/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Ben Widawsky * */ #include #include #include #include #include "intel_drv.h" #include "i915_drv.h" #define dev_to_drm_minor(d) dev_get_drvdata((d)) #ifdef CONFIG_PM static u32 calc_residency(struct drm_device *dev, const u32 reg) { struct drm_i915_private *dev_priv = dev->dev_private; u64 raw_time; /* 32b value may overflow during fixed point math */ u64 units = 128ULL, div = 100000ULL, bias = 100ULL; u32 ret; if (!intel_enable_rc6(dev)) return 0; intel_runtime_pm_get(dev_priv); /* On VLV, residency time is in CZ units rather than 1.28us */ if (IS_VALLEYVIEW(dev)) { u32 clkctl2; clkctl2 = I915_READ(VLV_CLK_CTL2) >> CLK_CTL2_CZCOUNT_30NS_SHIFT; if (!clkctl2) { WARN(!clkctl2, "bogus CZ count value"); ret = 0; goto out; } units = DIV_ROUND_UP_ULL(30ULL * bias, (u64)clkctl2); if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH) units <<= 8; div = 1000000ULL * bias; } raw_time = I915_READ(reg) * units; ret = DIV_ROUND_UP_ULL(raw_time, div); out: intel_runtime_pm_put(dev_priv); return ret; } static ssize_t show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_minor *dminor = dev_to_drm_minor(kdev); return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev)); } static ssize_t show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_minor *dminor = dev_get_drvdata(kdev); u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6); return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency); } static ssize_t show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_minor *dminor = dev_to_drm_minor(kdev); u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p); if (IS_VALLEYVIEW(dminor->dev)) rc6p_residency = 0; return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency); } static ssize_t show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_minor *dminor = dev_to_drm_minor(kdev); u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp); if (IS_VALLEYVIEW(dminor->dev)) rc6pp_residency = 0; return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency); } static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL); static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL); static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL); static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL); static struct attribute *rc6_attrs[] = { &dev_attr_rc6_enable.attr, &dev_attr_rc6_residency_ms.attr, &dev_attr_rc6p_residency_ms.attr, &dev_attr_rc6pp_residency_ms.attr, NULL }; static struct attribute_group rc6_attr_group = { .name = power_group_name, .attrs = rc6_attrs }; #endif static int l3_access_valid(struct drm_device *dev, loff_t offset) { if (!HAS_L3_DPF(dev)) return -EPERM; if (offset % 4 != 0) return -EINVAL; if (offset >= GEN7_L3LOG_SIZE) return -ENXIO; return 0; } static ssize_t i915_l3_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t offset, size_t count) { struct device *dev = container_of(kobj, struct device, kobj); struct drm_minor *dminor = dev_to_drm_minor(dev); struct drm_device *drm_dev = dminor->dev; struct drm_i915_private *dev_priv = drm_dev->dev_private; int slice = (int)(uintptr_t)attr->private; int ret; count = round_down(count, 4); ret = l3_access_valid(drm_dev, offset); if (ret) return ret; count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count); ret = i915_mutex_lock_interruptible(drm_dev); if (ret) return ret; if (dev_priv->l3_parity.remap_info[slice]) memcpy(buf, dev_priv->l3_parity.remap_info[slice] + (offset/4), count); else memset(buf, 0, count); mutex_unlock(&drm_dev->struct_mutex); return count; } static ssize_t i915_l3_write(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t offset, size_t count) { struct device *dev = container_of(kobj, struct device, kobj); struct drm_minor *dminor = dev_to_drm_minor(dev); struct drm_device *drm_dev = dminor->dev; struct drm_i915_private *dev_priv = drm_dev->dev_private; struct i915_hw_context *ctx; u32 *temp = NULL; /* Just here to make handling failures easy */ int slice = (int)(uintptr_t)attr->private; int ret; if (!HAS_HW_CONTEXTS(drm_dev)) return -ENXIO; ret = l3_access_valid(drm_dev, offset); if (ret) return ret; ret = i915_mutex_lock_interruptible(drm_dev); if (ret) return ret; if (!dev_priv->l3_parity.remap_info[slice]) { temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL); if (!temp) { mutex_unlock(&drm_dev->struct_mutex); return -ENOMEM; } } ret = i915_gpu_idle(drm_dev); if (ret) { kfree(temp); mutex_unlock(&drm_dev->struct_mutex); return ret; } /* TODO: Ideally we really want a GPU reset here to make sure errors * aren't propagated. Since I cannot find a stable way to reset the GPU * at this point it is left as a TODO. */ if (temp) dev_priv->l3_parity.remap_info[slice] = temp; memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count); /* NB: We defer the remapping until we switch to the context */ list_for_each_entry(ctx, &dev_priv->context_list, link) ctx->remap_slice |= (1<struct_mutex); return count; } static struct bin_attribute dpf_attrs = { .