#include #include #include #include #include "mt2063.h" static unsigned int verbose; module_param(verbose, int, 0644); /* Internal structures and types */ /* FIXME: we probably don't need these new FE get/set property types for tuner */ #define DVBFE_TUNER_OPEN 99 #define DVBFE_TUNER_SOFTWARE_SHUTDOWN 100 #define DVBFE_TUNER_CLEAR_POWER_MASKBITS 101 #define MT2063_ERROR (1 << 31) #define MT2063_USER_ERROR (1 << 30) /* Macro to be used to check for errors */ #define MT2063_IS_ERROR(s) (((s) >> 30) != 0) #define MT2063_NO_ERROR(s) (((s) >> 30) == 0) #define MT2063_OK (0x00000000) /* Unknown error */ #define MT2063_UNKNOWN (0x80000001) /* Error: Upconverter PLL is not locked */ #define MT2063_UPC_UNLOCK (0x80000002) /* Error: Downconverter PLL is not locked */ #define MT2063_DNC_UNLOCK (0x80000004) /* Error: Two-wire serial bus communications error */ #define MT2063_COMM_ERR (0x80000008) /* Error: Tuner handle passed to function was invalid */ #define MT2063_INV_HANDLE (0x80000010) /* Error: Function argument is invalid (out of range) */ #define MT2063_ARG_RANGE (0x80000020) /* Error: Function argument (ptr to return value) was NULL */ #define MT2063_ARG_NULL (0x80000040) /* Error: Attempt to open more than MT_TUNER_CNT tuners */ #define MT2063_TUNER_CNT_ERR (0x80000080) /* Error: Tuner Part Code / Rev Code mismatches expected value */ #define MT2063_TUNER_ID_ERR (0x80000100) /* Error: Tuner Initialization failure */ #define MT2063_TUNER_INIT_ERR (0x80000200) #define MT2063_TUNER_OPEN_ERR (0x80000400) /* User-definable fields (see mt_userdef.h) */ #define MT2063_USER_DEFINED1 (0x00001000) #define MT2063_USER_DEFINED2 (0x00002000) #define MT2063_USER_DEFINED3 (0x00004000) #define MT2063_USER_DEFINED4 (0x00008000) #define MT2063_USER_MASK (0x4000f000) #define MT2063_USER_SHIFT (12) /* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */ #define MT2063_SPUR_CNT_MASK (0x001f0000) #define MT2063_SPUR_SHIFT (16) /* Info: Tuner timeout waiting for condition */ #define MT2063_TUNER_TIMEOUT (0x00400000) /* Info: Unavoidable LO-related spur may be present in the output */ #define MT2063_SPUR_PRESENT_ERR (0x00800000) /* Info: Tuner input frequency is out of range */ #define MT2063_FIN_RANGE (0x01000000) /* Info: Tuner output frequency is out of range */ #define MT2063_FOUT_RANGE (0x02000000) /* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */ #define MT2063_UPC_RANGE (0x04000000) /* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */ #define MT2063_DNC_RANGE (0x08000000) /* * Data Types */ #define MAX_UDATA (4294967295) /* max value storable in u32 */ /* * Define an MTxxxx_CNT macro for each type of tuner that will be built * into your application (e.g., MT2121, MT2060). MT_TUNER_CNT * must be set to the SUM of all of the MTxxxx_CNT macros. * * #define MT2050_CNT (1) * #define MT2060_CNT (1) * #define MT2111_CNT (1) * #define MT2121_CNT (3) */ #define MT2063_TUNER_CNT (1) /* total num of MicroTuner tuners */ #define MT2063_I2C (0xC0) /* * Constant defining the version of the following structure * and therefore the API for this code. * * When compiling the tuner driver, the preprocessor will * check against this version number to make sure that * it matches the version that the tuner driver knows about. */ /* DECT Frequency Avoidance */ #define MT2063_DECT_AVOID_US_FREQS 0x00000001 #define MT2063_DECT_AVOID_EURO_FREQS 0x00000002 #define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0) #define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0) enum MT2063_DECT_Avoid_Type { MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */ MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */ MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */ MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */ }; #define MT2063_MAX_ZONES 48 struct MT2063_ExclZone_t; struct MT2063_ExclZone_t { u32 min_; u32 max_; struct MT2063_ExclZone_t *next_; }; /* * Structure of data needed for Spur Avoidance */ struct MT2063_AvoidSpursData_t { u32 nAS_Algorithm; u32 f_ref; u32 f_in; u32 f_LO1; u32 f_if1_Center; u32 f_if1_Request; u32 f_if1_bw; u32 f_LO2; u32 f_out; u32 f_out_bw; u32 f_LO1_Step; u32 f_LO2_Step; u32 f_LO1_FracN_Avoid; u32 f_LO2_FracN_Avoid; u32 f_zif_bw; u32 f_min_LO_Separation; u32 maxH1; u32 maxH2; enum MT2063_DECT_Avoid_Type avoidDECT; u32 bSpurPresent; u32 bSpurAvoided; u32 nSpursFound; u32 nZones; struct MT2063_ExclZone_t *freeZones; struct MT2063_ExclZone_t *usedZones; struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES]; }; /* * Values returned by the MT2063's on-chip temperature sensor * to be read/written. */ enum MT2063_Temperature { MT2063_T_0C = 0, /* Temperature approx 0C */ MT2063_T_10C, /* Temperature approx 10C */ MT2063_T_20C, /* Temperature approx 20C */ MT2063_T_30C, /* Temperature approx 30C */ MT2063_T_40C, /* Temperature approx 40C */ MT2063_T_50C, /* Temperature approx 50C */ MT2063_T_60C, /* Temperature approx 60C */ MT2063_T_70C, /* Temperature approx 70C */ MT2063_T_80C, /* Temperature approx 80C */ MT2063_T_90C, /* Temperature approx 90C */ MT2063_T_100C, /* Temperature approx 100C */ MT2063_T_110C, /* Temperature approx 110C */ MT2063_T_120C, /* Temperature approx 120C */ MT2063_T_130C, /* Temperature approx 130C */ MT2063_T_140C, /* Temperature approx 140C */ MT2063_T_150C, /* Temperature approx 150C */ }; /* * Parameters for selecting GPIO bits */ enum MT2063_GPIO_Attr { MT2063_GPIO_IN, MT2063_GPIO_DIR, MT2063_GPIO_OUT, }; enum MT2063_GPIO_ID { MT2063_GPIO0, MT2063_GPIO1, MT2063_GPIO2, }; /* * Parameter for function MT2063_SetExtSRO that specifies the external * SRO drive frequency. * * MT2063_EXT_SRO_OFF is the power-up default value. */ enum MT2063_Ext_SRO { MT2063_EXT_SRO_OFF, /* External SRO drive off */ MT2063_EXT_SRO_BY_4, /* External SRO drive divide by 4 */ MT2063_EXT_SRO_BY_2, /* External SRO drive divide by 2 */ MT2063_EXT_SRO_BY_1 /* External SRO drive divide by 1 */ }; /* * Parameter for function MT2063_SetPowerMask that specifies the power down * of various sections of the MT2063. */ enum MT2063_Mask_Bits { MT2063_REG_SD = 0x0040, /* Shutdown regulator */ MT2063_SRO_SD = 0x0020, /* Shutdown SRO */ MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */ MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */ MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */ MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */ MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */ MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */ MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */ MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */ MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */ MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */ MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */ MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */ MT2063_NONE_SD = 0x0000 /* No shutdown bits */ }; /* * Parameter for function MT2063_GetParam & MT2063_SetParam that * specifies the tuning algorithm parameter to be read/written. */ enum MT2063_Param { /* tuner address set by MT2063_Open() */ MT2063_IC_ADDR, /* max number of MT2063 tuners set by MT_TUNER_CNT in mt_userdef.h */ MT2063_MAX_OPEN, /* current number of open MT2063 tuners set by MT2063_Open() */ MT2063_NUM_OPEN, /* crystal frequency (default: 16000000 Hz) */ MT2063_SRO_FREQ, /* min tuning step size (default: 50000 Hz) */ MT2063_STEPSIZE, /* input center frequency set by MT2063_Tune() */ MT2063_INPUT_FREQ, /* LO1 Frequency set by MT2063_Tune() */ MT2063_LO1_FREQ, /* LO1 minimum step size (default: 250000 Hz) */ MT2063_LO1_STEPSIZE, /* LO1 FracN keep-out region (default: 999999 Hz) */ MT2063_LO1_FRACN_AVOID_PARAM, /* Current 1st IF in use set by MT2063_Tune() */ MT2063_IF1_ACTUAL, /* Requested 1st IF set by MT2063_Tune() */ MT2063_IF1_REQUEST, /* Center of 1st IF SAW filter (default: 1218000000 Hz) */ MT2063_IF1_CENTER, /* Bandwidth of 1st IF SAW filter (default: 20000000 Hz) */ MT2063_IF1_BW, /* zero-IF bandwidth (default: 2000000 Hz) */ MT2063_ZIF_BW, /* LO2 Frequency set by MT2063_Tune() */ MT2063_LO2_FREQ, /* LO2 minimum step size (default: 50000 Hz) */ MT2063_LO2_STEPSIZE, /* LO2 FracN keep-out region (default: 374999 Hz) */ MT2063_LO2_FRACN_AVOID, /* output center frequency set by MT2063_Tune() */ MT2063_OUTPUT_FREQ, /* output bandwidth set by MT2063_Tune() */ MT2063_OUTPUT_BW, /* min inter-tuner LO separation (default: 1000000 Hz) */ MT2063_LO_SEPARATION, /* ID of avoid-spurs algorithm in use compile-time constant */ MT2063_AS_ALG, /* max # of intra-tuner harmonics (default: 15) */ MT2063_MAX_HARM1, /* max # of inter-tuner harmonics (default: 7) */ MT2063_MAX_HARM2, /* # of 1st IF exclusion zones used set by MT2063_Tune() */ MT2063_EXCL_ZONES, /* # of spurs found/avoided set by MT2063_Tune() */ MT2063_NUM_SPURS, /* >0 spurs avoided set by MT2063_Tune() */ MT2063_SPUR_AVOIDED, /* >0 spurs in output (mathematically) set by MT2063_Tune() */ MT2063_SPUR_PRESENT, /* Receiver Mode for some parameters. 1 is DVB-T */ MT2063_RCVR_MODE, /* directly set LNA attenuation, parameter is value to set */ MT2063_ACLNA, /* maximum LNA attenuation, parameter is value to set */ MT2063_ACLNA_MAX, /* directly set ATN attenuation. Paremeter is value to set. */ MT2063_ACRF, /* maxium ATN attenuation. Paremeter is value to set. */ MT2063_ACRF_MAX, /* directly set FIF attenuation. Paremeter is value to set. */ MT2063_ACFIF, /* maxium FIF attenuation. Paremeter is value to set. */ MT2063_ACFIF_MAX, /* LNA Rin */ MT2063_LNA_RIN, /* Power Detector LNA level target */ MT2063_LNA_TGT, /* Power Detector 1 level */ MT2063_PD1, /* Power Detector 1 level target */ MT2063_PD1_TGT, /* Power Detector 2 level */ MT2063_PD2, /* Power Detector 2 level target */ MT2063_PD2_TGT, /* Selects, which DNC is activ */ MT2063_DNC_OUTPUT_ENABLE, /* VGA gain code */ MT2063_VGAGC, /* VGA bias current */ MT2063_VGAOI, /* TAGC, determins the speed of the AGC */ MT2063_TAGC, /* AMP gain code */ MT2063_AMPGC, /* Control setting to avoid DECT freqs (default: MT_AVOID_BOTH) */ MT2063_AVOID_DECT, /* Cleartune filter selection: 0 - by IC (default), 1 - by software */ MT2063_CTFILT_SW, MT2063_EOP /* last entry in enumerated list */ }; /* * Parameter for selecting tuner mode */ enum MT2063_RCVR_MODES { MT2063_CABLE_QAM = 0, /* Digital cable */ MT2063_CABLE_ANALOG, /* Analog cable */ MT2063_OFFAIR_COFDM, /* Digital offair */ MT2063_OFFAIR_COFDM_SAWLESS, /* Digital offair without SAW */ MT2063_OFFAIR_ANALOG, /* Analog offair */ MT2063_OFFAIR_8VSB, /* Analog offair */ MT2063_NUM_RCVR_MODES }; /* * Possible values for MT2063_DNC_OUTPUT */ enum MT2063_DNC_Output_Enable { MT2063_DNC_NONE = 0, MT2063_DNC_1, MT2063_DNC_2, MT2063_DNC_BOTH }; /* ** Two-wire serial bus subaddresses of the tuner registers. ** Also known as the tuner's register addresses. */ enum MT2063_Register_Offsets { MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */ MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */ MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */ MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */ MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */ MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */ MT2063_REG_RSVD_06, /* 0x06: Reserved */ MT2063_REG_LO_STATUS, /* 0x07: LO Status */ MT2063_REG_FIFFC, /* 0x08: FIFF Center */ MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */ MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */ MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */ MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */ MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */ MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */ MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */ MT2063_REG_RSVD_10, /* 0x10: Reserved */ MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */ MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */ MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */ MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */ MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */ MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */ MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */ MT2063_REG_RF_OV, /* 0x18: RF Attn Override */ MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */ MT2063_REG_LNA_TGT, /* 0x1A: Reserved */ MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */ MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */ MT2063_REG_RSVD_1D, /* 0x1D: Reserved */ MT2063_REG_RSVD_1E, /* 0x1E: Reserved */ MT2063_REG_RSVD_1F, /* 0x1F: Reserved */ MT2063_REG_RSVD_20, /* 0x20: Reserved */ MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */ MT2063_REG_RSVD_22, /* 0x22: Reserved */ MT2063_REG_RSVD_23, /* 0x23: Reserved */ MT2063_REG_RSVD_24, /* 0x24: Reserved */ MT2063_REG_RSVD_25, /* 0x25: Reserved */ MT2063_REG_RSVD_26, /* 0x26: Reserved */ MT2063_REG_RSVD_27, /* 0x27: Reserved */ MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */ MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */ MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */ MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */ MT2063_REG_CTRL_2C, /* 0x2C: Reserved */ MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */ MT2063_REG_RSVD_2E, /* 0x2E: Reserved */ MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */ MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */ MT2063_REG_RSVD_31, /* 0x31: Reserved */ MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */ MT2063_REG_RSVD_33, /* 0x33: Reserved */ MT2063_REG_RSVD_34, /* 0x34: Reserved */ MT2063_REG_RSVD_35, /* 0x35: Reserved */ MT2063_REG_RSVD_36, /* 0x36: Reserved */ MT2063_REG_RSVD_37, /* 0x37: Reserved */ MT2063_REG_RSVD_38, /* 0x38: Reserved */ MT2063_REG_RSVD_39, /* 0x39: Reserved */ MT2063_REG_RSVD_3A, /* 0x3A: Reserved */ MT2063_REG_RSVD_3B, /* 0x3B: Reserved */ MT2063_REG_RSVD_3C, /* 0x3C: Reserved */ MT2063_REG_END_REGS }; struct MT2063_Info_t { void *handle; void *hUserData; u32 address; u32 tuner_id; struct MT2063_AvoidSpursData_t AS_Data; u32 f_IF1_actual; u32 rcvr_mode; u32 ctfilt_sw; u32 CTFiltMax[31]; u32 num_regs; u8 reg[MT2063_REG_END_REGS]; }; typedef struct MT2063_Info_t *pMT2063_Info_t; enum MTTune_atv_standard { MTTUNEA_UNKNOWN = 0, MTTUNEA_PAL_B, MTTUNEA_PAL_G, MTTUNEA_PAL_I, MTTUNEA_PAL_L, MTTUNEA_PAL_MN, MTTUNEA_PAL_DK, MTTUNEA_DIGITAL, MTTUNEA_FMRADIO, MTTUNEA_DVBC, MTTUNEA_DVBT }; struct mt2063_state { struct i2c_adapter *i2c; const struct mt2063_config *config; struct dvb_tuner_ops ops; struct dvb_frontend *frontend; struct tuner_state status; struct MT2063_Info_t *MT2063_ht; bool MT2063_init; enum MTTune_atv_standard tv_type; u32 frequency; u32 srate; u32 bandwidth; u32 reference; }; /* Prototypes */ static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info, u32 f_min, u32 f_max); static u32 MT2063_ReInit(void *h); static u32 MT2063_Close(void *hMT2063); static u32 MT2063_GetReg(void *h, u8 reg, u8 * val); static u32 MT2063_GetParam(void *h, enum MT2063_Param param, u32 * pValue); static u32 MT2063_SetReg(void *h, u8 reg, u8 val); static u32 MT2063_SetParam(void *h, enum MT2063_Param param, u32 nValue); /*****************/ /* From drivers/media/common/tuners/mt2063_cfg.h */ unsigned int mt2063_setTune(struct dvb_frontend *fe, u32 f_in, u32 bw_in, enum MTTune_atv_standard tv_type) { //return (int)MT_Tune_atv(h, f_in, bw_in, tv_type); struct dvb_frontend_ops *frontend_ops = NULL; struct