// SPDX-License-Identifier: GPL-2.0-or-later /* * linux/drivers/mmc/host/sdhci.c - Secure Digital Host Controller Interface driver * * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. * * Thanks to the following companies for their support: * * - JMicron (hardware and technical support) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sdhci.h" #define DRIVER_NAME "sdhci" #define DBG(f, x...) \ pr_debug("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x) #define SDHCI_DUMP(f, x...) \ pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x) #define MAX_TUNING_LOOP 40 static unsigned int debug_quirks = 0; static unsigned int debug_quirks2; static void sdhci_finish_data(struct sdhci_host *); static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable); void sdhci_dumpregs(struct sdhci_host *host) { SDHCI_DUMP("============ SDHCI REGISTER DUMP ===========\n"); SDHCI_DUMP("Sys addr: 0x%08x | Version: 0x%08x\n", sdhci_readl(host, SDHCI_DMA_ADDRESS), sdhci_readw(host, SDHCI_HOST_VERSION)); SDHCI_DUMP("Blk size: 0x%08x | Blk cnt: 0x%08x\n", sdhci_readw(host, SDHCI_BLOCK_SIZE), sdhci_readw(host, SDHCI_BLOCK_COUNT)); SDHCI_DUMP("Argument: 0x%08x | Trn mode: 0x%08x\n", sdhci_readl(host, SDHCI_ARGUMENT), sdhci_readw(host, SDHCI_TRANSFER_MODE)); SDHCI_DUMP("Present: 0x%08x | Host ctl: 0x%08x\n", sdhci_readl(host, SDHCI_PRESENT_STATE), sdhci_readb(host, SDHCI_HOST_CONTROL)); SDHCI_DUMP("Power: 0x%08x | Blk gap: 0x%08x\n", sdhci_readb(host, SDHCI_POWER_CONTROL), sdhci_readb(host, SDHCI_BLOCK_GAP_CONTROL)); SDHCI_DUMP("Wake-up: 0x%08x | Clock: 0x%08x\n", sdhci_readb(host, SDHCI_WAKE_UP_CONTROL), sdhci_readw(host, SDHCI_CLOCK_CONTROL)); SDHCI_DUMP("Timeout: 0x%08x | Int stat: 0x%08x\n", sdhci_readb(host, SDHCI_TIMEOUT_CONTROL), sdhci_readl(host, SDHCI_INT_STATUS)); SDHCI_DUMP("Int enab: 0x%08x | Sig enab: 0x%08x\n", sdhci_readl(host, SDHCI_INT_ENABLE), sdhci_readl(host, SDHCI_SIGNAL_ENABLE)); SDHCI_DUMP("ACmd stat: 0x%08x | Slot int: 0x%08x\n", sdhci_readw(host, SDHCI_AUTO_CMD_STATUS), sdhci_readw(host, SDHCI_SLOT_INT_STATUS)); SDHCI_DUMP("Caps: 0x%08x | Caps_1: 0x%08x\n", sdhci_readl(host, SDHCI_CAPABILITIES), sdhci_readl(host, SDHCI_CAPABILITIES_1)); SDHCI_DUMP("Cmd: 0x%08x | Max curr: 0x%08x\n", sdhci_readw(host, SDHCI_COMMAND), sdhci_readl(host, SDHCI_MAX_CURRENT)); SDHCI_DUMP("Resp[0]: 0x%08x | Resp[1]: 0x%08x\n", sdhci_readl(host, SDHCI_RESPONSE), sdhci_readl(host, SDHCI_RESPONSE + 4)); SDHCI_DUMP("Resp[2]: 0x%08x | Resp[3]: 0x%08x\n", sdhci_readl(host, SDHCI_RESPONSE + 8), sdhci_readl(host, SDHCI_RESPONSE + 12)); SDHCI_DUMP("Host ctl2: 0x%08x\n", sdhci_readw(host, SDHCI_HOST_CONTROL2)); if (host->flags & SDHCI_USE_ADMA) { if (host->flags & SDHCI_USE_64_BIT_DMA) { SDHCI_DUMP("ADMA Err: 0x%08x | ADMA Ptr: 0x%08x%08x\n", sdhci_readl(host, SDHCI_ADMA_ERROR), sdhci_readl(host, SDHCI_ADMA_ADDRESS_HI), sdhci_readl(host, SDHCI_ADMA_ADDRESS)); } else { SDHCI_DUMP("ADMA Err: 0x%08x | ADMA Ptr: 0x%08x\n", sdhci_readl(host, SDHCI_ADMA_ERROR), sdhci_readl(host, SDHCI_ADMA_ADDRESS)); } } SDHCI_DUMP("============================================\n"); } EXPORT_SYMBOL_GPL(sdhci_dumpregs); /*****************************************************************************\ * * * Low level functions * * * \*****************************************************************************/ static void sdhci_do_enable_v4_mode(struct sdhci_host *host) { u16 ctrl2; ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (ctrl2 & SDHCI_CTRL_V4_MODE) return; ctrl2 |= SDHCI_CTRL_V4_MODE; sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2); } /* * This can be called before sdhci_add_host() by Vendor's host controller * driver to enable v4 mode if supported. */ void sdhci_enable_v4_mode(struct sdhci_host *host) { host->v4_mode = true; sdhci_do_enable_v4_mode(host); } EXPORT_SYMBOL_GPL(sdhci_enable_v4_mode); static inline bool sdhci_data_line_cmd(struct mmc_command *cmd) { return cmd->data || cmd->flags & MMC_RSP_BUSY; } static void sdhci_set_card_detection(struct sdhci_host *host, bool enable) { u32 present; if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) || !mmc_card_is_removable(host->mmc)) return; if (enable) { present = sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT; host->ier |= present ? SDHCI_INT_CARD_REMOVE : SDHCI_INT_CARD_INSERT; } else { host->ier &= ~(SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT); } sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); } static void sdhci_enable_card_detection(struct sdhci_host *host) { sdhci_set_card_detection(host, true); } static void sdhci_disable_card_detection(struct sdhci_host *host) { sdhci_set_card_detection(host, false); } static void sdhci_runtime_pm_bus_on(struct sdhci_host *host) { if (host->bus_on) return; host->bus_on = true; pm_runtime_get_noresume(host->mmc->parent); } static void sdhci_runtime_pm_bus_off(struct sdhci_host *host) { if (!host->bus_on) return; host->bus_on = false; pm_runtime_put_noidle(host->mmc->parent); } void sdhci_reset(struct sdhci_host *host, u8 mask) { ktime_t timeout; sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET); if (mask & SDHCI_RESET_ALL) { host->clock = 0; /* Reset-all turns off SD Bus Power */ if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON) sdhci_runtime_pm_bus_off(host); } /* Wait max 100 ms */ timeout = ktime_add_ms(ktime_get(), 100); /* hw clears the bit when it's done */ while (1) { bool timedout = ktime_after(ktime_get(), timeout); if (!(sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask)) break; if (timedout) { pr_err("%s: Reset 0x%x never completed.\n", mmc_hostname(host->mmc), (int)mask); sdhci_dumpregs(host); return; } udelay(10); } } EXPORT_SYMBOL_GPL(sdhci_reset); static void sdhci_do_reset(struct sdhci_host *host, u8 mask) { if (host->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) { struct mmc_host *mmc = host->mmc; if (!mmc->ops->get_cd(mmc)) return; } host->ops->reset(host, mask); if (mask & SDHCI_RESET_ALL) { if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) { if (host->ops->enable_dma) host->ops->enable_dma(host); } /* Resetting the controller clears many */ host->preset_enabled = false; } } static void sdhci_set_default_irqs(struct sdhci_host *host) { host->ier = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT | SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE; if (host->tuning_mode == SDHCI_TUNING_MODE_2 || host->tuning_mode == SDHCI_TUNING_MODE_3) host->ier |= SDHCI_INT_RETUNE; sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); } static void sdhci_config_dma(struct sdhci_host *host) { u8 ctrl; u16 ctrl2; if (host->version < SDHCI_SPEC_200) return; ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); /* * Always adjust the DMA selection as some controllers * (e.g. JMicron) can't do PIO properly when the selection * is ADMA. */ ctrl &= ~SDHCI_CTRL_DMA_MASK; if (!(host->flags & SDHCI_REQ_USE_DMA)) goto out; /* Note if DMA Select is zero then SDMA is selected */ if (host->flags & SDHCI_USE_ADMA) ctrl |= SDHCI_CTRL_ADMA32; if (host->flags & SDHCI_USE_64_BIT_DMA) { /* * If v4 mode, all supported DMA can be 64-bit addressing if * controller supports 64-bit system address, otherwise only * ADMA can support 64-bit addressing. */ if (host->v4_mode) { ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); ctrl2 |= SDHCI_CTRL_64BIT_ADDR; sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2); } else if (host->flags & SDHCI_USE_ADMA) { /* * Don't need to undo SDHCI_CTRL_ADMA32 in order to * set SDHCI_CTRL_ADMA64. */ ctrl |= SDHCI_CTRL_ADMA64; } } out: sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } static void sdhci_init(struct sdhci_host *host, int soft) { struct mmc_host *mmc = host->mmc; if (soft) sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA); else sdhci_do_reset(host, SDHCI_RESET_ALL); if (host->v4_mode) sdhci_do_enable_v4_mode(host); sdhci_set_default_irqs(host); host->cqe_on = false; if (soft) { /* force clock reconfiguration */ host->clock = 0; mmc->ops->set_ios(mmc, &mmc->ios); } } static void sdhci_reinit(struct sdhci_host *host) { u32 cd = host->ier & (SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT); sdhci_init(host, 0); sdhci_enable_card_detection(host); /* * A change to the card detect bits indicates a change in present state, * refer sdhci_set_card_detection(). A card detect interrupt might have * been missed while the host controller was being reset, so trigger a * rescan to check. */ if (cd != (host->ier & (SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT))) mmc_detect_change(host->mmc, msecs_to_jiffies(200)); } static void __sdhci_led_activate(struct sdhci_host *host) { u8 ctrl; if (host->quirks & SDHCI_QUIRK_NO_LED) return; ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); ctrl |= SDHCI_CTRL_LED; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } static void __sdhci_led_deactivate(struct sdhci_host *host) { u8 ctrl; if (host->quirks & SDHCI_QUIRK_NO_LED) return; ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); ctrl &= ~SDHCI_CTRL_LED; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } #if IS_REACHABLE(CONFIG_LEDS_CLASS) static void sdhci_led_control(struct led_classdev *led, enum led_brightness brightness) { struct sdhci_host *host = container_of(led, struct sdhci_host, led); unsigned long flags; spin_lock_irqsave(&host->lock, flags); if (host->runtime_suspended) goto out; if (brightness == LED_OFF) __sdhci_led_deactivate(host); else __sdhci_led_activate(host); out: spin_unlock_irqrestore(&host->lock, flags); } static int sdhci_led_register(struct sdhci_host *host) { struct mmc_host *mmc = host->mmc; if (host->quirks & SDHCI_QUIRK_NO_LED) return 0; snprintf(host->led_name, sizeof(host->led_name), "%s::", mmc_hostname(mmc)); host->led.name = host->led_name; host->led.brightness = LED_OFF; host->led.default_trigger = mmc_hostname(mmc); host->led.brightness_set = sdhci_led_control; return led_classdev_register(mmc_dev(mmc), &host->led); } static void sdhci_led_unregister(struct sdhci_host *host) { if (host->quirks & SDHCI_QUIRK_NO_LED) return; led_classdev_unregister(&host->led); } static inline void sdhci_led_activate(struct sdhci_host *host) { } static inline void sdhci_led_deactivate(struct sdhci_host *host) { } #else static inline int sdhci_led_register(struct sdhci_host *host) { return 0; } static inline void sdhci_led_unregister(struct sdhci_host *host) { } static inline void sdhci_led_activate(struct sdhci_host *host) { __sdhci_led_activate(host); } static inline void sdhci_led_deactivate(struct sdhci_host *host) { __sdhci_led_deactivate(host); } #endif static void sdhci_mod_timer(struct sdhci_host *host, struct mmc_request *mrq, unsigned long timeout) { if (sdhci_data_line_cmd(mrq->cmd)) mod_timer(&host->data_timer, timeout); else mod_timer(&host->timer, timeout); } static void sdhci_del_timer(struct sdhci_host *host, struct mmc_request *mrq) { if (sdhci_data_line_cmd(mrq->cmd)) del_timer(&host->data_timer); else del_timer(&host->timer); } static inline bool sdhci_has_requests(struct sdhci_host *host) { return host->cmd || host->data_cmd; } /*****************************************************************************\ * * * Core functions * * * \*****************************************************************************/ static void sdhci_read_block_pio(struct sdhci_host *host) { unsigned long flags; size_t blksize, len, chunk; u32 uninitialized_var(scratch); u8 *buf; DBG("PIO reading\n"); blksize = host->data->blksz; chunk = 0; local_irq_save(flags); while (blksize) { BUG_ON(!sg_miter_next(&host->sg_miter)); len = min(host->sg_miter.length, blksize); blksize -= len; host->sg_miter.consumed = len; buf = host->sg_miter.addr; while (len) { if (chunk == 0) { scratch = sdhci_readl(host, SDHCI_BUFFER); chunk = 4; } *buf = scratch & 0xFF; buf++; scratch >>= 8; chunk--; len--; } } sg_miter_stop(&host->sg_miter); local_irq_restore(flags); } static void sdhci_write_block_pio(struct sdhci_host *host) { unsigned long flags; size_t blksize, len, chunk; u32 scratch; u8 *buf; DBG("PIO writing\n"); blksize = host->data->blksz; chunk = 0; scratch = 0; local_irq_save(flags); while (blksize) { BUG_ON(!sg_miter_next(&host->sg_miter)); len = min(host->sg_miter.length, blksize); blksize -= len; host->sg_miter.consumed = len; buf = host->sg_miter.addr; while (len) { scratch |= (u32)*buf << (chunk * 8); buf++; chunk++; len--; if ((chunk == 4) || ((len == 0) && (blksize == 0))) { sdhci_writel(host, scratch, SDHCI_BUFFER); chunk = 0; scratch = 0; } } } sg_miter_stop(&host->sg_miter); local_irq_restore(flags); } static void sdhci_transfer_pio(struct sdhci_host *host) { u32 mask; if (host->blocks == 0) return; if (host->data->flags & MMC_DATA_READ) mask = SDHCI_DATA_AVAILABLE; else mask = SDHCI_SPACE_AVAILABLE; /* * Some controllers (JMicron JMB38x) mess up the buffer bits * for transfers < 4 bytes. As long as it is just one block, * we can ignore the bits. */ if ((host->quirks & SDHCI_QUIRK_BROKEN_SMALL_PIO) && (host->data->blocks == 1)) mask = ~0; while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) { if (host->quirks & SDHCI_QUIRK_PIO_NEEDS_DELAY) udelay(100); if (host->data->flags & MMC_DATA_READ) sdhci_read_block_pio(host); else sdhci_write_block_pio(host); host->blocks--; if (host->blocks == 0) break; } DBG("PIO transfer complete.