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)}, .size = GEN7_L3LOG_SIZE, .read = i915_l3_read, .write = i915_l3_write, .mmap = NULL, .private = (void *)0 }; static struct bin_attribute dpf_attrs_1 = { .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)}, .size = GEN7_L3LOG_SIZE, .read = i915_l3_read, .write = i915_l3_write, .mmap = NULL, .private = (void *)1 }; static ssize_t gt_cur_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_minor *minor = dev_to_drm_minor(kdev); struct drm_device *dev = minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; flush_delayed_work(&dev_priv->rps.delayed_resume_work); mutex_lock(&dev_priv->rps.hw_lock); if (IS_VALLEYVIEW(dev_priv->dev)) { u32 freq; freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); ret = vlv_gpu_freq(dev_priv, (freq >> 8) & 0xff); } else { ret = dev_priv->rps.cur_freq * GT_FREQUENCY_MULTIPLIER; } mutex_unlock(&dev_priv->rps.hw_lock); return snprintf(buf, PAGE_SIZE, "%d\n", ret); } static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_minor *minor = dev_to_drm_minor(kdev); struct drm_device *dev = minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; return snprintf(buf, PAGE_SIZE, "%d\n", vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq)); } static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_minor *minor = dev_to_drm_minor(kdev); struct drm_device *dev = minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; flush_delayed_work(&dev_priv->rps.delayed_resume_work); mutex_lock(&dev_priv->rps.hw_lock); if (IS_VALLEYVIEW(dev_priv->dev)) ret = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit); else ret = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER; mutex_unlock(&dev_priv->rps.hw_lock); return snprintf(buf, PAGE_SIZE, "%d\n", ret); } static ssize_t gt_max_freq_mhz_store(struct device *kdev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_minor *minor = dev_to_drm_minor(kdev); struct drm_device *dev = minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 val, hw_max, hw_min, non_oc_max; ssize_t ret; ret = kstrtou32(buf, 0, &val); if (ret) return ret; flush_delayed_work(&dev_priv->rps.delayed_resume_work); mutex_lock(&dev_priv->rps.hw_lock); if (IS_VALLEYVIEW(dev_priv->dev)) { val = vlv_freq_opcode(dev_priv, val); non_oc_max = hw_max = dev_priv->rps.max_freq; hw_min = dev_priv->rps.min_freq; } else { val /= GT_FREQUENCY_MULTIPLIER; hw_max = dev_priv->rps.max_freq; non_oc_max = dev_priv->rps.rp0_freq; hw_min = dev_priv->rps.min_freq; } if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) { mutex_unlock(&dev_priv->rps.hw_lock); return -EINVAL; } if (val > non_oc_max) DRM_DEBUG("User requested overclocking to %d\n", val * GT_FREQUENCY_MULTIPLIER); dev_priv->rps.max_freq_softlimit = val; if (dev_priv->rps.cur_freq > val) { if (IS_VALLEYVIEW(dev)) valleyview_set_rps(dev, val); else gen6_set_rps(dev, val); } else if (!IS_VALLEYVIEW(dev)) { /* We still need gen6_set_rps to process the new max_delay and * update the interrupt limits even though frequency request is * unchanged. */ gen6_set_rps(dev, dev_priv->rps.cur_freq); } mutex_unlock(&dev_priv->rps.hw_lock); return count; } static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_minor *minor = dev_to_drm_minor(kdev); struct drm_device *dev = minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; flush_delayed_work(&dev_priv->rps.delayed_resume_work); mutex_lock(&dev_priv->rps.hw_lock); if (IS_VALLEYVIEW(dev_priv->dev)) ret = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit); else ret = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER; mutex_unlock(&dev_priv->rps.hw_lock); return snprintf(buf, PAGE_SIZE, "%d\n", ret); } static ssize_t gt_min_freq_mhz_store(struct device *kdev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_minor *minor = dev_to_drm_minor(kdev); struct drm_device *dev = minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 val, hw_max, hw_min; ssize_t ret; ret = kstrtou32(buf, 0, &val); if (ret) return ret; flush_delayed_work(&dev_priv->rps.delayed_resume_work); mutex_lock(&dev_priv->rps.hw_lock); if (IS_VALLEYVIEW(dev)) { val = vlv_freq_opcode(dev_priv, val); hw_max = dev_priv->rps.max_freq; hw_min = dev_priv->rps.min_freq; } else { val /= GT_FREQUENCY_MULTIPLIER; hw_max = dev_priv->rps.max_freq; hw_min = dev_priv->rps.min_freq; } if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) { mutex_unlock(&dev_priv->rps.hw_lock); return -EINVAL; } dev_priv->rps.min_freq_softlimit = val; if (dev_priv->rps.cur_freq < val) { if (IS_VALLEYVIEW(dev)) valleyview_set_rps(dev, val); else gen6_set_rps(dev, val); } else if (!IS_VALLEYVIEW(dev)) { /* We still need gen6_set_rps to process the new min_delay and * update the interrupt limits even though frequency request is * unchanged. */ gen6_set_rps(dev, dev_priv->rps.cur_freq); } mutex_unlock(&dev_priv->rps.hw_lock); return count; } static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL); static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store); static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store); static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL); static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf); static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); /* For now we have a static number of RP states */ static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_minor *minor = dev_to_drm_minor(kdev); struct drm_device *dev = minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 val, rp_state_cap; ssize_t ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); if (attr == &dev_attr_gt_RP0_freq_mhz) { val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER; } else if (attr == &dev_attr_gt_RP1_freq_mhz) { val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER; } else if (attr == &dev_attr_gt_RPn_freq_mhz) { val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER; } else { BUG(); } return snprintf(buf, PAGE_SIZE, "%d\n", val); } static const struct attribute *gen6_attrs[] = { &dev_attr_gt_cur_freq_mhz.attr, &dev_attr_gt_max_freq_mhz.attr, &dev_attr_gt_min_freq_mhz.attr, &dev_attr_gt_RP0_freq_mhz.attr, &dev_attr_gt_RP1_freq_mhz.attr, &dev_attr_gt_RPn_freq_mhz.attr, NULL, }; static const struct attribute *vlv_attrs[] = { &dev_attr_gt_cur_freq_mhz.attr, &dev_attr_gt_max_freq_mhz.attr, &dev_attr_gt_min_freq_mhz.attr, &dev_attr_vlv_rpe_freq_mhz.attr, NULL, }; static ssize_t error_state_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct device *kdev = container_of(kobj, struct device, kobj); struct drm_minor *minor = dev_to_drm_minor(kdev); struct drm_device *dev = minor->dev; struct i915_error_state_file_priv error_priv; struct drm_i915_error_state_buf error_str; ssize_t ret_count = 0; int ret; memset(&error_priv, 0, sizeof(error_priv)); ret = i915_error_state_buf_init(&error_str, count, off); if (ret) return ret; error_priv.dev = dev; i915_error_state_get(dev, &error_priv); ret = i915_error_state_to_str(&error_str, &error_priv); if (ret) goto out; ret_count = count < error_str.bytes ? count : error_str.bytes; memcpy(buf, error_str.buf, ret_count); out: i915_error_state_put(&error_priv); i915_error_state_buf_release(&error_str); return ret ?: ret_count; } static ssize_t error_state_write(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct device *kdev = container_of(kobj, struct device, kobj); struct drm_minor *minor = dev_to_drm_minor(kdev); struct drm_device *dev = minor->dev; int ret; DRM_DEBUG_DRIVER("Resetting error state\n"); ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; i915_destroy_error_state(dev); mutex_unlock(&dev->struct_mutex); return count; } static struct bin_attribute error_state_attr = { .attr.name = "error", .attr.mode = S_IRUSR | S_IWUSR, .size = 0, .read = error_state_read, .write = error_state_write, }; void i915_setup_sysfs(struct drm_device *dev) { int ret; #ifdef CONFIG_PM if (INTEL_INFO(dev)->gen >= 6) { ret = sysfs_merge_group(&dev->primary->kdev->kobj, &rc6_attr_group); if (ret) DRM_ERROR("RC6 residency sysfs setup failed\n"); } #endif if (HAS_L3_DPF(dev)) { ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs); if (ret) DRM_ERROR("l3 parity sysfs setup failed\n"); if (NUM_L3_SLICES(dev) > 1) { ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs_1); if (ret) DRM_ERROR("l3 parity slice 1 setup failed\n"); } } ret = 0; if (IS_VALLEYVIEW(dev)) ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs); else if (INTEL_INFO(dev)->gen >= 6) ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs); if (ret) DRM_ERROR("RPS sysfs setup failed\n"); ret = sysfs_create_bin_file(&dev->primary->kdev->kobj, &error_state_attr); if (ret) DRM_ERROR("error_state sysfs setup failed\n"); } void i915_teardown_sysfs(struct drm_device *dev) { sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr); if (IS_VALLEYVIEW(dev)) sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs); else sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs); device_remove_bin_file(dev->primary->kdev, &dpf_attrs_1); device_remove_bin_file(dev->primary->kdev, &dpf_attrs); #ifdef CONFIG_PM sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group); #endif }