dvb_tuner_ops *tuner_ops = NULL; struct tuner_state t_state; struct mt2063_state *mt2063State = fe->tuner_priv; int err = 0; t_state.frequency = f_in; t_state.bandwidth = bw_in; mt2063State->tv_type = tv_type; if (&fe->ops) frontend_ops = &fe->ops; if (&frontend_ops->tuner_ops) tuner_ops = &frontend_ops->tuner_ops; if (tuner_ops->set_state) { if ((err = tuner_ops->set_state(fe, DVBFE_TUNER_FREQUENCY, &t_state)) < 0) { printk("%s: Invalid parameter\n", __func__); return err; } } return err; } unsigned int mt2063_lockStatus(struct dvb_frontend *fe) { struct dvb_frontend_ops *frontend_ops = &fe->ops; struct dvb_tuner_ops *tuner_ops = &frontend_ops->tuner_ops; struct tuner_state t_state; int err = 0; if (&fe->ops) frontend_ops = &fe->ops; if (&frontend_ops->tuner_ops) tuner_ops = &frontend_ops->tuner_ops; if (tuner_ops->get_state) { if ((err = tuner_ops->get_state(fe, DVBFE_TUNER_REFCLOCK, &t_state)) < 0) { printk("%s: Invalid parameter\n", __func__); return err; } } return err; } unsigned int tuner_MT2063_Open(struct dvb_frontend *fe) { struct dvb_frontend_ops *frontend_ops = &fe->ops; struct dvb_tuner_ops *tuner_ops = &frontend_ops->tuner_ops; struct tuner_state t_state; int err = 0; if (&fe->ops) frontend_ops = &fe->ops; if (&frontend_ops->tuner_ops) tuner_ops = &frontend_ops->tuner_ops; if (tuner_ops->set_state) { if ((err = tuner_ops->set_state(fe, DVBFE_TUNER_OPEN, &t_state)) < 0) { printk("%s: Invalid parameter\n", __func__); return err; } } return err; } unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe) { struct dvb_frontend_ops *frontend_ops = &fe->ops; struct dvb_tuner_ops *tuner_ops = &frontend_ops->tuner_ops; struct tuner_state t_state; int err = 0; if (&fe->ops) frontend_ops = &fe->ops; if (&frontend_ops->tuner_ops) tuner_ops = &frontend_ops->tuner_ops; if (tuner_ops->set_state) { if ((err = tuner_ops->set_state(fe, DVBFE_TUNER_SOFTWARE_SHUTDOWN, &t_state)) < 0) { printk("%s: Invalid parameter\n", __func__); return err; } } return err; } unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe) { struct dvb_frontend_ops *frontend_ops = &fe->ops; struct dvb_tuner_ops *tuner_ops = &frontend_ops->tuner_ops; struct tuner_state t_state; int err = 0; if (&fe->ops) frontend_ops = &fe->ops; if (&frontend_ops->tuner_ops) tuner_ops = &frontend_ops->tuner_ops; if (tuner_ops->set_state) { if ((err = tuner_ops->set_state(fe, DVBFE_TUNER_CLEAR_POWER_MASKBITS, &t_state)) < 0) { printk("%s: Invalid parameter\n", __func__); return err; } } return err; } /*****************/ //i2c operation static int mt2063_writeregs(struct mt2063_state *state, u8 reg1, u8 * data, int len) { int ret; u8 buf[60]; /* = { reg1, data }; */ struct i2c_msg msg = { .addr = state->config->tuner_address, .flags = 0, .buf = buf, .len = len + 1 }; msg.buf[0] = reg1; memcpy(msg.buf + 1, data, len); //printk("mt2063_writeregs state->i2c=%p\n", state->i2c); ret = i2c_transfer(state->i2c, &msg, 1); if (ret < 0) printk("mt2063_writeregs error ret=%d\n", ret); return ret; } static int mt2063_read_regs(struct mt2063_state *state, u8 reg1, u8 * b, u8 len) { int ret; u8 b0[] = { reg1 }; struct i2c_msg msg[] = { { .addr = state->config->tuner_address, .flags = I2C_M_RD, .buf = b0, .len = 1}, { .addr = state->config->tuner_address, .flags = I2C_M_RD, .buf = b, .len = len} }; //printk("mt2063_read_regs state->i2c=%p\n", state->i2c); ret = i2c_transfer(state->i2c, msg, 2); if (ret < 0) printk("mt2063_readregs error ret=%d\n", ret); return ret; } //context of mt2063_userdef.c ====================================== //################################################################# //================================================================= /***************************************************************************** ** ** Name: MT_WriteSub ** ** Description: Write values to device using a two-wire serial bus. ** ** Parameters: hUserData - User-specific I/O parameter that was ** passed to tuner's Open function. ** addr - device serial bus address (value passed ** as parameter to MTxxxx_Open) ** subAddress - serial bus sub-address (Register Address) ** pData - pointer to the Data to be written to the ** device ** cnt - number of bytes/registers to be written ** ** Returns: status: ** MT_OK - No errors ** MT_COMM_ERR - Serial bus communications error ** user-defined ** ** Notes: This is a callback function that is called from the ** the tuning algorithm. You MUST provide code for this ** function to write data using the tuner's 2-wire serial ** bus. ** ** The hUserData parameter is a user-specific argument. ** If additional arguments are needed for the user's ** serial bus read/write functions, this argument can be ** used to supply the necessary information. ** The hUserData parameter is initialized in the tuner's Open ** function. ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** N/A 03-25-2004 DAD Original ** *****************************************************************************/ static u32 MT2063_WriteSub(void *hUserData, u32 addr, u8 subAddress, u8 * pData, u32 cnt) { u32 status = MT2063_OK; /* Status to be returned */ struct dvb_frontend *fe = hUserData; struct mt2063_state *state = fe->tuner_priv; /* ** ToDo: Add code here to implement a serial-bus write ** operation to the MTxxxx tuner. If successful, ** return MT_OK. */ /* return status; */ fe->ops.i2c_gate_ctrl(fe, 1); //I2C bypass drxk3926 close i2c bridge if (mt2063_writeregs(state, subAddress, pData, cnt) < 0) { status = MT2063_ERROR; } fe->ops.i2c_gate_ctrl(fe, 0); //I2C bypass drxk3926 close i2c bridge return (status); } /***************************************************************************** ** ** Name: MT_ReadSub ** ** Description: Read values from device using a two-wire serial bus. ** ** Parameters: hUserData - User-specific I/O parameter that was ** passed to tuner's Open function. ** addr - device serial bus address (value passed ** as parameter to MTxxxx_Open) ** subAddress - serial bus sub-address (Register Address) ** pData - pointer to the Data to be written to the ** device ** cnt - number of bytes/registers to be written ** ** Returns: status: ** MT_OK - No errors ** MT_COMM_ERR - Serial bus communications error ** user-defined ** ** Notes: This is a callback function that is called from the ** the tuning algorithm. You MUST provide code for this ** function to read data using the tuner's 2-wire serial ** bus. ** ** The hUserData parameter is a user-specific argument. ** If additional arguments are needed for the user's ** serial bus read/write functions, this argument can be ** used to supply the necessary information. ** The hUserData parameter is initialized in the tuner's Open ** function. ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** N/A 03-25-2004 DAD Original ** *****************************************************************************/ static u32 MT2063_ReadSub(void *hUserData, u32 addr, u8 subAddress, u8 * pData, u32 cnt) { /* ** ToDo: Add code here to implement a serial-bus read ** operation to the MTxxxx tuner. If successful, ** return MT_OK. */ /* return status; */ u32 status = MT2063_OK; /* Status to be returned */ struct dvb_frontend *fe = hUserData; struct mt2063_state *state = fe->tuner_priv; u32 i = 0; fe->ops.i2c_gate_ctrl(fe, 1); //I2C bypass drxk3926 close i2c bridge for (i = 0; i < cnt; i++) { if (mt2063_read_regs(state, subAddress + i, pData + i, 1) < 0) { status = MT2063_ERROR; break; } } fe->ops.i2c_gate_ctrl(fe, 0); //I2C bypass drxk3926 close i2c bridge return (status); } /***************************************************************************** ** ** Name: MT_Sleep ** ** Description: Delay execution for "nMinDelayTime" milliseconds ** ** Parameters: hUserData - User-specific I/O parameter that was ** passed to tuner's Open function. ** nMinDelayTime - Delay time in milliseconds ** ** Returns: None. ** ** Notes: This is a callback function that is called from the ** the tuning algorithm. You MUST provide code that ** blocks execution for the specified period of time. ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** N/A 03-25-2004 DAD Original ** *****************************************************************************/ static int MT2063_Sleep(struct dvb_frontend *fe) { /* ** ToDo: Add code here to implement a OS blocking ** for a period of "nMinDelayTime" milliseconds. */ msleep(10); return 0; } //end of mt2063_userdef.c //================================================================= //################################################################# //================================================================= //context of mt2063_spuravoid.c ====================================== //################################################################# //================================================================= /***************************************************************************** ** ** Name: mt_spuravoid.c ** ** Description: Microtune spur avoidance software module. ** Supports Microtune tuner drivers. ** ** CVS ID: $Id: mt_spuravoid.c,v 1.3 2008/06/26 15:39:52 software Exp $ ** CVS Source: $Source: /export/home/cvsroot/software/tuners/MT2063/mt_spuravoid.c,v $ ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 082 03-25-2005 JWS Original multi-tuner support - requires ** MTxxxx_CNT declarations ** 096 04-06-2005 DAD Ver 1.11: Fix divide by 0 error if maxH==0. ** 094 04-06-2005 JWS Ver 1.11 Added uceil and ufloor to get rid ** of compiler warnings ** N/A 04-07-2005 DAD Ver 1.13: Merged single- and multi-tuner spur ** avoidance into a single module. ** 103 01-31-2005 DAD Ver 1.14: In MT_AddExclZone(), if the range ** (f_min, f_max) < 0, ignore the entry. ** 115 03-23-2007 DAD Fix declaration of spur due to truncation ** errors. ** 117 03-29-2007 RSK Ver 1.15: Re-wrote to match search order from ** tuner DLL. ** 137 06-18-2007 DAD Ver 1.16: Fix possible divide-by-0 error for ** multi-tuners that have ** (delta IF1) > (f_out-f_outbw/2). ** 147 07-27-2007 RSK Ver 1.17: Corrected calculation (-) to (+) ** Added logic to force f_Center within 1/2 f_Step. ** 177 S 02-26-2008 RSK Ver 1.18: Corrected calculation using LO1 > MAX/2 ** Type casts added to preserve correct sign. ** N/A I 06-17-2008 RSK Ver 1.19: Refactoring avoidance of DECT ** frequencies into MT_ResetExclZones(). ** N/A I 06-20-2008 RSK Ver 1.21: New VERSION number for ver checking. ** *****************************************************************************/ /* Version of this module */ #define MT2063_SPUR_VERSION 10201 /* Version 01.21 */ /* Implement ceiling, floor functions. */ #define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0)) #define uceil(n, d) ((n)/(d) + ((n)%(d) != 0)) #define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d)) #define ufloor(n, d) ((n)/(d)) struct MT2063_FIFZone_t { s32 min_; s32 max_; }; #if MT2063_TUNER_CNT > 1 static struct MT2063_AvoidSpursData_t *TunerList[MT2063_TUNER_CNT]; static u32 TunerCount = 0; #endif static u32 MT2063_RegisterTuner(struct MT2063_AvoidSpursData_t *pAS_Info) { #if MT2063_TUNER_CNT == 1 pAS_Info->nAS_Algorithm = 1; return MT2063_OK; #else u32 index; pAS_Info->nAS_Algorithm = 2; /* ** Check to see if tuner is already registered */ for (index = 0; index < TunerCount; index++) { if (TunerList[index] == pAS_Info) { return MT2063_OK; /* Already here - no problem */ } } /* ** Add tuner to list - if there is room. */ if (TunerCount < MT2063_TUNER_CNT) { TunerList[TunerCount] = pAS_Info; TunerCount++; return MT2063_OK; } else return MT2063_TUNER_CNT_ERR; #endif } static void MT2063_UnRegisterTuner(struct MT2063_AvoidSpursData_t *pAS_Info) { #if MT2063_TUNER_CNT > 1 u32 index; for (index = 0; index < TunerCount; index++) { if (TunerList[index] == pAS_Info) { TunerList[index] = TunerList[--TunerCount]; } } #endif } /* ** Reset all exclusion zones. ** Add zones to protect the PLL FracN regions near zero ** ** N/A I 06-17-2008 RSK Ver 1.19: Refactoring avoidance of DECT ** frequencies into MT_ResetExclZones(). */ static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info) { u32 center; #if MT2063_TUNER_CNT > 1 u32 index; struct MT2063_AvoidSpursData_t *adj; #endif pAS_Info->nZones = 0; /* this clears the used list */ pAS_Info->usedZones = NULL; /* reset ptr */ pAS_Info->freeZones = NULL; /* reset ptr */ center = pAS_Info->f_ref * ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 + pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in; while (center < pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + pAS_Info->f_LO1_FracN_Avoid) { /* Exclude LO1 FracN */ MT2063_AddExclZone(pAS_Info, center - pAS_Info->f_LO1_FracN_Avoid, center - 1); MT2063_AddExclZone(pAS_Info, center + 1, center + pAS_Info->f_LO1_FracN_Avoid); center += pAS_Info->f_ref; } center = pAS_Info->f_ref * ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 - pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out; while (center < pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + pAS_Info->f_LO2_FracN_Avoid) { /* Exclude LO2 FracN */ MT2063_AddExclZone(pAS_Info, center - pAS_Info->f_LO2_FracN_Avoid, center - 1); MT2063_AddExclZone(pAS_Info, center + 1, center + pAS_Info->f_LO2_FracN_Avoid); center += pAS_Info->f_ref; } if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { /* Exclude LO1 values that conflict with DECT channels */ MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */ MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */ MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */ MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */ MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */ } if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */ MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */ MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */ MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */ MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */ MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */ MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */ MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */ MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */ MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */ } #if MT2063_TUNER_CNT > 1 /* ** Iterate through all adjacent tuners and exclude frequencies related to them */ for (index = 0; index < TunerCount; ++index) { adj = TunerList[index]; if (pAS_Info == adj) /* skip over our own data, don't process it */ continue; /* ** Add 1st IF exclusion zone covering adjacent tuner's LO2 ** at "adjfLO2 + f_out" +/- m_MinLOSpacing */ if (adj->f_LO2 != 0) MT2063_AddExclZone(pAS_Info, (adj->f_LO2 + pAS_Info->f_out) - pAS_Info->f_min_LO_Separation, (adj->f_LO2 + pAS_Info->f_out) + pAS_Info->f_min_LO_Separation); /* ** Add 1st IF exclusion zone covering adjacent tuner's LO1 ** at "adjfLO1 - f_in" +/- m_MinLOSpacing */ if (adj->f_LO1 != 0) MT2063_AddExclZone(pAS_Info, (adj->f_LO1 - pAS_Info->f_in) - pAS_Info->f_min_LO_Separation, (adj->f_LO1 - pAS_Info->f_in) + pAS_Info->f_min_LO_Separation); } #endif } static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t *pAS_Info, struct MT2063_ExclZone_t *pPrevNode) { struct MT2063_ExclZone_t *pNode; /* Check for a node in the free list */ if (pAS_Info->freeZones != NULL) { /* Use one from the free list */ pNode = pAS_Info->freeZones; pAS_Info->freeZones = pNode->next_; } else { /* Grab a node from the array */ pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones]; } if (pPrevNode != NULL) { pNode->next_ = pPrevNode->next_; pPrevNode->next_ = pNode; } else { /* insert at the beginning of the list */ pNode->next_ = pAS_Info->usedZones; pAS_Info->usedZones = pNode; } pAS_Info->nZones++; return pNode; } static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t *pAS_Info, struct MT2063_ExclZone_t *pPrevNode, struct MT2063_ExclZone_t *pNodeToRemove) { struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_; /* Make previous node point to the subsequent node */ if (pPrevNode != NULL) pPrevNode->next_ = pNext; /* Add pNodeToRemove to the beginning of the freeZones */ pNodeToRemove->next_ = pAS_Info->freeZones; pAS_Info->freeZones = pNodeToRemove; /* Decrement node count */ pAS_Info->nZones--; return pNext; } /***************************************************************************** ** ** Name: MT_AddExclZone ** ** Description: Add (and merge) an exclusion zone into the list. ** If the range (f_min, f_max) is totally outside the ** 1st IF BW, ignore the entry. ** If the range (f_min, f_max) is negative, ignore the entry. ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 103 01-31-2005 DAD Ver 1.14: In MT_AddExclZone(), if the range ** (f_min, f_max) < 0, ignore the entry. ** *****************************************************************************/ static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info, u32 f_min, u32 f_max) { struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; struct MT2063_ExclZone_t *pPrev = NULL; struct MT2063_ExclZone_t *pNext = NULL; /* Check to see if this overlaps the 1st IF filter */ if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2))) && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2))) && (f_min < f_max)) { /* ** 1 2 3 4 5 6 ** ** New entry: |---| |--| |--| |-| |---| |--| ** or or or or or ** Existing: |--| |--| |--| |---| |-| |--| */ /* Check for our place in the list */ while ((pNode != NULL) && (pNode->max_ < f_min)) { pPrev = pNode; pNode = pNode->next_; } if ((pNode != NULL) && (pNode->min_ < f_max)) { /* Combine me with pNode */ if (f_min < pNode->min_) pNode->min_ = f_min; if (f_max > pNode->max_) pNode->max_ = f_max; } else { pNode = InsertNode(pAS_Info, pPrev); pNode->min_ = f_min; pNode->max_ = f_max; } /* Look for merging possibilities */ pNext = pNode->next_; while ((pNext != NULL) && (pNext->min_ < pNode->max_)) { if (pNext->max_ > pNode->max_) pNode->max_ = pNext->max_; pNext = RemoveNode(pAS_Info, pNode, pNext); /* Remove pNext, return ptr to pNext->next */ } } } /***************************************************************************** ** ** Name: MT_ChooseFirstIF ** ** Description: Choose the best available 1st IF ** If f_Desired is not excluded, choose that first. ** Otherwise, return the value closest to f_Center that is ** not excluded ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 117 03-29-2007 RSK Ver 1.15: Re-wrote to match search order from ** tuner DLL. ** 147 07-27-2007 RSK Ver 1.17: Corrected calculation (-) to (+) ** Added logic to force f_Center within 1/2 f_Step. ** *****************************************************************************/ static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info) { /* ** Update "f_Desired" to be the nearest "combinational-multiple" of "f_LO1_Step". ** The resulting number, F_LO1 must be a multiple of f_LO1_Step. And F_LO1 is the arithmetic sum ** of f_in + f_Center. Neither f_in, nor f_Center must be a multiple of f_LO1_Step. ** However, the sum must be. */ const u32 f_Desired = pAS_Info->f_LO1_Step * ((pAS_Info->f_if1_Request + pAS_Info->f_in + pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) - pAS_Info->f_in; const u32 f_Step = (pAS_Info->f_LO1_Step > pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info-> f_LO2_Step; u32 f_Center; s32 i; s32 j = 0; u32 bDesiredExcluded = 0; u32 bZeroExcluded = 0; s32 tmpMin, tmpMax; s32 bestDiff; struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES]; if (pAS_Info->nZones == 0) return f_Desired; /* f_Center needs to be an integer multiple of f_Step away from f_Desired */ if (pAS_Info->f_if1_Center > f_Desired) f_Center = f_Desired + f_Step * ((pAS_Info->f_if1_Center - f_Desired + f_Step / 2) / f_Step); else f_Center = f_Desired - f_Step * ((f_Desired - pAS_Info->f_if1_Center + f_Step / 2) / f_Step); //assert; //if (!abs((s32) f_Center - (s32) pAS_Info->f_if1_Center) <= (s32) (f_Step/2)) // return 0; /* Take MT_ExclZones, center around f_Center and change the resolution to f_Step */ while (pNode != NULL) { /* floor function */ tmpMin = floor((s32) (pNode->min_ - f_Center), (s32) f_Step); /* ceil function */ tmpMax = ceil((s32) (pNode->max_ - f_Center), (s32) f_Step); if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired)) bDesiredExcluded = 1; if ((tmpMin < 0) && (tmpMax > 0)) bZeroExcluded = 1; /* See if this zone overlaps the previous */ if ((j > 0) && (tmpMin < zones[j - 1].max_)) zones[j - 1].max_ = tmpMax; else { /* Add new zone */ //assert(j=MT2063_MAX_ZONES) //break; zones[j].min_ = tmpMin; zones[j].max_ = tmpMax; j++; } pNode = pNode->next_; } /* ** If the desired is okay, return with it */ if (bDesiredExcluded == 0) return f_Desired; /* ** If the desired is excluded and the center is okay, return with it */ if (bZeroExcluded == 0) return f_Center; /* Find the value closest to 0 (f_Center) */ bestDiff = zones[0].min_; for (i = 0; i < j; i++) { if (abs(zones[i].min_) < abs(bestDiff)) bestDiff = zones[i].min_; if (abs(zones[i].max_) < abs(bestDiff)) bestDiff = zones[i].max_; } if (bestDiff < 0) return f_Center - ((u32) (-bestDiff) * f_Step); return f_Center + (bestDiff * f_Step); } /**************************************************************************** ** ** Name: gcd ** ** Description: Uses Euclid's algorithm ** ** Parameters: u, v - unsigned values whose GCD is desired. ** ** Global: None ** ** Returns: greatest common divisor of u and v, if either value ** is 0, the other value is returned as the result. ** ** Dependencies: None. ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** N/A 06-01-2004 JWS Original ** N/A 08-03-2004 DAD Changed to Euclid's since it can handle ** unsigned numbers. ** ****************************************************************************/ static u32 MT2063_gcd(u32 u, u32 v) { u32 r; while (v != 0) { r = u % v; u = v; v = r; } return u; } /**************************************************************************** ** ** Name: umax ** ** Description: Implements a simple maximum function for unsigned numbers. ** Implemented as a function rather than a macro to avoid ** multiple evaluation of the calling parameters. ** ** Parameters: a, b - Values to be compared ** ** Global: None ** ** Returns: larger of the input values. ** ** Dependencies: None. ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** N/A 06-02-2004 JWS Original ** ****************************************************************************/ static u32 MT2063_umax(u32 a, u32 b) { return (a >= b) ? a : b; } #if MT2063_TUNER_CNT > 1 static s32 RoundAwayFromZero(s32 n, s32 d) { return (n < 0) ? floor(n, d) : ceil(n, d); } /**************************************************************************** ** ** Name: IsSpurInAdjTunerBand ** ** Description: Checks to see if a spur will be present within the IF's ** bandwidth or near the zero IF. ** (fIFOut +/- fIFBW/2, -fIFOut +/- fIFBW/2) ** and ** (0 +/- fZIFBW/2) ** ** ma mb me mf mc md ** <--+-+-+-----------------+-+-+-----------------+-+-+--> ** | ^ 0 ^ | ** ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^ ** a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2 ** ** Note that some equations are doubled to prevent round-off ** problems when calculating fIFBW/2 ** ** The spur frequencies are computed as: ** ** fSpur = n * f1 - m * f2 - fOffset ** ** Parameters: f1 - The 1st local oscillator (LO) frequency ** of the tuner whose output we are examining ** f2 - The 1st local oscillator (LO) frequency ** of the adjacent tuner ** fOffset - The 2nd local oscillator of the tuner whose ** output we are examining ** fIFOut - Output IF center frequency ** fIFBW - Output IF Bandwidth ** nMaxH - max # of LO harmonics to search ** fp - If spur, positive distance to spur-free band edge (returned) ** fm - If spur, negative distance to spur-free band edge (returned) ** ** Returns: 1 if an LO spur would be present, otherwise 0. ** ** Dependencies: None. ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** N/A 01-21-2005 JWS Original, adapted from MT_DoubleConversion. ** 115 03-23-2007 DAD Fix declaration of spur due to truncation ** errors. ** 137 06-18-2007 DAD Ver 1.16: Fix possible divide-by-0 error for ** multi-tuners that have ** (delta IF1) > (f_out-f_outbw/2). ** 177 S 02-26-2008 RSK Ver 1.18: Corrected calculation using LO1 > MAX/2 ** Type casts added to preserve correct sign. ** ****************************************************************************/ static u32 IsSpurInAdjTunerBand(u32 bIsMyOutput, u32 f1, u32 f2, u32 fOffset, u32 fIFOut, u32 fIFBW, u32 fZIFBW, u32 nMaxH, u32 * fp, u32 * fm) { u32 bSpurFound = 0; const u32 fHalf_IFBW = fIFBW / 2; const u32 fHalf_ZIFBW = fZIFBW / 2; /* Calculate a scale factor for all frequencies, so that our calculations all stay within 31 bits */ const u32 f_Scale = ((f1 + (fOffset + fIFOut + fHalf_IFBW) / nMaxH) / (MAX_UDATA / 2 / nMaxH)) + 1; /* ** After this scaling, _f1, _f2, and _f3 are guaranteed to fit into ** signed data types (smaller than MAX_UDATA/2) */ const s32 _f1 = (s32) (f1 / f_Scale); const s32 _f2 = (s32) (f2 / f_Scale); const s32 _f3 = (s32) (fOffset / f_Scale); const s32 c = (s32) (fIFOut - fHalf_IFBW) / (s32) f_Scale; const s32 d = (s32) ((fIFOut + fHalf_IFBW) / f_Scale); const s32 f = (s32) (fHalf_ZIFBW / f_Scale); s32 ma, mb, mc, md, me, mf; s32 fp_ = 0; s32 fm_ = 0; s32 n; /* ** If the other tuner does not have an LO frequency defined, ** assume that we cannot interfere with it */ if (f2 == 0) return 0; /* Check out all multiples of f1 from -nMaxH to +nMaxH */ for (n = -(s32) nMaxH; n <= (s32) nMaxH; ++n) { const s32 nf1 = n * _f1; md = (_f3 + d - nf1) / _f2; /* If # f2 harmonics > nMaxH, then no spurs present */ if (md <= -(s32) nMaxH) break; ma = (_f3 - d - nf1) / _f2; if ((ma == md) || (ma >= (s32) (nMaxH))) continue; mc = (_f3 + c - nf1) / _f2; if (mc != md) { const s32 m = (n < 0) ? md : mc; const s32 fspur = (nf1 + m * _f2 - _f3); const s32 den = (bIsMyOutput ? n - 1 : n); if (den == 0) { fp_ = (d - fspur) * f_Scale; fm_ = (fspur - c) * f_Scale; } else { fp_ = (s32) RoundAwayFromZero((d - fspur) * f_Scale, den); fm_ = (s32) RoundAwayFromZero((fspur - c) * f_Scale, den); } if (((u32) abs(fm_) >= f_Scale) && ((u32) abs(fp_) >= f_Scale)) { bSpurFound = 1; break; } } /* Location of Zero-IF-spur to be checked */ mf = (_f3 + f - nf1) / _f2; me = (_f3 - f - nf1) / _f2; if (me != mf) { const s32 m = (n < 0) ? mf : me; const s32 fspur = (nf1 + m * _f2 - _f3); const s32 den = (bIsMyOutput ? n - 1 : n); if (den == 0) { fp_ = (d - fspur) * f_Scale; fm_ = (fspur - c) * f_Scale; } else { fp_ = (s32) RoundAwayFromZero((f - fspur) * f_Scale, den); fm_ = (s32) RoundAwayFromZero((fspur + f) * f_Scale, den); } if (((u32) abs(fm_) >= f_Scale) && ((u32) abs(fp_) >= f_Scale)) { bSpurFound = 1; break; } } mb = (_f3 - c - nf1) / _f2; if (ma != mb) { const s32 m = (n < 0) ? mb : ma; const s32 fspur = (nf1 + m * _f2 - _f3); const s32 den = (bIsMyOutput ? n - 1 : n); if (den == 0) { fp_ = (d - fspur) * f_Scale; fm_ = (fspur - c) * f_Scale; } else { fp_ = (s32) RoundAwayFromZero((-c - fspur) * f_Scale, den); fm_ = (s32) RoundAwayFromZero((fspur + d) * f_Scale, den); } if (((u32) abs(fm_) >= f_Scale) && ((u32) abs(fp_) >= f_Scale)) { bSpurFound = 1; break; } } } /* ** Verify that fm & fp are both positive ** Add one to ensure next 1st IF choice is not right on the edge */ if (fp_ < 0) { *fp = -fm_ + 1; *fm = -fp_ + 1; } else if (fp_ > 0) { *fp = fp_ + 1; *fm = fm_ + 1; } else { *fp = 1; *fm = abs(fm_) + 1; } return bSpurFound; } #endif /**************************************************************************** ** ** Name: IsSpurInBand ** ** Description: Checks to see if a spur will be present within the IF's ** bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW) ** ** ma mb mc md ** <--+-+-+-------------------+-------------------+-+-+--> ** | ^ 0 ^ | ** ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^ ** a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2 ** ** Note that some equations are doubled to prevent round-off ** problems when calculating fIFBW/2 ** ** Parameters: pAS_Info - Avoid Spurs information block ** fm - If spur, amount f_IF1 has to move negative ** fp - If spur, amount f_IF1 has to move positive ** ** Global: None ** ** Returns: 1 if an LO spur would be present, otherwise 0. ** ** Dependencies: None. ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** N/A 11-28-2002 DAD Implemented algorithm from applied patent ** ****************************************************************************/ static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info, u32 * fm, u32 * fp) { /* ** Calculate LO frequency settings. */ u32 n, n0; const u32 f_LO1 = pAS_Info->f_LO1; const u32 f_LO2 = pAS_Info->f_LO2; const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2; const u32 c = d - pAS_Info->f_out_bw; const u32 f = pAS_Info->f_zif_bw / 2; const u32 f_Scale = (f_LO1 / (MAX_UDATA / 2 / pAS_Info->maxH1)) + 1; s32 f_nsLO1, f_nsLO2; s32 f_Spur; u32 ma, mb, mc, md, me, mf; u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs; #if MT2063_TUNER_CNT > 1 u32 index; struct MT2063_AvoidSpursData_t *adj; #endif *fm = 0; /* ** For each edge (d, c & f), calculate a scale, based on the gcd ** of f_LO1, f_LO2 and the edge value. Use the larger of this ** gcd-based scale factor or f_Scale. */ lo_gcd = MT2063_gcd(f_LO1, f_LO2); gd_Scale = MT2063_umax((u32) MT2063_gcd(lo_gcd, d), f_Scale); hgds = gd_Scale / 2; gc_Scale = MT2063_umax((u32) MT2063_gcd(lo_gcd, c), f_Scale); hgcs = gc_Scale / 2; gf_Scale = MT2063_umax((u32) MT2063_gcd(lo_gcd, f), f_Scale); hgfs = gf_Scale / 2; n0 = uceil(f_LO2 - d, f_LO1 - f_LO2); /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */ for (n = n0; n <= pAS_Info->maxH1; ++n) { md = (n * ((f_LO1 + hgds) / gd_Scale) - ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */ if (md >= pAS_Info->maxH1) break; ma = (n * ((f_LO1 + hgds) / gd_Scale) + ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */ if (md == ma) continue; mc = (n * ((f_LO1 + hgcs) / gc_Scale) - ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); if (mc != md) { f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale)); f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale)); f_Spur = (gc_Scale * (f_nsLO1 - f_nsLO2)) + n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale); *fp = ((f_Spur - (s32) c) / (mc - n)) + 1; *fm = (((s32) d - f_Spur) / (mc - n)) + 1; return 1; } /* Location of Zero-IF-spur to be checked */ me = (n * ((f_LO1 + hgfs) / gf_Scale) + ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); mf = (n * ((f_LO1 + hgfs) / gf_Scale) - ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); if (me != mf) { f_nsLO1 = n * (f_LO1 / gf_Scale); f_nsLO2 = me * (f_LO2 / gf_Scale); f_Spur = (gf_Scale * (f_nsLO1 - f_nsLO2)) + n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale); *fp = ((f_Spur + (s32) f) / (me - n)) + 1; *fm = (((s32) f - f_Spur) / (me - n)) + 1; return 1; } mb = (n * ((f_LO1 + hgcs) / gc_Scale) + ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); if (ma != mb) { f_nsLO1 = n * (f_LO1 / gc_Scale); f_nsLO2 = ma * (f_LO2 / gc_Scale); f_Spur = (gc_Scale * (f_nsLO1 - f_nsLO2)) + n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale); *fp = (((s32) d + f_Spur) / (ma - n)) + 1; *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1; return 1; } } #if MT2063_TUNER_CNT > 1 /* If no spur found, see if there are more tuners on the same board */ for (index = 0; index < TunerCount; ++index) { adj = TunerList[index]; if (pAS_Info == adj) /* skip over our own data, don't process it */ continue; /* Look for LO-related spurs from the adjacent tuner generated into my IF output */ if (IsSpurInAdjTunerBand(1, /* check my IF output */ pAS_Info->f_LO1, /* my fLO1 */ adj->f_LO1, /* the other tuner's fLO1 */ pAS_Info->f_LO2, /* my fLO2 */ pAS_Info->f_out, /* my fOut */ pAS_Info->f_out_bw, /* my output IF bandwidth */ pAS_Info->f_zif_bw, /* my Zero-IF bandwidth */ pAS_Info->maxH2, fp, /* minimum amount to move LO's positive */ fm)) /* miminum amount to move LO's negative */ return 1; /* Look for LO-related spurs from my tuner generated into the adjacent tuner's IF output */ if (IsSpurInAdjTunerBand(0, /* check his IF output */ pAS_Info->f_LO1, /* my fLO1 */ adj->f_LO1, /* the other tuner's fLO1 */ adj->f_LO2, /* the other tuner's fLO2 */ adj->f_out, /* the other tuner's fOut */ adj->f_out_bw, /* the other tuner's output IF bandwidth */ pAS_Info->f_zif_bw, /* the other tuner's Zero-IF bandwidth */ adj->maxH2, fp, /* minimum amount to move LO's positive */ fm)) /* miminum amount to move LO's negative */ return 1; } #endif /* No spurs found */ return 0; } /***************************************************************************** ** ** Name: MT_AvoidSpurs ** ** Description: Main entry point to avoid spurs. ** Checks for existing spurs in present LO1, LO2 freqs ** and if present, chooses spur-free LO1, LO2 combination ** that tunes the same input/output frequencies. ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 096 04-06-2005 DAD Ver 1.11: Fix divide by 0 error if maxH==0. ** *****************************************************************************/ static u32 MT2063_AvoidSpurs(void *h, struct MT2063_AvoidSpursData_t * pAS_Info) { u32 status = MT2063_OK; u32 fm, fp; /* restricted range on LO's */ pAS_Info->bSpurAvoided = 0; pAS_Info->nSpursFound = 0; if (pAS_Info->maxH1 == 0) return MT2063_OK; /* ** Avoid LO Generated Spurs ** ** Make sure that have no LO-related spurs within the IF output ** bandwidth. ** ** If there is an LO spur in this band, start at the current IF1 frequency ** and work out until we find a spur-free frequency or run up against the ** 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they ** will be unchanged if a spur-free setting is not found. */ pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); if (pAS_Info->bSpurPresent) { u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */ u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */ u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */ u32 delta_IF1; u32 new_IF1; /* ** Spur was found, attempt to find a spur-free 1st IF */ do { pAS_Info->nSpursFound++; /* Raise f_IF1_upper, if needed */ MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp); /* Choose next IF1 that is closest to f_IF1_CENTER */ new_IF1 = MT2063_ChooseFirstIF(pAS_Info); if (new_IF1 > zfIF1) { pAS_Info->f_LO1 += (new_IF1 - zfIF1); pAS_Info->f_LO2 += (new_IF1 - zfIF1); } else { pAS_Info->f_LO1 -= (zfIF1 - new_IF1); pAS_Info->f_LO2 -= (zfIF1 - new_IF1); } zfIF1 = new_IF1; if (zfIF1 > pAS_Info->f_if1_Center) delta_IF1 = zfIF1 - pAS_Info->f_if1_Center; else delta_IF1 = pAS_Info->f_if1_Center - zfIF1; } /* ** Continue while the new 1st IF is still within the 1st IF bandwidth ** and there is a spur in the band (again) */ while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && (pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp))); /* ** Use the LO-spur free values found. If the search went all the way to ** the 1st IF band edge and always found spurs, just leave the original ** choice. It's as "good" as any other. */ if (pAS_Info->bSpurPresent == 1) { status |= MT2063_SPUR_PRESENT_ERR; pAS_Info->f_LO1 = zfLO1; pAS_Info->f_LO2 = zfLO2; } else pAS_Info->bSpurAvoided = 1; } status |= ((pAS_Info-> nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK); return (status); } //end of mt2063_spuravoid.c //================================================================= //################################################################# //================================================================= /* ** The expected version of MT_AvoidSpursData_t ** If the version is different, an updated file is needed from Microtune */ /* Expecting version 1.21 of the Spur Avoidance API */ typedef enum { MT2063_SET_ATTEN, MT2063_INCR_ATTEN, MT2063_DECR_ATTEN } MT2063_ATTEN_CNTL_MODE; //#define TUNER_MT2063_OPTIMIZATION /* ** Constants used by the tuning algorithm */ #define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */ #define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */ #define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */ #define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */ #define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */ #define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */ #define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */ #define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */ #define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */ #define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */ #define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */ #define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */ #define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */ #define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */ #define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */ #define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */ #define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */ #define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */ /* ** Define the supported Part/Rev codes for the MT2063 */ #define MT2063_B0 (0x9B) #define MT2063_B1 (0x9C) #define MT2063_B2 (0x9D) #define MT2063_B3 (0x9E) /* ** The number of Tuner Registers */ static const u32 MT2063_Num_Registers = MT2063_REG_END_REGS; #define USE_GLOBAL_TUNER 0 static u32 nMT2063MaxTuners = 1; static u32 nMT2063OpenTuners = 0; /* ** Constants for setting receiver modes. ** (6 modes defined at this time, enumerated by MT2063_RCVR_MODES) ** (DNC1GC & DNC2GC are the values, which are used, when the specific ** DNC Output is selected, the other is always off) ** ** If PAL-L or L' is received, set: ** MT2063_SetParam(hMT2063,MT2063_TAGC,1); ** ** --------------+---------------------------------------------- ** Mode 0 : | MT2063_CABLE_QAM ** Mode 1 : | MT2063_CABLE_ANALOG ** Mode 2 : | MT2063_OFFAIR_COFDM ** Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS ** Mode 4 : | MT2063_OFFAIR_ANALOG ** Mode 5 : | MT2063_OFFAIR_8VSB ** --------------+----+----+----+----+-----+-----+-------------- ** Mode | 0 | 1 | 2 | 3 | 4 | 5 | ** --------------+----+----+----+----+-----+-----+ ** ** */ static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 }; static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 }; static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 }; static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 }; static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 }; static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 }; static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 }; static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 }; static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 }; static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 }; static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 }; static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 }; /* ** Local Function Prototypes - not available for external access. */ /* Forward declaration(s): */ static u32 MT2063_CalcLO1Mult(u32 * Div, u32 * FracN, u32 f_LO, u32 f_LO_Step, u32 f_Ref); static u32 MT2063_CalcLO2Mult(u32 * Div, u32 * FracN, u32 f_LO, u32 f_LO_Step, u32 f_Ref); static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom); /****************************************************************************** ** ** Name: MT2063_Open ** ** Description: Initialize the tuner's register values. ** ** Parameters: MT2063_Addr - Serial bus address of the tuner. ** hMT2063 - Tuner handle passed back. ** hUserData - User-defined data, if needed for the ** MT_ReadSub() & MT_WriteSub functions. ** ** Returns: status: ** MT_OK - No errors ** MT_TUNER_ID_ERR - Tuner Part/Rev code mismatch ** MT_TUNER_INIT_ERR - Tuner initialization failed ** MT_COMM_ERR - Serial bus communications error ** MT_ARG_NULL - Null pointer argument passed ** MT_TUNER_CNT_ERR - Too many tuners open ** ** Dependencies: MT_ReadSub - Read byte(s) of data from the two-wire bus ** MT_WriteSub - Write byte(s) of data to the two-wire bus ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** ******************************************************************************/ static u32 MT2063_Open(u32 MT2063_Addr, struct MT2063_Info_t **hMT2063, void *hUserData) { u32 status = MT2063_OK; /* Status to be returned. */ struct MT2063_Info_t *pInfo = NULL; struct dvb_frontend *fe = (struct dvb_frontend *)hUserData; struct mt2063_state *state = fe->tuner_priv; /* Check the argument before using */ if (hMT2063 == NULL) { return MT2063_ARG_NULL; } /* Default tuner handle to NULL. If successful, it will be reassigned */ if (state->MT2063_init == false) { pInfo = kzalloc(sizeof(struct MT2063_Info_t), GFP_KERNEL); if (pInfo == NULL) { return MT2063_TUNER_OPEN_ERR; } pInfo->handle = NULL; pInfo->address = MAX_UDATA; pInfo->rcvr_mode = MT2063_CABLE_QAM; pInfo->hUserData = NULL; } else { pInfo = *hMT2063; } if (MT2063_NO_ERROR(status)) { status |= MT2063_RegisterTuner(&pInfo->AS_Data); } if (MT2063_NO_ERROR(status)) { pInfo->handle = (void *) pInfo; pInfo->hUserData = hUserData; pInfo->address = MT2063_Addr; pInfo->rcvr_mode = MT2063_CABLE_QAM; status |= MT2063_ReInit((void *) pInfo); } if (MT2063_IS_ERROR(status)) /* MT2063_Close handles the un-registration of the tuner */ MT2063_Close((void *) pInfo); else { state->MT2063_init = true; *hMT2063 = pInfo->handle; } return (status); } static u32 MT2063_IsValidHandle(struct MT2063_Info_t *handle) { return ((handle != NULL) && (handle->handle == handle)) ? 1 : 0; } /****************************************************************************** ** ** Name: MT2063_Close ** ** Description: Release the handle to the tuner. ** ** Parameters: hMT2063 - Handle to the MT2063 tuner ** ** Returns: status: ** MT_OK - No errors ** MT_INV_HANDLE - Invalid tuner handle ** ** Dependencies: mt_errordef.h - definition of error codes ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** ******************************************************************************/ static u32 MT2063_Close(void *hMT2063) { struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)hMT2063; if (!MT2063_IsValidHandle(pInfo)) return MT2063_INV_HANDLE; /* Unregister tuner with SpurAvoidance routines (if needed) */ MT2063_UnRegisterTuner(&pInfo->AS_Data); /* Now remove the tuner from our own list of tuners */ pInfo->handle = NULL; pInfo->address = MAX_UDATA; pInfo->hUserData = NULL; //kfree(pInfo); //pInfo = NULL; return MT2063_OK; } /**************************************************************************** ** ** Name: MT2063_GetLocked ** ** Description: Checks to see if LO1 and LO2 are locked. ** ** Parameters: h - Open handle to the tuner (from MT2063_Open). ** ** Returns: status: ** MT_OK - No errors ** MT_UPC_UNLOCK - Upconverter PLL unlocked ** MT_DNC_UNLOCK - Downconverter PLL unlocked ** MT_COMM_ERR - Serial bus communications error ** MT_INV_HANDLE - Invalid tuner handle ** ** Dependencies: MT_ReadSub - Read byte(s) of data from the serial bus ** MT_Sleep - Delay execution for x milliseconds ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** ****************************************************************************/ static u32 MT2063_GetLocked(void *h) { const u32 nMaxWait = 100; /* wait a maximum of 100 msec */ const u32 nPollRate = 2; /* poll status bits every 2 ms */ const u32 nMaxLoops = nMaxWait / nPollRate; const u8 LO1LK = 0x80; u8 LO2LK = 0x08; u32 status = MT2063_OK; /* Status to be returned */ u32 nDelays = 0; struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h; if (MT2063_IsValidHandle(pInfo) == 0) return MT2063_INV_HANDLE; /* LO2 Lock bit was in a different place for B0 version */ if (pInfo->tuner_id == MT2063_B0) LO2LK = 0x40; do { status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO_STATUS, &pInfo->reg[MT2063_REG_LO_STATUS], 1); if (MT2063_IS_ERROR(status)) return (status); if ((pInfo->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) == (LO1LK | LO2LK)) { return (status); } msleep(nPollRate); /* Wait between retries */ } while (++nDelays < nMaxLoops); if ((pInfo->reg[MT2063_REG_LO_STATUS] & LO1LK) == 0x00) status |= MT2063_UPC_UNLOCK; if ((pInfo->reg[MT2063_REG_LO_STATUS] & LO2LK) == 0x00) status |= MT2063_DNC_UNLOCK; return (status); } /**************************************************************************** ** ** Name: MT2063_GetParam ** ** Description: Gets a tuning algorithm parameter. ** ** This function provides access to the internals of the ** tuning algorithm - mostly for testing purposes. ** ** Parameters: h - Tuner handle (returned by MT2063_Open) ** param - Tuning algorithm parameter ** (see enum MT2063_Param) ** pValue - ptr to returned value ** ** param Description ** ---------------------- -------------------------------- ** MT2063_IC_ADDR Serial Bus address of this tuner ** MT2063_MAX_OPEN Max # of MT2063's allowed open ** MT2063_NUM_OPEN # of MT2063's open ** MT2063_SRO_FREQ crystal frequency ** MT2063_STEPSIZE minimum tuning step size ** MT2063_INPUT_FREQ input center frequency ** MT2063_LO1_FREQ LO1 Frequency ** MT2063_LO1_STEPSIZE LO1 minimum step size ** MT2063_LO1_FRACN_AVOID LO1 FracN keep-out region ** MT2063_IF1_ACTUAL Current 1st IF in use ** MT2063_IF1_REQUEST Requested 1st IF ** MT2063_IF1_CENTER Center of 1st IF SAW filter ** MT2063_IF1_BW Bandwidth of 1st IF SAW filter ** MT2063_ZIF_BW zero-IF bandwidth ** MT2063_LO2_FREQ LO2 Frequency ** MT2063_LO2_STEPSIZE LO2 minimum step size ** MT2063_LO2_FRACN_AVOID LO2 FracN keep-out region ** MT2063_OUTPUT_FREQ output center frequency ** MT2063_OUTPUT_BW output bandwidth ** MT2063_LO_SEPARATION min inter-tuner LO separation ** MT2063_AS_ALG ID of avoid-spurs algorithm in use ** MT2063_MAX_HARM1 max # of intra-tuner harmonics ** MT2063_MAX_HARM2 max # of inter-tuner harmonics ** MT2063_EXCL_ZONES # of 1st IF exclusion zones ** MT2063_NUM_SPURS # of spurs found/avoided ** MT2063_SPUR_AVOIDED >0 spurs avoided ** MT2063_SPUR_PRESENT >0 spurs in output (mathematically) ** MT2063_RCVR_MODE Predefined modes. ** MT2063_ACLNA LNA attenuator gain code ** MT2063_ACRF RF attenuator gain code ** MT2063_ACFIF FIF attenuator gain code ** MT2063_ACLNA_MAX LNA attenuator limit ** MT2063_ACRF_MAX RF attenuator limit ** MT2063_ACFIF_MAX FIF attenuator limit ** MT2063_PD1 Actual value of PD1 ** MT2063_PD2 Actual value of PD2 ** MT2063_DNC_OUTPUT_ENABLE DNC output selection ** MT2063_VGAGC VGA gain code ** MT2063_VGAOI VGA output current ** MT2063_TAGC TAGC setting ** MT2063_AMPGC AMP gain code ** MT2063_AVOID_DECT Avoid DECT Frequencies ** MT2063_CTFILT_SW Cleartune filter selection ** ** Usage: status |= MT2063_GetParam(hMT2063, ** MT2063_IF1_ACTUAL, ** &f_IF1_Actual); ** ** Returns: status: ** MT_OK - No errors ** MT_INV_HANDLE - Invalid tuner handle ** MT_ARG_NULL - Null pointer argument passed ** MT_ARG_RANGE - Invalid parameter requested ** ** Dependencies: USERS MUST CALL MT2063_Open() FIRST! ** ** See Also: MT2063_SetParam, MT2063_Open ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** 154 09-13-2007 RSK Ver 1.05: Get/SetParam changes for LOx_FREQ ** 10-31-2007 PINZ Ver 1.08: Get/SetParam add VGAGC, VGAOI, AMPGC, TAGC ** 173 M 01-23-2008 RSK Ver 1.12: Read LO1C and LO2C registers from HW ** in GetParam. ** 04-18-2008 PINZ Ver 1.15: Add SetParam LNARIN & PDxTGT ** Split SetParam up to ACLNA / ACLNA_MAX ** removed ACLNA_INRC/DECR (+RF & FIF) ** removed GCUAUTO / BYPATNDN/UP ** 175 I 16-06-2008 PINZ Ver 1.16: Add control to avoid US DECT freqs. ** 175 I 06-19-2008 RSK Ver 1.17: Refactor DECT control to SpurAvoid. ** 06-24-2008 PINZ Ver 1.18: Add Get/SetParam CTFILT_SW ** ****************************************************************************/ static u32 MT2063_GetParam(void *h, enum MT2063_Param param, u32 * pValue) { u32 status = MT2063_OK; /* Status to be returned */ struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h; u32 Div; u32 Num; if (pValue == NULL) status |= MT2063_ARG_NULL; /* Verify that the handle passed points to a valid tuner */ if (MT2063_IsValidHandle(pInfo) == 0) status |= MT2063_INV_HANDLE; if (MT2063_NO_ERROR(status)) { switch (param) { /* Serial Bus address of this tuner */ case MT2063_IC_ADDR: *pValue = pInfo->address; break; /* Max # of MT2063's allowed to be open */ case MT2063_MAX_OPEN: *pValue = nMT2063MaxTuners; break; /* # of MT2063's open */ case MT2063_NUM_OPEN: *pValue = nMT2063OpenTuners; break; /* crystal frequency */ case MT2063_SRO_FREQ: *pValue = pInfo->AS_Data.f_ref; break; /* minimum tuning step size */ case MT2063_STEPSIZE: *pValue = pInfo->AS_Data.f_LO2_Step; break; /* input center frequency */ case MT2063_INPUT_FREQ: *pValue = pInfo->AS_Data.f_in; break; /* LO1 Frequency */ case MT2063_LO1_FREQ: { /* read the actual tuner register values for LO1C_1 and LO1C_2 */ status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO1C_1, &pInfo-> reg[MT2063_REG_LO1C_1], 2); Div = pInfo->reg[MT2063_REG_LO1C_1]; Num = pInfo->reg[MT2063_REG_LO1C_2] & 0x3F; pInfo->AS_Data.f_LO1 = (pInfo->AS_Data.f_ref * Div) + MT2063_fLO_FractionalTerm(pInfo->AS_Data. f_ref, Num, 64); } *pValue = pInfo->AS_Data.f_LO1; break; /* LO1 minimum step size */ case MT2063_LO1_STEPSIZE: *pValue = pInfo->AS_Data.f_LO1_Step; break; /* LO1 FracN keep-out region */ case MT2063_LO1_FRACN_AVOID_PARAM: *pValue = pInfo->AS_Data.f_LO1_FracN_Avoid; break; /* Current 1st IF in use */ case MT2063_IF1_ACTUAL: *pValue = pInfo->f_IF1_actual; break; /* Requested 1st IF */ case MT2063_IF1_REQUEST: *pValue = pInfo->AS_Data.f_if1_Request; break; /* Center of 1st IF SAW filter */ case MT2063_IF1_CENTER: *pValue = pInfo->AS_Data.f_if1_Center; break; /* Bandwidth of 1st IF SAW filter */ case MT2063_IF1_BW: *pValue = pInfo->AS_Data.f_if1_bw; break; /* zero-IF bandwidth */ case MT2063_ZIF_BW: *pValue = pInfo->AS_Data.f_zif_bw; break; /* LO2 Frequency */ case MT2063_LO2_FREQ: { /* Read the actual tuner register values for LO2C_1, LO2C_2 and LO2C_3 */ status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO2C_1, &pInfo-> reg[MT2063_REG_LO2C_1], 3); Div = (pInfo->reg[MT2063_REG_LO2C_1] & 0xFE) >> 1; Num = ((pInfo-> reg[MT2063_REG_LO2C_1] & 0x01) << 12) | (pInfo-> reg[MT2063_REG_LO2C_2] << 4) | (pInfo-> reg [MT2063_REG_LO2C_3] & 0x00F); pInfo->AS_Data.f_LO2 = (pInfo->AS_Data.f_ref * Div) + MT2063_fLO_FractionalTerm(pInfo->AS_Data. f_ref, Num, 8191); } *pValue = pInfo->AS_Data.f_LO2; break; /* LO2 minimum step size */ case MT2063_LO2_STEPSIZE: *pValue = pInfo->AS_Data.f_LO2_Step; break; /* LO2 FracN keep-out region */ case MT2063_LO2_FRACN_AVOID: *pValue = pInfo->AS_Data.f_LO2_FracN_Avoid; break; /* output center frequency */ case MT2063_OUTPUT_FREQ: *pValue = pInfo->AS_Data.f_out; break; /* output bandwidth */ case MT2063_OUTPUT_BW: *pValue = pInfo->AS_Data.f_out_bw - 750000; break; /* min inter-tuner LO separation */ case MT2063_LO_SEPARATION: *pValue = pInfo->AS_Data.f_min_LO_Separation; break; /* ID of avoid-spurs algorithm in use */ case MT2063_AS_ALG: *pValue = pInfo->AS_Data.nAS_Algorithm; break; /* max # of intra-tuner harmonics */ case MT2063_MAX_HARM1: *pValue = pInfo->AS_Data.maxH1; break; /* max # of inter-tuner harmonics */ case MT2063_MAX_HARM2: *pValue = pInfo->AS_Data.maxH2; break; /* # of 1st IF exclusion zones */ case MT2063_EXCL_ZONES: *pValue = pInfo->AS_Data.nZones; break; /* # of spurs found/avoided */ case MT2063_NUM_SPURS: *pValue = pInfo->AS_Data.nSpursFound; break; /* >0 spurs avoided */ case MT2063_SPUR_AVOIDED: *pValue = pInfo->AS_Data.bSpurAvoided; break; /* >0 spurs in output (mathematically) */ case MT2063_SPUR_PRESENT: *pValue = pInfo->AS_Data.bSpurPresent; break; /* Predefined receiver setup combination */ case MT2063_RCVR_MODE: *pValue = pInfo->rcvr_mode; break; case MT2063_PD1: case MT2063_PD2: { u8 mask = (param == MT2063_PD1 ? 0x01 : 0x03); /* PD1 vs PD2 */ u8 orig = (pInfo->reg[MT2063_REG_BYP_CTRL]); u8 reg = (orig & 0xF1) | mask; /* Only set 3 bits (not 5) */ int i; *pValue = 0; /* Initiate ADC output to reg 0x0A */ if (reg != orig) status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_BYP_CTRL, ®, 1); if (MT2063_IS_ERROR(status)) return (status); for (i = 0; i < 8; i++) { status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_ADC_OUT, &pInfo-> reg [MT2063_REG_ADC_OUT], 1); if (MT2063_NO_ERROR(status)) *pValue += pInfo-> reg[MT2063_REG_ADC_OUT]; else { if (i) *pValue /= i; return (status); } } *pValue /= 8; /* divide by number of reads */ *pValue >>= 2; /* only want 6 MSB's out of 8 */ /* Restore value of Register BYP_CTRL */ if (reg != orig) status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_BYP_CTRL, &orig, 1); } break; /* Get LNA attenuator code */ case MT2063_ACLNA: { u8 val; status |= MT2063_GetReg(pInfo, MT2063_REG_XO_STATUS, &val); *pValue = val & 0x1f; } break; /* Get RF attenuator code */ case MT2063_ACRF: { u8 val; status |= MT2063_GetReg(pInfo, MT2063_REG_RF_STATUS, &val); *pValue = val & 0x1f; } break; /* Get FIF attenuator code */ case MT2063_ACFIF: { u8 val; status |= MT2063_GetReg(pInfo, MT2063_REG_FIF_STATUS, &val); *pValue = val & 0x1f; } break; /* Get LNA attenuator limit */ case MT2063_ACLNA_MAX: { u8 val; status |= MT2063_GetReg(pInfo, MT2063_REG_LNA_OV, &val); *pValue = val & 0x1f; } break; /* Get RF attenuator limit */ case MT2063_ACRF_MAX: { u8 val; status |= MT2063_GetReg(pInfo, MT2063_REG_RF_OV, &val); *pValue = val & 0x1f; } break; /* Get FIF attenuator limit */ case MT2063_ACFIF_MAX: { u8 val; status |= MT2063_GetReg(pInfo, MT2063_REG_FIF_OV, &val); *pValue = val & 0x1f; } break; /* Get current used DNC output */ case MT2063_DNC_OUTPUT_ENABLE: { if ((pInfo->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */ if ((pInfo->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ *pValue = (u32) MT2063_DNC_NONE; else *pValue = (u32) MT2063_DNC_2; } else { /* DNC1 is on */ if ((pInfo->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ *pValue = (u32) MT2063_DNC_1; else *pValue = (u32) MT2063_DNC_BOTH; } } break; /* Get VGA Gain Code */ case MT2063_VGAGC: *pValue = ((pInfo->reg[MT2063_REG_VGA_GAIN] & 0x0C) >> 2); break; /* Get VGA bias current */ case MT2063_VGAOI: *pValue = (pInfo->reg[MT2063_REG_RSVD_31] & 0x07); break; /* Get TAGC setting */ case MT2063_TAGC: *pValue = (pInfo->reg[MT2063_REG_RSVD_1E] & 0x03); break; /* Get AMP Gain Code */ case MT2063_AMPGC: *pValue = (pInfo->reg[MT2063_REG_TEMP_SEL] & 0x03); break; /* Avoid DECT Frequencies */ case MT2063_AVOID_DECT: *pValue = pInfo->AS_Data.avoidDECT; break; /* Cleartune filter selection: 0 - by IC (default), 1 - by software */ case MT2063_CTFILT_SW: *pValue = pInfo->ctfilt_sw; break; case MT2063_EOP: default: status |= MT2063_ARG_RANGE; } } return (status); } /**************************************************************************** ** ** Name: MT2063_GetReg ** ** Description: Gets an MT2063 register. ** ** Parameters: h - Tuner handle (returned by MT2063_Open) ** reg - MT2063 register/subaddress location ** *val - MT2063 register/subaddress value ** ** Returns: status: ** MT_OK - No errors ** MT_COMM_ERR - Serial bus communications error ** MT_INV_HANDLE - Invalid tuner handle ** MT_ARG_NULL - Null pointer argument passed ** MT_ARG_RANGE - Argument out of range ** ** Dependencies: USERS MUST CALL MT2063_Open() FIRST! ** ** Use this function if you need to read a register from ** the MT2063. ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** ****************************************************************************/ static u32 MT2063_GetReg(void *h, u8 reg, u8 * val) { u32 status = MT2063_OK; /* Status to be returned */ struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h; /* Verify that the handle passed points to a valid tuner */ if (MT2063_IsValidHandle(pInfo) == 0) status |= MT2063_INV_HANDLE; if (val == NULL) status |= MT2063_ARG_NULL; if (reg >= MT2063_REG_END_REGS) status |= MT2063_ARG_RANGE; if (MT2063_NO_ERROR(status)) { status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, reg, &pInfo->reg[reg], 1); if (MT2063_NO_ERROR(status)) *val = pInfo->reg[reg]; } return (status); } /****************************************************************************** ** ** Name: MT2063_SetReceiverMode ** ** Description: Set the MT2063 receiver mode ** ** --------------+---------------------------------------------- ** Mode 0 : | MT2063_CABLE_QAM ** Mode 1 : | MT2063_CABLE_ANALOG ** Mode 2 : | MT2063_OFFAIR_COFDM ** Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS ** Mode 4 : | MT2063_OFFAIR_ANALOG ** Mode 5 : | MT2063_OFFAIR_8VSB ** --------------+----+----+----+----+-----+-------------------- ** (DNC1GC & DNC2GC are the values, which are used, when the specific ** DNC Output is selected, the other is always off) ** ** |<---------- Mode -------------->| ** Reg Field | 0 | 1 | 2 | 3 | 4 | 5 | ** ------------+-----+-----+-----+-----+-----+-----+ ** RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF ** LNARin | 0 | 0 | 3 | 3 | 3 | 3 ** FIFFQen | 1 | 1 | 1 | 1 | 1 | 1 ** FIFFq | 0 | 0 | 0 | 0 | 0 | 0 ** DNC1gc | 0 | 0 | 0 | 0 | 0 | 0 ** DNC2gc | 0 | 0 | 0 | 0 | 0 | 0 ** GCU Auto | 1 | 1 | 1 | 1 | 1 | 1 ** LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31 ** LNA Target | 44 | 43 | 43 | 43 | 43 | 43 ** ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0 ** RF max Atn | 31 | 31 | 31 | 31 | 31 | 31 ** PD1 Target | 36 | 36 | 38 | 38 | 36 | 38 ** ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0 ** FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5 ** PD2 Target | 40 | 33 | 42 | 42 | 33 | 42 ** ** ** Parameters: pInfo - ptr to MT2063_Info_t structure ** Mode - desired reciever mode ** ** Usage: status = MT2063_SetReceiverMode(hMT2063, Mode); ** ** Returns: status: ** MT_OK - No errors ** MT_COMM_ERR - Serial bus communications error ** ** Dependencies: MT2063_SetReg - Write a byte of data to a HW register. ** Assumes that the tuner cache is valid. ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** N/A 01-10-2007 PINZ Added additional GCU Settings, FIFF Calib will be triggered ** 155 10-01-2007 DAD Ver 1.06: Add receiver mode for SECAM positive ** modulation ** (MT2063_ANALOG_TV_POS_NO_RFAGC_MODE) ** N/A 10-22-2007 PINZ Ver 1.07: Changed some Registers at init to have ** the same settings as with MT Launcher ** N/A 10-30-2007 PINZ Add SetParam VGAGC & VGAOI ** Add SetParam DNC_OUTPUT_ENABLE ** Removed VGAGC from receiver mode, ** default now 1 ** N/A 10-31-2007 PINZ Ver 1.08: Add SetParam TAGC, removed from rcvr-mode ** Add SetParam AMPGC, removed from rcvr-mode ** Corrected names of GCU values ** reorganized receiver modes, removed, ** (MT2063_ANALOG_TV_POS_NO_RFAGC_MODE) ** Actualized Receiver-Mode values ** N/A 11-12-2007 PINZ Ver 1.09: Actualized Receiver-Mode values ** N/A 11-27-2007 PINZ Improved buffered writing ** 01-03-2008 PINZ Ver 1.10: Added a trigger of BYPATNUP for ** correct wakeup of the LNA after shutdown ** Set AFCsd = 1 as default ** Changed CAP1sel default ** 01-14-2008 PINZ Ver 1.11: Updated gain settings ** 04-18-2008 PINZ Ver 1.15: Add SetParam LNARIN & PDxTGT ** Split SetParam up to ACLNA / ACLNA_MAX ** removed ACLNA_INRC/DECR (+RF & FIF) ** removed GCUAUTO / BYPATNDN/UP ** ******************************************************************************/ static u32 MT2063_SetReceiverMode(struct MT2063_Info_t *pInfo, enum MT2063_RCVR_MODES Mode) { u32 status = MT2063_OK; /* Status to be returned */ u8 val; u32 longval; if (Mode >= MT2063_NUM_RCVR_MODES) status = MT2063_ARG_RANGE; /* RFAGCen */ if (MT2063_NO_ERROR(status)) { val = (pInfo-> reg[MT2063_REG_PD1_TGT] & (u8) ~ 0x40) | (RFAGCEN[Mode] ? 0x40 : 0x00); if (pInfo->reg[MT2063_REG_PD1_TGT] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_PD1_TGT, val); } } /* LNARin */ if (MT2063_NO_ERROR(status)) { status |= MT2063_SetParam(pInfo, MT2063_LNA_RIN, LNARIN[Mode]); } /* FIFFQEN and FIFFQ */ if (MT2063_NO_ERROR(status)) { val = (pInfo-> reg[MT2063_REG_FIFF_CTRL2] & (u8) ~ 0xF0) | (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4); if (pInfo->reg[MT2063_REG_FIFF_CTRL2] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_FIFF_CTRL2, val); /* trigger FIFF calibration, needed after changing FIFFQ */ val = (pInfo->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01); status |= MT2063_SetReg(pInfo, MT2063_REG_FIFF_CTRL, val); val = (pInfo-> reg[MT2063_REG_FIFF_CTRL] & (u8) ~ 0x01); status |= MT2063_SetReg(pInfo, MT2063_REG_FIFF_CTRL, val); } } /* DNC1GC & DNC2GC */ status |= MT2063_GetParam(pInfo, MT2063_DNC_OUTPUT_ENABLE, &longval); status |= MT2063_SetParam(pInfo, MT2063_DNC_OUTPUT_ENABLE, longval); /* acLNAmax */ if (MT2063_NO_ERROR(status)) { status |= MT2063_SetParam(pInfo, MT2063_ACLNA_MAX, ACLNAMAX[Mode]); } /* LNATGT */ if (MT2063_NO_ERROR(status)) { status |= MT2063_SetParam(pInfo, MT2063_LNA_TGT, LNATGT[Mode]); } /* ACRF */ if (MT2063_NO_ERROR(status)) { status |= MT2063_SetParam(pInfo, MT2063_ACRF_MAX, ACRFMAX[Mode]); } /* PD1TGT */ if (MT2063_NO_ERROR(status)) { status |= MT2063_SetParam(pInfo, MT2063_PD1_TGT, PD1TGT[Mode]); } /* FIFATN */ if (MT2063_NO_ERROR(status)) { status |= MT2063_SetParam(pInfo, MT2063_ACFIF_MAX, ACFIFMAX[Mode]); } /* PD2TGT */ if (MT2063_NO_ERROR(status)) { status |= MT2063_SetParam(pInfo, MT2063_PD2_TGT, PD2TGT[Mode]); } /* Ignore ATN Overload */ if (MT2063_NO_ERROR(status)) { val = (pInfo-> reg[MT2063_REG_LNA_TGT] & (u8) ~ 0x80) | (RFOVDIS[Mode] ? 0x80 : 0x00); if (pInfo->reg[MT2063_REG_LNA_TGT] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_LNA_TGT, val); } } /* Ignore FIF Overload */ if (MT2063_NO_ERROR(status)) { val = (pInfo-> reg[MT2063_REG_PD1_TGT] & (u8) ~ 0x80) | (FIFOVDIS[Mode] ? 