\n"); } static int sdhci_pre_dma_transfer(struct sdhci_host *host, struct mmc_data *data, int cookie) { int sg_count; /* * If the data buffers are already mapped, return the previous * dma_map_sg() result. */ if (data->host_cookie == COOKIE_PRE_MAPPED) return data->sg_count; /* Bounce write requests to the bounce buffer */ if (host->bounce_buffer) { unsigned int length = data->blksz * data->blocks; if (length > host->bounce_buffer_size) { pr_err("%s: asked for transfer of %u bytes exceeds bounce buffer %u bytes\n", mmc_hostname(host->mmc), length, host->bounce_buffer_size); return -EIO; } if (mmc_get_dma_dir(data) == DMA_TO_DEVICE) { /* Copy the data to the bounce buffer */ sg_copy_to_buffer(data->sg, data->sg_len, host->bounce_buffer, length); } /* Switch ownership to the DMA */ dma_sync_single_for_device(host->mmc->parent, host->bounce_addr, host->bounce_buffer_size, mmc_get_dma_dir(data)); /* Just a dummy value */ sg_count = 1; } else { /* Just access the data directly from memory */ sg_count = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, mmc_get_dma_dir(data)); } if (sg_count == 0) return -ENOSPC; data->sg_count = sg_count; data->host_cookie = cookie; return sg_count; } static char *sdhci_kmap_atomic(struct scatterlist *sg, unsigned long *flags) { local_irq_save(*flags); return kmap_atomic(sg_page(sg)) + sg->offset; } static void sdhci_kunmap_atomic(void *buffer, unsigned long *flags) { kunmap_atomic(buffer); local_irq_restore(*flags); } void sdhci_adma_write_desc(struct sdhci_host *host, void **desc, dma_addr_t addr, int len, unsigned int cmd) { struct sdhci_adma2_64_desc *dma_desc = *desc; /* 32-bit and 64-bit descriptors have these members in same position */ dma_desc->cmd = cpu_to_le16(cmd); dma_desc->len = cpu_to_le16(len); dma_desc->addr_lo = cpu_to_le32(lower_32_bits(addr)); if (host->flags & SDHCI_USE_64_BIT_DMA) dma_desc->addr_hi = cpu_to_le32(upper_32_bits(addr)); *desc += host->desc_sz; } EXPORT_SYMBOL_GPL(sdhci_adma_write_desc); static inline void __sdhci_adma_write_desc(struct sdhci_host *host, void **desc, dma_addr_t addr, int len, unsigned int cmd) { if (host->ops->adma_write_desc) host->ops->adma_write_desc(host, desc, addr, len, cmd); else sdhci_adma_write_desc(host, desc, addr, len, cmd); } static void sdhci_adma_mark_end(void *desc) { struct sdhci_adma2_64_desc *dma_desc = desc; /* 32-bit and 64-bit descriptors have 'cmd' in same position */ dma_desc->cmd |= cpu_to_le16(ADMA2_END); } static void sdhci_adma_table_pre(struct sdhci_host *host, struct mmc_data *data, int sg_count) { struct scatterlist *sg; unsigned long flags; dma_addr_t addr, align_addr; void *desc, *align; char *buffer; int len, offset, i; /* * The spec does not specify endianness of descriptor table. * We currently guess that it is LE. */ host->sg_count = sg_count; desc = host->adma_table; align = host->align_buffer; align_addr = host->align_addr; for_each_sg(data->sg, sg, host->sg_count, i) { addr = sg_dma_address(sg); len = sg_dma_len(sg); /* * The SDHCI specification states that ADMA addresses must * be 32-bit aligned. If they aren't, then we use a bounce * buffer for the (up to three) bytes that screw up the * alignment. */ offset = (SDHCI_ADMA2_ALIGN - (addr & SDHCI_ADMA2_MASK)) & SDHCI_ADMA2_MASK; if (offset) { if (data->flags & MMC_DATA_WRITE) { buffer = sdhci_kmap_atomic(sg, &flags); memcpy(align, buffer, offset); sdhci_kunmap_atomic(buffer, &flags); } /* tran, valid */ __sdhci_adma_write_desc(host, &desc, align_addr, offset, ADMA2_TRAN_VALID); BUG_ON(offset > 65536); align += SDHCI_ADMA2_ALIGN; align_addr += SDHCI_ADMA2_ALIGN; addr += offset; len -= offset; } BUG_ON(len > 65536); /* tran, valid */ if (len) __sdhci_adma_write_desc(host, &desc, addr, len, ADMA2_TRAN_VALID); /* * If this triggers then we have a calculation bug * somewhere. :/ */ WARN_ON((desc - host->adma_table) >= host->adma_table_sz); } if (host->quirks & SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC) { /* Mark the last descriptor as the terminating descriptor */ if (desc != host->adma_table) { desc -= host->desc_sz; sdhci_adma_mark_end(desc); } } else { /* Add a terminating entry - nop, end, valid */ __sdhci_adma_write_desc(host, &desc, 0, 0, ADMA2_NOP_END_VALID); } } static void sdhci_adma_table_post(struct sdhci_host *host, struct mmc_data *data) { struct scatterlist *sg; int i, size; void *align; char *buffer; unsigned long flags; if (data->flags & MMC_DATA_READ) { bool has_unaligned = false; /* Do a quick scan of the SG list for any unaligned mappings */ for_each_sg(data->sg, sg, host->sg_count, i) if (sg_dma_address(sg) & SDHCI_ADMA2_MASK) { has_unaligned = true; break; } if (has_unaligned) { dma_sync_sg_for_cpu(mmc_dev(host->mmc), data->sg, data->sg_len, DMA_FROM_DEVICE); align = host->align_buffer; for_each_sg(data->sg, sg, host->sg_count, i) { if (sg_dma_address(sg) & SDHCI_ADMA2_MASK) { size = SDHCI_ADMA2_ALIGN - (sg_dma_address(sg) & SDHCI_ADMA2_MASK); buffer = sdhci_kmap_atomic(sg, &flags); memcpy(buffer, align, size); sdhci_kunmap_atomic(buffer, &flags); align += SDHCI_ADMA2_ALIGN; } } } } } static void sdhci_set_adma_addr(struct sdhci_host *host, dma_addr_t addr) { sdhci_writel(host, lower_32_bits(addr), SDHCI_ADMA_ADDRESS); if (host->flags & SDHCI_USE_64_BIT_DMA) sdhci_writel(host, upper_32_bits(addr), SDHCI_ADMA_ADDRESS_HI); } static dma_addr_t sdhci_sdma_address(struct sdhci_host *host) { if (host->bounce_buffer) return host->bounce_addr; else return sg_dma_address(host->data->sg); } static void sdhci_set_sdma_addr(struct sdhci_host *host, dma_addr_t addr) { if (host->v4_mode) sdhci_set_adma_addr(host, addr); else sdhci_writel(host, addr, SDHCI_DMA_ADDRESS); } static unsigned int sdhci_target_timeout(struct sdhci_host *host, struct mmc_command *cmd, struct mmc_data *data) { unsigned int target_timeout; /* timeout in us */ if (!data) { target_timeout = cmd->busy_timeout * 1000; } else { target_timeout = DIV_ROUND_UP(data->timeout_ns, 1000); if (host->clock && data->timeout_clks) { unsigned long long val; /* * data->timeout_clks is in units of clock cycles. * host->clock is in Hz. target_timeout is in us. * Hence, us = 1000000 * cycles / Hz. Round up. */ val = 1000000ULL * data->timeout_clks; if (do_div(val, host->clock)) target_timeout++; target_timeout += val; } } return target_timeout; } static void sdhci_calc_sw_timeout(struct sdhci_host *host, struct mmc_command *cmd) { struct mmc_data *data = cmd->data; struct mmc_host *mmc = host->mmc; struct mmc_ios *ios = &mmc->ios; unsigned char bus_width = 1 << ios->bus_width; unsigned int blksz; unsigned int freq; u64 target_timeout; u64 transfer_time; target_timeout = sdhci_target_timeout(host, cmd, data); target_timeout *= NSEC_PER_USEC; if (data) { blksz = data->blksz; freq = host->mmc->actual_clock ? : host->clock; transfer_time = (u64)blksz * NSEC_PER_SEC * (8 / bus_width); do_div(transfer_time, freq); /* multiply by '2' to account for any unknowns */ transfer_time = transfer_time * 2; /* calculate timeout for the entire data */ host->data_timeout = data->blocks * target_timeout + transfer_time; } else { host->data_timeout = target_timeout; } if (host->data_timeout) host->data_timeout += MMC_CMD_TRANSFER_TIME; } static u8 sdhci_calc_timeout(struct sdhci_host *host, struct mmc_command *cmd, bool *too_big) { u8 count; struct mmc_data *data; unsigned target_timeout, current_timeout; *too_big = true; /* * If the host controller provides us with an incorrect timeout * value, just skip the check and use 0xE. The hardware may take * longer to time out, but that's much better than having a too-short * timeout value. */ if (host->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) return 0xE; /* Unspecified command, asume max */ if (cmd == NULL) return 0xE; data = cmd->data; /* Unspecified timeout, assume max */ if (!data && !cmd->busy_timeout) return 0xE; /* timeout in us */ target_timeout = sdhci_target_timeout(host, cmd, data); /* * Figure out needed cycles. * We do this in steps in order to fit inside a 32 bit int. * The first step is the minimum timeout, which will have a * minimum resolution of 6 bits: * (1) 2^13*1000 > 2^22, * (2) host->timeout_clk < 2^16 * => * (1) / (2) > 2^6 */ count = 0; current_timeout = (1 << 13) * 1000 / host->timeout_clk; while (current_timeout < target_timeout) { count++; current_timeout <<= 1; if (count >= 0xF) break; } if (count >= 0xF) { if (!(host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT)) DBG("Too large timeout 0x%x requested for CMD%d!\n", count, cmd->opcode); count = 0xE; } else { *too_big = false; } return count; } static void sdhci_set_transfer_irqs(struct sdhci_host *host) { u32 pio_irqs = SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL; u32 dma_irqs = SDHCI_INT_DMA_END | SDHCI_INT_ADMA_ERROR; if (host->flags & SDHCI_REQ_USE_DMA) host->ier = (host->ier & ~pio_irqs) | dma_irqs; else host->ier = (host->ier & ~dma_irqs) | pio_irqs; if (host->flags & (SDHCI_AUTO_CMD23 | SDHCI_AUTO_CMD12)) host->ier |= SDHCI_INT_AUTO_CMD_ERR; else host->ier &= ~SDHCI_INT_AUTO_CMD_ERR; sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); } static void sdhci_set_data_timeout_irq(struct sdhci_host *host, bool enable) { if (enable) host->ier |= SDHCI_INT_DATA_TIMEOUT; else host->ier &= ~SDHCI_INT_DATA_TIMEOUT; sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); } static void sdhci_set_timeout(struct sdhci_host *host, struct mmc_command *cmd) { u8 count; if (host->ops->set_timeout) { host->ops->set_timeout(host, cmd); } else { bool too_big = false; count = sdhci_calc_timeout(host, cmd, &too_big); if (too_big && host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT) { sdhci_calc_sw_timeout(host, cmd); sdhci_set_data_timeout_irq(host, false); } else if (!(host->ier & SDHCI_INT_DATA_TIMEOUT)) { sdhci_set_data_timeout_irq(host, true); } sdhci_writeb(host, count, SDHCI_TIMEOUT_CONTROL); } } static void sdhci_prepare_data(struct sdhci_host *host, struct mmc_command *cmd) { struct mmc_data *data = cmd->data; host->data_timeout = 0; if (sdhci_data_line_cmd(cmd)) sdhci_set_timeout(host, cmd); if (!data) return; WARN_ON(host->data); /* Sanity checks */ BUG_ON(data->blksz * data->blocks > 524288); BUG_ON(data->blksz > host->mmc->max_blk_size); BUG_ON(data->blocks > 65535); host->data = data; host->data_early = 0; host->data->bytes_xfered = 0; if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) { struct scatterlist *sg; unsigned int length_mask, offset_mask; int i; host->flags |= SDHCI_REQ_USE_DMA; /* * FIXME: This doesn't account for merging when mapping the * scatterlist. * * The assumption here being that alignment and lengths are * the same after DMA mapping to device address space. */ length_mask = 0; offset_mask = 0; if (host->flags & SDHCI_USE_ADMA) { if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE) { length_mask = 3; /* * As we use up to 3 byte chunks to work * around alignment problems, we need to * check the offset as well. */ offset_mask = 3; } } else { if (host->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) length_mask = 3; if (host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR) offset_mask = 3; } if (unlikely(length_mask | offset_mask)) { for_each_sg(data->sg, sg, data->sg_len, i) { if (sg->length & length_mask) { DBG("Reverting to PIO because of transfer size (%d)\n", sg->length); host->flags &= ~SDHCI_REQ_USE_DMA; break; } if (sg->offset & offset_mask) { DBG("Reverting to PIO because of bad alignment\n"); host->flags &= ~SDHCI_REQ_USE_DMA; break; } } } } if (host->flags & SDHCI_REQ_USE_DMA) { int sg_cnt = sdhci_pre_dma_transfer(host, data, COOKIE_MAPPED); if (sg_cnt <= 0) { /* * This only happens when someone fed * us an invalid request. */ WARN_ON(1); host->flags &= ~SDHCI_REQ_USE_DMA; } else if (host->flags & SDHCI_USE_ADMA) { sdhci_adma_table_pre(host, data, sg_cnt); sdhci_set_adma_addr(host, host->adma_addr); } else { WARN_ON(sg_cnt != 1); sdhci_set_sdma_addr(host, sdhci_sdma_address(host)); } } sdhci_config_dma(host); if (!(host->flags & SDHCI_REQ_USE_DMA)) { int flags; flags = SG_MITER_ATOMIC; if (host->data->flags & MMC_DATA_READ) flags |= SG_MITER_TO_SG; else flags |= SG_MITER_FROM_SG; sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); host->blocks = data->blocks; } sdhci_set_transfer_irqs(host); /* Set the DMA boundary value and block size */ sdhci_writew(host, SDHCI_MAKE_BLKSZ(host->sdma_boundary, data->blksz), SDHCI_BLOCK_SIZE); /* * For Version 4.10 onwards, if v4 mode is enabled, 32-bit Block Count * can be supported, in that case 16-bit block count register must be 0. */ if (host->version >= SDHCI_SPEC_410 && host->v4_mode && (host->quirks2 & SDHCI_QUIRK2_USE_32BIT_BLK_CNT)) { if (sdhci_readw(host, SDHCI_BLOCK_COUNT)) sdhci_writew(host, 0, SDHCI_BLOCK_COUNT); sdhci_writew(host, data->blocks, SDHCI_32BIT_BLK_CNT); } else { sdhci_writew(host, data->blocks, SDHCI_BLOCK_COUNT); } } static inline bool sdhci_auto_cmd12(struct sdhci_host *host, struct mmc_request *mrq) { return !mrq->sbc && (host->flags & SDHCI_AUTO_CMD12) && !mrq->cap_cmd_during_tfr; } static inline void sdhci_auto_cmd_select(struct sdhci_host *host, struct mmc_command *cmd, u16 *mode) { bool use_cmd12 = sdhci_auto_cmd12(host, cmd->mrq) && (cmd->opcode != SD_IO_RW_EXTENDED); bool use_cmd23 = cmd->mrq->sbc && (host->flags & SDHCI_AUTO_CMD23); u16 ctrl2; /* * In case of Version 4.10 or later, use of 'Auto CMD Auto * Select' is recommended rather than use of 'Auto CMD12 * Enable' or 'Auto CMD23 Enable'. */ if (host->version >= SDHCI_SPEC_410 && (use_cmd12 || use_cmd23)) { *mode |= SDHCI_TRNS_AUTO_SEL; ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (use_cmd23) ctrl2 |= SDHCI_CMD23_ENABLE; else ctrl2 &= ~SDHCI_CMD23_ENABLE; sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2); return; } /* * If we are sending CMD23, CMD12 never gets sent * on successful completion (so no Auto-CMD12). */ if (use_cmd12) *mode |= SDHCI_TRNS_AUTO_CMD12; else if (use_cmd23) *mode |= SDHCI_TRNS_AUTO_CMD23; } static void sdhci_set_transfer_mode(struct sdhci_host *host, struct mmc_command *cmd) { u16 mode = 0; struct mmc_data *data = cmd->data; if (data == NULL) { if (host->quirks2 & SDHCI_QUIRK2_CLEAR_TRANSFERMODE_REG_BEFORE_CMD) { /* must not clear SDHCI_TRANSFER_MODE when tuning */ if (cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) sdhci_writew(host, 0x0, SDHCI_TRANSFER_MODE); } else { /* clear Auto CMD settings for no data CMDs */ mode = sdhci_readw(host, SDHCI_TRANSFER_MODE); sdhci_writew(host, mode & ~(SDHCI_TRNS_AUTO_CMD12 | SDHCI_TRNS_AUTO_CMD23), SDHCI_TRANSFER_MODE); } return; } WARN_ON(!host->data); if (!