/* * Intel Wireless Multicomm 3200 WiFi driver * * Copyright (C) 2009 Intel Corporation * Samuel Ortiz * Zhu Yi * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. * */ #include #include #include #include #include #include #include #include "iwm.h" #include "commands.h" #include "cfg80211.h" #include "debug.h" #define RATETAB_ENT(_rate, _rateid, _flags) \ { \ .bitrate = (_rate), \ .hw_value = (_rateid), \ .flags = (_flags), \ } #define CHAN2G(_channel, _freq, _flags) { \ .band = IEEE80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN5G(_channel, _flags) { \ .band = IEEE80211_BAND_5GHZ, \ .center_freq = 5000 + (5 * (_channel)), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } static struct ieee80211_rate iwm_rates[] = { RATETAB_ENT(10, 0x1, 0), RATETAB_ENT(20, 0x2, 0), RATETAB_ENT(55, 0x4, 0), RATETAB_ENT(110, 0x8, 0), RATETAB_ENT(60, 0x10, 0), RATETAB_ENT(90, 0x20, 0), RATETAB_ENT(120, 0x40, 0), RATETAB_ENT(180, 0x80, 0), RATETAB_ENT(240, 0x100, 0), RATETAB_ENT(360, 0x200, 0), RATETAB_ENT(480, 0x400, 0), RATETAB_ENT(540, 0x800, 0), }; #define iwm_a_rates (iwm_rates + 4) #define iwm_a_rates_size 8 #define iwm_g_rates (iwm_rates + 0) #define iwm_g_rates_size 12 static struct ieee80211_channel iwm_2ghz_channels[] = { CHAN2G(1, 2412, 0), CHAN2G(2, 2417, 0), CHAN2G(3, 2422, 0), CHAN2G(4, 2427, 0), CHAN2G(5, 2432, 0), CHAN2G(6, 2437, 0), CHAN2G(7, 2442, 0), CHAN2G(8, 2447, 0), CHAN2G(9, 2452, 0), CHAN2G(10, 2457, 0), CHAN2G(11, 2462, 0), CHAN2G(12, 2467, 0), CHAN2G(13, 2472, 0), CHAN2G(14, 2484, 0), }; static struct ieee80211_channel iwm_5ghz_a_channels[] = { CHAN5G(34, 0), CHAN5G(36, 0), CHAN5G(38, 0), CHAN5G(40, 0), CHAN5G(42, 0), CHAN5G(44, 0), CHAN5G(46, 0), CHAN5G(48, 0), CHAN5G(52, 0), CHAN5G(56, 0), CHAN5G(60, 0), CHAN5G(64, 0), CHAN5G(100, 0), CHAN5G(104, 0), CHAN5G(108, 0), CHAN5G(112, 0), CHAN5G(116, 0), CHAN5G(120, 0), CHAN5G(124, 0), CHAN5G(128, 0), CHAN5G(132, 0), CHAN5G(136, 0), CHAN5G(140, 0), CHAN5G(149, 0), CHAN5G(153, 0), CHAN5G(157, 0), CHAN5G(161, 0), CHAN5G(165, 0), CHAN5G(184, 0), CHAN5G(188, 0), CHAN5G(192, 0), CHAN5G(196, 0), CHAN5G(200, 0), CHAN5G(204, 0), CHAN5G(208, 0), CHAN5G(212, 0), CHAN5G(216, 0), }; static struct ieee80211_supported_band iwm_band_2ghz = { .channels = iwm_2ghz_channels, .n_channels = ARRAY_SIZE(iwm_2ghz_channels), .bitrates = iwm_g_rates, .n_bitrates = iwm_g_rates_size, }; static struct ieee80211_supported_band iwm_band_5ghz = { .channels = iwm_5ghz_a_channels, .n_channels = ARRAY_SIZE(iwm_5ghz_a_channels), .bitrates = iwm_a_rates, .n_bitrates = iwm_a_rates_size, }; static int iwm_key_init(struct iwm_key *key, u8 key_index, const u8 *mac_addr, struct key_params *params) { key->hdr.key_idx = key_index; if (!mac_addr || is_broadcast_ether_addr(mac_addr)) { key->hdr.multicast = 1; memset(key->hdr.mac, 0xff, ETH_ALEN); } else { key->hdr.multicast = 0; memcpy(key->hdr.mac, mac_addr, ETH_ALEN); } if (params) { if (params->key_len > WLAN_MAX_KEY_LEN || params->seq_len > IW_ENCODE_SEQ_MAX_SIZE) return -EINVAL; key->cipher = params->cipher; key->key_len = params->key_len; key->seq_len = params->seq_len; memcpy(key->key, params->key, key->key_len); memcpy(key->seq, params->seq, key->seq_len); } return 