0x80 : 0x00); if (pInfo->reg[MT2063_REG_PD1_TGT] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_PD1_TGT, val); } } if (MT2063_NO_ERROR(status)) pInfo->rcvr_mode = Mode; return (status); } /****************************************************************************** ** ** Name: MT2063_ReInit ** ** Description: Initialize the tuner's register values. ** ** Parameters: h - Tuner handle (returned by MT2063_Open) ** ** Returns: status: ** MT_OK - No errors ** MT_TUNER_ID_ERR - Tuner Part/Rev code mismatch ** MT_INV_HANDLE - Invalid tuner handle ** MT_COMM_ERR - Serial bus communications error ** ** Dependencies: MT_ReadSub - Read byte(s) of data from the two-wire bus ** MT_WriteSub - Write byte(s) of data to the two-wire bus ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** 148 09-04-2007 RSK Ver 1.02: Corrected logic of Reg 3B Reference ** 153 09-07-2007 RSK Ver 1.03: Lock Time improvements ** N/A 10-31-2007 PINZ Ver 1.08: Changed values suitable to rcvr-mode 0 ** N/A 11-12-2007 PINZ Ver 1.09: Changed values suitable to rcvr-mode 0 ** N/A 01-03-2007 PINZ Ver 1.10: Added AFCsd = 1 into defaults ** N/A 01-04-2007 PINZ Ver 1.10: Changed CAP1sel default ** 01-14-2008 PINZ Ver 1.11: Updated gain settings ** 03-18-2008 PINZ Ver 1.13: Added Support for B3 ** 175 I 06-19-2008 RSK Ver 1.17: Refactor DECT control to SpurAvoid. ** 06-24-2008 PINZ Ver 1.18: Add Get/SetParam CTFILT_SW ** ******************************************************************************/ static u32 MT2063_ReInit(void *h) { u8 all_resets = 0xF0; /* reset/load bits */ u32 status = MT2063_OK; /* Status to be returned */ struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h; u8 *def = NULL; u8 MT2063B0_defaults[] = { /* Reg, Value */ 0x19, 0x05, 0x1B, 0x1D, 0x1C, 0x1F, 0x1D, 0x0F, 0x1E, 0x3F, 0x1F, 0x0F, 0x20, 0x3F, 0x22, 0x21, 0x23, 0x3F, 0x24, 0x20, 0x25, 0x3F, 0x27, 0xEE, 0x2C, 0x27, /* bit at 0x20 is cleared below */ 0x30, 0x03, 0x2C, 0x07, /* bit at 0x20 is cleared here */ 0x2D, 0x87, 0x2E, 0xAA, 0x28, 0xE1, /* Set the FIFCrst bit here */ 0x28, 0xE0, /* Clear the FIFCrst bit here */ 0x00 }; /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ u8 MT2063B1_defaults[] = { /* Reg, Value */ 0x05, 0xF0, 0x11, 0x10, /* New Enable AFCsd */ 0x19, 0x05, 0x1A, 0x6C, 0x1B, 0x24, 0x1C, 0x28, 0x1D, 0x8F, 0x1E, 0x14, 0x1F, 0x8F, 0x20, 0x57, 0x22, 0x21, /* New - ver 1.03 */ 0x23, 0x3C, /* New - ver 1.10 */ 0x24, 0x20, /* New - ver 1.03 */ 0x2C, 0x24, /* bit at 0x20 is cleared below */ 0x2D, 0x87, /* FIFFQ=0 */ 0x2F, 0xF3, 0x30, 0x0C, /* New - ver 1.11 */ 0x31, 0x1B, /* New - ver 1.11 */ 0x2C, 0x04, /* bit at 0x20 is cleared here */ 0x28, 0xE1, /* Set the FIFCrst bit here */ 0x28, 0xE0, /* Clear the FIFCrst bit here */ 0x00 }; /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ u8 MT2063B3_defaults[] = { /* Reg, Value */ 0x05, 0xF0, 0x19, 0x3D, 0x2C, 0x24, /* bit at 0x20 is cleared below */ 0x2C, 0x04, /* bit at 0x20 is cleared here */ 0x28, 0xE1, /* Set the FIFCrst bit here */ 0x28, 0xE0, /* Clear the FIFCrst bit here */ 0x00 }; /* Verify that the handle passed points to a valid tuner */ if (MT2063_IsValidHandle(pInfo) == 0) status |= MT2063_INV_HANDLE; /* Read the Part/Rev code from the tuner */ if (MT2063_NO_ERROR(status)) { status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_PART_REV, pInfo->reg, 1); } if (MT2063_NO_ERROR(status) /* Check the part/rev code */ &&((pInfo->reg[MT2063_REG_PART_REV] != MT2063_B0) /* MT2063 B0 */ &&(pInfo->reg[MT2063_REG_PART_REV] != MT2063_B1) /* MT2063 B1 */ &&(pInfo->reg[MT2063_REG_PART_REV] != MT2063_B3))) /* MT2063 B3 */ status |= MT2063_TUNER_ID_ERR; /* Wrong tuner Part/Rev code */ /* Read the Part/Rev code (2nd byte) from the tuner */ if (MT2063_NO_ERROR(status)) status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_RSVD_3B, &pInfo->reg[MT2063_REG_RSVD_3B], 1); if (MT2063_NO_ERROR(status) /* Check the 2nd part/rev code */ &&((pInfo->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) /* b7 != 0 ==> NOT MT2063 */ status |= MT2063_TUNER_ID_ERR; /* Wrong tuner Part/Rev code */ /* Reset the tuner */ if (MT2063_NO_ERROR(status)) status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO2CQ_3, &all_resets, 1); /* change all of the default values that vary from the HW reset values */ /* def = (pInfo->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */ switch (pInfo->reg[MT2063_REG_PART_REV]) { case MT2063_B3: def = MT2063B3_defaults; break; case MT2063_B1: def = MT2063B1_defaults; break; case MT2063_B0: def = MT2063B0_defaults; break; default: status |= MT2063_TUNER_ID_ERR; break; } while (MT2063_NO_ERROR(status) && *def) { u8 reg = *def++; u8 val = *def++; status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, reg, &val, 1); } /* Wait for FIFF location to complete. */ if (MT2063_NO_ERROR(status)) { u32 FCRUN = 1; s32 maxReads = 10; while (MT2063_NO_ERROR(status) && (FCRUN != 0) && (maxReads-- > 0)) { msleep(2); status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_XO_STATUS, &pInfo-> reg[MT2063_REG_XO_STATUS], 1); FCRUN = (pInfo->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6; } if (FCRUN != 0) status |= MT2063_TUNER_INIT_ERR | MT2063_TUNER_TIMEOUT; if (MT2063_NO_ERROR(status)) /* Re-read FIFFC value */ status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_FIFFC, &pInfo->reg[MT2063_REG_FIFFC], 1); } /* Read back all the registers from the tuner */ if (MT2063_NO_ERROR(status)) status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_PART_REV, pInfo->reg, MT2063_REG_END_REGS); if (MT2063_NO_ERROR(status)) { /* Initialize the tuner state. */ pInfo->tuner_id = pInfo->reg[MT2063_REG_PART_REV]; pInfo->AS_Data.f_ref = MT2063_REF_FREQ; pInfo->AS_Data.f_if1_Center = (pInfo->AS_Data.f_ref / 8) * ((u32) pInfo->reg[MT2063_REG_FIFFC] + 640); pInfo->AS_Data.f_if1_bw = MT2063_IF1_BW; pInfo->AS_Data.f_out = 43750000UL; pInfo->AS_Data.f_out_bw = 6750000UL; pInfo->AS_Data.f_zif_bw = MT2063_ZIF_BW; pInfo->AS_Data.f_LO1_Step = pInfo->AS_Data.f_ref / 64; pInfo->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE; pInfo->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1; pInfo->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2; pInfo->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP; pInfo->AS_Data.f_if1_Request = pInfo->AS_Data.f_if1_Center; pInfo->AS_Data.f_LO1 = 2181000000UL; pInfo->AS_Data.f_LO2 = 1486249786UL; pInfo->f_IF1_actual = pInfo->AS_Data.f_if1_Center; pInfo->AS_Data.f_in = pInfo->AS_Data.f_LO1 - pInfo->f_IF1_actual; pInfo->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID; pInfo->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID; pInfo->num_regs = MT2063_REG_END_REGS; pInfo->AS_Data.avoidDECT = MT2063_AVOID_BOTH; pInfo->ctfilt_sw = 0; } if (MT2063_NO_ERROR(status)) { pInfo->CTFiltMax[0] = 69230000; pInfo->CTFiltMax[1] = 105770000; pInfo->CTFiltMax[2] = 140350000; pInfo->CTFiltMax[3] = 177110000; pInfo->CTFiltMax[4] = 212860000; pInfo->CTFiltMax[5] = 241130000; pInfo->CTFiltMax[6] = 274370000; pInfo->CTFiltMax[7] = 309820000; pInfo->CTFiltMax[8] = 342450000; pInfo->CTFiltMax[9] = 378870000; pInfo->CTFiltMax[10] = 416210000; pInfo->CTFiltMax[11] = 456500000; pInfo->CTFiltMax[12] = 495790000; pInfo->CTFiltMax[13] = 534530000; pInfo->CTFiltMax[14] = 572610000; pInfo->CTFiltMax[15] = 598970000; pInfo->CTFiltMax[16] = 635910000; pInfo->CTFiltMax[17] = 672130000; pInfo->CTFiltMax[18] = 714840000; pInfo->CTFiltMax[19] = 739660000; pInfo->CTFiltMax[20] = 770410000; pInfo->CTFiltMax[21] = 814660000; pInfo->CTFiltMax[22] = 846950000; pInfo->CTFiltMax[23] = 867820000; pInfo->CTFiltMax[24] = 915980000; pInfo->CTFiltMax[25] = 947450000; pInfo->CTFiltMax[26] = 983110000; pInfo->CTFiltMax[27] = 1021630000; pInfo->CTFiltMax[28] = 1061870000; pInfo->CTFiltMax[29] = 1098330000; pInfo->CTFiltMax[30] = 1138990000; } /* ** Fetch the FCU osc value and use it and the fRef value to ** scale all of the Band Max values */ if (MT2063_NO_ERROR(status)) { u32 fcu_osc; u32 i; pInfo->reg[MT2063_REG_CTUNE_CTRL] = 0x0A; status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_CTUNE_CTRL, &pInfo->reg[MT2063_REG_CTUNE_CTRL], 1); /* Read the ClearTune filter calibration value */ status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_FIFFC, &pInfo->reg[MT2063_REG_FIFFC], 1); fcu_osc = pInfo->reg[MT2063_REG_FIFFC]; pInfo->reg[MT2063_REG_CTUNE_CTRL] = 0x00; status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_CTUNE_CTRL, &pInfo->reg[MT2063_REG_CTUNE_CTRL], 1); /* Adjust each of the values in the ClearTune filter cross-over table */ for (i = 0; i < 31; i++) { pInfo->CTFiltMax[i] = (pInfo->CTFiltMax[i] / 768) * (fcu_osc + 640); } } return (status); } /**************************************************************************** ** ** Name: MT2063_SetParam ** ** Description: Sets a tuning algorithm parameter. ** ** This function provides access to the internals of the ** tuning algorithm. You can override many of the tuning ** algorithm defaults using this function. ** ** Parameters: h - Tuner handle (returned by MT2063_Open) ** param - Tuning algorithm parameter ** (see enum MT2063_Param) ** nValue - value to be set ** ** param Description ** ---------------------- -------------------------------- ** MT2063_SRO_FREQ crystal frequency ** MT2063_STEPSIZE minimum tuning step size ** MT2063_LO1_FREQ LO1 frequency ** MT2063_LO1_STEPSIZE LO1 minimum step size ** MT2063_LO1_FRACN_AVOID LO1 FracN keep-out region ** MT2063_IF1_REQUEST Requested 1st IF ** MT2063_ZIF_BW zero-IF bandwidth ** MT2063_LO2_FREQ LO2 frequency ** MT2063_LO2_STEPSIZE LO2 minimum step size ** MT2063_LO2_FRACN_AVOID LO2 FracN keep-out region ** MT2063_OUTPUT_FREQ output center frequency ** MT2063_OUTPUT_BW output bandwidth ** MT2063_LO_SEPARATION min inter-tuner LO separation ** MT2063_MAX_HARM1 max # of intra-tuner harmonics ** MT2063_MAX_HARM2 max # of inter-tuner harmonics ** MT2063_RCVR_MODE Predefined modes ** MT2063_LNA_RIN Set LNA Rin (*) ** MT2063_LNA_TGT Set target power level at LNA (*) ** MT2063_PD1_TGT Set target power level at PD1 (*) ** MT2063_PD2_TGT Set target power level at PD2 (*) ** MT2063_ACLNA_MAX LNA attenuator limit (*) ** MT2063_ACRF_MAX RF attenuator limit (*) ** MT2063_ACFIF_MAX FIF attenuator limit (*) ** MT2063_DNC_OUTPUT_ENABLE DNC output selection ** MT2063_VGAGC VGA gain code ** MT2063_VGAOI VGA output current ** MT2063_TAGC TAGC setting ** MT2063_AMPGC AMP gain code ** MT2063_AVOID_DECT Avoid DECT Frequencies ** MT2063_CTFILT_SW Cleartune filter selection ** ** (*) This parameter is set by MT2063_RCVR_MODE, do not call ** additionally. ** ** Usage: status |= MT2063_SetParam(hMT2063, ** MT2063_STEPSIZE, ** 50000); ** ** Returns: status: ** MT_OK - No errors ** MT_INV_HANDLE - Invalid tuner handle ** MT_ARG_NULL - Null pointer argument passed ** MT_ARG_RANGE - Invalid parameter requested ** or set value out of range ** or non-writable parameter ** ** Dependencies: USERS MUST CALL MT2063_Open() FIRST! ** ** See Also: MT2063_GetParam, MT2063_Open ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** 154 09-13-2007 RSK Ver 1.05: Get/SetParam changes for LOx_FREQ ** 10-31-2007 PINZ Ver 1.08: Get/SetParam add VGAGC, VGAOI, AMPGC, TAGC ** 04-18-2008 PINZ Ver 1.15: Add SetParam LNARIN & PDxTGT ** Split SetParam up to ACLNA / ACLNA_MAX ** removed ACLNA_INRC/DECR (+RF & FIF) ** removed GCUAUTO / BYPATNDN/UP ** 175 I 06-06-2008 PINZ Ver 1.16: Add control to avoid US DECT freqs. ** 175 I 06-19-2008 RSK Ver 1.17: Refactor DECT control to SpurAvoid. ** 06-24-2008 PINZ Ver 1.18: Add Get/SetParam CTFILT_SW ** ****************************************************************************/ static u32 MT2063_SetParam(void *h, enum MT2063_Param param, u32 nValue) { u32 status = MT2063_OK; /* Status to be returned */ u8 val = 0; struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h; /* Verify that the handle passed points to a valid tuner */ if (MT2063_IsValidHandle(pInfo) == 0) status |= MT2063_INV_HANDLE; if (MT2063_NO_ERROR(status)) { switch (param) { /* crystal frequency */ case MT2063_SRO_FREQ: pInfo->AS_Data.f_ref = nValue; pInfo->AS_Data.f_LO1_FracN_Avoid = 0; pInfo->AS_Data.f_LO2_FracN_Avoid = nValue / 80 - 1; pInfo->AS_Data.f_LO1_Step = nValue / 64; pInfo->AS_Data.f_if1_Center = (pInfo->AS_Data.f_ref / 8) * (pInfo->reg[MT2063_REG_FIFFC] + 640); break; /* minimum tuning step size */ case MT2063_STEPSIZE: pInfo->AS_Data.f_LO2_Step = nValue; break; /* LO1 frequency */ case MT2063_LO1_FREQ: { /* Note: LO1 and LO2 are BOTH written at toggle of LDLOos */ /* Capture the Divider and Numerator portions of other LO */ u8 tempLO2CQ[3]; u8 tempLO2C[3]; u8 tmpOneShot; u32 Div, FracN; u8 restore = 0; /* Buffer the queue for restoration later and get actual LO2 values. */ status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO2CQ_1, &(tempLO2CQ[0]), 3); status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO2C_1, &(tempLO2C[0]), 3); /* clear the one-shot bits */ tempLO2CQ[2] = tempLO2CQ[2] & 0x0F; tempLO2C[2] = tempLO2C[2] & 0x0F; /* only write the queue values if they are different from the actual. */ if ((tempLO2CQ[0] != tempLO2C[0]) || (tempLO2CQ[1] != tempLO2C[1]) || (tempLO2CQ[2] != tempLO2C[2])) { /* put actual LO2 value into queue (with 0 in one-shot bits) */ status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO2CQ_1, &(tempLO2C[0]), 3); if (status == MT2063_OK) { /* cache the bytes just written. */ pInfo->reg[MT2063_REG_LO2CQ_1] = tempLO2C[0]; pInfo->reg[MT2063_REG_LO2CQ_2] = tempLO2C[1]; pInfo->reg[MT2063_REG_LO2CQ_3] = tempLO2C[2]; } restore = 1; } /* Calculate the Divider and Numberator components of LO1 */ status = MT2063_CalcLO1Mult(&Div, &FracN, nValue, pInfo->AS_Data.f_ref / 64, pInfo->AS_Data.f_ref); pInfo->reg[MT2063_REG_LO1CQ_1] = (u8) (Div & 0x00FF); pInfo->reg[MT2063_REG_LO1CQ_2] = (u8) (FracN); status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO1CQ_1, &pInfo-> reg[MT2063_REG_LO1CQ_1], 2); /* set the one-shot bit to load the pair of LO values */ tmpOneShot = tempLO2CQ[2] | 0xE0; status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO2CQ_3, &tmpOneShot, 1); /* only restore the queue values if they were different from the actual. */ if (restore) { /* put actual LO2 value into queue (0 in one-shot bits) */ status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO2CQ_1, &(tempLO2CQ[0]), 3); /* cache the bytes just written. */ pInfo->reg[MT2063_REG_LO2CQ_1] = tempLO2CQ[0]; pInfo->reg[MT2063_REG_LO2CQ_2] = tempLO2CQ[1]; pInfo->reg[MT2063_REG_LO2CQ_3] = tempLO2CQ[2]; } MT2063_GetParam(pInfo->hUserData, MT2063_LO1_FREQ, &pInfo->AS_Data.f_LO1); } break; /* LO1 minimum step size */ case MT2063_LO1_STEPSIZE: pInfo->AS_Data.f_LO1_Step = nValue; break; /* LO1 FracN keep-out region */ case MT2063_LO1_FRACN_AVOID_PARAM: pInfo->AS_Data.f_LO1_FracN_Avoid = nValue; break; /* Requested 1st IF */ case MT2063_IF1_REQUEST: pInfo->AS_Data.f_if1_Request = nValue; break; /* zero-IF bandwidth */ case MT2063_ZIF_BW: pInfo->AS_Data.f_zif_bw = nValue; break; /* LO2 frequency */ case MT2063_LO2_FREQ: { /* Note: LO1 and LO2 are BOTH written at toggle of LDLOos */ /* Capture the Divider and Numerator portions of other LO */ u8 tempLO1CQ[2]; u8 tempLO1C[2]; u32 Div2; u32 FracN2; u8 tmpOneShot; u8 restore = 0; /* Buffer the queue for restoration later and get actual LO2 values. */ status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO1CQ_1, &(tempLO1CQ[0]), 