(host->quirks2 & SDHCI_QUIRK2_SUPPORT_SINGLE)) mode = SDHCI_TRNS_BLK_CNT_EN; if (mmc_op_multi(cmd->opcode) || data->blocks > 1) { mode = SDHCI_TRNS_BLK_CNT_EN | SDHCI_TRNS_MULTI; sdhci_auto_cmd_select(host, cmd, &mode); if (cmd->mrq->sbc && (host->flags & SDHCI_AUTO_CMD23)) sdhci_writel(host, cmd->mrq->sbc->arg, SDHCI_ARGUMENT2); } if (data->flags & MMC_DATA_READ) mode |= SDHCI_TRNS_READ; if (host->flags & SDHCI_REQ_USE_DMA) mode |= SDHCI_TRNS_DMA; sdhci_writew(host, mode, SDHCI_TRANSFER_MODE); } static bool sdhci_needs_reset(struct sdhci_host *host, struct mmc_request *mrq) { return (!(host->flags & SDHCI_DEVICE_DEAD) && ((mrq->cmd && mrq->cmd->error) || (mrq->sbc && mrq->sbc->error) || (mrq->data && mrq->data->stop && mrq->data->stop->error) || (host->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))); } static void __sdhci_finish_mrq(struct sdhci_host *host, struct mmc_request *mrq) { int i; if (host->cmd && host->cmd->mrq == mrq) host->cmd = NULL; if (host->data_cmd && host->data_cmd->mrq == mrq) host->data_cmd = NULL; if (host->data && host->data->mrq == mrq) host->data = NULL; if (sdhci_needs_reset(host, mrq)) host->pending_reset = true; for (i = 0; i < SDHCI_MAX_MRQS; i++) { if (host->mrqs_done[i] == mrq) { WARN_ON(1); return; } } for (i = 0; i < SDHCI_MAX_MRQS; i++) { if (!host->mrqs_done[i]) { host->mrqs_done[i] = mrq; break; } } WARN_ON(i >= SDHCI_MAX_MRQS); sdhci_del_timer(host, mrq); if (!sdhci_has_requests(host)) sdhci_led_deactivate(host); } static void sdhci_finish_mrq(struct sdhci_host *host, struct mmc_request *mrq) { __sdhci_finish_mrq(host, mrq); queue_work(host->complete_wq, &host->complete_work); } static void sdhci_finish_data(struct sdhci_host *host) { struct mmc_command *data_cmd = host->data_cmd; struct mmc_data *data = host->data; host->data = NULL; host->data_cmd = NULL; /* * The controller needs a reset of internal state machines upon error * conditions. */ if (data->error) { if (!host->cmd || host->cmd == data_cmd) sdhci_do_reset(host, SDHCI_RESET_CMD); sdhci_do_reset(host, SDHCI_RESET_DATA); } if ((host->flags & (SDHCI_REQ_USE_DMA | SDHCI_USE_ADMA)) == (SDHCI_REQ_USE_DMA | SDHCI_USE_ADMA)) sdhci_adma_table_post(host, data); /* * The specification states that the block count register must * be updated, but it does not specify at what point in the * data flow. That makes the register entirely useless to read * back so we have to assume that nothing made it to the card * in the event of an error. */ if (data->error) data->bytes_xfered = 0; else data->bytes_xfered = data->blksz * data->blocks; /* * Need to send CMD12 if - * a) open-ended multiblock transfer (no CMD23) * b) error in multiblock transfer */ if (data->stop && (data->error || !data->mrq->sbc)) { /* * 'cap_cmd_during_tfr' request must not use the command line * after mmc_command_done() has been called. It is upper layer's * responsibility to send the stop command if required. */ if (data->mrq->cap_cmd_during_tfr) { __sdhci_finish_mrq(host, data->mrq); } else { /* Avoid triggering warning in sdhci_send_command() */ host->cmd = NULL; sdhci_send_command(host, data->stop); } } else { __sdhci_finish_mrq(host, data->mrq); } } void sdhci_send_command(struct sdhci_host *host, struct mmc_command *cmd) { int flags; u32 mask; unsigned long timeout; WARN_ON(host->cmd); /* Initially, a command has no error */ cmd->error = 0; if ((host->quirks2 & SDHCI_QUIRK2_STOP_WITH_TC) && cmd->opcode == MMC_STOP_TRANSMISSION) cmd->flags |= MMC_RSP_BUSY; /* Wait max 10 ms */ timeout = 10; mask = SDHCI_CMD_INHIBIT; if (sdhci_data_line_cmd(cmd)) mask |= SDHCI_DATA_INHIBIT; /* We shouldn't wait for data inihibit for stop commands, even though they might use busy signaling */ if (cmd->mrq->data && (cmd == cmd->mrq->data->stop)) mask &= ~SDHCI_DATA_INHIBIT; while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) { if (timeout == 0) { pr_err("%s: Controller never released inhibit bit(s).\n", mmc_hostname(host->mmc)); sdhci_dumpregs(host); cmd->error = -EIO; sdhci_finish_mrq(host, cmd->mrq); return; } timeout--; mdelay(1); } host->cmd = cmd; if (sdhci_data_line_cmd(cmd)) { WARN_ON(host->data_cmd); host->data_cmd = cmd; } sdhci_prepare_data(host, cmd); sdhci_writel(host, cmd->arg, SDHCI_ARGUMENT); sdhci_set_transfer_mode(host, cmd); if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) { pr_err("%s: Unsupported response type!\n", mmc_hostname(host->mmc)); cmd->error = -EINVAL; sdhci_finish_mrq(host, cmd->mrq); return; } if (!(cmd->flags & MMC_RSP_PRESENT)) flags = SDHCI_CMD_RESP_NONE; else if (cmd->flags & MMC_RSP_136) flags = SDHCI_CMD_RESP_LONG; else if (cmd->flags & MMC_RSP_BUSY) flags = SDHCI_CMD_RESP_SHORT_BUSY; else flags = SDHCI_CMD_RESP_SHORT; if (cmd->flags & MMC_RSP_CRC) flags |= SDHCI_CMD_CRC; if (cmd->flags & MMC_RSP_OPCODE) flags |= SDHCI_CMD_INDEX; /* CMD19 is special in that the Data Present Select should be set */ if (cmd->data || cmd->opcode == MMC_SEND_TUNING_BLOCK || cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200) flags |= SDHCI_CMD_DATA; timeout = jiffies; if (host->data_timeout) timeout += nsecs_to_jiffies(host->data_timeout); else if (!cmd->data && cmd->busy_timeout > 9000) timeout += DIV_ROUND_UP(cmd->busy_timeout, 1000) * HZ + HZ; else timeout += 10 * HZ; sdhci_mod_timer(host, cmd->mrq, timeout); sdhci_writew(host, SDHCI_MAKE_CMD(cmd->opcode, flags), SDHCI_COMMAND); } EXPORT_SYMBOL_GPL(sdhci_send_command); static void sdhci_read_rsp_136(struct sdhci_host *host, struct mmc_command *cmd) { int i, reg; for (i = 0; i < 4; i++) { reg = SDHCI_RESPONSE + (3 - i) * 4; cmd->resp[i] = sdhci_readl(host, reg); } if (host->quirks2 & SDHCI_QUIRK2_RSP_136_HAS_CRC) return; /* CRC is stripped so we need to do some shifting */ for (i = 0; i < 4; i++) { cmd->resp[i] <<= 8; if (i != 3) cmd->resp[i] |= cmd->resp[i + 1] >> 24; } } static void sdhci_finish_command(struct sdhci_host *host) { struct mmc_command *cmd = host->cmd; host->cmd = NULL; if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) { sdhci_read_rsp_136(host, cmd); } else { cmd->resp[0] = sdhci_readl(host, SDHCI_RESPONSE); } } if (cmd->mrq->cap_cmd_during_tfr && cmd == cmd->mrq->cmd) mmc_command_done(host->mmc, cmd->mrq); /* * The host can send and interrupt when the busy state has * ended, allowing us to wait without wasting CPU cycles. * The busy signal uses DAT0 so this is similar to waiting * for data to complete. * * Note: The 1.0 specification is a bit ambiguous about this * feature so there might be some problems with older * controllers. */ if (cmd->flags & MMC_RSP_BUSY) { if (cmd->data) { DBG("Cannot wait for busy signal when also doing a data transfer"); } else if (!(host->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) && cmd == host->data_cmd) { /* Command complete before busy is ended */ return; } } /* Finished CMD23, now send actual command. */ if (cmd == cmd->mrq->sbc) { sdhci_send_command(host, cmd->mrq->cmd); } else { /* Processed actual command. */ if (host->data && host->data_early) sdhci_finish_data(host); if (!cmd->data) __sdhci_finish_mrq(host, cmd->mrq); } } static u16 sdhci_get_preset_value(struct sdhci_host *host) { u16 preset = 0; switch (host->timing) { case MMC_TIMING_UHS_SDR12: preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12); break; case MMC_TIMING_UHS_SDR25: preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR25); break; case MMC_TIMING_UHS_SDR50: preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR50); break; case MMC_TIMING_UHS_SDR104: case MMC_TIMING_MMC_HS200: preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR104); break; case MMC_TIMING_UHS_DDR50: case MMC_TIMING_MMC_DDR52: preset = sdhci_readw(host, SDHCI_PRESET_FOR_DDR50); break; case MMC_TIMING_MMC_HS400: preset = sdhci_readw(host, SDHCI_PRESET_FOR_HS400); break; default: pr_warn("%s: Invalid UHS-I mode selected\n", mmc_hostname(host->mmc)); preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12); break; } return preset; } u16 sdhci_calc_clk(struct sdhci_host *host, unsigned int clock, unsigned int *actual_clock) { int div = 0; /* Initialized for compiler warning */ int real_div = div, clk_mul = 1; u16 clk = 0; bool switch_base_clk = false; if (host->version >= SDHCI_SPEC_300) { if (host->preset_enabled) { u16 pre_val; clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); pre_val = sdhci_get_preset_value(host); div = (pre_val & SDHCI_PRESET_SDCLK_FREQ_MASK) >> SDHCI_PRESET_SDCLK_FREQ_SHIFT; if (host->clk_mul && (pre_val & SDHCI_PRESET_CLKGEN_SEL_MASK)) { clk = SDHCI_PROG_CLOCK_MODE; real_div = div + 1; clk_mul = host->clk_mul; } else { real_div = max_t(int, 1, div << 1); } goto clock_set; } /* * Check if the Host Controller supports Programmable Clock * Mode. */ if (host->clk_mul) { for (div = 1; div <= 1024; div++) { if ((host->max_clk * host->clk_mul / div) <= clock) break; } if ((host->max_clk * host->clk_mul / div) <= clock) { /* * Set Programmable Clock Mode in the Clock * Control register. */ clk = SDHCI_PROG_CLOCK_MODE; real_div = div; clk_mul = host->clk_mul; div--; } else { /* * Divisor can be too small to reach clock * speed requirement. Then use the base clock. */ switch_base_clk = true; } } if (!host->clk_mul || switch_base_clk) { /* Version 3.00 divisors must be a multiple of 2. */ if (host->max_clk <= clock) div = 1; else { for (div = 2; div < SDHCI_MAX_DIV_SPEC_300; div += 2) { if ((host->max_clk / div) <= clock) break; } } real_div = div; div >>= 1; if ((host->quirks2 & SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN) && !div && host->max_clk <= 25000000) div = 1; } } else { /* Version 2.00 divisors must be a power of 2. */ for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2) { if ((host->max_clk / div) <= clock) break; } real_div = div; div >>= 1; } clock_set: if (real_div) *actual_clock = (host->max_clk * clk_mul) / real_div; clk |= (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT; clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN) << SDHCI_DIVIDER_HI_SHIFT; return clk; } EXPORT_SYMBOL_GPL(sdhci_calc_clk); void sdhci_enable_clk(struct sdhci_host *host, u16 clk) { ktime_t timeout; clk |= SDHCI_CLOCK_INT_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); /* Wait max 150 ms */ timeout = ktime_add_ms(ktime_get(), 150); while (1) { bool timedout = ktime_after(ktime_get(), timeout); clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); if (clk & SDHCI_CLOCK_INT_STABLE) break; if (timedout) { pr_err("%s: Internal clock never stabilised.\n", mmc_hostname(host->mmc)); sdhci_dumpregs(host); return; } udelay(10); } if (host->version >= SDHCI_SPEC_410 && host->v4_mode) { clk |= SDHCI_CLOCK_PLL_EN; clk &= ~SDHCI_CLOCK_INT_STABLE; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); /* Wait max 150 ms */ timeout = ktime_add_ms(ktime_get(), 150); while (1) { bool timedout = ktime_after(ktime_get(), timeout); clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); if (clk & SDHCI_CLOCK_INT_STABLE) break; if (timedout) { pr_err("%s: PLL clock never stabilised.\n", mmc_hostname(host->mmc)); sdhci_dumpregs(host); return; } udelay(10); } } clk |= SDHCI_CLOCK_CARD_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); } EXPORT_SYMBOL_GPL(sdhci_enable_clk); void sdhci_set_clock(struct sdhci_host *host, unsigned int clock) { u16 clk; host->mmc->actual_clock = 0; sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); if (clock == 0) return; clk = sdhci_calc_clk(host, clock, &host->mmc->actual_clock); sdhci_enable_clk(host, clk); } EXPORT_SYMBOL_GPL(sdhci_set_clock); static void sdhci_set_power_reg(struct sdhci_host *host, unsigned char mode, unsigned short vdd) { struct mmc_host *mmc = host->mmc; mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, vdd); if (mode != MMC_POWER_OFF) sdhci_writeb(host, SDHCI_POWER_ON, SDHCI_POWER_CONTROL); else sdhci_writeb(host, 0, SDHCI_POWER_CONTROL); } void sdhci_set_power_noreg(struct sdhci_host *host, unsigned char mode, unsigned short vdd) { u8 pwr = 0; if (mode != MMC_POWER_OFF) { switch (1 << vdd) { case MMC_VDD_165_195: /* * Without a regulator, SDHCI does not support 2.0v * so we only get here if the driver deliberately * added the 2.0v range to ocr_avail. Map it to 1.8v * for the purpose of turning on the power. */ case MMC_VDD_20_21: pwr = SDHCI_POWER_180; break; case MMC_VDD_29_30: case MMC_VDD_30_31: pwr = SDHCI_POWER_300; break; case MMC_VDD_32_33: case MMC_VDD_33_34: pwr = SDHCI_POWER_330; break; default: WARN(1, "%s: Invalid vdd %#x\n", mmc_hostname(host->mmc), vdd); break; } } if (host->pwr == pwr) return; host->pwr = pwr; if (pwr == 0) { sdhci_writeb(host, 0, SDHCI_POWER_CONTROL); if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON) sdhci_runtime_pm_bus_off(host); } else { /* * Spec says that we should clear the power reg before setting * a new value. Some controllers don't seem to like this though. */ if (!