0; } static int iwm_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_index, const u8 *mac_addr, struct key_params *params) { struct iwm_priv *iwm = ndev_to_iwm(ndev); struct iwm_key *key = &iwm->keys[key_index]; int ret; IWM_DBG_WEXT(iwm, DBG, "Adding key for %pM\n", mac_addr); memset(key, 0, sizeof(struct iwm_key)); ret = iwm_key_init(key, key_index, mac_addr, params); if (ret < 0) { IWM_ERR(iwm, "Invalid key_params\n"); return ret; } return iwm_set_key(iwm, 0, key); } static int iwm_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_index, const u8 *mac_addr, void *cookie, void (*callback)(void *cookie, struct key_params*)) { struct iwm_priv *iwm = ndev_to_iwm(ndev); struct iwm_key *key = &iwm->keys[key_index]; struct key_params params; IWM_DBG_WEXT(iwm, DBG, "Getting key %d\n", key_index); memset(¶ms, 0, sizeof(params)); params.cipher = key->cipher; params.key_len = key->key_len; params.seq_len = key->seq_len; params.seq = key->seq; params.key = key->key; callback(cookie, ¶ms); return key->key_len ? 0 : -ENOENT; } static int iwm_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_index, const u8 *mac_addr) { struct iwm_priv *iwm = ndev_to_iwm(ndev); struct iwm_key *key = &iwm->keys[key_index]; if (!iwm->keys[key_index].key_len) { IWM_DBG_WEXT(iwm, DBG, "Key %d not used\n", key_index); return 0; } if (key_index == iwm->default_key) iwm->default_key = -1; return iwm_set_key(iwm, 1, key); } static int iwm_cfg80211_set_default_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_index) { struct iwm_priv *iwm = ndev_to_iwm(ndev); IWM_DBG_WEXT(iwm, DBG, "Default key index is: %d\n", key_index); if (!iwm->keys[key_index].key_len) { IWM_ERR(iwm, "Key %d not used\n", key_index); return -EINVAL; } iwm->default_key = key_index; return iwm_set_tx_key(iwm, key_index); } static int iwm_cfg80211_get_station(struct wiphy *wiphy, struct net_device *ndev, u8 *mac, struct station_info *sinfo) { struct iwm_priv *iwm = ndev_to_iwm(ndev); if (memcmp(mac, iwm->bssid, ETH_ALEN)) return -ENOENT; sinfo->filled |= STATION_INFO_TX_BITRATE; sinfo->txrate.legacy = iwm->rate * 10; if (test_bit(IWM_STATUS_ASSOCIATED, &iwm->status)) { sinfo->filled |= STATION_INFO_SIGNAL; sinfo->signal = iwm->wstats.qual.level; } return 0; } int iwm_cfg80211_inform_bss(struct iwm_priv *iwm) { struct wiphy *wiphy = iwm_to_wiphy(iwm); struct iwm_bss_info *bss; struct iwm_umac_notif_bss_info *umac_bss; struct ieee80211_mgmt *mgmt; struct ieee80211_channel *channel; struct ieee80211_supported_band *band; s32 signal; int freq; list_for_each_entry(bss, &iwm->bss_list, node) { umac_bss = bss->bss; mgmt = (struct ieee80211_mgmt *)(umac_bss->frame_buf); if (umac_bss->band == UMAC_BAND_2GHZ) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else if (umac_bss->band == UMAC_BAND_5GHZ) band = wiphy->bands[IEEE80211_BAND_5GHZ]; else { IWM_ERR(iwm, "Invalid band: %d\n", umac_bss->band); return -EINVAL; } freq = ieee80211_channel_to_frequency(umac_bss->channel); channel = ieee80211_get_channel(wiphy, freq); signal = umac_bss->rssi * 100; if (!cfg80211_inform_bss_frame(wiphy, channel, mgmt, le16_to_cpu(umac_bss->frame_len), signal, GFP_KERNEL)) return -EINVAL; } return 0; } static int iwm_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { struct wireless_dev *wdev; struct iwm_priv *iwm; u32 old_mode; wdev = ndev->ieee80211_ptr; iwm = ndev_to_iwm(ndev); old_mode = iwm->conf.mode; switch (type) { case NL80211_IFTYPE_STATION: iwm->conf.mode = UMAC_MODE_BSS; break; case NL80211_IFTYPE_ADHOC: iwm->conf.mode = UMAC_MODE_IBSS; break; default: return -EOPNOTSUPP; } wdev->iftype = type; if ((old_mode == iwm->conf.mode) || !iwm->umac_profile) return 0; iwm->umac_profile->mode = cpu_to_le32(iwm->conf.mode); if (iwm->umac_profile_active) iwm_invalidate_mlme_profile(iwm); return 0; } static int iwm_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request) { struct iwm_priv *iwm = ndev_to_iwm(ndev); int ret; if (!test_bit(IWM_STATUS_READY, &iwm->status)) { IWM_ERR(iwm, "Scan while device is not ready\n"); return -EIO; } if (test_bit(IWM_STATUS_SCANNING, &iwm->status)) { IWM_ERR(iwm, "Scanning already\n"); return -EAGAIN; } if (test_bit(IWM_STATUS_SCAN_ABORTING, &iwm->status)) { IWM_ERR(iwm, "Scanning being aborted\n"); return -EAGAIN; } set_bit(IWM_STATUS_SCANNING, &iwm->status); ret = iwm_scan_ssids(iwm, request->ssids, request->n_ssids); if (ret) { clear_bit(IWM_STATUS_SCANNING, &iwm->status); return ret; } iwm->scan_request = request; return 0; } static int iwm_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct iwm_priv *iwm = wiphy_to_iwm(wiphy); if (changed & WIPHY_PARAM_RTS_THRESHOLD && (iwm->conf.rts_threshold != wiphy->rts_threshold)) { int ret; iwm->conf.rts_threshold = wiphy->rts_threshold; ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_RTS_THRESHOLD, iwm->conf.rts_threshold); if (ret < 0) return ret; } if (changed & WIPHY_PARAM_FRAG_THRESHOLD && (iwm->conf.frag_threshold != wiphy->frag_threshold)) { int ret; iwm->conf.frag_threshold = wiphy->frag_threshold; ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_FA_CFG_FIX, CFG_FRAG_THRESHOLD, iwm->conf.frag_threshold); if (ret < 0) return ret; } return 0; } static int iwm_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params *params) { struct iwm_priv *iwm = wiphy_to_iwm(wiphy); struct ieee80211_channel *chan = params->channel; if (!test_bit(IWM_STATUS_READY, &iwm->status)) return -EIO; /* UMAC doesn't support creating or joining an IBSS network * with specified bssid. */ if (params->bssid) return -EOPNOTSUPP; iwm->channel = ieee80211_frequency_to_channel(chan->center_freq); iwm->umac_profile->ibss.band = chan->band; iwm->umac_profile->ibss.channel = iwm->channel; iwm->umac_profile->ssid.ssid_len = params->ssid_len; memcpy(iwm->umac_profile->ssid.ssid, params->ssid, params->ssid_len); return iwm_send_mlme_profile(iwm); } static int iwm_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev) { struct iwm_priv *iwm = wiphy_to_iwm(wiphy); if (iwm->umac_profile_active) return iwm_invalidate_mlme_profile(iwm); return 0; } static int iwm_set_auth_type(struct iwm_priv *iwm, enum nl80211_auth_type sme_auth_type) { u8 *auth_type = &iwm->umac_profile->sec.auth_type; switch (sme_auth_type) { case NL80211_AUTHTYPE_AUTOMATIC: case NL80211_AUTHTYPE_OPEN_SYSTEM: IWM_DBG_WEXT(iwm, DBG, "OPEN