2); status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO1C_1, &(tempLO1C[0]), 2); /* only write the queue values if they are different from the actual. */ if ((tempLO1CQ[0] != tempLO1C[0]) || (tempLO1CQ[1] != tempLO1C[1])) { /* put actual LO1 value into queue */ status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO1CQ_1, &(tempLO1C[0]), 2); /* cache the bytes just written. */ pInfo->reg[MT2063_REG_LO1CQ_1] = tempLO1C[0]; pInfo->reg[MT2063_REG_LO1CQ_2] = tempLO1C[1]; restore = 1; } /* Calculate the Divider and Numberator components of LO2 */ status = MT2063_CalcLO2Mult(&Div2, &FracN2, nValue, pInfo->AS_Data.f_ref / 8191, pInfo->AS_Data.f_ref); pInfo->reg[MT2063_REG_LO2CQ_1] = (u8) ((Div2 << 1) | ((FracN2 >> 12) & 0x01)) & 0xFF; pInfo->reg[MT2063_REG_LO2CQ_2] = (u8) ((FracN2 >> 4) & 0xFF); pInfo->reg[MT2063_REG_LO2CQ_3] = (u8) ((FracN2 & 0x0F)); status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO1CQ_1, &pInfo-> reg[MT2063_REG_LO1CQ_1], 3); /* set the one-shot bit to load the LO values */ tmpOneShot = pInfo->reg[MT2063_REG_LO2CQ_3] | 0xE0; status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO2CQ_3, &tmpOneShot, 1); /* only restore LO1 queue value if they were different from the actual. */ if (restore) { /* put previous LO1 queue value back into queue */ status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO1CQ_1, &(tempLO1CQ[0]), 2); /* cache the bytes just written. */ pInfo->reg[MT2063_REG_LO1CQ_1] = tempLO1CQ[0]; pInfo->reg[MT2063_REG_LO1CQ_2] = tempLO1CQ[1]; } MT2063_GetParam(pInfo->hUserData, MT2063_LO2_FREQ, &pInfo->AS_Data.f_LO2); } break; /* LO2 minimum step size */ case MT2063_LO2_STEPSIZE: pInfo->AS_Data.f_LO2_Step = nValue; break; /* LO2 FracN keep-out region */ case MT2063_LO2_FRACN_AVOID: pInfo->AS_Data.f_LO2_FracN_Avoid = nValue; break; /* output center frequency */ case MT2063_OUTPUT_FREQ: pInfo->AS_Data.f_out = nValue; break; /* output bandwidth */ case MT2063_OUTPUT_BW: pInfo->AS_Data.f_out_bw = nValue + 750000; break; /* min inter-tuner LO separation */ case MT2063_LO_SEPARATION: pInfo->AS_Data.f_min_LO_Separation = nValue; break; /* max # of intra-tuner harmonics */ case MT2063_MAX_HARM1: pInfo->AS_Data.maxH1 = nValue; break; /* max # of inter-tuner harmonics */ case MT2063_MAX_HARM2: pInfo->AS_Data.maxH2 = nValue; break; case MT2063_RCVR_MODE: status |= MT2063_SetReceiverMode(pInfo, (enum MT2063_RCVR_MODES) nValue); break; /* Set LNA Rin -- nValue is desired value */ case MT2063_LNA_RIN: val = (pInfo-> reg[MT2063_REG_CTRL_2C] & (u8) ~ 0x03) | (nValue & 0x03); if (pInfo->reg[MT2063_REG_CTRL_2C] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_CTRL_2C, val); } break; /* Set target power level at LNA -- nValue is desired value */ case MT2063_LNA_TGT: val = (pInfo-> reg[MT2063_REG_LNA_TGT] & (u8) ~ 0x3F) | (nValue & 0x3F); if (pInfo->reg[MT2063_REG_LNA_TGT] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_LNA_TGT, val); } break; /* Set target power level at PD1 -- nValue is desired value */ case MT2063_PD1_TGT: val = (pInfo-> reg[MT2063_REG_PD1_TGT] & (u8) ~ 0x3F) | (nValue & 0x3F); if (pInfo->reg[MT2063_REG_PD1_TGT] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_PD1_TGT, val); } break; /* Set target power level at PD2 -- nValue is desired value */ case MT2063_PD2_TGT: val = (pInfo-> reg[MT2063_REG_PD2_TGT] & (u8) ~ 0x3F) | (nValue & 0x3F); if (pInfo->reg[MT2063_REG_PD2_TGT] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_PD2_TGT, val); } break; /* Set LNA atten limit -- nValue is desired value */ case MT2063_ACLNA_MAX: val = (pInfo-> reg[MT2063_REG_LNA_OV] & (u8) ~ 0x1F) | (nValue & 0x1F); if (pInfo->reg[MT2063_REG_LNA_OV] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_LNA_OV, val); } break; /* Set RF atten limit -- nValue is desired value */ case MT2063_ACRF_MAX: val = (pInfo-> reg[MT2063_REG_RF_OV] & (u8) ~ 0x1F) | (nValue & 0x1F); if (pInfo->reg[MT2063_REG_RF_OV] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_RF_OV, val); } break; /* Set FIF atten limit -- nValue is desired value, max. 5 if no B3 */ case MT2063_ACFIF_MAX: if (pInfo->reg[MT2063_REG_PART_REV] != MT2063_B3 && nValue > 5) nValue = 5; val = (pInfo-> reg[MT2063_REG_FIF_OV] & (u8) ~ 0x1F) | (nValue & 0x1F); if (pInfo->reg[MT2063_REG_FIF_OV] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_FIF_OV, val); } break; case MT2063_DNC_OUTPUT_ENABLE: /* selects, which DNC output is used */ switch ((enum MT2063_DNC_Output_Enable)nValue) { case MT2063_DNC_NONE: { val = (pInfo->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ if (pInfo->reg[MT2063_REG_DNC_GAIN] != val) status |= MT2063_SetReg(h, MT2063_REG_DNC_GAIN, val); val = (pInfo->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ if (pInfo->reg[MT2063_REG_VGA_GAIN] != val) status |= MT2063_SetReg(h, MT2063_REG_VGA_GAIN, val); val = (pInfo->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ if (pInfo->reg[MT2063_REG_RSVD_20] != val) status |= MT2063_SetReg(h, MT2063_REG_RSVD_20, val); break; } case MT2063_DNC_1: { val = (pInfo->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[pInfo->rcvr_mode] & 0x03); /* Set DNC1GC=x */ if (pInfo->reg[MT2063_REG_DNC_GAIN] != val) status |= MT2063_SetReg(h, MT2063_REG_DNC_GAIN, val); val = (pInfo->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ if (pInfo->reg[MT2063_REG_VGA_GAIN] != val) status |= MT2063_SetReg(h, MT2063_REG_VGA_GAIN, val); val = (pInfo->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ if (pInfo->reg[MT2063_REG_RSVD_20] != val) status |= MT2063_SetReg(h, MT2063_REG_RSVD_20, val); break; } case MT2063_DNC_2: { val = (pInfo->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ if (pInfo->reg[MT2063_REG_DNC_GAIN] != val) status |= MT2063_SetReg(h, MT2063_REG_DNC_GAIN, val); val = (pInfo->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[pInfo->rcvr_mode] & 0x03); /* Set DNC2GC=x */ if (pInfo->reg[MT2063_REG_VGA_GAIN] != val) status |= MT2063_SetReg(h, MT2063_REG_VGA_GAIN, val); val = (pInfo->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ if (pInfo->reg[MT2063_REG_RSVD_20] != val) status |= MT2063_SetReg(h, MT2063_REG_RSVD_20, val); break; } case MT2063_DNC_BOTH: { val = (pInfo->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[pInfo->rcvr_mode] & 0x03); /* Set DNC1GC=x */ if (pInfo->reg[MT2063_REG_DNC_GAIN] != val) status |= MT2063_SetReg(h, MT2063_REG_DNC_GAIN, val); val = (pInfo->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[pInfo->rcvr_mode] & 0x03); /* Set DNC2GC=x */ if (pInfo->reg[MT2063_REG_VGA_GAIN] != val) status |= MT2063_SetReg(h, MT2063_REG_VGA_GAIN, val); val = (pInfo->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ if (pInfo->reg[MT2063_REG_RSVD_20] != val) status |= MT2063_SetReg(h, MT2063_REG_RSVD_20, val); break; } default: break; } break; case MT2063_VGAGC: /* Set VGA gain code */ val = (pInfo-> reg[MT2063_REG_VGA_GAIN] & (u8) ~ 0x0C) | ((nValue & 0x03) << 2); if (pInfo->reg[MT2063_REG_VGA_GAIN] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_VGA_GAIN, val); } break; case MT2063_VGAOI: /* Set VGA bias current */ val = (pInfo-> reg[MT2063_REG_RSVD_31] & (u8) ~ 0x07) | (nValue & 0x07); if (pInfo->reg[MT2063_REG_RSVD_31] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_RSVD_31, val); } break; case MT2063_TAGC: /* Set TAGC */ val = (pInfo-> reg[MT2063_REG_RSVD_1E] & (u8) ~ 0x03) | (nValue & 0x03); if (pInfo->reg[MT2063_REG_RSVD_1E] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_RSVD_1E, val); } break; case MT2063_AMPGC: /* Set Amp gain code */ val = (pInfo-> reg[MT2063_REG_TEMP_SEL] & (u8) ~ 0x03) | (nValue & 0x03); if (pInfo->reg[MT2063_REG_TEMP_SEL] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_TEMP_SEL, val); } break; /* Avoid DECT Frequencies */ case MT2063_AVOID_DECT: { enum MT2063_DECT_Avoid_Type newAvoidSetting = (enum MT2063_DECT_Avoid_Type)nValue; if ((newAvoidSetting >= MT2063_NO_DECT_AVOIDANCE) && (newAvoidSetting <= MT2063_AVOID_BOTH)) { pInfo->AS_Data.avoidDECT = newAvoidSetting; } } break; /* Cleartune filter selection: 0 - by IC (default), 1 - by software */ case MT2063_CTFILT_SW: pInfo->ctfilt_sw = (nValue & 0x01); break; /* These parameters are read-only */ case MT2063_IC_ADDR: case MT2063_MAX_OPEN: case MT2063_NUM_OPEN: case MT2063_INPUT_FREQ: case MT2063_IF1_ACTUAL: case MT2063_IF1_CENTER: case MT2063_IF1_BW: case MT2063_AS_ALG: case MT2063_EXCL_ZONES: case MT2063_SPUR_AVOIDED: case MT2063_NUM_SPURS: case MT2063_SPUR_PRESENT: case MT2063_ACLNA: case MT2063_ACRF: case MT2063_ACFIF: case MT2063_EOP: default: status |= MT2063_ARG_RANGE; } } return (status); } /**************************************************************************** ** ** Name: MT2063_ClearPowerMaskBits ** ** Description: Clears the power-down mask bits for various sections of ** the MT2063 ** ** Parameters: h - Tuner handle (returned by MT2063_Open) ** Bits - Mask bits to be cleared. ** ** See definition of MT2063_Mask_Bits type for description ** of each of the power bits. ** ** Returns: status: ** MT_OK - No errors ** MT_INV_HANDLE - Invalid tuner handle ** MT_COMM_ERR - Serial bus communications error ** ** Dependencies: USERS MUST CALL MT2063_Open() FIRST! ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** ****************************************************************************/ static u32 MT2063_ClearPowerMaskBits(struct MT2063_Info_t *pInfo, enum MT2063_Mask_Bits Bits) { u32 status = MT2063_OK; /* Status to be returned */ /* Verify that the handle passed points to a valid tuner */ if (MT2063_IsValidHandle(pInfo) == 0) status = MT2063_INV_HANDLE; else { Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */ if ((Bits & 0xFF00) != 0) { pInfo->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8); status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_PWR_2, &pInfo->reg[MT2063_REG_PWR_2], 1); } if ((Bits & 0xFF) != 0) { pInfo->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF); status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_PWR_1, &pInfo->reg[MT2063_REG_PWR_1], 1); } } return (status); } /**************************************************************************** ** ** Name: MT2063_SoftwareShutdown ** ** Description: Enables or disables software shutdown function. When ** Shutdown==1, any section whose power mask is set will be ** shutdown. ** ** Parameters: h - Tuner handle (returned by MT2063_Open) ** Shutdown - 1 = shutdown the masked sections, otherwise ** power all sections on ** ** Returns: status: ** MT_OK - No errors ** MT_INV_HANDLE - Invalid tuner handle ** MT_COMM_ERR - Serial bus communications error ** ** Dependencies: USERS MUST CALL MT2063_Open() FIRST! ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** 01-03-2008 PINZ Ver 1.xx: Added a trigger of BYPATNUP for ** correct wakeup of the LNA ** ****************************************************************************/ static u32 MT2063_SoftwareShutdown(struct MT2063_Info_t *pInfo, u8 Shutdown) { u32 status = MT2063_OK; /* Status to be returned */ /* Verify that the handle passed points to a valid tuner */ if (MT2063_IsValidHandle(pInfo) == 0) { status = MT2063_INV_HANDLE; } else { if (Shutdown == 1) pInfo->reg[MT2063_REG_PWR_1] |= 0x04; /* Turn the bit on */ else pInfo->reg[MT2063_REG_PWR_1] &= ~0x04; /* Turn off the bit */ status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_PWR_1, &pInfo->reg[MT2063_REG_PWR_1], 1); if (Shutdown != 1) { pInfo->reg[MT2063_REG_BYP_CTRL] = (pInfo->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40; status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_BYP_CTRL, &pInfo->reg[MT2063_REG_BYP_CTRL], 1); pInfo->reg[MT2063_REG_BYP_CTRL] = (pInfo->reg[MT2063_REG_BYP_CTRL] & 0x9F); status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_BYP_CTRL, &pInfo->reg[MT2063_REG_BYP_CTRL], 1); } } return (status); } /**************************************************************************** ** ** Name: MT2063_SetReg ** ** Description: Sets an MT2063 register. ** ** Parameters: h - Tuner handle (returned by MT2063_Open) ** reg - MT2063 register/subaddress location ** val - MT2063 register/subaddress value ** ** Returns: status: ** MT_OK - No errors ** MT_COMM_ERR - Serial bus communications error ** MT_INV_HANDLE - Invalid tuner handle ** MT_ARG_RANGE - Argument out of range ** ** Dependencies: USERS MUST CALL MT2063_Open() FIRST! ** ** Use this function if you need to override a default ** register value ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** ****************************************************************************/ static u32 MT2063_SetReg(void *h, u8 reg, u8 val) { u32 status = MT2063_OK; /* Status to be returned */ struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h; /* Verify that the handle passed points to a valid tuner */ if (MT2063_IsValidHandle(pInfo) == 0) status |= MT2063_INV_HANDLE; if (reg >= MT2063_REG_END_REGS) status |= MT2063_ARG_RANGE; if (MT2063_NO_ERROR(status)) { status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, reg, &val, 1); if (MT2063_NO_ERROR(status)) pInfo->reg[reg] = val; } return (status); } static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref) { return f_ref * (f_LO / f_ref) + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step); } /**************************************************************************** ** ** Name: fLO_FractionalTerm ** ** Description: Calculates the portion contributed by FracN / denom. ** ** This function preserves maximum precision without ** risk of overflow. It accurately calculates ** f_ref * num / denom to within 1 HZ with fixed math. ** ** Parameters: num - Fractional portion of the multiplier ** denom - denominator portion of the ratio ** This routine successfully handles denom values ** up to and including 2^18. ** f_Ref - SRO frequency. This calculation handles ** f_ref as two separate 14-bit fields. ** Therefore, a maximum value of 2^28-1 ** may safely be used for f_ref. This is ** the genesis of the magic number "14" and the ** magic mask value of 0x03FFF. ** ** Returns: f_ref * num / denom ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** ****************************************************************************/ static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom) { u32 t1 = (f_ref >> 14) * num; u32 term1 = t1 / denom; u32 loss = t1 % denom; u32 term2 = (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom; return ((term1 << 14) + term2); } /**************************************************************************** ** ** Name: CalcLO1Mult ** ** Description: Calculates Integer divider value and the numerator ** value for a FracN PLL. ** ** This function assumes that the f_LO and f_Ref are ** evenly divisible by f_LO_Step. ** ** Parameters: Div - OUTPUT: Whole number portion of the multiplier ** FracN - OUTPUT: Fractional portion of the multiplier ** f_LO - desired LO frequency. ** f_LO_Step - Minimum step size for the LO (in Hz). ** f_Ref - SRO frequency. ** f_Avoid - Range of PLL frequencies to avoid near ** integer multiples of f_Ref (in Hz). ** ** Returns: Recalculated LO frequency. ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** ****************************************************************************/ static u32 MT2063_CalcLO1Mult(u32 * Div, u32 * FracN, u32 f_LO, u32 f_LO_Step, u32 f_Ref) { /* Calculate the whole number portion of the divider */ *Div = f_LO / f_Ref; /* Calculate the numerator value (round to nearest f_LO_Step) */ *FracN = (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64); } /**************************************************************************** ** ** Name: CalcLO2Mult ** ** Description: Calculates Integer divider value and the numerator ** value for a FracN PLL. ** ** This function assumes that the f_LO and f_Ref are ** evenly divisible by f_LO_Step. ** ** Parameters: Div - OUTPUT: Whole number portion of the multiplier ** FracN - OUTPUT: Fractional portion of the multiplier ** f_LO - desired LO frequency. ** f_LO_Step - Minimum step size for the LO (in Hz). ** f_Ref - SRO frequency. ** f_Avoid - Range of PLL frequencies to avoid near ** integer multiples of f_Ref (in Hz). ** ** Returns: Recalculated LO frequency. ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** ****************************************************************************/ static u32 MT2063_CalcLO2Mult(u32 * Div, u32 * FracN, u32 f_LO, u32 f_LO_Step, u32 f_Ref) { /* Calculate the whole number portion of the divider */ *Div = f_LO / f_Ref; /* Calculate the numerator value (round to nearest f_LO_Step) */ *FracN = (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 8191); } /**************************************************************************** ** ** Name: FindClearTuneFilter ** ** Description: Calculate the corrrect ClearTune filter to be used for ** a given input frequency. ** ** Parameters: pInfo - ptr to tuner data structure ** f_in - RF input center frequency (in Hz). ** ** Returns: ClearTune filter number (0-31) ** ** Dependencies: MUST CALL MT2064_Open BEFORE FindClearTuneFilter! ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 04-10-2008 PINZ Ver 1.14: Use software-controlled ClearTune ** cross-over frequency values. ** ****************************************************************************/ static u32 FindClearTuneFilter(struct MT2063_Info_t *pInfo, u32 f_in) { u32 RFBand; u32 idx; /* index loop */ /* ** Find RF Band setting */ RFBand = 31; /* def when f_in > all */ for (idx = 0; idx < 31; ++idx) { if (pInfo->CTFiltMax[idx] >= f_in) { RFBand = idx; break; } } return (RFBand); } /**************************************************************************** ** ** Name: MT2063_Tune ** ** Description: Change the tuner's tuned frequency to RFin. ** ** Parameters: h - Open handle to the tuner (from MT2063_Open). ** f_in - RF input center frequency (in Hz). ** ** Returns: status: ** MT_OK - No errors ** MT_INV_HANDLE - Invalid tuner handle ** MT_UPC_UNLOCK - Upconverter PLL unlocked ** MT_DNC_UNLOCK - Downconverter PLL unlocked ** MT_COMM_ERR - Serial bus communications error ** MT_SPUR_CNT_MASK - Count of avoided LO spurs ** MT_SPUR_PRESENT - LO spur possible in output ** MT_FIN_RANGE - Input freq out of range ** MT_FOUT_RANGE - Output freq out of range ** MT_UPC_RANGE - Upconverter freq out of range ** MT_DNC_RANGE - Downconverter freq out of range ** ** Dependencies: MUST CALL MT2063_Open BEFORE MT2063_Tune! ** ** MT_ReadSub - Read data from the two-wire serial bus ** MT_WriteSub - Write data to the two-wire serial bus ** MT_Sleep - Delay execution for x milliseconds ** MT2063_GetLocked - Checks to see if LO1 and LO2 are locked ** ** Revision History: ** ** SCR Date Author Description ** ------------------------------------------------------------------------- ** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b. ** 04-10-2008 PINZ Ver 1.05: Use software-controlled ClearTune ** cross-over frequency values. ** 175 I 16-06-2008 PINZ Ver 1.16: Add control to avoid US DECT freqs. ** 175 I 06-19-2008 RSK Ver 1.17: Refactor DECT control to SpurAvoid. ** 06-24-2008 PINZ Ver 1.18: Add Get/SetParam CTFILT_SW ** ****************************************************************************/ static u32 MT2063_Tune(void *h, u32 f_in) { /* RF input center frequency */ struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h; u32 status = MT2063_OK; /* status of operation */ u32 LO1; /* 1st LO register value */ u32 Num1; /* Numerator for LO1 reg. value */ u32 f_IF1; /* 1st IF requested */ u32 LO2; /* 2nd LO register value */ u32 Num2; /* Numerator for LO2 reg. value */ u32 ofLO1, ofLO2; /* last time's LO frequencies */ u32 ofin, ofout; /* last time's I/O frequencies */ u8 fiffc = 0x80; /* FIFF center freq from tuner */ u32 fiffof; /* Offset from FIFF center freq */ const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */ u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */ u8 val; u32 RFBand; /* Verify that the handle passed points to a valid tuner */ if (MT2063_IsValidHandle(pInfo) == 0) return MT2063_INV_HANDLE; /* Check the input and output frequency ranges */ if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ)) status |= MT2063_FIN_RANGE; if ((pInfo->AS_Data.f_out < MT2063_MIN_FOUT_FREQ) || (pInfo->AS_Data.f_out > MT2063_MAX_FOUT_FREQ)) status |= MT2063_FOUT_RANGE; /* ** Save original LO1 and LO2 register values */ ofLO1 = pInfo->AS_Data.f_LO1; ofLO2 = pInfo->AS_Data.f_LO2; ofin = pInfo->AS_Data.f_in; ofout = pInfo->AS_Data.f_out; /* ** Find and set RF Band setting */ if (pInfo->ctfilt_sw == 1) { val = (pInfo->reg[MT2063_REG_CTUNE_CTRL] | 0x08); if (pInfo->reg[MT2063_REG_CTUNE_CTRL] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_CTUNE_CTRL, val); } val = pInfo->reg[MT2063_REG_CTUNE_OV]; RFBand = FindClearTuneFilter(pInfo, f_in); pInfo->reg[MT2063_REG_CTUNE_OV] = (u8) ((pInfo->reg[MT2063_REG_CTUNE_OV] & ~0x1F) | RFBand); if (pInfo->reg[MT2063_REG_CTUNE_OV] != val) { status |= MT2063_SetReg(pInfo, MT2063_REG_CTUNE_OV, val); } } /* ** Read the FIFF Center Frequency from the tuner */ if (MT2063_NO_ERROR(status)) { status |= MT2063_ReadSub(pInfo->hUserData, pInfo->address, MT2063_REG_FIFFC, &pInfo->reg[MT2063_REG_FIFFC], 1); fiffc = pInfo->reg[MT2063_REG_FIFFC]; } /* ** Assign in the requested values */ pInfo->AS_Data.f_in = f_in; /* Request a 1st IF such that LO1 is on a step size */ pInfo->AS_Data.f_if1_Request = MT2063_Round_fLO(pInfo->AS_Data.f_if1_Request + f_in, pInfo->AS_Data.f_LO1_Step, pInfo->AS_Data.f_ref) - f_in; /* ** Calculate frequency settings. f_IF1_FREQ + f_in is the ** desired LO1 frequency */ MT2063_ResetExclZones(&pInfo->AS_Data); f_IF1 = MT2063_ChooseFirstIF(&pInfo->AS_Data); pInfo->AS_Data.f_LO1 = MT2063_Round_fLO(f_IF1 + f_in, pInfo->AS_Data.f_LO1_Step, pInfo->AS_Data.f_ref); pInfo->AS_Data.f_LO2 = MT2063_Round_fLO(pInfo->AS_Data.f_LO1 - pInfo->AS_Data.f_out - f_in, pInfo->AS_Data.f_LO2_Step, pInfo->AS_Data.f_ref); /* ** Check for any LO spurs in the output bandwidth and adjust ** the LO settings to avoid them if needed */ status |= MT2063_AvoidSpurs(h, &pInfo->AS_Data); /* ** MT_AvoidSpurs spurs may have changed the LO1 & LO2 values. ** Recalculate the LO frequencies and the values to be placed ** in the tuning registers. */ pInfo->AS_Data.f_LO1 = MT2063_CalcLO1Mult(&LO1, &Num1, pInfo->AS_Data.f_LO1, pInfo->AS_Data.f_LO1_Step, pInfo->AS_Data.f_ref); pInfo->AS_Data.f_LO2 = MT2063_Round_fLO(pInfo->AS_Data.f_LO1 - pInfo->AS_Data.f_out - f_in, pInfo->AS_Data.f_LO2_Step, pInfo->AS_Data.f_ref); pInfo->AS_Data.f_LO2 = MT2063_CalcLO2Mult(&LO2, &Num2, pInfo->AS_Data.f_LO2, pInfo->AS_Data.f_LO2_Step, pInfo->AS_Data.f_ref); /* ** Check the upconverter and downconverter frequency ranges */ if ((pInfo->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ) || (pInfo->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ)) status |= MT2063_UPC_RANGE; if ((pInfo->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ) || (pInfo->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ)) status |= MT2063_DNC_RANGE; /* LO2 Lock bit was in a different place for B0 version */ if (pInfo->tuner_id == MT2063_B0) LO2LK = 0x40; /* ** If we have the same LO frequencies and we're already locked, ** then skip re-programming the LO registers. */ if ((ofLO1 != pInfo->AS_Data.f_LO1) || (ofLO2 != pInfo->AS_Data.f_LO2) || ((pInfo->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) != (LO1LK | LO2LK))) { /* ** Calculate the FIFFOF register value ** ** IF1_Actual ** FIFFOF = ------------ - 8 * FIFFC - 4992 ** f_ref/64 */ fiffof = (pInfo->AS_Data.f_LO1 - f_in) / (pInfo->AS_Data.f_ref / 64) - 8 * (u32) fiffc - 4992; if (fiffof > 0xFF) fiffof = 0xFF; /* ** Place all of the calculated values into the local tuner ** register fields. */ if (MT2063_NO_ERROR(status)) { pInfo->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */ pInfo->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */ pInfo->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */ |(Num2 >> 12)); /* NUM2q (hi) */ pInfo->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */ pInfo->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */ /* ** Now write out the computed register values ** IMPORTANT: There is a required order for writing ** (0x05 must follow all the others). */ status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO1CQ_1, &pInfo->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */ if (pInfo->tuner_id == MT2063_B0) { /* Re-write the one-shot bits to trigger the tune operation */ status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO2CQ_3, &pInfo->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */ } /* Write out the FIFF offset only if it's changing */ if (pInfo->reg[MT2063_REG_FIFF_OFFSET] != (u8) fiffof) { pInfo->reg[MT2063_REG_FIFF_OFFSET] = (u8) fiffof; status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_FIFF_OFFSET, &pInfo-> reg[MT2063_REG_FIFF_OFFSET], 1); } } /* ** Check for LO's locking */ if (MT2063_NO_ERROR(status)) { status |= MT2063_GetLocked(h); } /* ** If we locked OK, assign calculated data to MT2063_Info_t structure */ if (MT2063_NO_ERROR(status)) { pInfo->f_IF1_actual = pInfo->AS_Data.f_LO1 - f_in; } } return (status); } static u32 MT_Tune_atv(void *h, u32 f_in, u32 bw_in, enum MTTune_atv_standard tv_type) { u32 status = MT2063_OK; s32 pict_car = 0; s32 pict2chanb_vsb = 0; s32 pict2chanb_snd = 0; s32 pict2snd1 = 0; s32 pict2snd2 = 0; s32 ch_bw = 0; s32 if_mid = 0; s32 rcvr_mode = 0; u32 mode_get = 0; switch (tv_type) { case MTTUNEA_PAL_B:{ pict_car = 38900000; ch_bw = 8000000; pict2chanb_vsb = -1250000; pict2snd1 = 5500000; pict2snd2 = 5742000; rcvr_mode = 1; break; } case MTTUNEA_PAL_G:{ pict_car = 38900000; ch_bw = 7000000; pict2chanb_vsb = -1250000; pict2snd1 = 5500000; pict2snd2 = 0; rcvr_mode = 1; break; } case MTTUNEA_PAL_I:{ pict_car = 38900000; ch_bw = 8000000; pict2chanb_vsb = -1250000; pict2snd1 = 6000000; pict2snd2 = 0; rcvr_mode = 1; break; } case MTTUNEA_PAL_L:{ pict_car = 38900000; ch_bw = 8000000; pict2chanb_vsb = -1250000; pict2snd1 = 6500000; pict2snd2 = 0; rcvr_mode = 1; break; } case MTTUNEA_PAL_MN:{ pict_car = 38900000; ch_bw = 6000000; pict2chanb_vsb = -1250000; pict2snd1 = 4500000; pict2snd2 = 0; rcvr_mode = 1; break; } case MTTUNEA_PAL_DK:{ pict_car = 38900000; ch_bw = 8000000; pict2chanb_vsb = -1250000; pict2snd1 = 6500000; pict2snd2 = 0; rcvr_mode = 1; break; } case MTTUNEA_DIGITAL:{ pict_car = 36125000; ch_bw = 8000000; pict2chanb_vsb = -(ch_bw / 2); pict2snd1 = 0; pict2snd2 = 0; rcvr_mode = 2; break; } case MTTUNEA_FMRADIO:{ pict_car = 38900000; ch_bw = 8000000; pict2chanb_vsb = -(ch_bw / 2); pict2snd1 = 0; pict2snd2 = 0; rcvr_mode = 4; //f_in -= 2900000; break; } case MTTUNEA_DVBC:{ pict_car = 36125000; ch_bw = 8000000; pict2chanb_vsb = -(ch_bw / 2); pict2snd1 = 0; pict2snd2 = 0; rcvr_mode = MT2063_CABLE_QAM; break; } case MTTUNEA_DVBT:{ pict_car = 36125000; ch_bw = bw_in; //8000000 pict2chanb_vsb = -(ch_bw / 2); pict2snd1 = 0; pict2snd2 = 0; rcvr_mode = MT2063_OFFAIR_COFDM; break; } case MTTUNEA_UNKNOWN: break; default: break; } pict2chanb_snd = pict2chanb_vsb - ch_bw; if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); status |= MT2063_SetParam(h, MT2063_STEPSIZE, 125000); status |= MT2063_SetParam(h, MT2063_OUTPUT_FREQ, if_mid); status |= MT2063_SetParam(h, MT2063_OUTPUT_BW, ch_bw); status |= MT2063_GetParam(h, MT2063_RCVR_MODE, &mode_get); status |= MT2063_SetParam(h, MT2063_RCVR_MODE, rcvr_mode); status |= MT2063_Tune(h, (f_in + (pict2chanb_vsb + (ch_bw / 2)))); status |= MT2063_GetParam(h, MT2063_RCVR_MODE, &mode_get); return (u32) status; } static int mt2063_init(struct dvb_frontend *fe) { u32 status = MT2063_ERROR; struct mt2063_state *state = fe->tuner_priv; status = MT2063_Open(0xC0, &(state->MT2063_ht), fe); status |= MT2063_SoftwareShutdown(state->MT2063_ht, 1); status |= MT2063_ClearPowerMaskBits(state->MT2063_ht, MT2063_ALL_SD); if (MT2063_OK != status) { printk("%s %d error status = 0x%x!!\n", __func__, __LINE__, status); return -1; } return 0; } static int mt2063_get_status(struct dvb_frontend *fe, u32 * status) { int rc = 0; //get tuner lock status return rc; } static int mt2063_get_state(struct dvb_frontend *fe, enum tuner_param param, struct tuner_state *state) { struct mt2063_state *mt2063State = fe->tuner_priv; switch (param) { case DVBFE_TUNER_FREQUENCY: //get frequency break; case DVBFE_TUNER_TUNERSTEP: break; case DVBFE_TUNER_IFFREQ: break; case DVBFE_TUNER_BANDWIDTH: //get bandwidth break; case DVBFE_TUNER_REFCLOCK: state->refclock = (u32) MT2063_GetLocked((void *) (mt2063State->MT2063_ht)); break; default: break; } return (int)state->refclock; } static int mt2063_set_state(struct dvb_frontend *fe, enum tuner_param param, struct tuner_state *state) { struct mt2063_state *mt2063State = fe->tuner_priv; u32 status = MT2063_OK; switch (param) { case DVBFE_TUNER_FREQUENCY: //set frequency status = MT_Tune_atv((void *) (mt2063State->MT2063_ht), state->frequency, state->bandwidth, mt2063State->tv_type); mt2063State->frequency = state->frequency; break; case DVBFE_TUNER_TUNERSTEP: break; case DVBFE_TUNER_IFFREQ: break; case DVBFE_TUNER_BANDWIDTH: //set bandwidth mt2063State->bandwidth = state->bandwidth; break; case DVBFE_TUNER_REFCLOCK: break; case DVBFE_TUNER_OPEN: status = MT2063_Open(MT2063_I2C, &(mt2063State->MT2063_ht), fe); break; case DVBFE_TUNER_SOFTWARE_SHUTDOWN: status = MT2063_SoftwareShutdown(mt2063State->MT2063_ht, 1); break; case DVBFE_TUNER_CLEAR_POWER_MASKBITS: status = MT2063_ClearPowerMaskBits(mt2063State->MT2063_ht, MT2063_ALL_SD); break; default: break; } return (int)status; } static int mt2063_release(struct dvb_frontend *fe) { struct mt2063_state *state = fe->tuner_priv; fe->tuner_priv = NULL; kfree(state); return 0; } static struct dvb_tuner_ops mt2063_ops = { .info = { .name = "MT2063 Silicon Tuner", .frequency_min = 45000000, .frequency_max = 850000000, .frequency_step = 0, }, .init = mt2063_init, .sleep = MT2063_Sleep, .get_status = mt2063_get_status, .get_state = mt2063_get_state, .set_state = mt2063_set_state, .release = mt2063_release }; struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe, struct mt2063_config *config, struct i2c_adapter *i2c) { struct mt2063_state *state = NULL; state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL); if (state == NULL) goto error; state->config = config; state->i2c = i2c; state->frontend = fe; state->reference = config->refclock / 1000; /* kHz */ state->MT2063_init = false; fe->tuner_priv = state; fe->ops.tuner_ops = mt2063_ops; printk("%s: Attaching MT2063 \n", __func__); return fe; error: kfree(state); return NULL; } EXPORT_SYMBOL(mt2063_attach); MODULE_PARM_DESC(verbose, "Set Verbosity level"); MODULE_AUTHOR("Henry"); MODULE_DESCRIPTION("MT2063 Silicon tuner"); MODULE_LICENSE("GPL");