(host->quirks & SDHCI_QUIRK_SINGLE_POWER_WRITE)) sdhci_writeb(host, 0, SDHCI_POWER_CONTROL); /* * At least the Marvell CaFe chip gets confused if we set the * voltage and set turn on power at the same time, so set the * voltage first. */ if (host->quirks & SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER) sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL); pwr |= SDHCI_POWER_ON; sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL); if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON) sdhci_runtime_pm_bus_on(host); /* * Some controllers need an extra 10ms delay of 10ms before * they can apply clock after applying power */ if (host->quirks & SDHCI_QUIRK_DELAY_AFTER_POWER) mdelay(10); } } EXPORT_SYMBOL_GPL(sdhci_set_power_noreg); void sdhci_set_power(struct sdhci_host *host, unsigned char mode, unsigned short vdd) { if (IS_ERR(host->mmc->supply.vmmc)) sdhci_set_power_noreg(host, mode, vdd); else sdhci_set_power_reg(host, mode, vdd); } EXPORT_SYMBOL_GPL(sdhci_set_power); /*****************************************************************************\ * * * MMC callbacks * * * \*****************************************************************************/ void sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct sdhci_host *host; int present; unsigned long flags; host = mmc_priv(mmc); /* Firstly check card presence */ present = mmc->ops->get_cd(mmc); spin_lock_irqsave(&host->lock, flags); sdhci_led_activate(host); /* * Ensure we don't send the STOP for non-SET_BLOCK_COUNTED * requests if Auto-CMD12 is enabled. */ if (sdhci_auto_cmd12(host, mrq)) { if (mrq->stop) { mrq->data->stop = NULL; mrq->stop = NULL; } } if (!present || host->flags & SDHCI_DEVICE_DEAD) { mrq->cmd->error = -ENOMEDIUM; sdhci_finish_mrq(host, mrq); } else { if (mrq->sbc && !(host->flags & SDHCI_AUTO_CMD23)) sdhci_send_command(host, mrq->sbc); else sdhci_send_command(host, mrq->cmd); } spin_unlock_irqrestore(&host->lock, flags); } EXPORT_SYMBOL_GPL(sdhci_request); void sdhci_set_bus_width(struct sdhci_host *host, int width) { u8 ctrl; ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); if (width == MMC_BUS_WIDTH_8) { ctrl &= ~SDHCI_CTRL_4BITBUS; ctrl |= SDHCI_CTRL_8BITBUS; } else { if (host->mmc->caps & MMC_CAP_8_BIT_DATA) ctrl &= ~SDHCI_CTRL_8BITBUS; if (width == MMC_BUS_WIDTH_4) ctrl |= SDHCI_CTRL_4BITBUS; else ctrl &= ~SDHCI_CTRL_4BITBUS; } sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } EXPORT_SYMBOL_GPL(sdhci_set_bus_width); void sdhci_set_uhs_signaling(struct sdhci_host *host, unsigned timing) { u16 ctrl_2; ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); /* Select Bus Speed Mode for host */ ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; if ((timing == MMC_TIMING_MMC_HS200) || (timing == MMC_TIMING_UHS_SDR104)) ctrl_2 |= SDHCI_CTRL_UHS_SDR104; else if (timing == MMC_TIMING_UHS_SDR12) ctrl_2 |= SDHCI_CTRL_UHS_SDR12; else if (timing == MMC_TIMING_UHS_SDR25) ctrl_2 |= SDHCI_CTRL_UHS_SDR25; else if (timing == MMC_TIMING_UHS_SDR50) ctrl_2 |= SDHCI_CTRL_UHS_SDR50; else if ((timing == MMC_TIMING_UHS_DDR50) || (timing == MMC_TIMING_MMC_DDR52)) ctrl_2 |= SDHCI_CTRL_UHS_DDR50; else if (timing == MMC_TIMING_MMC_HS400) ctrl_2 |= SDHCI_CTRL_HS400; /* Non-standard */ sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); } EXPORT_SYMBOL_GPL(sdhci_set_uhs_signaling); void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); u8 ctrl; if (ios->power_mode == MMC_POWER_UNDEFINED) return; if (host->flags & SDHCI_DEVICE_DEAD) { if (!IS_ERR(mmc->supply.vmmc) && ios->power_mode == MMC_POWER_OFF) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); return; } /* * Reset the chip on each power off. * Should clear out any weird states. */ if (ios->power_mode == MMC_POWER_OFF) { sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE); sdhci_reinit(host); } if (host->version >= SDHCI_SPEC_300 && (ios->power_mode == MMC_POWER_UP) && !(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN)) sdhci_enable_preset_value(host, false); if (!ios->clock || ios->clock != host->clock) { host->ops->set_clock(host, ios->clock); host->clock = ios->clock; if (host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK && host->clock) { host->timeout_clk = host->mmc->actual_clock ? host->mmc->actual_clock / 1000 : host->clock / 1000; host->mmc->max_busy_timeout = host->ops->get_max_timeout_count ? host->ops->get_max_timeout_count(host) : 1 << 27; host->mmc->max_busy_timeout /= host->timeout_clk; } } if (host->ops->set_power) host->ops->set_power(host, ios->power_mode, ios->vdd); else sdhci_set_power(host, ios->power_mode, ios->vdd); if (host->ops->platform_send_init_74_clocks) host->ops->platform_send_init_74_clocks(host, ios->power_mode); host->ops->set_bus_width(host, ios->bus_width); ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); if (!(host->quirks & SDHCI_QUIRK_NO_HISPD_BIT)) { if (ios->timing == MMC_TIMING_SD_HS || ios->timing == MMC_TIMING_MMC_HS || ios->timing == MMC_TIMING_MMC_HS400 || ios->timing == MMC_TIMING_MMC_HS200 || ios->timing == MMC_TIMING_MMC_DDR52 || ios->timing == MMC_TIMING_UHS_SDR50 || ios->timing == MMC_TIMING_UHS_SDR104 || ios->timing == MMC_TIMING_UHS_DDR50 || ios->timing == MMC_TIMING_UHS_SDR25) ctrl |= SDHCI_CTRL_HISPD; else ctrl &= ~SDHCI_CTRL_HISPD; } if (host->version >= SDHCI_SPEC_300) { u16 clk, ctrl_2; if (!host->preset_enabled) { sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); /* * We only need to set Driver Strength if the * preset value enable is not set. */ ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); ctrl_2 &= ~SDHCI_CTRL_DRV_TYPE_MASK; if (ios->drv_type == MMC_SET_DRIVER_TYPE_A) ctrl_2 |= SDHCI_CTRL_DRV_TYPE_A; else if (ios->drv_type == MMC_SET_DRIVER_TYPE_B) ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B; else if (ios->drv_type == MMC_SET_DRIVER_TYPE_C) ctrl_2 |= SDHCI_CTRL_DRV_TYPE_C; else if (ios->drv_type == MMC_SET_DRIVER_TYPE_D) ctrl_2 |= SDHCI_CTRL_DRV_TYPE_D; else { pr_warn("%s: invalid driver type, default to driver type B\n", mmc_hostname(mmc)); ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B; } sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); } else { /* * According to SDHC Spec v3.00, if the Preset Value * Enable in the Host Control 2 register is set, we * need to reset SD Clock Enable before changing High * Speed Enable to avoid generating clock gliches. */ /* Reset SD Clock Enable */ clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); clk &= ~SDHCI_CLOCK_CARD_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); /* Re-enable SD Clock */ host->ops->set_clock(host, host->clock); } /* Reset SD Clock Enable */ clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); clk &= ~SDHCI_CLOCK_CARD_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); host->ops->set_uhs_signaling(host, ios->timing); host->timing = ios->timing; if (!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN) && ((ios->timing == MMC_TIMING_UHS_SDR12) || (ios->timing == MMC_TIMING_UHS_SDR25) || (ios->timing == MMC_TIMING_UHS_SDR50) || (ios->timing == MMC_TIMING_UHS_SDR104) || (ios->timing == MMC_TIMING_UHS_DDR50) || (ios->timing == MMC_TIMING_MMC_DDR52))) { u16 preset; sdhci_enable_preset_value(host, true); preset = sdhci_get_preset_value(host); ios->drv_type = (preset & SDHCI_PRESET_DRV_MASK) >> SDHCI_PRESET_DRV_SHIFT; } /* Re-enable SD Clock */ host->ops->set_clock(host, host->clock); } else sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); /* * Some (ENE) controllers go apeshit on some ios operation, * signalling timeout and CRC errors even on CMD0. Resetting * it on each ios seems to solve the problem. */ if (host->quirks & SDHCI_QUIRK_RESET_CMD_DATA_ON_IOS) sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA); } EXPORT_SYMBOL_GPL(sdhci_set_ios); static int sdhci_get_cd(struct mmc_host *mmc) { struct sdhci_host *host = mmc_priv(mmc); int gpio_cd = mmc_gpio_get_cd(mmc); if (host->flags & SDHCI_DEVICE_DEAD) return 0; /* If nonremovable, assume that the card is always present. */ if (!mmc_card_is_removable(host->mmc)) return 1; /* * Try slot gpio detect, if defined it take precedence * over build in controller functionality */ if (gpio_cd >= 0) return !!gpio_cd; /* If polling, assume that the card is always present. */ if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) return 1; /* Host native card detect */ return !!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT); } static int sdhci_check_ro(struct sdhci_host *host) { unsigned long flags; int is_readonly; spin_lock_irqsave(&host->lock, flags); if (host->flags & SDHCI_DEVICE_DEAD) is_readonly = 0; else if (host->ops->get_ro) is_readonly = host->ops->get_ro(host); else if (mmc_can_gpio_ro(host->mmc)) is_readonly = mmc_gpio_get_ro(host->mmc); else is_readonly = !(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_WRITE_PROTECT); spin_unlock_irqrestore(&host->lock, flags); /* This quirk needs to be replaced by a callback-function later */ return host->quirks & SDHCI_QUIRK_INVERTED_WRITE_PROTECT ? !is_readonly : is_readonly; } #define SAMPLE_COUNT 5 static int sdhci_get_ro(struct mmc_host *mmc) { struct sdhci_host *host = mmc_priv(mmc); int i, ro_count; if (!(host->quirks & SDHCI_QUIRK_UNSTABLE_RO_DETECT)) return sdhci_check_ro(host); ro_count = 0; for (i = 0; i < SAMPLE_COUNT; i++) { if (sdhci_check_ro(host)) { if (++ro_count > SAMPLE_COUNT / 2) return 1; } msleep(30); } return 0; } static void sdhci_hw_reset(struct mmc_host *mmc) { struct sdhci_host *host = mmc_priv(mmc); if (host->ops && host->ops->hw_reset) host->ops->hw_reset(host); } static void sdhci_enable_sdio_irq_nolock(struct sdhci_host *host, int enable) { if (!(host->flags & SDHCI_DEVICE_DEAD)) { if (enable) host->ier |= SDHCI_INT_CARD_INT; else host->ier &= ~SDHCI_INT_CARD_INT; sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); } } void sdhci_enable_sdio_irq(struct mmc_host *mmc, int enable) { struct sdhci_host *host = mmc_priv(mmc); unsigned long flags; if (enable) pm_runtime_get_noresume(host->mmc->parent); spin_lock_irqsave(&host->lock, flags); sdhci_enable_sdio_irq_nolock(host, enable); spin_unlock_irqrestore(&host->lock, flags); if (!enable) pm_runtime_put_noidle(host->mmc->parent); } EXPORT_SYMBOL_GPL(sdhci_enable_sdio_irq); static void sdhci_ack_sdio_irq(struct mmc_host *mmc) { struct sdhci_host *host = mmc_priv(mmc); unsigned long flags; spin_lock_irqsave(&host->lock, flags); sdhci_enable_sdio_irq_nolock(host, true); spin_unlock_irqrestore(&host->lock, flags); } int sdhci_start_signal_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); u16 ctrl; int ret; /* * Signal Voltage Switching is only applicable for Host Controllers * v3.00 and above. */ if (host->version < SDHCI_SPEC_300) return 0; ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); switch (ios->signal_voltage) { case MMC_SIGNAL_VOLTAGE_330: if (!(host->flags & SDHCI_SIGNALING_330)) return -EINVAL; /* Set 1.8V Signal Enable in the Host Control2 register to 0 */ ctrl &= ~SDHCI_CTRL_VDD_180; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); if (!IS_ERR(mmc->supply.vqmmc)) { ret = mmc_regulator_set_vqmmc(mmc, ios); if (ret) { pr_warn("%s: Switching to 3.3V signalling voltage failed\n", mmc_hostname(mmc)); return -EIO; } } /* Wait for 5ms */ usleep_range(5000, 5500); /* 3.3V regulator output should be stable within 5 ms */ ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (!(ctrl & SDHCI_CTRL_VDD_180)) return 0; pr_warn("%s: 3.3V regulator output did not become stable\n", mmc_hostname(mmc)); return -EAGAIN; case MMC_SIGNAL_VOLTAGE_180: if (!(host->flags & SDHCI_SIGNALING_180)) return -EINVAL; if (!IS_ERR(mmc->supply.vqmmc)) { ret = mmc_regulator_set_vqmmc(mmc, ios); if (ret) { pr_warn("%s: Switching to 1.8V signalling voltage failed\n", mmc_hostname(mmc)); return -EIO; } } /* * Enable 1.8V Signal Enable in the Host Control2 * register */ ctrl |= SDHCI_CTRL_VDD_180; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); /* Some controller need to do more when switching */ if (host->ops->voltage_switch) host->ops->voltage_switch(host); /* 1.8V regulator output should be stable within 5 ms */ ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (ctrl & SDHCI_CTRL_VDD_180) return 0; pr_warn("%s: 1.8V regulator output did not become stable\n", mmc_hostname(mmc)); return -EAGAIN; case MMC_SIGNAL_VOLTAGE_120: if (!(host->flags & SDHCI_SIGNALING_120)) return -EINVAL; if (!IS_ERR(mmc->supply.vqmmc)) { ret = mmc_regulator_set_vqmmc(mmc, ios); if (ret) { pr_warn("%s: Switching to 1.2V signalling voltage failed\n", mmc_hostname(mmc)); return -EIO; } } return 0; default: /* No signal voltage switch required */ return 0; } } EXPORT_SYMBOL_GPL(sdhci_start_signal_voltage_switch); static int sdhci_card_busy(struct mmc_host *mmc) { struct sdhci_host *host = mmc_priv(mmc); u32 present_state; /* Check whether DAT[0] is 0 */ present_state = sdhci_readl(host, SDHCI_PRESENT_STATE); return !