count; for (i = 0; i < count; i++) { rx_p->ext_buf_pools.ext_buf_pool[i].id = bps[i]->bpid; rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size; } err = fman_port_config(port, ¶ms); if (err) { pr_err("%s: fman_port_config failed\n", __func__); return err; } err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); if (err) { pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", __func__); return err; } err = fman_port_init(port); if (err) pr_err("%s: fm_port_init failed\n", __func__); return err; } static int dpaa_eth_init_ports(struct mac_device *mac_dev, struct dpaa_bp **bps, size_t count, struct fm_port_fqs *port_fqs, struct dpaa_buffer_layout *buf_layout, struct device *dev) { struct fman_port *rxport = mac_dev->port[RX]; struct fman_port *txport = mac_dev->port[TX]; int err; err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq, port_fqs->tx_defq, &buf_layout[TX]); if (err) return err; err = dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq, port_fqs->rx_defq, port_fqs->rx_pcdq, &buf_layout[RX]); return err; } static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, struct bm_buffer *bmb, int cnt) { int err; err = bman_release(dpaa_bp->pool, bmb, cnt); /* Should never occur, address anyway to avoid leaking the buffers */ if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb) while (cnt-- > 0) dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); return cnt; } static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) { struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; struct dpaa_bp *dpaa_bp; int i = 0, j; memset(bmb, 0, sizeof(bmb)); do { dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); if (!dpaa_bp) return; j = 0; do { WARN_ON(qm_sg_entry_is_ext(&sgt[i])); bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i])); j++; i++; } while (j < ARRAY_SIZE(bmb) && !qm_sg_entry_is_final(&sgt[i - 1]) && sgt[i - 1].bpid == sgt[i].bpid); dpaa_bman_release(dpaa_bp, bmb, j); } while (!qm_sg_entry_is_final(&sgt[i - 1])); } static void dpaa_fd_release(const struct net_device *net_dev, const struct qm_fd *fd) { struct qm_sg_entry *sgt; struct dpaa_bp *dpaa_bp; struct bm_buffer bmb; dma_addr_t addr; void *vaddr; bmb.data = 0; bm_buffer_set64(&bmb, qm_fd_addr(fd)); dpaa_bp = dpaa_bpid2pool(fd->bpid); if (!dpaa_bp) return; if (qm_fd_get_format(fd) == qm_fd_sg) { vaddr = phys_to_virt(qm_fd_addr(fd)); sgt = vaddr + qm_fd_get_offset(fd); dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size, DMA_FROM_DEVICE); dpaa_release_sgt_members(sgt); addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size, DMA_FROM_DEVICE); if (dma_mapping_error(dpaa_bp->dev, addr)) { dev_err(dpaa_bp->dev, "DMA mapping failed"); return; } bm_buffer_set64(&bmb, addr); } dpaa_bman_release(dpaa_bp, &bmb, 1); } static void count_ern(struct dpaa_percpu_priv *percpu_priv, const union qm_mr_entry *msg) { switch (msg->ern.rc & QM_MR_RC_MASK) { case QM_MR_RC_CGR_TAILDROP: percpu_priv->ern_cnt.cg_tdrop++; break; case QM_MR_RC_WRED: percpu_priv->ern_cnt.wred++; break; case QM_MR_RC_ERROR: percpu_priv->ern_cnt.err_cond++; break; case QM_MR_RC_ORPWINDOW_EARLY: percpu_priv->ern_cnt.early_window++; break; case QM_MR_RC_ORPWINDOW_LATE: percpu_priv->ern_cnt.late_window++; break; case QM_MR_RC_FQ_TAILDROP: percpu_priv->ern_cnt.fq_tdrop++; break; case QM_MR_RC_ORPWINDOW_RETIRED: percpu_priv->ern_cnt.fq_retired++; break; case QM_MR_RC_ORP_ZERO: percpu_priv->ern_cnt.orp_zero++; break; } } /* Turn on HW checksum computation for this outgoing frame. * If the current protocol is not something we support in this regard * (or if the stack has already computed the SW checksum), we do nothing. * * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value * otherwise. * * Note that this function may modify the fd->cmd field and the skb data buffer * (the Parse Results area). */ static int dpaa_enable_tx_csum(struct dpaa_priv *priv, struct sk_buff *skb, struct qm_fd *fd, char *parse_results) { struct fman_prs_result *parse_result; u16 ethertype = ntohs(skb->protocol); struct ipv6hdr *ipv6h = NULL; struct iphdr *iph; int retval = 0; u8 l4_proto; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; /* Note: L3 csum seems to be already computed in sw, but we can't choose * L4 alone from the FM configuration anyway. */ /* Fill in some fields of the Parse Results array, so the FMan * can find them as if they came from the FMan Parser. */ parse_result = (struct fman_prs_result *)parse_results; /* If we're dealing with VLAN, get the real Ethernet type */ if (ethertype == ETH_P_8021Q) { /* We can't always assume the MAC header is set correctly * by the stack, so reset to beginning of skb->data */ skb_reset_mac_header(skb); ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); } /* Fill in the relevant L3 parse result fields * and read the L4 protocol type */ switch (ethertype) { case ETH_P_IP: parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); iph = ip_hdr(skb); WARN_ON(!iph); l4_proto = iph->protocol; break; case ETH_P_IPV6: parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); ipv6h = ipv6_hdr(skb); WARN_ON(!ipv6h); l4_proto = ipv6h->nexthdr; break; default: /* We shouldn't even be here */ if (net_ratelimit()) netif_alert(priv, tx_err, priv->net_dev, "Can't