auth\n"); *auth_type = UMAC_AUTH_TYPE_OPEN; break; case NL80211_AUTHTYPE_SHARED_KEY: if (iwm->umac_profile->sec.flags & (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK)) { IWM_DBG_WEXT(iwm, DBG, "WPA auth alg\n"); *auth_type = UMAC_AUTH_TYPE_RSNA_PSK; } else { IWM_DBG_WEXT(iwm, DBG, "WEP shared key auth alg\n"); *auth_type = UMAC_AUTH_TYPE_LEGACY_PSK; } break; default: IWM_ERR(iwm, "Unsupported auth alg: 0x%x\n", sme_auth_type); return -ENOTSUPP; } return 0; } static int iwm_set_wpa_version(struct iwm_priv *iwm, u32 wpa_version) { IWM_DBG_WEXT(iwm, DBG, "wpa_version: %d\n", wpa_version); if (!wpa_version) { iwm->umac_profile->sec.flags = UMAC_SEC_FLG_LEGACY_PROFILE; return 0; } if (wpa_version & NL80211_WPA_VERSION_1) iwm->umac_profile->sec.flags = UMAC_SEC_FLG_WPA_ON_MSK; if (wpa_version & NL80211_WPA_VERSION_2) iwm->umac_profile->sec.flags = UMAC_SEC_FLG_RSNA_ON_MSK; return 0; } static int iwm_set_cipher(struct iwm_priv *iwm, u32 cipher, bool ucast) { u8 *profile_cipher = ucast ? &iwm->umac_profile->sec.ucast_cipher : &iwm->umac_profile->sec.mcast_cipher; if (!cipher) { *profile_cipher = UMAC_CIPHER_TYPE_NONE; return 0; } IWM_DBG_WEXT(iwm, DBG, "%ccast cipher is 0x%x\n", ucast ? 'u' : 'm', cipher); switch (cipher) { case IW_AUTH_CIPHER_NONE: *profile_cipher = UMAC_CIPHER_TYPE_NONE; break; case WLAN_CIPHER_SUITE_WEP40: *profile_cipher = UMAC_CIPHER_TYPE_WEP_40; break; case WLAN_CIPHER_SUITE_WEP104: *profile_cipher = UMAC_CIPHER_TYPE_WEP_104; break; case WLAN_CIPHER_SUITE_TKIP: *profile_cipher = UMAC_CIPHER_TYPE_TKIP; break; case WLAN_CIPHER_SUITE_CCMP: *profile_cipher = UMAC_CIPHER_TYPE_CCMP; break; default: IWM_ERR(iwm, "Unsupported cipher: 0x%x\n", cipher); return -ENOTSUPP; } return 0; } static int iwm_set_key_mgt(struct iwm_priv *iwm, u32 key_mgt) { u8 *auth_type = &iwm->umac_profile->sec.auth_type; IWM_DBG_WEXT(iwm, DBG, "key_mgt: 0x%x\n", key_mgt); if (key_mgt == WLAN_AKM_SUITE_8021X) *auth_type = UMAC_AUTH_TYPE_8021X; else if (key_mgt == WLAN_AKM_SUITE_PSK) { if (iwm->umac_profile->sec.flags & (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK)) *auth_type = UMAC_AUTH_TYPE_RSNA_PSK; else *auth_type = UMAC_AUTH_TYPE_LEGACY_PSK; } else { IWM_ERR(iwm, "Invalid key mgt: 0x%x\n", key_mgt); return -EINVAL; } return 0; } static int iwm_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params *sme) { struct iwm_priv *iwm = wiphy_to_iwm(wiphy); struct ieee80211_channel *chan = sme->channel; struct key_params key_param; int ret; if (!test_bit(IWM_STATUS_READY, &iwm->status)) return -EIO; if (!sme->ssid) return -EINVAL; if (iwm->umac_profile_active) { ret = iwm_invalidate_mlme_profile(iwm); if (ret) { IWM_ERR(iwm, "Couldn't invalidate profile\n"); return ret; } } if (chan) iwm->channel = ieee80211_frequency_to_channel(chan->center_freq); iwm->umac_profile->ssid.ssid_len = sme->ssid_len; memcpy(iwm->umac_profile->ssid.ssid, sme->ssid, sme->ssid_len); if (sme->bssid) { IWM_DBG_WEXT(iwm, DBG, "BSSID: %pM\n", sme->bssid); memcpy(&iwm->umac_profile->bssid[0], sme->bssid, ETH_ALEN); iwm->umac_profile->bss_num = 1; } else { memset(&iwm->umac_profile->bssid[0], 0, ETH_ALEN); iwm->umac_profile->bss_num = 0; } ret = iwm_set_wpa_version(iwm, sme->crypto.wpa_versions); if (ret < 0) return ret; ret = iwm_set_auth_type(iwm, sme->auth_type); if (ret < 0) return ret; if (sme->crypto.n_ciphers_pairwise) { ret = iwm_set_cipher(iwm, sme->crypto.ciphers_pairwise[0], true); if (ret < 0) return ret; } ret = iwm_set_cipher(iwm, sme->crypto.cipher_group, false); if (ret < 0) return ret; if (sme->crypto.n_akm_suites) { ret = iwm_set_key_mgt(iwm, sme->crypto.akm_suites[0]); if (ret < 0) return ret; } /* * We save the WEP key in case we want to do shared authentication. * We have to do it so because UMAC will assert whenever it gets a * key before a profile. */ if (sme->key) { key_param.key = kmemdup(sme->key, sme->key_len, GFP_KERNEL); if (key_param.key == NULL) return -ENOMEM; key_param.key_len = sme->key_len; key_param.seq_len = 0; key_param.cipher = sme->crypto.ciphers_pairwise[0]; ret = iwm_key_init(&iwm->keys[sme->key_idx], sme->key_idx, NULL, &key_param); kfree(key_param.key); if (ret < 0) { IWM_ERR(iwm, "Invalid key_params\n"); return ret; } iwm->default_key = sme->key_idx; } /* WPA and open AUTH type from wpa_s means WPS (a.k.a. WSC) */ if ((iwm->umac_profile->sec.flags & (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK)) && iwm->umac_profile->sec.auth_type == UMAC_AUTH_TYPE_OPEN) { iwm->umac_profile->sec.flags = UMAC_SEC_FLG_WSC_ON_MSK; } ret = iwm_send_mlme_profile(iwm); if (iwm->umac_profile->sec.auth_type != UMAC_AUTH_TYPE_LEGACY_PSK || sme->key == NULL) return ret; /* * We want to do shared auth. * We need to actually set the key we previously cached, * and then tell the UMAC it's the default one. * That will trigger the auth+assoc UMAC machinery, and again, * this must be done after setting the profile. */ ret = iwm_set_key(iwm, 0, &iwm->keys[sme->key_idx]); if (ret < 0) return ret; return iwm_set_tx_key(iwm, iwm->default_key); } static int iwm_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev, u16 reason_code) { struct iwm_priv *iwm = wiphy_to_iwm(wiphy); IWM_DBG_WEXT(iwm, DBG, "Active: %d\n", iwm->umac_profile_active); if (iwm->umac_profile_active) iwm_invalidate_mlme_profile(iwm); return 0; } static int iwm_cfg80211_set_txpower(struct wiphy *wiphy, enum tx_power_setting type, int dbm) { struct iwm_priv *iwm = wiphy_to_iwm(wiphy); int ret; switch (type) { case TX_POWER_AUTOMATIC: return 0; case TX_POWER_FIXED: if (!test_bit(IWM_STATUS_READY, &iwm->status)) return 0; ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_TX_PWR_LIMIT_USR, dbm * 2); if (ret < 0) return ret; return iwm_tx_power_trigger(iwm); default: IWM_ERR(iwm, "Unsupported power type: %d\n", type); return -EOPNOTSUPP; } return 0; } static int iwm_cfg80211_get_txpower(struct wiphy *wiphy, int *dbm) { struct iwm_priv *iwm = wiphy_to_iwm(wiphy); *dbm = iwm->txpower >> 1; return 0; } static int iwm_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool enabled, int timeout) { struct iwm_priv *iwm = wiphy_to_iwm(wiphy); u32 power_index; if (enabled) power_index = IWM_POWER_INDEX_DEFAULT; else power_index = IWM_POWER_INDEX_MIN; if (power_index == iwm->conf.power_index) return 0; iwm->conf.power_index = power_index; return iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_POWER_INDEX, iwm->conf.power_index); } int iwm_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { struct iwm_priv *iwm = wiphy_to_iwm(wiphy); return iwm_send_pmkid_update(iwm, pmksa, IWM_CMD_PMKID_ADD); } int iwm_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { struct iwm_priv *iwm = wiphy_to_iwm(wiphy); return iwm_send_pmkid_update(iwm, pmksa, IWM_CMD_PMKID_DEL); } int iwm_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *netdev) { struct iwm_priv *iwm = wiphy_to_iwm(wiphy); struct cfg80211_pmksa pmksa; memset(&pmksa, 0, sizeof(struct cfg80211_pmksa)); return iwm_send_pmkid_update(iwm, &pmksa, IWM_CMD_PMKID_FLUSH); } static struct cfg80211_ops iwm_cfg80211_ops = { .change_virtual_intf = iwm_cfg80211_change_iface, .add_key = iwm_cfg80211_add_key, .get_key = iwm_cfg80211_get_key, .del_key = iwm_cfg80211_del_key, .set_default_key = iwm_cfg80211_set_default_key, .get_station = iwm_cfg80211_get_station, .scan = iwm_cfg80211_scan, .set_wiphy_params = iwm_cfg80211_set_wiphy_params, .connect = iwm_cfg80211_connect, .disconnect = iwm_cfg80211_disconnect, .join_ibss = iwm_cfg80211_join_ibss, .leave_ibss = iwm_cfg80211_leave_ibss, .set_tx_power = iwm_cfg80211_set_txpower, .get_tx_power = iwm_cfg80211_get_txpower, .set_power_mgmt = iwm_cfg80211_set_power_mgmt, .set_pmksa = iwm_cfg80211_set_pmksa, .del_pmksa = iwm_cfg80211_del_pmksa, .flush_pmksa = iwm_cfg80211_flush_pmksa, }; static const u32 cipher_suites[] = { WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, }; struct wireless_dev *iwm_wdev_alloc(int sizeof_bus, struct device *dev) { int ret = 0; struct wireless_dev *wdev; /* * We're trying to have the following memory * layout: * * +-------------------------+ * | struct wiphy | * +-------------------------+ * | struct iwm_priv | * +-------------------------+ * | bus private data | * | (e.g. iwm_priv_sdio) | * +-------------------------+ * */ wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL); if (!wdev) { dev_err(dev, "Couldn't allocate wireless device\n"); return ERR_PTR(-ENOMEM); } wdev->wiphy = wiphy_new(&iwm_cfg80211_ops, sizeof(struct iwm_priv) + sizeof_bus); if (!wdev->wiphy) { dev_err(dev, "Couldn't allocate wiphy device\n"); ret = -ENOMEM; goto out_err_new; } set_wiphy_dev(wdev->wiphy, dev); wdev->wiphy->max_scan_ssids = UMAC_WIFI_IF_PROBE_OPTION_MAX; wdev->wiphy->max_num_pmkids = UMAC_MAX_NUM_PMKIDS; wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC); wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &iwm_band_2ghz; wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &iwm_band_5ghz; wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; wdev->wiphy->cipher_suites = cipher_suites; wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); ret = wiphy_register(wdev->wiphy); if (ret < 0) { dev_err(dev, "Couldn't register wiphy device\n"); goto out_err_register; } return wdev; out_err_register: wiphy_free(wdev->wiphy); out_err_new: kfree(wdev); return ERR_PTR(ret); } void iwm_wdev_free(struct iwm_priv *iwm) { struct wireless_dev *wdev = iwm_to_wdev(iwm); if (!wdev) return; wiphy_unregister(wdev->wiphy); wiphy_free(wdev->wiphy); kfree(wdev); }