(present_state & SDHCI_DATA_0_LVL_MASK); } static int sdhci_prepare_hs400_tuning(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); unsigned long flags; spin_lock_irqsave(&host->lock, flags); host->flags |= SDHCI_HS400_TUNING; spin_unlock_irqrestore(&host->lock, flags); return 0; } void sdhci_start_tuning(struct sdhci_host *host) { u16 ctrl; ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); ctrl |= SDHCI_CTRL_EXEC_TUNING; if (host->quirks2 & SDHCI_QUIRK2_TUNING_WORK_AROUND) ctrl |= SDHCI_CTRL_TUNED_CLK; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); /* * As per the Host Controller spec v3.00, tuning command * generates Buffer Read Ready interrupt, so enable that. * * Note: The spec clearly says that when tuning sequence * is being performed, the controller does not generate * interrupts other than Buffer Read Ready interrupt. But * to make sure we don't hit a controller bug, we _only_ * enable Buffer Read Ready interrupt here. */ sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_INT_ENABLE); sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_SIGNAL_ENABLE); } EXPORT_SYMBOL_GPL(sdhci_start_tuning); void sdhci_end_tuning(struct sdhci_host *host) { sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); } EXPORT_SYMBOL_GPL(sdhci_end_tuning); void sdhci_reset_tuning(struct sdhci_host *host) { u16 ctrl; ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); ctrl &= ~SDHCI_CTRL_TUNED_CLK; ctrl &= ~SDHCI_CTRL_EXEC_TUNING; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); } EXPORT_SYMBOL_GPL(sdhci_reset_tuning); void sdhci_abort_tuning(struct sdhci_host *host, u32 opcode) { sdhci_reset_tuning(host); sdhci_do_reset(host, SDHCI_RESET_CMD); sdhci_do_reset(host, SDHCI_RESET_DATA); sdhci_end_tuning(host); mmc_abort_tuning(host->mmc, opcode); } EXPORT_SYMBOL_GPL(sdhci_abort_tuning); /* * We use sdhci_send_tuning() because mmc_send_tuning() is not a good fit. SDHCI * tuning command does not have a data payload (or rather the hardware does it * automatically) so mmc_send_tuning() will return -EIO. Also the tuning command * interrupt setup is different to other commands and there is no timeout * interrupt so special handling is needed. */ void sdhci_send_tuning(struct sdhci_host *host, u32 opcode) { struct mmc_host *mmc = host->mmc; struct mmc_command cmd = {}; struct mmc_request mrq = {}; unsigned long flags; u32 b = host->sdma_boundary; spin_lock_irqsave(&host->lock, flags); cmd.opcode = opcode; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; cmd.mrq = &mrq; mrq.cmd = &cmd; /* * In response to CMD19, the card sends 64 bytes of tuning * block to the Host Controller. So we set the block size * to 64 here. */ if (cmd.opcode == MMC_SEND_TUNING_BLOCK_HS200 && mmc->ios.bus_width == MMC_BUS_WIDTH_8) sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 128), SDHCI_BLOCK_SIZE); else sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 64), SDHCI_BLOCK_SIZE); /* * The tuning block is sent by the card to the host controller. * So we set the TRNS_READ bit in the Transfer Mode register. * This also takes care of setting DMA Enable and Multi Block * Select in the same register to 0. */ sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE); sdhci_send_command(host, &cmd); host->cmd = NULL; sdhci_del_timer(host, &mrq); host->tuning_done = 0; spin_unlock_irqrestore(&host->lock, flags); /* Wait for Buffer Read Ready interrupt */ wait_event_timeout(host->buf_ready_int, (host->tuning_done == 1), msecs_to_jiffies(50)); } EXPORT_SYMBOL_GPL(sdhci_send_tuning); static int __sdhci_execute_tuning(struct sdhci_host *host, u32 opcode) { int i; /* * Issue opcode repeatedly till Execute Tuning is set to 0 or the number * of loops reaches tuning loop count. */ for (i = 0; i < host->tuning_loop_count; i++) { u16 ctrl; sdhci_send_tuning(host, opcode); if (!host->tuning_done) { pr_info("%s: Tuning timeout, falling back to fixed sampling clock\n", mmc_hostname(host->mmc)); sdhci_abort_tuning(host, opcode); return -ETIMEDOUT; } /* Spec does not require a delay between tuning cycles */ if (host->tuning_delay > 0) mdelay(host->tuning_delay); ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (!(ctrl & SDHCI_CTRL_EXEC_TUNING)) { if (ctrl & SDHCI_CTRL_TUNED_CLK) return 0; /* Success! */ break; } } pr_info("%s: Tuning failed, falling back to fixed sampling clock\n", mmc_hostname(host->mmc)); sdhci_reset_tuning(host); return -EAGAIN; } int sdhci_execute_tuning(struct mmc_host *mmc, u32 opcode) { struct sdhci_host *host = mmc_priv(mmc); int err = 0; unsigned int tuning_count = 0; bool hs400_tuning; hs400_tuning = host->flags & SDHCI_HS400_TUNING; if (host->tuning_mode == SDHCI_TUNING_MODE_1) tuning_count = host->tuning_count; /* * The Host Controller needs tuning in case of SDR104 and DDR50 * mode, and for SDR50 mode when Use Tuning for SDR50 is set in * the Capabilities register. * If the Host Controller supports the HS200 mode then the * tuning function has to be executed. */ switch (host->timing) { /* HS400 tuning is done in HS200 mode */ case MMC_TIMING_MMC_HS400: err = -EINVAL; goto out; case MMC_TIMING_MMC_HS200: /* * Periodic re-tuning for HS400 is not expected to be needed, so * disable it here. */ if (hs400_tuning) tuning_count = 0; break; case MMC_TIMING_UHS_SDR104: case MMC_TIMING_UHS_DDR50: break; case MMC_TIMING_UHS_SDR50: if (host->flags & SDHCI_SDR50_NEEDS_TUNING) break; /* FALLTHROUGH */ default: goto out; } if (host->ops->platform_execute_tuning) { err = host->ops->platform_execute_tuning(host, opcode); goto out; } host->mmc->retune_period = tuning_count; if (host->tuning_delay < 0) host->tuning_delay = opcode == MMC_SEND_TUNING_BLOCK; sdhci_start_tuning(host); host->tuning_err = __sdhci_execute_tuning(host, opcode); sdhci_end_tuning(host); out: host->flags &= ~SDHCI_HS400_TUNING; return err; } EXPORT_SYMBOL_GPL(sdhci_execute_tuning); static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable) { /* Host Controller v3.00 defines preset value registers */ if (host->version < SDHCI_SPEC_300) return; /* * We only enable or disable Preset Value if they are not already * enabled or disabled respectively. Otherwise, we bail out. */ if (host->preset_enabled != enable) { u16 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (enable) ctrl |= SDHCI_CTRL_PRESET_VAL_ENABLE; else ctrl &= ~SDHCI_CTRL_PRESET_VAL_ENABLE; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); if (enable) host->flags |= SDHCI_PV_ENABLED; else host->flags &= ~SDHCI_PV_ENABLED; host->preset_enabled = enable; } } static void sdhci_post_req(struct mmc_host *mmc, struct mmc_request *mrq, int err) { struct sdhci_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; if (data->host_cookie != COOKIE_UNMAPPED) dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, mmc_get_dma_dir(data)); data->host_cookie = COOKIE_UNMAPPED; } static void sdhci_pre_req(struct mmc_host *mmc, struct mmc_request *mrq) { struct sdhci_host *host = mmc_priv(mmc); mrq->data->host_cookie = COOKIE_UNMAPPED; /* * No pre-mapping in the pre hook if we're using the bounce buffer, * for that we would need two bounce buffers since one buffer is * in flight when this is getting called. */ if (host->flags & SDHCI_REQ_USE_DMA && !host->bounce_buffer) sdhci_pre_dma_transfer(host, mrq->data, COOKIE_PRE_MAPPED); } static void sdhci_error_out_mrqs(struct sdhci_host *host, int err) { if (host->data_cmd) { host->data_cmd->error = err; sdhci_finish_mrq(host, host->data_cmd->mrq); } if (host->cmd) { host->cmd->error = err; sdhci_finish_mrq(host, host->cmd->mrq); } } static void sdhci_card_event(struct mmc_host *mmc) { struct sdhci_host *host = mmc_priv(mmc); unsigned long flags; int present; /* First check if client has provided their own card event */ if (host->ops->card_event) host->ops->card_event(host); present = mmc->ops->get_cd(mmc); spin_lock_irqsave(&host->lock, flags); /* Check sdhci_has_requests() first in case we are runtime suspended */ if (sdhci_has_requests(host) && !present) { pr_err("%s: Card removed during transfer!\n", mmc_hostname(host->mmc)); pr_err("%s: Resetting controller.\n", mmc_hostname(host->mmc)); sdhci_do_reset(host, SDHCI_RESET_CMD); sdhci_do_reset(host, SDHCI_RESET_DATA); sdhci_error_out_mrqs(host, -ENOMEDIUM); } spin_unlock_irqrestore(&host->lock, flags); } static const struct mmc_host_ops sdhci_ops = { .request = sdhci_request, .post_req = sdhci_post_req, .pre_req = sdhci_pre_req, .set_ios = sdhci_set_ios, .get_cd = sdhci_get_cd, .get_ro = sdhci_get_ro, .hw_reset = sdhci_hw_reset, .enable_sdio_irq = sdhci_enable_sdio_irq, .ack_sdio_irq = sdhci_ack_sdio_irq, .start_signal_voltage_switch = sdhci_start_signal_voltage_switch, .prepare_hs400_tuning = sdhci_prepare_hs400_tuning, .execute_tuning = sdhci_execute_tuning, .card_event = sdhci_card_event, .card_busy = sdhci_card_busy, }; /*****************************************************************************\ * * * Request done * * * \*****************************************************************************/ static bool sdhci_request_done(struct sdhci_host *host) { unsigned long flags; struct mmc_request *mrq; int i; spin_lock_irqsave(&host->lock, flags); for (i = 0; i < SDHCI_MAX_MRQS; i++) { mrq = host->mrqs_done[i]; if (mrq) break; } if (!mrq) { spin_unlock_irqrestore(&host->lock, flags); return true; } /* * Always unmap the data buffers if they were mapped by * sdhci_prepare_data() whenever we finish with a request. * This avoids leaking DMA mappings on error. */ if (host->flags & SDHCI_REQ_USE_DMA) { struct mmc_data *data = mrq->data; if (data && data->host_cookie == COOKIE_MAPPED) { if (host->bounce_buffer) { /* * On reads, copy the bounced data into the * sglist */ if (mmc_get_dma_dir(data) == DMA_FROM_DEVICE) { unsigned int length = data->bytes_xfered; if (length > host->bounce_buffer_size) { pr_err("%s: bounce buffer is %u bytes but DMA claims to have transferred %u bytes\n", mmc_hostname(host->mmc), host->bounce_buffer_size, data->bytes_xfered); /* Cap it down and continue */ length = host->bounce_buffer_size; } dma_sync_single_for_cpu( host->mmc->parent, host->bounce_addr, host->bounce_buffer_size, DMA_FROM_DEVICE); sg_copy_from_buffer(data->sg, data->sg_len, host->bounce_buffer, length); } else { /* No copying, just switch ownership */ dma_sync_single_for_cpu( host->mmc->parent, host->bounce_addr, host->bounce_buffer_size, mmc_get_dma_dir(data)); } } else { /* Unmap the raw data */ dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, mmc_get_dma_dir(data)); } data->host_cookie = COOKIE_UNMAPPED; } } /* * The controller needs a reset of internal state machines * upon error conditions. */ if (sdhci_needs_reset(host, mrq)) { /* * Do not finish until command and data lines are available for * reset. Note there can only be one other mrq, so it cannot * also be in mrqs_done, otherwise host->cmd and host->data_cmd * would both be null. */ if (host->cmd || host->data_cmd) { spin_unlock_irqrestore(&host->lock, flags); return true; } /* Some controllers need this kick or reset won't work here */ if (host->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET) /* This is to force an update */ host->ops->set_clock(host, host->clock); /* Spec says we should do both at the same time, but Ricoh controllers do not like that. */ sdhci_do_reset(host, SDHCI_RESET_CMD); sdhci_do_reset(host, SDHCI_RESET_DATA); host->pending_reset = false; } host->mrqs_done[i] = NULL; spin_unlock_irqrestore(&host->lock, flags); mmc_request_done(host->mmc, mrq); return false; } static void sdhci_complete_work(struct work_struct *work) { struct sdhci_host *host = container_of(work, struct sdhci_host, complete_work); while (!sdhci_request_done(host)) ; } static void sdhci_timeout_timer(struct timer_list *t) { struct sdhci_host *host; unsigned long flags; host = from_timer(host, t, timer); spin_lock_irqsave(&host->lock, flags); if (host->cmd && !sdhci_data_line_cmd(host->cmd)) { pr_err("%s: Timeout waiting for hardware cmd interrupt.\n", mmc_hostname(host->mmc)); sdhci_dumpregs(host); host->cmd->error = -ETIMEDOUT; sdhci_finish_mrq(host, host->cmd->mrq); } spin_unlock_irqrestore(&host->lock, flags); } static void sdhci_timeout_data_timer(struct timer_list *t) { struct sdhci_host *host; unsigned long flags; host = from_timer(host, t, data_timer); spin_lock_irqsave(&host->lock, flags); if (host->data || host->data_cmd || (host->cmd && sdhci_data_line_cmd(host->cmd))) { pr_err("%s: Timeout waiting for hardware interrupt.\n", mmc_hostname(host->mmc)); sdhci_dumpregs(host); if (host->data) { host->data->error = -ETIMEDOUT; sdhci_finish_data(host); queue_work(host->complete_wq, &host->complete_work); } else if (host->data_cmd) { host->data_cmd->error = -ETIMEDOUT; sdhci_finish_mrq(host, host->data_cmd->mrq); } else { host->cmd->error = -ETIMEDOUT; sdhci_finish_mrq(host, host->cmd->mrq); } } spin_unlock_irqrestore(&host->lock, flags); } /*****************************************************************************\ * * * Interrupt handling * * * \*****************************************************************************/ static void sdhci_cmd_irq(struct sdhci_host *host, u32 intmask, u32 *intmask_p) { /* Handle auto-CMD12 error */ if (intmask & SDHCI_INT_AUTO_CMD_ERR && host->data_cmd) { struct mmc_request *mrq = host->data_cmd->mrq; u16 auto_cmd_status = sdhci_readw(host, SDHCI_AUTO_CMD_STATUS); int data_err_bit = (auto_cmd_status & SDHCI_AUTO_CMD_TIMEOUT) ? SDHCI_INT_DATA_TIMEOUT : SDHCI_INT_DATA_CRC; /* Treat auto-CMD12 error the same as data error */ if (!mrq->sbc && (host->flags & SDHCI_AUTO_CMD12)) { *intmask_p |= data_err_bit; return; } } if (!host->cmd) { /* * SDHCI recovers from errors by resetting the cmd and data * circuits. Until that is done, there very well might be more * interrupts, so ignore them in that case. */ if (host->pending_reset) return; pr_err("%s: Got command interrupt 0x%08x even though no command operation was in progress.