compute HW csum for L3 proto 0x%x\n", ntohs(skb->protocol)); retval = -EIO; goto return_error; } /* Fill in the relevant L4 parse result fields */ switch (l4_proto) { case IPPROTO_UDP: parse_result->l4r = FM_L4_PARSE_RESULT_UDP; break; case IPPROTO_TCP: parse_result->l4r = FM_L4_PARSE_RESULT_TCP; break; default: if (net_ratelimit()) netif_alert(priv, tx_err, priv->net_dev, "Can't compute HW csum for L4 proto 0x%x\n", l4_proto); retval = -EIO; goto return_error; } /* At index 0 is IPOffset_1 as defined in the Parse Results */ parse_result->ip_off[0] = (u8)skb_network_offset(skb); parse_result->l4_off = (u8)skb_transport_offset(skb); /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); /* On P1023 and similar platforms fd->cmd interpretation could * be disabled by setting CONTEXT_A bit ICMD; currently this bit * is not set so we do not need to check; in the future, if/when * using context_a we need to check this bit */ return_error: return retval; } static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) { struct device *dev = dpaa_bp->dev; struct bm_buffer bmb[8]; dma_addr_t addr; void *new_buf; u8 i; for (i = 0; i < 8; i++) { new_buf = netdev_alloc_frag(dpaa_bp->raw_size); if (unlikely(!new_buf)) { dev_err(dev, "netdev_alloc_frag() failed, size %zu\n", dpaa_bp->raw_size); goto release_previous_buffs; } new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES); addr = dma_map_single(dev, new_buf, dpaa_bp->size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(dev, addr))) { dev_err(dpaa_bp->dev, "DMA map failed"); goto release_previous_buffs; } bmb[i].data = 0; bm_buffer_set64(&bmb[i], addr); } release_bufs: return dpaa_bman_release(dpaa_bp, bmb, i); release_previous_buffs: WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); bm_buffer_set64(&bmb[i], 0); /* Avoid releasing a completely null buffer; bman_release() requires * at least one buffer. */ if (likely(i)) goto release_bufs; return 0; } static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) { int i; /* Give each CPU an allotment of "config_count" buffers */ for_each_possible_cpu(i) { int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); int j; /* Although we access another CPU's counters here * we do it at boot time so it is safe */ for (j = 0; j < dpaa_bp->config_count; j += 8) *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); } return 0; } /* Add buffers/(pages) for Rx processing whenever bpool count falls below * REFILL_THRESHOLD. */ static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) { int count = *countptr; int new_bufs; if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { do { new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); if (unlikely(!new_bufs)) { /* Avoid looping forever if we've temporarily * run out of memory. We'll try again at the * next NAPI cycle. */ break; } count += new_bufs; } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); *countptr = count; if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) return -ENOMEM; } return 0; } static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) { struct dpaa_bp *dpaa_bp; int *countptr; int res, i; for (i = 0; i < DPAA_BPS_NUM; i++) { dpaa_bp = priv->dpaa_bps[i]; if (!dpaa_bp) return -EINVAL; countptr = this_cpu_ptr(dpaa_bp->percpu_count); res = dpaa_eth_refill_bpool(dpaa_bp, countptr); if (res) return res; } return 0; } /* Cleanup function for outgoing frame descriptors that were built on Tx path, * either contiguous frames or scatter/gather ones. * Skb freeing is not handled here. * * This function may be called on error paths in the Tx function, so guard * against cases when not all fd relevant fields were filled in. * * Return the skb backpointer, since for S/G frames the buffer containing it * gets freed here. */ static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, const struct qm_fd *fd) { const enum dma_data_direction dma_dir = DMA_TO_DEVICE; struct device *dev = priv->net_dev->dev.parent; dma_addr_t addr = qm_fd_addr(fd); const struct qm_sg_entry *sgt; struct sk_buff **skbh, *skb; int nr_frags, i; skbh = (struct sk_buff **)phys_to_virt(addr); skb = *skbh; if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { nr_frags = skb_shinfo(skb)->nr_frags; dma_unmap_single(dev, addr, qm_fd_get_offset(fd) + sizeof(struct qm_sg_entry) * (1 + nr_frags), dma_dir); /* The sgt buffer has been allocated with netdev_alloc_frag(), * it's from lowmem. */ sgt = phys_to_virt(addr + qm_fd_get_offset(fd)); /* sgt[0] is from lowmem, was dma_map_single()-ed */ dma_unmap_single(dev, qm_sg_addr(&sgt[0]), qm_sg_entry_get_len(&sgt[0]), dma_dir); /* remaining pages were mapped with skb_frag_dma_map() */ for (i = 1; i < nr_frags; i++) { WARN_ON(qm_sg_entry_is_ext(&sgt[i])); dma_unmap_page(dev, qm_sg_addr(&sgt[i]), qm_sg_entry_get_len(&sgt[i]), dma_dir); } /* Free the page frag that we allocated on Tx */ skb_free_frag(phys_to_virt(addr)); } else { dma_unmap_single(dev, addr, skb_tail_pointer(skb) - (u8 *)skbh, dma_dir); } return skb; } static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd) { /* The parser has run and performed L4 checksum validation. * We know there were no parser errors (and implicitly no * L4 csum error), otherwise we wouldn't be here. */ if ((priv->net_dev->features & NETIF_F_RXCSUM) && (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV)) return CHECKSUM_UNNECESSARY; /* We're here because either the parser didn't run or the L4 checksum * was not verified. This may include the case of a UDP frame with * checksum zero or an L4 proto other than TCP/UDP */ return CHECKSUM_NONE; } /* Build a linear skb around the received buffer. * We are guaranteed there is enough room at the end of the data buffer to * accommodate the shared info area of the skb. */ static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, const struct qm_fd *fd) { ssize_t fd_off = qm_fd_get_offset(fd); dma_addr_t addr = qm_fd_addr(fd); struct dpaa_bp *dpaa_bp; struct sk_buff *skb; void *vaddr; vaddr = phys_to_virt(addr); WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); dpaa_bp = dpaa_bpid2pool(fd->bpid); if (!dpaa_bp) goto free_buffer; skb = build_skb(vaddr, dpaa_bp->size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); if (unlikely(!skb)) { WARN_ONCE(1, "Build skb failure on Rx\n"); goto free_buffer; } WARN_ON(fd_off != priv->rx_headroom); skb_reserve(skb, fd_off); skb_put(skb, qm_fd_get_length(fd)); skb->ip_summed = rx_csum_offload(priv, fd); return skb; free_buffer: skb_free_frag(vaddr); return NULL; } /* Build an skb with the data of the first S/G entry in the linear portion and * the rest of the frame as skb fragments. * * The page fragment holding the S/G Table is recycled here. */ static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, const struct qm_fd *fd) { ssize_t fd_off = qm_fd_get_offset(fd); dma_addr_t addr = qm_fd_addr(fd); const struct qm_sg_entry *sgt; struct page *page, *head_page; struct dpaa_bp *dpaa_bp; void *vaddr, *sg_vaddr; int frag_off, frag_len; struct sk_buff *skb; dma_addr_t sg_addr; int page_offset; unsigned int sz; int *count_ptr; int i; vaddr = phys_to_virt(addr); WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); /* Iterate through the SGT entries and add data buffers to the skb */ sgt = vaddr + fd_off; for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { /* Extension bit is not supported */ WARN_ON(qm_sg_entry_is_ext(&sgt[i])); sg_addr = qm_sg_addr(&sgt[i]); sg_vaddr = phys_to_virt(sg_addr); WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr, SMP_CACHE_BYTES)); /* We may use multiple Rx pools */ dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); if (!dpaa_bp) goto free_buffers; count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size, DMA_FROM_DEVICE); if (i == 0) { sz = dpaa_bp->size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); skb = build_skb(sg_vaddr, sz); if (WARN_ON(unlikely(!skb))) goto free_buffers; skb->ip_summed = rx_csum_offload(priv, fd); /* Make sure forwarded skbs will have enough space * on Tx, if extra headers are added. */ WARN_ON(fd_off != priv->rx_headroom); skb_reserve(skb, fd_off); skb_put(skb, qm_sg_entry_get_len(&sgt[i])); } else { /* Not the first S/G entry; all data from buffer will * be added in an skb fragment; fragment index is offset * by one since first S/G entry was incorporated in the * linear part of the skb. * * Caution: 'page' may be a tail page. */ page = virt_to_page(sg_vaddr); head_page = virt_to_head_page(sg_vaddr); /* Compute offset in (possibly tail) page */ page_offset = ((unsigned long)sg_vaddr & (PAGE_SIZE - 1)) + (page_address(page) - page_address(head_page)); /* page_offset only refers to the beginning of sgt[i]; * but the buffer itself may have an internal offset. */ frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset; frag_len = qm_sg_entry_get_len(&sgt[i]); /* skb_add_rx_frag() does no checking on the page; if * we pass it a tail page, we'll end up with * bad page accounting and eventually with segafults. */ skb_add_rx_frag(skb, i - 1, head_page, frag_off, frag_len, dpaa_bp->size); } /* Update the pool count for the current {cpu x bpool} */ (*count_ptr)--; if (qm_sg_entry_is_final(&sgt[i])) break; } WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); /* free the SG table buffer */ skb_free_frag(vaddr); return skb; free_buffers: /* compensate sw bpool counter changes */ for (i--; i >= 0; i--) { dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); if (dpaa_bp) { count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); (*count_ptr)++; } } /* free all the SG entries */ for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) { sg_addr = qm_sg_addr(&sgt[i]); sg_vaddr = phys_to_virt(sg_addr); skb_free_frag(sg_vaddr); dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); if (dpaa_bp) { count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); (*count_ptr)--; } if (qm_sg_entry_is_final(&sgt[i])) break; } /* free the SGT fragment */ skb_free_frag(vaddr); return NULL; } static int skb_to_contig_fd(struct dpaa_priv *priv, struct sk_buff *skb, struct qm_fd *fd, int *offset) { struct net_device *net_dev = priv->net_dev; struct device *dev = net_dev->dev.parent; enum dma_data_direction dma_dir; unsigned char *buffer_start; struct sk_buff **skbh; dma_addr_t addr; int err; /* We are guaranteed to have at least tx_headroom bytes * available, so just use that for offset. */ fd->bpid = FSL_DPAA_BPID_INV; buffer_start = skb->data - priv->tx_headroom; dma_dir = DMA_TO_DEVICE; skbh = (struct sk_buff **)buffer_start; *skbh = skb; /* Enable L3/L4 hardware checksum computation. * * We must do this before dma_map_single(DMA_TO_DEVICE), because we may * need to write into the skb. */ err = dpaa_enable_tx_csum(priv, skb, fd, ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE); if (unlikely(err < 0)) { if (net_ratelimit()) netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", err); return err; } /* Fill in the rest of the FD fields */ qm_fd_set_contig(fd, priv->tx_headroom, skb->len); fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); /* Map the entire buffer size that may be seen by FMan, but no more */ addr = dma_map_single(dev, skbh, skb_tail_pointer(skb) - buffer_start, dma_dir); if (unlikely(dma_mapping_error(dev, addr))) { if (net_ratelimit()) netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); return -EINVAL; } qm_fd_addr_set64(fd, addr); return 0; } static int skb_to_sg_fd(struct dpaa_priv *priv, struct sk_buff *skb, struct qm_fd *fd) { const enum dma_data_direction dma_dir = DMA_TO_DEVICE; const int nr_frags = skb_shinfo(skb)->nr_frags; struct net_device *net_dev = priv->net_dev; struct device *dev = net_dev->dev.parent; struct qm_sg_entry *sgt; struct sk_buff **skbh; int i, j, err, sz; void *buffer_start; skb_frag_t *frag; dma_addr_t addr; size_t frag_len; void *sgt_buf; /* get a page frag to store the SGTable */ sz = SKB_DATA_ALIGN(priv->tx_headroom + sizeof(struct qm_sg_entry) * (1 + nr_frags)); sgt_buf = netdev_alloc_frag(sz); if (unlikely(!sgt_buf)) { netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n", sz); return -ENOMEM; } /* Enable L3/L4 hardware checksum computation. * * We must do this before dma_map_single(DMA_TO_DEVICE), because we may * need to write into the skb. */ err = dpaa_enable_tx_csum(priv, skb, fd, sgt_buf + DPAA_TX_PRIV_DATA_SIZE); if (unlikely(err < 0)) { if (net_ratelimit()) netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", err); goto csum_failed; } sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom); qm_sg_entry_set_len(&sgt[0], skb_headlen(skb)); sgt[0].bpid = FSL_DPAA_BPID_INV; sgt[0].offset = 0; addr = dma_map_single(dev, skb->data, skb_headlen(skb), dma_dir); if (unlikely(dma_mapping_error(dev, addr))) { dev_err(dev, "DMA mapping failed"); err = -EINVAL; goto sg0_map_failed; } qm_sg_entry_set64(&sgt[0], addr); /* populate the rest of SGT entries */ frag = &skb_shinfo(skb)->frags[0]; frag_len = frag->size; for (i = 1; i <= nr_frags; i++, frag++) { WARN_ON(!skb_frag_page(frag)); addr = skb_frag_dma_map(dev, frag, 0, frag_len, dma_dir); if (unlikely(dma_mapping_error(dev, addr))) { dev_err(dev, "DMA mapping failed"); err = -EINVAL; goto sg_map_failed; } qm_sg_entry_set_len(&sgt[i], frag_len); sgt[i].bpid = FSL_DPAA_BPID_INV; sgt[i].offset = 0; /* keep the offset in the address */ qm_sg_entry_set64(&sgt[i], addr); frag_len = frag->size; } qm_sg_entry_set_f(&sgt[i - 1], frag_len); qm_fd_set_sg(fd, priv->tx_headroom, skb->len); /* DMA map the SGT page */ buffer_start = (void *)sgt - priv->tx_headroom; skbh = (struct sk_buff **)buffer_start; *skbh = skb; addr = dma_map_single(dev, buffer_start, priv->tx_headroom + sizeof(struct qm_sg_entry) * (1 + nr_frags), dma_dir); if (unlikely(dma_mapping_error(dev, addr))) { dev_err(dev, "DMA mapping failed"); err = -EINVAL; goto sgt_map_failed; } fd->bpid = FSL_DPAA_BPID_INV; fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); qm_fd_addr_set64(fd, addr); return 0; sgt_map_failed: sg_map_failed: for (j = 0; j < i; j++) dma_unmap_page(dev, qm_sg_addr(&sgt[j]), qm_sg_entry_get_len(&sgt[j]), dma_dir); sg0_map_failed: csum_failed: skb_free_frag(sgt_buf); return err; } static inline int dpaa_xmit(struct dpaa_priv *priv, struct rtnl_link_stats64 *percpu_stats, int queue, struct qm_fd *fd) { struct qman_fq *egress_fq; int err, i; egress_fq = priv->egress_fqs[queue]; if (fd->bpid == FSL_DPAA_BPID_INV) fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); /* Trace this Tx fd */ trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd); for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { err = qman_enqueue(egress_fq, fd); if (err != -EBUSY) break; } if (unlikely(err < 0)) { percpu_stats->tx_errors++; percpu_stats->tx_fifo_errors++; return err; } percpu_stats->tx_packets++; percpu_stats->tx_bytes += qm_fd_get_length(fd); return 0; } static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) { const int queue_mapping = skb_get_queue_mapping(skb); bool nonlinear = skb_is_nonlinear(skb); struct rtnl_link_stats64 *percpu_stats; struct dpaa_percpu_priv *percpu_priv; struct dpaa_priv *priv; struct qm_fd fd; int offset = 0; int err = 0; priv = netdev_priv(net_dev); percpu_priv = this_cpu_ptr(priv->percpu_priv); percpu_stats = &percpu_priv->stats; qm_fd_clear_fd(&fd); if (!nonlinear) { /* We're going to store the skb backpointer at the beginning * of the data buffer, so we need a privately owned skb * * We've made sure skb is not shared in dev->priv_flags, * we need to verify the skb head is not cloned */ if (skb_cow_head(skb, priv->tx_headroom)) goto enomem; WARN_ON(skb_is_nonlinear(skb)); } /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; * make sure we don't feed FMan with more fragments than it supports. */ if (nonlinear && likely(skb_shinfo(skb)->nr_frags < DPAA_SGT_MAX_ENTRIES)) { /* Just create a S/G fd based on the skb */ err = skb_to_sg_fd(priv, skb, &fd); percpu_priv->tx_frag_skbuffs++; } else { /* If the egress skb contains more fragments than we support * we have no choice but to linearize it ourselves. */ if (unlikely(nonlinear) && __skb_linearize(skb)) goto enomem; /* Finally, create a contig FD from this skb */ err = skb_to_contig_fd(priv, skb, &fd, &offset); } if (unlikely(err < 0)) goto skb_to_fd_failed; if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) return NETDEV_TX_OK; dpaa_cleanup_tx_fd(priv, &fd); skb_to_fd_failed: enomem: percpu_stats->tx_errors++; dev_kfree_skb(skb); return NETDEV_TX_OK; } static void dpaa_rx_error(struct net_device *net_dev, const struct dpaa_priv *priv, struct dpaa_percpu_priv *percpu_priv, const struct qm_fd *fd, u32 fqid) { if (net_ratelimit()) netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); percpu_priv->stats.rx_errors++; if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) percpu_priv->rx_errors.dme++; if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) percpu_priv->rx_errors.fpe++; if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) percpu_priv->rx_errors.fse++; if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) percpu_priv->rx_errors.phe++; dpaa_fd_release(net_dev, fd); } static void dpaa_tx_error(struct net_device *net_dev, const struct dpaa_priv *priv, struct dpaa_percpu_priv *percpu_priv, const struct qm_fd *fd, u32 fqid) { struct sk_buff *skb; if (net_ratelimit()) netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); percpu_priv->stats.tx_errors++; skb = dpaa_cleanup_tx_fd(priv, fd); dev_kfree_skb(skb); } static int dpaa_eth_poll(struct napi_struct *napi, int budget) { struct dpaa_napi_portal *np = container_of(napi, struct dpaa_napi_portal, napi); int cleaned = qman_p_poll_dqrr(np->p, budget); if (cleaned < budget) { napi_complete_done(napi, cleaned); qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); } else if (np->down) { qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); } return cleaned; } static void dpaa_tx_conf(struct net_device *net_dev, const struct dpaa_priv *priv, struct dpaa_percpu_priv *percpu_priv, const struct qm_fd *fd, u32 fqid) { struct sk_buff *skb; if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { if (net_ratelimit()) netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); percpu_priv->stats.tx_errors++; } percpu_priv->tx_confirm++; skb = dpaa_cleanup_tx_fd(priv, fd); consume_skb(skb); } static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, struct qman_portal *portal) { if (unlikely(in_irq() || !in_serving_softirq())) { /* Disable QMan IRQ and invoke NAPI */ qman_p_irqsource_remove(portal, QM_PIRQ_DQRI); percpu_priv->np.p = portal; napi_schedule(&percpu_priv->np.napi); percpu_priv->in_interrupt++; return 1; } return 0; } static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, struct qman_fq *fq, const struct qm_dqrr_entry *dq) { struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); struct dpaa_percpu_priv *percpu_priv; struct net_device *net_dev; struct dpaa_bp *dpaa_bp; struct dpaa_priv *priv; net_dev = dpaa_fq->net_dev; priv = netdev_priv(net_dev); dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); if (!dpaa_bp) return qman_cb_dqrr_consume; percpu_priv = this_cpu_ptr(priv->percpu_priv); if (dpaa_eth_napi_schedule(percpu_priv, portal)) return qman_cb_dqrr_stop; if (dpaa_eth_refill_bpools(priv)) /* Unable to refill the buffer pool due to insufficient * system memory. Just release the frame back into the pool, * otherwise we'll soon end up with an empty buffer pool. */ dpaa_fd_release(net_dev, &dq->fd); else dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); return qman_cb_dqrr_consume; } static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, struct qman_fq *fq, const struct qm_dqrr_entry *dq) { struct rtnl_link_stats64 *percpu_stats; struct dpaa_percpu_priv *percpu_priv; const struct qm_fd *fd = &dq->fd; dma_addr_t addr = qm_fd_addr(fd); enum qm_fd_format fd_format; struct net_device *net_dev; u32 fd_status, hash_offset; struct dpaa_bp *dpaa_bp; struct dpaa_priv *priv; unsigned int skb_len; struct sk_buff *skb; int *count_ptr; void *vaddr; fd_status = be32_to_cpu(fd->status); fd_format = qm_fd_get_format(fd); net_dev = ((struct dpaa_fq *)fq)->net_dev; priv = netdev_priv(net_dev); dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); if (!dpaa_bp) return qman_cb_dqrr_consume; /* Trace the Rx fd */ trace_dpaa_rx_fd(net_dev, fq, &dq->fd); percpu_priv = this_cpu_ptr(priv->percpu_priv); percpu_stats = &percpu_priv->stats; if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal))) return qman_cb_dqrr_stop; /* Make sure we didn't run out of buffers */ if (unlikely(dpaa_eth_refill_bpools(priv))) { /* Unable to refill the buffer pool due to insufficient * system memory. Just release the frame back into the pool, * otherwise we'll soon end up with an empty buffer pool. */ dpaa_fd_release(net_dev, &dq->fd); return qman_cb_dqrr_consume; } if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { if (net_ratelimit()) netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", fd_status & FM_FD_STAT_RX_ERRORS); percpu_stats->rx_errors++; dpaa_fd_release(net_dev, fd); return qman_cb_dqrr_consume; } dpaa_bp = dpaa_bpid2pool(fd->bpid); if (!dpaa_bp) return qman_cb_dqrr_consume; dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE); /* prefetch the first 64 bytes of the frame or the SGT start */ vaddr = phys_to_virt(addr); prefetch(vaddr + qm_fd_get_offset(fd)); fd_format = qm_fd_get_format(fd); /* The only FD types that we may receive are contig and S/G */ WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); /* Account for either the contig buffer or the SGT buffer (depending on * which case we were in) having been removed from the pool. */ count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); (*count_ptr)--; if (likely(fd_format == qm_fd_contig)) skb = contig_fd_to_skb(priv, fd); else skb = sg_fd_to_skb(priv, fd); if (!skb) return qman_cb_dqrr_consume; skb->protocol = eth_type_trans(skb, net_dev); if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use && !fman_port_get_hash_result_offset(priv->mac_dev->port[RX], &hash_offset)) { enum pkt_hash_types type; /* if L4 exists, it was used in the hash generation */ type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ? PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)), type); } skb_len = skb->len; if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) return qman_cb_dqrr_consume; percpu_stats->rx_packets++; percpu_stats->rx_bytes += skb_len; return qman_cb_dqrr_consume; } static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, struct qman_fq *fq, const struct qm_dqrr_entry *dq) { struct dpaa_percpu_priv *percpu_priv; struct net_device *net_dev; struct dpaa_priv *priv; net_dev = ((struct dpaa_fq *)fq)->net_dev; priv = netdev_priv(net_dev); percpu_priv = this_cpu_ptr(priv->percpu_priv); if (dpaa_eth_napi_schedule(percpu_priv, portal)) return qman_cb_dqrr_stop; dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); return qman_cb_dqrr_consume; } static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, struct qman_fq *fq, const struct qm_dqrr_entry *dq) { struct dpaa_percpu_priv *percpu_priv; struct net_device *net_dev; struct dpaa_priv *priv; net_dev = ((struct dpaa_fq *)fq)->net_dev; priv = netdev_priv(net_dev); /* Trace the fd */ trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd); percpu_priv = this_cpu_ptr(priv->percpu_priv); if (dpaa_eth_napi_schedule(percpu_priv, portal)) return qman_cb_dqrr_stop; dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); return qman_cb_dqrr_consume; } static void egress_ern(struct qman_portal *portal, struct qman_fq *fq, const union qm_mr_entry *msg) { const struct qm_fd *fd = &msg->ern.fd; struct dpaa_percpu_priv *percpu_priv; const struct dpaa_priv *priv; struct net_device *net_dev; struct sk_buff *skb; net_dev = ((struct dpaa_fq *)fq)->net_dev; priv = netdev_priv(net_dev); percpu_priv = this_cpu_ptr(priv->percpu_priv); percpu_priv->stats.tx_dropped++; percpu_priv->stats.tx_fifo_errors++; count_ern(percpu_priv, msg); skb = dpaa_cleanup_tx_fd(priv, fd); dev_kfree_skb_any(skb); } static const struct dpaa_fq_cbs dpaa_fq_cbs = { .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, .egress_ern = { .cb = { .ern = egress_ern } } }; static void dpaa_eth_napi_enable(struct dpaa_priv *priv) { struct dpaa_percpu_priv *percpu_priv; int i; for_each_possible_cpu(i) { percpu_priv = per_cpu_ptr(priv->percpu_priv, i); percpu_priv->np.down = 0; napi_enable(&percpu_priv->np.napi); } } static void dpaa_eth_napi_disable(struct dpaa_priv *priv) { struct dpaa_percpu_priv *percpu_priv; int i; for_each_possible_cpu(i) { percpu_priv = per_cpu_ptr(priv->percpu_priv, i); percpu_priv->np.down = 1; napi_disable(&percpu_priv->np.napi); } } static void dpaa_adjust_link(struct net_device *net_dev) { struct mac_device *mac_dev; struct dpaa_priv *priv; priv = netdev_priv(net_dev); mac_dev = priv->mac_dev; mac_dev->adjust_link(mac_dev); } static int dpaa_phy_init(struct net_device *net_dev) { struct mac_device *mac_dev; struct phy_device *phy_dev; struct dpaa_priv *priv; priv = netdev_priv(net_dev); mac_dev = priv->mac_dev; phy_dev = of_phy_connect(net_dev, mac_dev->phy_node, &dpaa_adjust_link, 0, mac_dev->phy_if); if (!phy_dev) { netif_err(priv, ifup, net_dev, "init_phy() failed\n"); return -ENODEV; } /* Remove any features not supported by the controller */ phy_dev->supported &= mac_dev->if_support; phy_dev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause); phy_dev->advertising = phy_dev->supported; mac_dev->phy_dev = phy_dev; net_dev->phydev = phy_dev; return 0; } static int dpaa_open(struct net_device *net_dev) { struct mac_device *mac_dev; struct dpaa_priv *priv; int err, i; priv = netdev_priv(net_dev); mac_dev = priv->mac_dev; dpaa_eth_napi_enable(priv); err = dpaa_phy_init(net_dev); if (err) goto phy_init_failed; for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { err = fman_port_enable(mac_dev->port[i]); if (err) goto mac_start_failed; } err = priv->mac_dev->start(mac_dev); if (err < 0) { netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err); goto mac_start_failed; } netif_tx_start_all_queues(net_dev); return 0; mac_start_failed: for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) fman_port_disable(mac_dev->port[i]); phy_init_failed: dpaa_eth_napi_disable(priv); return err; } static int dpaa_eth_stop(struct net_device *net_dev) { struct dpaa_priv *priv; int err; err = dpaa_stop(net_dev); priv = netdev_priv(net_dev); dpaa_eth_napi_disable(priv); return err; } static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) { if (!net_dev->phydev) return -EINVAL; return phy_mii_ioctl(net_dev->phydev, rq, cmd); } static const struct net_device_ops dpaa_ops = { .ndo_open = dpaa_open, .ndo_start_xmit = dpaa_start_xmit, .ndo_stop = dpaa_eth_stop, .ndo_tx_timeout = dpaa_tx_timeout, .ndo_get_stats64 = dpaa_get_stats64, .ndo_set_mac_address = dpaa_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_set_rx_mode = dpaa_set_rx_mode, .ndo_do_ioctl = dpaa_ioctl, .ndo_setup_tc = dpaa_setup_tc, }; static int dpaa_napi_add(struct net_device *net_dev) { struct dpaa_priv *priv = netdev_priv(net_dev); struct dpaa_percpu_priv *percpu_priv; int cpu; for_each_possible_cpu(cpu) { percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll, NAPI_POLL_WEIGHT); } return 0; } static void dpaa_napi_del(struct net_device *net_dev) { struct dpaa_priv *priv = netdev_priv(net_dev); struct dpaa_percpu_priv *percpu_priv; int cpu; for_each_possible_cpu(cpu) { percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); netif_napi_del(&percpu_priv->np.napi); } } static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, struct bm_buffer *bmb) { dma_addr_t addr = bm_buf_addr(bmb); dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE); skb_free_frag(phys_to_virt(addr)); } /* Alloc the dpaa_bp struct and configure default values */ static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) { struct dpaa_bp *dpaa_bp; dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL); if (!dpaa_bp) return ERR_PTR(-ENOMEM); dpaa_bp->bpid = FSL_DPAA_BPID_INV; dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); if (!dpaa_bp->percpu_count) return ERR_PTR(-ENOMEM); dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; dpaa_bp->seed_cb = dpaa_bp_seed; dpaa_bp->free_buf_cb = dpaa_bp_free_pf; return dpaa_bp; } /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. * We won't be sending congestion notifications to FMan; for now, we just use * this CGR to generate enqueue rejections to FMan in order to drop the frames * before they reach our ingress queues and eat up memory. */ static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) { struct qm_mcc_initcgr initcgr; u32 cs_th; int err; err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); if (err < 0) { if (netif_msg_drv(priv)) pr_err("Error %d allocating CGR ID\n", err); goto out_error; } /* Enable CS TD, but disable Congestion State Change Notifications. */ memset(&initcgr, 0, sizeof(initcgr)); initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); initcgr.cgr.cscn_en = QM_CGR_EN; cs_th = DPAA_INGRESS_CS_THRESHOLD; qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); initcgr.cgr.cstd_en = QM_CGR_EN; /* This CGR will be associated with the SWP affined to the current CPU. * However, we'll place all our ingress FQs in it. */ err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, &initcgr); if (err < 0) { if (netif_msg_drv(priv)) pr_err("Error %d creating ingress CGR with ID %d\n", err, priv->ingress_cgr.cgrid); qman_release_cgrid(priv->ingress_cgr.cgrid); goto out_error; } if (netif_msg_drv(priv)) pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", priv->ingress_cgr.cgrid, priv->mac_dev->addr); priv->use_ingress_cgr = true; out_error: return err; } static const struct of_device_id dpaa_match[]; static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl) { u16 headroom; /* The frame headroom must accommodate: * - the driver private data area * - parse results, hash results, timestamp if selected * If either hash results or time stamp are selected, both will * be copied to/from the frame headroom, as TS is located between PR and * HR in the IC and IC copy size has a granularity of 16bytes * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) * * Also make sure the headroom is a multiple of data_align bytes */ headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE); return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT) : headroom; } static int dpaa_eth_probe(struct platform_device *pdev) { struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL}; struct net_device *net_dev = NULL; struct dpaa_fq *dpaa_fq, *tmp; struct dpaa_priv *priv = NULL; struct fm_port_fqs port_fqs; struct mac_device *mac_dev; int err = 0, i, channel; struct device *dev; /* device used for DMA mapping */ dev = pdev->dev.parent; err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40)); if (err) { dev_err(dev, "dma_coerce_mask_and_coherent() failed\n"); return err; } /* Allocate this early, so we can store relevant information in * the private area */ net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM); if (!net_dev) { dev_err(dev, "alloc_etherdev_mq() failed\n"); return -ENOMEM; } /* Do this here, so we can be verbose early */ SET_NETDEV_DEV(net_dev, dev); dev_set_drvdata(dev, net_dev); priv = netdev_priv(net_dev); priv->net_dev = net_dev; priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT); mac_dev = dpaa_mac_dev_get(pdev); if (IS_ERR(mac_dev)) { dev_err(dev, "dpaa_mac_dev_get() failed\n"); err = PTR_ERR(mac_dev); goto free_netdev; } /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, * we choose conservatively and let the user explicitly set a higher * MTU via ifconfig. Otherwise, the user may end up with different MTUs * in the same LAN. * If on the other hand fsl_fm_max_frm has been chosen below 1500, * start with the maximum allowed. */ net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", net_dev->mtu); priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ /* bp init */ for (i = 0; i < DPAA_BPS_NUM; i++) { int err; dpaa_bps[i] = dpaa_bp_alloc(dev); if (IS_ERR(dpaa_bps[i])) goto free_dpaa_bps; /* the raw size of the buffers used for reception */ dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM); /* avoid runtime computations by keeping the usable size here */ dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size); dpaa_bps[i]->dev = dev; err = dpaa_bp_alloc_pool(dpaa_bps[i]); if (err < 0) goto free_dpaa_bps; priv->dpaa_bps[i] = dpaa_bps[i]; } INIT_LIST_HEAD(&priv->dpaa_fq_list); memset(&port_fqs, 0, sizeof(port_fqs)); err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs); if (err < 0) { dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); goto free_dpaa_bps; } priv->mac_dev = mac_dev; channel = dpaa_get_channel(); if (channel < 0) { dev_err(dev, "dpaa_get_channel() failed\n"); err = channel; goto free_dpaa_bps; } priv->channel = (u16)channel; /* Start a thread that will walk the CPUs with affine portals * and add this pool channel to each's dequeue mask. */ dpaa_eth_add_channel(priv->channel); dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]); /* Create a congestion group for this netdev, with * dynamically-allocated CGR ID. * Must be executed after probing the MAC, but before * assigning the egress FQs to the CGRs. */ err = dpaa_eth_cgr_init(priv); if (err < 0) { dev_err(dev, "Error initializing CGR\n"); goto free_dpaa_bps; } err = dpaa_ingress_cgr_init(priv); if (err < 0) { dev_err(dev, "Error initializing ingress CGR\n"); goto delete_egress_cgr; } /* Add the FQs to the interface, and make them active */ list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { err = dpaa_fq_init(dpaa_fq, false); if (err < 0) goto free_dpaa_fqs; } priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]); priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]); /* All real interfaces need their ports initialized */ err = dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs, &priv->buf_layout[0], dev); if (err) goto free_dpaa_fqs; /* Rx traffic distribution based on keygen hashing defaults to on */ priv->keygen_in_use = true; priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); if (!priv->percpu_priv) { dev_err(dev, "devm_alloc_percpu() failed\n"); err = -ENOMEM; goto free_dpaa_fqs; } priv->num_tc = 1; netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); /* Initialize NAPI */ err = dpaa_napi_add(net_dev); if (err < 0) goto delete_dpaa_napi; err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout); if (err < 0) goto delete_dpaa_napi; dpaa_eth_sysfs_init(&net_dev->dev); netif_info(priv, probe, net_dev, "Probed interface %s\n", net_dev->name); return 0; delete_dpaa_napi: dpaa_napi_del(net_dev); free_dpaa_fqs: dpaa_fq_free(dev, &priv->dpaa_fq_list); qman_delete_cgr_safe(&priv->ingress_cgr); qman_release_cgrid(priv->ingress_cgr.cgrid); delete_egress_cgr: qman_delete_cgr_safe(&priv->cgr_data.cgr); qman_release_cgrid(priv->cgr_data.cgr.cgrid); free_dpaa_bps: dpaa_bps_free(priv); free_netdev: dev_set_drvdata(dev, NULL); free_netdev(net_dev); return err; } static int dpaa_remove(struct platform_device *pdev) { struct net_device *net_dev; struct dpaa_priv *priv; struct device *dev; int err; dev = &pdev->dev; net_dev = dev_get_drvdata(dev); priv = netdev_priv(net_dev); dpaa_eth_sysfs_remove(dev); dev_set_drvdata(dev, NULL); unregister_netdev(net_dev); err = dpaa_fq_free(dev, &priv->dpaa_fq_list); qman_delete_cgr_safe(&priv->ingress_cgr); qman_release_cgrid(priv->ingress_cgr.cgrid); qman_delete_cgr_safe(&priv->cgr_data.cgr); qman_release_cgrid(priv->cgr_data.cgr.cgrid); dpaa_napi_del(net_dev); dpaa_bps_free(priv); free_netdev(net_dev); return err; } static const struct platform_device_id dpaa_devtype[] = { { .name = "dpaa-ethernet", .driver_data = 0, }, { } }; MODULE_DEVICE_TABLE(platform, dpaa_devtype); static struct platform_driver dpaa_driver = { .driver = { .name = KBUILD_MODNAME, }, .id_table = dpaa_devtype, .probe = dpaa_eth_probe, .remove = dpaa_remove }; static int __init dpaa_load(void) { int err; pr_debug("FSL DPAA Ethernet driver\n"); /* initialize dpaa_eth mirror values */ dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); dpaa_max_frm = fman_get_max_frm(); err = platform_driver_register(&dpaa_driver); if (err < 0) pr_err("Error, platform_driver_register() = %d\n", err); return err; } module_init(dpaa_load); static void __exit dpaa_unload(void) { platform_driver_unregister(&dpaa_driver); /* Only one channel is used and needs to be released after all * interfaces are removed */ dpaa_release_channel(); } module_exit(dpaa_unload); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("FSL DPAA Ethernet driver");