\n", mmc_hostname(host->mmc), (unsigned)intmask); sdhci_dumpregs(host); return; } if (intmask & (SDHCI_INT_TIMEOUT | SDHCI_INT_CRC | SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) { if (intmask & SDHCI_INT_TIMEOUT) host->cmd->error = -ETIMEDOUT; else host->cmd->error = -EILSEQ; /* Treat data command CRC error the same as data CRC error */ if (host->cmd->data && (intmask & (SDHCI_INT_CRC | SDHCI_INT_TIMEOUT)) == SDHCI_INT_CRC) { host->cmd = NULL; *intmask_p |= SDHCI_INT_DATA_CRC; return; } __sdhci_finish_mrq(host, host->cmd->mrq); return; } /* Handle auto-CMD23 error */ if (intmask & SDHCI_INT_AUTO_CMD_ERR) { struct mmc_request *mrq = host->cmd->mrq; u16 auto_cmd_status = sdhci_readw(host, SDHCI_AUTO_CMD_STATUS); int err = (auto_cmd_status & SDHCI_AUTO_CMD_TIMEOUT) ? -ETIMEDOUT : -EILSEQ; if (mrq->sbc && (host->flags & SDHCI_AUTO_CMD23)) { mrq->sbc->error = err; __sdhci_finish_mrq(host, mrq); return; } } if (intmask & SDHCI_INT_RESPONSE) sdhci_finish_command(host); } static void sdhci_adma_show_error(struct sdhci_host *host) { void *desc = host->adma_table; dma_addr_t dma = host->adma_addr; sdhci_dumpregs(host); while (true) { struct sdhci_adma2_64_desc *dma_desc = desc; if (host->flags & SDHCI_USE_64_BIT_DMA) SDHCI_DUMP("%08llx: DMA 0x%08x%08x, LEN 0x%04x, Attr=0x%02x\n", (unsigned long long)dma, le32_to_cpu(dma_desc->addr_hi), le32_to_cpu(dma_desc->addr_lo), le16_to_cpu(dma_desc->len), le16_to_cpu(dma_desc->cmd)); else SDHCI_DUMP("%08llx: DMA 0x%08x, LEN 0x%04x, Attr=0x%02x\n", (unsigned long long)dma, le32_to_cpu(dma_desc->addr_lo), le16_to_cpu(dma_desc->len), le16_to_cpu(dma_desc->cmd)); desc += host->desc_sz; dma += host->desc_sz; if (dma_desc->cmd & cpu_to_le16(ADMA2_END)) break; } } static void sdhci_data_irq(struct sdhci_host *host, u32 intmask) { u32 command; /* CMD19 generates _only_ Buffer Read Ready interrupt */ if (intmask & SDHCI_INT_DATA_AVAIL) { command = SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND)); if (command == MMC_SEND_TUNING_BLOCK || command == MMC_SEND_TUNING_BLOCK_HS200) { host->tuning_done = 1; wake_up(&host->buf_ready_int); return; } } if (!host->data) { struct mmc_command *data_cmd = host->data_cmd; /* * The "data complete" interrupt is also used to * indicate that a busy state has ended. See comment * above in sdhci_cmd_irq(). */ if (data_cmd && (data_cmd->flags & MMC_RSP_BUSY)) { if (intmask & SDHCI_INT_DATA_TIMEOUT) { host->data_cmd = NULL; data_cmd->error = -ETIMEDOUT; __sdhci_finish_mrq(host, data_cmd->mrq); return; } if (intmask & SDHCI_INT_DATA_END) { host->data_cmd = NULL; /* * Some cards handle busy-end interrupt * before the command completed, so make * sure we do things in the proper order. */ if (host->cmd == data_cmd) return; __sdhci_finish_mrq(host, data_cmd->mrq); return; } } /* * SDHCI recovers from errors by resetting the cmd and data * circuits. Until that is done, there very well might be more * interrupts, so ignore them in that case. */ if (host->pending_reset) return; pr_err("%s: Got data interrupt 0x%08x even though no data operation was in progress.\n", mmc_hostname(host->mmc), (unsigned)intmask); sdhci_dumpregs(host); return; } if (intmask & SDHCI_INT_DATA_TIMEOUT) host->data->error = -ETIMEDOUT; else if (intmask & SDHCI_INT_DATA_END_BIT) host->data->error = -EILSEQ; else if ((intmask & SDHCI_INT_DATA_CRC) && SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND)) != MMC_BUS_TEST_R) host->data->error = -EILSEQ; else if (intmask & SDHCI_INT_ADMA_ERROR) { pr_err("%s: ADMA error: 0x%08x\n", mmc_hostname(host->mmc), intmask); sdhci_adma_show_error(host); host->data->error = -EIO; if (host->ops->adma_workaround) host->ops->adma_workaround(host, intmask); } if (host->data->error) sdhci_finish_data(host); else { if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) sdhci_transfer_pio(host); /* * We currently don't do anything fancy with DMA * boundaries, but as we can't disable the feature * we need to at least restart the transfer. * * According to the spec sdhci_readl(host, SDHCI_DMA_ADDRESS) * should return a valid address to continue from, but as * some controllers are faulty, don't trust them. */ if (intmask & SDHCI_INT_DMA_END) { dma_addr_t dmastart, dmanow; dmastart = sdhci_sdma_address(host); dmanow = dmastart + host->data->bytes_xfered; /* * Force update to the next DMA block boundary. */ dmanow = (dmanow & ~((dma_addr_t)SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) + SDHCI_DEFAULT_BOUNDARY_SIZE; host->data->bytes_xfered = dmanow - dmastart; DBG("DMA base %pad, transferred 0x%06x bytes, next %pad\n", &dmastart, host->data->bytes_xfered, &dmanow); sdhci_set_sdma_addr(host, dmanow); } if (intmask & SDHCI_INT_DATA_END) { if (host->cmd == host->data_cmd) { /* * Data managed to finish before the * command completed. Make sure we do * things in the proper order. */ host->data_early = 1; } else { sdhci_finish_data(host); } } } } static inline bool sdhci_defer_done(struct sdhci_host *host, struct mmc_request *mrq) { struct mmc_data *data = mrq->data; return host->pending_reset || ((host->flags & SDHCI_REQ_USE_DMA) && data && data->host_cookie == COOKIE_MAPPED); } static irqreturn_t sdhci_irq(int irq, void *dev_id) { struct mmc_request *mrqs_done[SDHCI_MAX_MRQS] = {0}; irqreturn_t result = IRQ_NONE; struct sdhci_host *host = dev_id; u32 intmask, mask, unexpected = 0; int max_loops = 16; int i; spin_lock(&host->lock); if (host->runtime_suspended) { spin_unlock(&host->lock); return IRQ_NONE; } intmask = sdhci_readl(host, SDHCI_INT_STATUS); if (!intmask || intmask == 0xffffffff) { result = IRQ_NONE; goto out; } do { DBG("IRQ status 0x%08x\n", intmask); if (host->ops->irq) { intmask = host->ops->irq(host, intmask); if (!intmask) goto cont; } /* Clear selected interrupts. */ mask = intmask & (SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK | SDHCI_INT_BUS_POWER); sdhci_writel(host, mask, SDHCI_INT_STATUS); if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) { u32 present = sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT; /* * There is a observation on i.mx esdhc. INSERT * bit will be immediately set again when it gets * cleared, if a card is inserted. We have to mask * the irq to prevent interrupt storm which will * freeze the system. And the REMOVE gets the * same situation. * * More testing are needed here to ensure it works * for other platforms though. */ host->ier &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE); host->ier |= present ? SDHCI_INT_CARD_REMOVE : SDHCI_INT_CARD_INSERT; sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS); host->thread_isr |= intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE); result = IRQ_WAKE_THREAD; } if (intmask & SDHCI_INT_CMD_MASK) sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK, &intmask); if (intmask & SDHCI_INT_DATA_MASK) sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK); if (intmask & SDHCI_INT_BUS_POWER) pr_err("%s: Card is consuming too much power!\n", mmc_hostname(host->mmc)); if (intmask & SDHCI_INT_RETUNE) mmc_retune_needed(host->mmc); if ((intmask & SDHCI_INT_CARD_INT) && (host->ier & SDHCI_INT_CARD_INT)) { sdhci_enable_sdio_irq_nolock(host, false); sdio_signal_irq(host->mmc); } intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE | SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK | SDHCI_INT_ERROR | SDHCI_INT_BUS_POWER | SDHCI_INT_RETUNE | SDHCI_INT_CARD_INT); if (intmask) { unexpected |= intmask; sdhci_writel(host, intmask, SDHCI_INT_STATUS); } cont: if (result == IRQ_NONE) result = IRQ_HANDLED; intmask = sdhci_readl(host, SDHCI_INT_STATUS); } while (intmask && --max_loops); /* Determine if mrqs can be completed immediately */ for (i = 0; i < SDHCI_MAX_MRQS; i++) { struct mmc_request *mrq = host->mrqs_done[i]; if (!mrq) continue; if (sdhci_defer_done(host, mrq)) { result = IRQ_WAKE_THREAD; } else { mrqs_done[i] = mrq; host->mrqs_done[i] = NULL; } } out: spin_unlock(&host->lock); /* Process mrqs ready for immediate completion */ for (i = 0; i < SDHCI_MAX_MRQS; i++) { if (mrqs_done[i]) mmc_request_done(host->mmc, mrqs_done[i]); } if (unexpected) { pr_err("%s: Unexpected interrupt 0x%08x.\n", mmc_hostname(host->mmc), unexpected); sdhci_dumpregs(host); } return result; } static irqreturn_t sdhci_thread_irq(int irq, void *dev_id) { struct sdhci_host *host = dev_id; unsigned long flags; u32 isr; while (!sdhci_request_done(host)) ; spin_lock_irqsave(&host->lock, flags); isr = host->thread_isr; host->thread_isr = 0; spin_unlock_irqrestore(&host->lock, flags); if (isr & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) { struct mmc_host *mmc = host->mmc; mmc->ops->card_event(mmc); mmc_detect_change(mmc, msecs_to_jiffies(200)); } return IRQ_HANDLED; } /*****************************************************************************\ * * * Suspend/resume * * * \*****************************************************************************/ #ifdef CONFIG_PM static bool sdhci_cd_irq_can_wakeup(struct sdhci_host *host) { return mmc_card_is_removable(host->mmc) && !(host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) && !mmc_can_gpio_cd(host->mmc); } /* * To enable wakeup events, the corresponding events have to be enabled in * the Interrupt Status Enable register too. See 'Table 1-6: Wakeup Signal * Table' in the SD Host Controller Standard Specification. * It is useless to restore SDHCI_INT_ENABLE state in * sdhci_disable_irq_wakeups() since it will be set by * sdhci_enable_card_detection() or sdhci_init(). */ static bool sdhci_enable_irq_wakeups(struct sdhci_host *host) { u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE | SDHCI_WAKE_ON_INT; u32 irq_val = 0; u8 wake_val = 0; u8 val; if (sdhci_cd_irq_can_wakeup(host)) { wake_val |= SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE; irq_val |= SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE; } if (mmc_card_wake_sdio_irq(host->mmc)) { wake_val |= SDHCI_WAKE_ON_INT; irq_val |= SDHCI_INT_CARD_INT; } if (!irq_val) return false; val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL); val &= ~mask; val |= wake_val; sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL); sdhci_writel(host, irq_val, SDHCI_INT_ENABLE); host->irq_wake_enabled = !enable_irq_wake(host->irq); return host->irq_wake_enabled; } static void sdhci_disable_irq_wakeups(struct sdhci_host *host) { u8 val; u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE | SDHCI_WAKE_ON_INT; val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL); val &= ~mask; sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL); disable_irq_wake(host->irq); host->irq_wake_enabled = false; } int sdhci_suspend_host(struct sdhci_host *host) { sdhci_disable_card_detection(host); mmc_retune_timer_stop(host->mmc); if (!device_may_wakeup(mmc_dev(host->mmc)) || !sdhci_enable_irq_wakeups(host)) { host->ier = 0; sdhci_writel(host, 0, SDHCI_INT_ENABLE); sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE); free_irq(host->irq, host); } return 0; } EXPORT_SYMBOL_GPL(sdhci_suspend_host); int sdhci_resume_host(struct sdhci_host *host) { struct mmc_host *mmc = host->mmc; int ret = 0; if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) { if (host->ops->enable_dma) host->ops->enable_dma(host); } if ((host->mmc->pm_flags & MMC_PM_KEEP_POWER) && (host->quirks2 & SDHCI_QUIRK2_HOST_OFF_CARD_ON)) { /* Card keeps power but host controller does not */ sdhci_init(host, 0); host->pwr = 0; host->clock = 0; mmc->ops->set_ios(mmc, &mmc->ios); } else { sdhci_init(host, (host->mmc->pm_flags & MMC_PM_KEEP_POWER)); } if (host->irq_wake_enabled) { sdhci_disable_irq_wakeups(host); } else { ret = request_threaded_irq(host->irq, sdhci_irq, sdhci_thread_irq, IRQF_SHARED, mmc_hostname(host->mmc), host); if (ret) return ret; } sdhci_enable_card_detection(host); return ret; } EXPORT_SYMBOL_GPL(sdhci_resume_host); int sdhci_runtime_suspend_host(struct sdhci_host *host) { unsigned long flags; mmc_retune_timer_stop(host->mmc); spin_lock_irqsave(&host->lock, flags); host->ier &= SDHCI_INT_CARD_INT; sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); spin_unlock_irqrestore(&host->lock, flags); synchronize_hardirq(host->irq); spin_lock_irqsave(&host->lock, flags); host->runtime_suspended = true; spin_unlock_irqrestore(&host->lock, flags); return 0; } EXPORT_SYMBOL_GPL(sdhci_runtime_suspend_host); int sdhci_runtime_resume_host(struct sdhci_host *host, int soft_reset) { struct mmc_host *mmc = host->mmc; unsigned long flags; int host_flags = host->flags; if (host_flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) { if (host->ops->enable_dma) host->ops->enable_dma(host); } sdhci_init(host, soft_reset); if (mmc->ios.power_mode != MMC_POWER_UNDEFINED && mmc->ios.power_mode != MMC_POWER_OFF) { /* Force clock and power re-program */ host->pwr = 0; host->clock = 0; mmc->ops->start_signal_voltage_switch(mmc, &mmc->ios); mmc->ops->set_ios(mmc, &mmc->ios); if ((host_flags & SDHCI_PV_ENABLED) && !(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN)) { spin_lock_irqsave(&host->lock, flags); sdhci_enable_preset_value(host, true); spin_unlock_irqrestore(&host->lock, flags); } if ((mmc->caps2 & MMC_CAP2_HS400_ES) && mmc->ops->hs400_enhanced_strobe) mmc->ops->hs400_enhanced_strobe(mmc, &mmc->ios); } spin_lock_irqsave(&host->lock, flags); host->runtime_suspended = false; /* Enable SDIO IRQ */ if (sdio_irq_claimed(mmc)) sdhci_enable_sdio_irq_nolock(host, true); /* Enable Card Detection */ sdhci_enable_card_detection(host); spin_unlock_irqrestore(&host->lock, flags); return 0; } EXPORT_SYMBOL_GPL(sdhci_runtime_resume_host); #endif /* CONFIG_PM */ /*****************************************************************************\ * * * Command Queue Engine (CQE) helpers * * * \*****************************************************************************/ void sdhci_cqe_enable(struct mmc_host *mmc) { struct sdhci_host *host = mmc_priv(mmc); unsigned long flags; u8 ctrl; spin_lock_irqsave(&host->lock, flags); ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); ctrl &= ~SDHCI_CTRL_DMA_MASK; /* * Host from V4.10 supports ADMA3 DMA type. * ADMA3 performs integrated descriptor which is more suitable * for cmd queuing to fetch both command and transfer descriptors. */ if (host->v4_mode && (host->caps1 & SDHCI_CAN_DO_ADMA3)) ctrl |= SDHCI_CTRL_ADMA3; else if (host->flags & SDHCI_USE_64_BIT_DMA) ctrl |= SDHCI_CTRL_ADMA64; else ctrl |= SDHCI_CTRL_ADMA32; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); sdhci_writew(host, SDHCI_MAKE_BLKSZ(host->sdma_boundary, 512), SDHCI_BLOCK_SIZE); /* Set maximum timeout */ sdhci_set_timeout(host, NULL); host->ier = host->cqe_ier; sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); host->cqe_on = true; pr_debug("%s: sdhci: CQE on, IRQ mask %#x, IRQ status %#x\n", mmc_hostname(mmc), host->ier, sdhci_readl(host, SDHCI_INT_STATUS)); spin_unlock_irqrestore(&host->lock, flags); } EXPORT_SYMBOL_GPL(sdhci_cqe_enable); void sdhci_cqe_disable(struct mmc_host *mmc, bool recovery) { struct sdhci_host *host = mmc_priv(mmc); unsigned long flags; spin_lock_irqsave(&host->lock, flags); sdhci_set_default_irqs(host); host->cqe_on = false; if (recovery) { sdhci_do_reset(host, SDHCI_RESET_CMD); sdhci_do_reset(host, SDHCI_RESET_DATA); } pr_debug("%s: sdhci: CQE off, IRQ mask %#x, IRQ status %#x\n", mmc_hostname(mmc), host->ier, sdhci_readl(host, SDHCI_INT_STATUS)); spin_unlock_irqrestore(&host->lock, flags); } EXPORT_SYMBOL_GPL(sdhci_cqe_disable); bool sdhci_cqe_irq(struct sdhci_host *host, u32 intmask, int *cmd_error, int *data_error) { u32 mask; if (!host->cqe_on) return false; if (intmask & (SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC)) *cmd_error = -EILSEQ; else if (intmask & SDHCI_INT_TIMEOUT) *cmd_error = -ETIMEDOUT; else *cmd_error = 0; if (intmask & (SDHCI_INT_DATA_END_BIT | SDHCI_INT_DATA_CRC)) *data_error = -EILSEQ; else if (intmask & SDHCI_INT_DATA_TIMEOUT) *data_error = -ETIMEDOUT; else if (intmask & SDHCI_INT_ADMA_ERROR) *data_error = -EIO; else *data_error = 0; /* Clear selected interrupts. */ mask = intmask & host->cqe_ier; sdhci_writel(host, mask, SDHCI_INT_STATUS); if (intmask & SDHCI_INT_BUS_POWER) pr_err("%s: Card is consuming too much power!\n", mmc_hostname(host->mmc)); intmask &= ~(host->cqe_ier | SDHCI_INT_ERROR); if (intmask) { sdhci_writel(host, intmask, SDHCI_INT_STATUS); pr_err("%s: CQE: Unexpected interrupt 0x%08x.\n", mmc_hostname(host->mmc), intmask); sdhci_dumpregs(host); } return true; } EXPORT_SYMBOL_GPL(sdhci_cqe_irq); /*****************************************************************************\ * * * Device allocation/registration * * * \*****************************************************************************/ struct sdhci_host *sdhci_alloc_host(struct device *dev, size_t priv_size) { struct mmc_host *mmc; struct sdhci_host *host; WARN_ON(dev == NULL); mmc = mmc_alloc_host(sizeof(struct sdhci_host) + priv_size, dev); if (!mmc) return ERR_PTR(-ENOMEM); host = mmc_priv(mmc); host->mmc = mmc; host->mmc_host_ops = sdhci_ops; mmc->ops = &host->mmc_host_ops; host->flags = SDHCI_SIGNALING_330; host->cqe_ier = SDHCI_CQE_INT_MASK; host->cqe_err_ier = SDHCI_CQE_INT_ERR_MASK; host->tuning_delay = -1; host->tuning_loop_count = MAX_TUNING_LOOP; host->sdma_boundary = SDHCI_DEFAULT_BOUNDARY_ARG; /* * The DMA table descriptor count is calculated as the maximum * number of segments times 2, to allow for an alignment * descriptor for each segment, plus 1 for a nop end descriptor. */ host->adma_table_cnt = SDHCI_MAX_SEGS * 2 + 1; return host; } EXPORT_SYMBOL_GPL(sdhci_alloc_host); static int sdhci_set_dma_mask(struct sdhci_host *host) { struct mmc_host *mmc = host->mmc; struct device *dev = mmc_dev(mmc); int ret = -EINVAL; if (host->quirks2 & SDHCI_QUIRK2_BROKEN_64_BIT_DMA) host->flags &= ~SDHCI_USE_64_BIT_DMA; /* Try 64-bit mask if hardware is capable of it */ if (host->flags & SDHCI_USE_64_BIT_DMA) { ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); if (ret) { pr_warn("%s: Failed to set 64-bit DMA mask.\n", mmc_hostname(mmc)); host->flags &= ~SDHCI_USE_64_BIT_DMA; } } /* 32-bit mask as default & fallback */ if (ret) { ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); if (ret) pr_warn("%s: Failed to set 32-bit DMA mask.\n", mmc_hostname(mmc)); } return ret; } void __sdhci_read_caps(struct sdhci_host *host, const u16 *ver, const u32 *caps, const u32 *caps1) { u16 v; u64 dt_caps_mask = 0; u64 dt_caps = 0; if (host->read_caps) return; host->read_caps = true; if (debug_quirks) host->quirks = debug_quirks; if (debug_quirks2) host->quirks2 = debug_quirks2; sdhci_do_reset(host, SDHCI_RESET_ALL); if (host->v4_mode) sdhci_do_enable_v4_mode(host); of_property_read_u64(mmc_dev(host->mmc)->of_node, "sdhci-caps-mask", &dt_caps_mask); of_property_read_u64(mmc_dev(host->mmc)->of_node, "sdhci-caps", &dt_caps); v = ver ? *ver : sdhci_readw(host, SDHCI_HOST_VERSION); host->version = (v & SDHCI_SPEC_VER_MASK) >> SDHCI_SPEC_VER_SHIFT; if (host->quirks & SDHCI_QUIRK_MISSING_CAPS) return; if (caps) { host->caps = *caps; } else { host->caps = sdhci_readl(host, SDHCI_CAPABILITIES); host->caps &= ~lower_32_bits(dt_caps_mask); host->caps |= lower_32_bits(dt_caps); } if (host->version < SDHCI_SPEC_300) return; if (caps1) { host->caps1 = *caps1; } else { host->caps1 = sdhci_readl(host, SDHCI_CAPABILITIES_1); host->caps1 &= ~upper_32_bits(dt_caps_mask); host->caps1 |= upper_32_bits(dt_caps); } } EXPORT_SYMBOL_GPL(__sdhci_read_caps); static void sdhci_allocate_bounce_buffer(struct sdhci_host *host) { struct mmc_host *mmc = host->mmc; unsigned int max_blocks; unsigned int bounce_size; int ret; /* * Cap the bounce buffer at 64KB. Using a bigger bounce buffer * has diminishing returns, this is probably because SD/MMC * cards are usually optimized to handle this size of requests. */ bounce_size = SZ_64K; /* * Adjust downwards to maximum request size if this is less * than our segment size, else hammer down the maximum * request size to the maximum buffer size. */ if (mmc->max_req_size < bounce_size) bounce_size = mmc->max_req_size; max_blocks = bounce_size / 512; /* * When we just support one segment, we can get significant * speedups by the help of a bounce buffer to group scattered * reads/writes together. */ host->bounce_buffer = devm_kmalloc(mmc->parent, bounce_size, GFP_KERNEL); if (!host->bounce_buffer) { pr_err("%s: failed to allocate %u bytes for bounce buffer, falling back to single segments\n", mmc_hostname(mmc), bounce_size); /* * Exiting with zero here makes sure we proceed with * mmc->max_segs == 1. */ return; } host->bounce_addr = dma_map_single(mmc->parent, host->bounce_buffer, bounce_size, DMA_BIDIRECTIONAL); ret = dma_mapping_error(mmc->parent, host->bounce_addr); if (ret) /* Again fall back to max_segs == 1 */ return; host->bounce_buffer_size = bounce_size; /* Lie about this since we're bouncing */ mmc->max_segs = max_blocks; mmc->max_seg_size = bounce_size; mmc->max_req_size = bounce_size; pr_info("%s bounce up to %u segments into one, max segment size %u bytes\n", mmc_hostname(mmc), max_blocks, bounce_size); } static inline bool sdhci_can_64bit_dma(struct sdhci_host *host) { /* * According to SD Host Controller spec v4.10, bit[27] added from * version 4.10 in Capabilities Register is used as 64-bit System * Address support for V4 mode. */ if (host->version >= SDHCI_SPEC_410 && host->v4_mode) return host->caps & SDHCI_CAN_64BIT_V4; return host->caps & SDHCI_CAN_64BIT; } int sdhci_setup_host(struct sdhci_host *host) { struct mmc_host *mmc; u32 max_current_caps; unsigned int ocr_avail; unsigned int override_timeout_clk; u32 max_clk; int ret; WARN_ON(host == NULL); if (host == NULL) return -EINVAL; mmc = host->mmc; /* * If there are external regulators, get them. Note this must be done * early before resetting the host and reading the capabilities so that * the host can take the appropriate action if regulators are not * available. */ ret = mmc_regulator_get_supply(mmc); if (ret) return ret; DBG("Version: 0x%08x | Present: 0x%08x\n", sdhci_readw(host, SDHCI_HOST_VERSION), sdhci_readl(host, SDHCI_PRESENT_STATE)); DBG("Caps: 0x%08x | Caps_1: 0x%08x\n", sdhci_readl(host, SDHCI_CAPABILITIES), sdhci_readl(host, SDHCI_CAPABILITIES_1)); sdhci_read_caps(host); override_timeout_clk = host->timeout_clk; if (host->version > SDHCI_SPEC_420) { pr_err("%s: Unknown controller version (%d). You may experience problems.\n", mmc_hostname(mmc), host->version); } if (host->quirks & SDHCI_QUIRK_FORCE_DMA) host->flags |= SDHCI_USE_SDMA; else if (!(host->caps & SDHCI_CAN_DO_SDMA)) DBG("Controller doesn't have SDMA capability\n"); else host->flags |= SDHCI_USE_SDMA; if ((host->quirks & SDHCI_QUIRK_BROKEN_DMA) && (host->flags & SDHCI_USE_SDMA)) { DBG("Disabling DMA as it is marked broken\n"); host->flags &= ~SDHCI_USE_SDMA; } if ((host->version >= SDHCI_SPEC_200) && (host->caps & SDHCI_CAN_DO_ADMA2)) host->flags |= SDHCI_USE_ADMA; if ((host->quirks & SDHCI_QUIRK_BROKEN_ADMA) && (host->flags & SDHCI_USE_ADMA)) { DBG("Disabling ADMA as it is marked broken\n"); host->flags &= ~SDHCI_USE_ADMA; } if (sdhci_can_64bit_dma(host)) host->flags |= SDHCI_USE_64_BIT_DMA; if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) { if (host->ops->set_dma_mask) ret = host->ops->set_dma_mask(host); else ret = sdhci_set_dma_mask(host); if (!ret && host->ops->enable_dma) ret = host->ops->enable_dma(host); if (ret) { pr_warn("%s: No suitable DMA available - falling back to PIO\n", mmc_hostname(mmc)); host->flags &= ~(SDHCI_USE_SDMA | SDHCI_USE_ADMA); ret = 0; } } /* SDMA does not support 64-bit DMA if v4 mode not set */ if ((host->flags & SDHCI_USE_64_BIT_DMA) && !host->v4_mode) host->flags &= ~SDHCI_USE_SDMA; if (host->flags & SDHCI_USE_ADMA) { dma_addr_t dma; void *buf; if (host->flags & SDHCI_USE_64_BIT_DMA) { host->adma_table_sz = host->adma_table_cnt * SDHCI_ADMA2_64_DESC_SZ(host); host->desc_sz = SDHCI_ADMA2_64_DESC_SZ(host); } else { host->adma_table_sz = host->adma_table_cnt * SDHCI_ADMA2_32_DESC_SZ; host->desc_sz = SDHCI_ADMA2_32_DESC_SZ; } host->align_buffer_sz = SDHCI_MAX_SEGS * SDHCI_ADMA2_ALIGN; /* * Use zalloc to zero the reserved high 32-bits of 128-bit * descriptors so that they never need to be written. */ buf = dma_alloc_coherent(mmc_dev(mmc), host->align_buffer_sz + host->adma_table_sz, &dma, GFP_KERNEL); if (!buf) { pr_warn("%s: Unable to allocate ADMA buffers - falling back to standard DMA\n", mmc_hostname(mmc)); host->flags &= ~SDHCI_USE_ADMA; } else if ((dma + host->align_buffer_sz) & (SDHCI_ADMA2_DESC_ALIGN - 1)) { pr_warn("%s: unable to allocate aligned ADMA descriptor\n", mmc_hostname(mmc)); host->flags &= ~SDHCI_USE_ADMA; dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz + host->adma_table_sz, buf, dma); } else { host->align_buffer = buf; host->align_addr = dma; host->adma_table = buf + host->align_buffer_sz; host->adma_addr = dma + host->align_buffer_sz; } } /* * If we use DMA, then it's up to the caller to set the DMA * mask, but PIO does not need the hw shim so we set a new * mask here in that case. */ if (!(host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA))) { host->dma_mask = DMA_BIT_MASK(64); mmc_dev(mmc)->dma_mask = &host->dma_mask; } if (host->version >= SDHCI_SPEC_300) host->max_clk = (host->caps & SDHCI_CLOCK_V3_BASE_MASK) >> SDHCI_CLOCK_BASE_SHIFT; else host->max_clk = (host->caps & SDHCI_CLOCK_BASE_MASK) >> SDHCI_CLOCK_BASE_SHIFT; host->max_clk *= 1000000; if (host->max_clk == 0 || host->quirks & SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN) { if (!host->ops->get_max_clock) { pr_err("%s: Hardware doesn't specify base clock frequency.\n", mmc_hostname(mmc)); ret = -ENODEV; goto undma; } host->max_clk = host->ops->get_max_clock(host); } /* * In case of Host Controller v3.00, find out whether clock * multiplier is supported. */ host->clk_mul = (host->caps1 & SDHCI_CLOCK_MUL_MASK) >> SDHCI_CLOCK_MUL_SHIFT; /* * In case the value in Clock Multiplier is 0, then programmable * clock mode is not supported, otherwise the actual clock * multiplier is one more than the value of Clock Multiplier * in the Capabilities Register. */ if (host->clk_mul) host->clk_mul += 1; /* * Set host parameters. */ max_clk = host->max_clk; if (host->ops->get_min_clock) mmc->f_min = host->ops->get_min_clock(host); else if (host->version >= SDHCI_SPEC_300) { if (host->clk_mul) { mmc->f_min = (host->max_clk * host->clk_mul) / 1024; max_clk = host->max_clk * host->clk_mul; } else mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_300; } else mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_200; if (!mmc->f_max || mmc->f_max > max_clk) mmc->f_max = max_clk; if (!(host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)) { host->timeout_clk = (host->caps & SDHCI_TIMEOUT_CLK_MASK) >> SDHCI_TIMEOUT_CLK_SHIFT; if (host->caps & SDHCI_TIMEOUT_CLK_UNIT) host->timeout_clk *= 1000; if (host->timeout_clk == 0) { if (!host->ops->get_timeout_clock) { pr_err("%s: Hardware doesn't specify timeout clock frequency.\n", mmc_hostname(mmc)); ret = -ENODEV; goto undma; } host->timeout_clk = DIV_ROUND_UP(host->ops->get_timeout_clock(host), 1000); } if (override_timeout_clk) host->timeout_clk = override_timeout_clk; mmc->max_busy_timeout = host->ops->get_max_timeout_count ? host->ops->get_max_timeout_count(host) : 1 << 27; mmc->max_busy_timeout /= host->timeout_clk; } if (host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT && !host->ops->get_max_timeout_count) mmc->max_busy_timeout = 0; mmc->caps |= MMC_CAP_SDIO_IRQ | MMC_CAP_ERASE | MMC_CAP_CMD23; mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD; if (host->quirks & SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12) host->flags |= SDHCI_AUTO_CMD12; /* * For v3 mode, Auto-CMD23 stuff only works in ADMA or PIO. * For v4 mode, SDMA may use Auto-CMD23 as well. */ if ((host->version >= SDHCI_SPEC_300) && ((host->flags & SDHCI_USE_ADMA) || !(host->flags & SDHCI_USE_SDMA) || host->v4_mode) && !(host->quirks2 & SDHCI_QUIRK2_ACMD23_BROKEN)) { host->flags |= SDHCI_AUTO_CMD23; DBG("Auto-CMD23 available\n"); } else { DBG("Auto-CMD23 unavailable\n"); } /* * A controller may support 8-bit width, but the board itself * might not have the pins brought out. Boards that support * 8-bit width must set "mmc->caps |= MMC_CAP_8_BIT_DATA;" in * their platform code before calling sdhci_add_host(), and we * won't assume 8-bit width for hosts without that CAP. */ if (!(host->quirks & SDHCI_QUIRK_FORCE_1_BIT_DATA)) mmc->caps |= MMC_CAP_4_BIT_DATA; if (host->quirks2 & SDHCI_QUIRK2_HOST_NO_CMD23) mmc->caps &= ~MMC_CAP_CMD23; if (host->caps & SDHCI_CAN_DO_HISPD) mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED; if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) && mmc_card_is_removable(mmc) && mmc_gpio_get_cd(host->mmc) < 0) mmc->caps |= MMC_CAP_NEEDS_POLL; if (!IS_ERR(mmc->supply.vqmmc)) { ret = regulator_enable(mmc->supply.vqmmc); /* If vqmmc provides no 1.8V signalling, then there's no UHS */ if (!regulator_is_supported_voltage(mmc->supply.vqmmc, 1700000, 1950000)) host->caps1 &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_DDR50); /* In eMMC case vqmmc might be a fixed 1.8V regulator */ if (!regulator_is_supported_voltage(mmc->supply.vqmmc, 2700000, 3600000)) host->flags &= ~SDHCI_SIGNALING_330; if (ret) { pr_warn("%s: Failed to enable vqmmc regulator: %d\n", mmc_hostname(mmc), ret); mmc->supply.vqmmc = ERR_PTR(-EINVAL); } } if (host->quirks2 & SDHCI_QUIRK2_NO_1_8_V) { host->caps1 &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_DDR50); /* * The SDHCI controller in a SoC might support HS200/HS400 * (indicated using mmc-hs200-1_8v/mmc-hs400-1_8v dt property), * but if the board is modeled such that the IO lines are not * connected to 1.8v then HS200/HS400 cannot be supported. * Disable HS200/HS400 if the board does not have 1.8v connected * to the IO lines. (Applicable for other modes in 1.8v) */ mmc->caps2 &= ~(MMC_CAP2_HSX00_1_8V | MMC_CAP2_HS400_ES); mmc->caps &= ~(MMC_CAP_1_8V_DDR | MMC_CAP_UHS); } /* Any UHS-I mode in caps implies SDR12 and SDR25 support. */ if (host->caps1 & (SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_DDR50)) mmc->caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25; /* SDR104 supports also implies SDR50 support */ if (host->caps1 & SDHCI_SUPPORT_SDR104) { mmc->caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50; /* SD3.0: SDR104 is supported so (for eMMC) the caps2 * field can be promoted to support HS200. */ if (!(host->quirks2 & SDHCI_QUIRK2_BROKEN_HS200)) mmc->caps2 |= MMC_CAP2_HS200; } else if (host->caps1 & SDHCI_SUPPORT_SDR50) { mmc->caps |= MMC_CAP_UHS_SDR50; } if (host->quirks2 & SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400 && (host->caps1 & SDHCI_SUPPORT_HS400)) mmc->caps2 |= MMC_CAP2_HS400; if ((mmc->caps2 & MMC_CAP2_HSX00_1_2V) && (IS_ERR(mmc->supply.vqmmc) || !regulator_is_supported_voltage(mmc->supply.vqmmc, 1100000, 1300000))) mmc->caps2 &= ~MMC_CAP2_HSX00_1_2V; if ((host->caps1 & SDHCI_SUPPORT_DDR50) && !(host->quirks2 & SDHCI_QUIRK2_BROKEN_DDR50)) mmc->caps |= MMC_CAP_UHS_DDR50; /* Does the host need tuning for SDR50? */ if (host->caps1 & SDHCI_USE_SDR50_TUNING) host->flags |= SDHCI_SDR50_NEEDS_TUNING; /* Driver Type(s) (A, C, D) supported by the host */ if (host->caps1 & SDHCI_DRIVER_TYPE_A) mmc->caps |= MMC_CAP_DRIVER_TYPE_A; if (host->caps1 & SDHCI_DRIVER_TYPE_C) mmc->caps |= MMC_CAP_DRIVER_TYPE_C; if (host->caps1 & SDHCI_DRIVER_TYPE_D) mmc->caps |= MMC_CAP_DRIVER_TYPE_D; /* Initial value for re-tuning timer count */ host->tuning_count = (host->caps1 & SDHCI_RETUNING_TIMER_COUNT_MASK) >> SDHCI_RETUNING_TIMER_COUNT_SHIFT; /* * In case Re-tuning Timer is not disabled, the actual value of * re-tuning timer will be 2 ^ (n - 1). */ if (host->tuning_count) host->tuning_count = 1 << (host->tuning_count - 1); /* Re-tuning mode supported by the Host Controller */ host->tuning_mode = (host->caps1 & SDHCI_RETUNING_MODE_MASK) >> SDHCI_RETUNING_MODE_SHIFT; ocr_avail = 0; /* * According to SD Host Controller spec v3.00, if the Host System * can afford more than 150mA, Host Driver should set XPC to 1. Also * the value is meaningful only if Voltage Support in the Capabilities * register is set. The actual current value is 4 times the register * value. */ max_current_caps = sdhci_readl(host, SDHCI_MAX_CURRENT); if (!max_current_caps && !IS_ERR(mmc->supply.vmmc)) { int curr = regulator_get_current_limit(mmc->supply.vmmc); if (curr > 0) { /* convert to SDHCI_MAX_CURRENT format */ curr = curr/1000; /* convert to mA */ curr = curr/SDHCI_MAX_CURRENT_MULTIPLIER; curr = min_t(u32, curr, SDHCI_MAX_CURRENT_LIMIT); max_current_caps = (curr << SDHCI_MAX_CURRENT_330_SHIFT) | (curr << SDHCI_MAX_CURRENT_300_SHIFT) | (curr << SDHCI_MAX_CURRENT_180_SHIFT); } } if (host->caps & SDHCI_CAN_VDD_330) { ocr_avail |= MMC_VDD_32_33 | MMC_VDD_33_34; mmc->max_current_330 = ((max_current_caps & SDHCI_MAX_CURRENT_330_MASK) >> SDHCI_MAX_CURRENT_330_SHIFT) * SDHCI_MAX_CURRENT_MULTIPLIER; } if (host->caps & SDHCI_CAN_VDD_300) { ocr_avail |= MMC_VDD_29_30 | MMC_VDD_30_31; mmc->max_current_300 = ((max_current_caps & SDHCI_MAX_CURRENT_300_MASK) >> SDHCI_MAX_CURRENT_300_SHIFT) * SDHCI_MAX_CURRENT_MULTIPLIER; } if (host->caps & SDHCI_CAN_VDD_180) { ocr_avail |= MMC_VDD_165_195; mmc->max_current_180 = ((max_current_caps & SDHCI_MAX_CURRENT_180_MASK) >> SDHCI_MAX_CURRENT_180_SHIFT) * SDHCI_MAX_CURRENT_MULTIPLIER; } /* If OCR set by host, use it instead. */ if (host->ocr_mask) ocr_avail = host->ocr_mask; /* If OCR set by external regulators, give it highest prio. */ if (mmc->ocr_avail) ocr_avail = mmc->ocr_avail; mmc->ocr_avail = ocr_avail; mmc->ocr_avail_sdio = ocr_avail; if (host->ocr_avail_sdio) mmc->ocr_avail_sdio &= host->ocr_avail_sdio; mmc->ocr_avail_sd = ocr_avail; if (host->ocr_avail_sd) mmc->ocr_avail_sd &= host->ocr_avail_sd; else /* normal SD controllers don't support 1.8V */ mmc->ocr_avail_sd &= ~MMC_VDD_165_195; mmc->ocr_avail_mmc = ocr_avail; if (host->ocr_avail_mmc) mmc->ocr_avail_mmc &= host->ocr_avail_mmc; if (mmc->ocr_avail == 0) { pr_err("%s: Hardware doesn't report any support voltages.\n", mmc_hostname(mmc)); ret = -ENODEV; goto unreg; } if ((mmc->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_DDR50 | MMC_CAP_1_8V_DDR)) || (mmc->caps2 & (MMC_CAP2_HS200_1_8V_SDR | MMC_CAP2_HS400_1_8V))) host->flags |= SDHCI_SIGNALING_180; if (mmc->caps2 & MMC_CAP2_HSX00_1_2V) host->flags |= SDHCI_SIGNALING_120; spin_lock_init(&host->lock); /* * Maximum number of sectors in one transfer. Limited by SDMA boundary * size (512KiB). Note some tuning modes impose a 4MiB limit, but this * is less anyway. */ mmc->max_req_size = 524288; /* * Maximum number of segments. Depends on if the hardware * can do scatter/gather or not. */ if (host->flags & SDHCI_USE_ADMA) { mmc->max_segs = SDHCI_MAX_SEGS; } else if (host->flags & SDHCI_USE_SDMA) { mmc->max_segs = 1; if (swiotlb_max_segment()) { unsigned int max_req_size = (1 << IO_TLB_SHIFT) * IO_TLB_SEGSIZE; mmc->max_req_size = min(mmc->max_req_size, max_req_size); } } else { /* PIO */ mmc->max_segs = SDHCI_MAX_SEGS; } /* * Maximum segment size. Could be one segment with the maximum number * of bytes. When doing hardware scatter/gather, each entry cannot * be larger than 64 KiB though. */ if (host->flags & SDHCI_USE_ADMA) { if (host->quirks & SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC) mmc->max_seg_size = 65535; else mmc->max_seg_size = 65536; } else { mmc->max_seg_size = mmc->max_req_size; } /* * Maximum block size. This varies from controller to controller and * is specified in the capabilities register. */ if (host->quirks & SDHCI_QUIRK_FORCE_BLK_SZ_2048) { mmc->max_blk_size = 2; } else { mmc->max_blk_size = (host->caps & SDHCI_MAX_BLOCK_MASK) >> SDHCI_MAX_BLOCK_SHIFT; if (mmc->max_blk_size >= 3) { pr_warn("%s: Invalid maximum block size, assuming 512 bytes\n", mmc_hostname(mmc)); mmc->max_blk_size = 0; } } mmc->max_blk_size = 512 << mmc->max_blk_size; /* * Maximum block count. */ mmc->max_blk_count = (host->quirks & SDHCI_QUIRK_NO_MULTIBLOCK) ? 1 : 65535; if (mmc->max_segs == 1) /* This may alter mmc->*_blk_* parameters */ sdhci_allocate_bounce_buffer(host); return 0; unreg: if (!IS_ERR(mmc->supply.vqmmc)) regulator_disable(mmc->supply.vqmmc); undma: if (host->align_buffer) dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz + host->adma_table_sz, host->align_buffer, host->align_addr); host->adma_table = NULL; host->align_buffer = NULL; return ret; } EXPORT_SYMBOL_GPL(sdhci_setup_host); void sdhci_cleanup_host(struct sdhci_host *host) { struct mmc_host *mmc = host->mmc; if (!IS_ERR(mmc->supply.vqmmc)) regulator_disable(mmc->supply.vqmmc); if (host->align_buffer) dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz + host->adma_table_sz, host->align_buffer, host->align_addr); host->adma_table = NULL; host->align_buffer = NULL; } EXPORT_SYMBOL_GPL(sdhci_cleanup_host); int __sdhci_add_host(struct sdhci_host *host) { unsigned int flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_HIGHPRI; struct mmc_host *mmc = host->mmc; int ret; host->complete_wq = alloc_workqueue("sdhci", flags, 0); if (!host->complete_wq) return -ENOMEM; INIT_WORK(&host->complete_work, sdhci_complete_work); timer_setup(&host->timer, sdhci_timeout_timer, 0); timer_setup(&host->data_timer, sdhci_timeout_data_timer, 0); init_waitqueue_head(&host->buf_ready_int); sdhci_init(host, 0); ret = request_threaded_irq(host->irq, sdhci_irq, sdhci_thread_irq, IRQF_SHARED, mmc_hostname(mmc), host); if (ret) { pr_err("%s: Failed to request IRQ %d: %d\n", mmc_hostname(mmc), host->irq, ret); goto unwq; } ret = sdhci_led_register(host); if (ret) { pr_err("%s: Failed to register LED device: %d\n", mmc_hostname(mmc), ret); goto unirq; } ret = mmc_add_host(mmc); if (ret) goto unled; pr_info("%s: SDHCI controller on %s [%s] using %s\n", mmc_hostname(mmc), host->hw_name, dev_name(mmc_dev(mmc)), (host->flags & SDHCI_USE_ADMA) ? (host->flags & SDHCI_USE_64_BIT_DMA) ? "ADMA 64-bit" : "ADMA" : (host->flags & SDHCI_USE_SDMA) ? "DMA" : "PIO"); sdhci_enable_card_detection(host); return 0; unled: sdhci_led_unregister(host); unirq: sdhci_do_reset(host, SDHCI_RESET_ALL); sdhci_writel(host, 0, SDHCI_INT_ENABLE); sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE); free_irq(host->irq, host); unwq: destroy_workqueue(host->complete_wq); return ret; } EXPORT_SYMBOL_GPL(__sdhci_add_host); int sdhci_add_host(struct sdhci_host *host) { int ret; ret = sdhci_setup_host(host); if (ret) return ret; ret = __sdhci_add_host(host); if (ret) goto cleanup; return 0; cleanup: sdhci_cleanup_host(host); return ret; } EXPORT_SYMBOL_GPL(sdhci_add_host); void sdhci_remove_host(struct sdhci_host *host, int dead) { struct mmc_host *mmc = host->mmc; unsigned long flags; if (dead) { spin_lock_irqsave(&host->lock, flags); host->flags |= SDHCI_DEVICE_DEAD; if (sdhci_has_requests(host)) { pr_err("%s: Controller removed during " " transfer!\n", mmc_hostname(mmc)); sdhci_error_out_mrqs(host, -ENOMEDIUM); } spin_unlock_irqrestore(&host->lock, flags); } sdhci_disable_card_detection(host); mmc_remove_host(mmc); sdhci_led_unregister(host); if (!dead) sdhci_do_reset(host, SDHCI_RESET_ALL); sdhci_writel(host, 0, SDHCI_INT_ENABLE); sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE); free_irq(host->irq, host); del_timer_sync(&host->timer); del_timer_sync(&host->data_timer); destroy_workqueue(host->complete_wq); if (!IS_ERR(mmc->supply.vqmmc)) regulator_disable(mmc->supply.vqmmc); if (host->align_buffer) dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz + host->adma_table_sz, host->align_buffer, host->align_addr); host->adma_table = NULL; host->align_buffer = NULL; } EXPORT_SYMBOL_GPL(sdhci_remove_host); void sdhci_free_host(struct sdhci_host *host) { mmc_free_host(host->mmc); } EXPORT_SYMBOL_GPL(sdhci_free_host); /*****************************************************************************\ * * * Driver init/exit * * * \*****************************************************************************/ static int __init sdhci_drv_init(void) { pr_info(DRIVER_NAME ": Secure Digital Host Controller Interface driver\n"); pr_info(DRIVER_NAME ": Copyright(c) Pierre Ossman\n"); return 0; } static void __exit sdhci_drv_exit(void) { } module_init(sdhci_drv_init); module_exit(sdhci_drv_exit); module_param(debug_quirks, uint, 0444); module_param(debug_quirks2, uint, 0444); MODULE_AUTHOR("Pierre Ossman "); MODULE_DESCRIPTION("Secure Digital Host Controller Interface core driver"); MODULE_LICENSE("GPL"); MODULE_PARM_DESC(debug_quirks, "Force certain quirks."); MODULE_PARM_DESC(debug_quirks2, "Force certain other quirks.");