/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include "pp_debug.h" #include "amdgpu.h" #include "amdgpu_smu.h" #include "soc15_common.h" #include "smu_v11_0.h" #include "smu_v12_0.h" #include "atom.h" #include "amd_pcie.h" #undef __SMU_DUMMY_MAP #define __SMU_DUMMY_MAP(type) #type static const char* __smu_message_names[] = { SMU_MESSAGE_TYPES }; const char *smu_get_message_name(struct smu_context *smu, enum smu_message_type type) { if (type < 0 || type >= SMU_MSG_MAX_COUNT) return "unknown smu message"; return __smu_message_names[type]; } #undef __SMU_DUMMY_MAP #define __SMU_DUMMY_MAP(fea) #fea static const char* __smu_feature_names[] = { SMU_FEATURE_MASKS }; const char *smu_get_feature_name(struct smu_context *smu, enum smu_feature_mask feature) { if (feature < 0 || feature >= SMU_FEATURE_COUNT) return "unknown smu feature"; return __smu_feature_names[feature]; } size_t smu_sys_get_pp_feature_mask(struct smu_context *smu, char *buf) { size_t size = 0; int ret = 0, i = 0; uint32_t feature_mask[2] = { 0 }; int32_t feature_index = 0; uint32_t count = 0; uint32_t sort_feature[SMU_FEATURE_COUNT]; uint64_t hw_feature_count = 0; ret = smu_feature_get_enabled_mask(smu, feature_mask, 2); if (ret) goto failed; size = sprintf(buf + size, "features high: 0x%08x low: 0x%08x\n", feature_mask[1], feature_mask[0]); for (i = 0; i < SMU_FEATURE_COUNT; i++) { feature_index = smu_feature_get_index(smu, i); if (feature_index < 0) continue; sort_feature[feature_index] = i; hw_feature_count++; } for (i = 0; i < hw_feature_count; i++) { size += sprintf(buf + size, "%02d. %-20s (%2d) : %s\n", count++, smu_get_feature_name(smu, sort_feature[i]), i, !!smu_feature_is_enabled(smu, sort_feature[i]) ? "enabled" : "disabled"); } failed: return size; } int smu_sys_set_pp_feature_mask(struct smu_context *smu, uint64_t new_mask) { int ret = 0; uint32_t feature_mask[2] = { 0 }; uint64_t feature_2_enabled = 0; uint64_t feature_2_disabled = 0; uint64_t feature_enables = 0; ret = smu_feature_get_enabled_mask(smu, feature_mask, 2); if (ret) return ret; feature_enables = ((uint64_t)feature_mask[1] << 32 | (uint64_t)feature_mask[0]); feature_2_enabled = ~feature_enables & new_mask; feature_2_disabled = feature_enables & ~new_mask; if (feature_2_enabled) { ret = smu_feature_update_enable_state(smu, feature_2_enabled, true); if (ret) return ret; } if (feature_2_disabled) { ret = smu_feature_update_enable_state(smu, feature_2_disabled, false); if (ret) return ret; } return ret; } int smu_get_smc_version(struct smu_context *smu, uint32_t *if_version, uint32_t *smu_version) { int ret = 0; if (!if_version && !smu_version) return -EINVAL; if (if_version) { ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion); if (ret) return ret; ret = smu_read_smc_arg(smu, if_version); if (ret) return ret; } if (smu_version) { ret = smu_send_smc_msg(smu, SMU_MSG_GetSmuVersion); if (ret) return ret; ret = smu_read_smc_arg(smu, smu_version); if (ret) return ret; } return ret; } int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t min, uint32_t max) { int ret = 0, clk_id = 0; uint32_t param; if (min <= 0 && max <= 0) return -EINVAL; if (!smu_clk_dpm_is_enabled(smu, clk_type)) return 0; clk_id = smu_clk_get_index(smu, clk_type); if (clk_id < 0) return clk_id; if (max > 0) { param = (uint32_t)((clk_id << 16) | (max & 0xffff)); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq, param); if (ret) return ret; } if (min > 0) { param = (uint32_t)((clk_id << 16) | (min & 0xffff)); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq, param); if (ret) return ret; } return ret; } int smu_set_hard_freq_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t min, uint32_t max) { int ret = 0, clk_id = 0; uint32_t param; if (min <= 0 && max <= 0) return -EINVAL; if (!smu_clk_dpm_is_enabled(smu, clk_type)) return 0; clk_id = smu_clk_get_index(smu, clk_type); if (clk_id < 0) return clk_id; if (max > 0) { param = (uint32_t)((clk_id << 16) | (max & 0xffff)); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq, param); if (ret) return ret; } if (min > 0) { param = (uint32_t)((clk_id << 16) | (min & 0xffff)); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq, param); if (ret) return ret; } return ret; } int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min, uint32_t *max) { int ret = 0, clk_id = 0; uint32_t param = 0; uint32_t clock_limit; if (!min && !max) return -EINVAL; if (!smu_clk_dpm_is_enabled(smu, clk_type)) { switch (clk_type) { case SMU_MCLK: case SMU_UCLK: clock_limit = smu->smu_table.boot_values.uclk; break; case SMU_GFXCLK: case SMU_SCLK: clock_limit = smu->smu_table.boot_values.gfxclk; break; case SMU_SOCCLK: clock_limit = smu->smu_table.boot_values.socclk; break; default: clock_limit = 0; break; } /* clock in Mhz unit */ if (min) *min = clock_limit / 100; if (max) *max = clock_limit / 100; return 0; } mutex_lock(&smu->mutex); clk_id = smu_clk_get_index(smu, clk_type); if (clk_id < 0) { ret = -EINVAL; goto failed; } param = (clk_id & 0xffff) << 16; if (max) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param); if (ret) goto failed; ret = smu_read_smc_arg(smu, max); if (ret) goto failed; } if (min) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param); if (ret) goto failed; ret = smu_read_smc_arg(smu, min); if (ret) goto failed; } failed: mutex_unlock(&smu->mutex); return ret; } int smu_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type, uint16_t level, uint32_t *value) { int ret = 0, clk_id = 0; uint32_t param; if (!value) return -EINVAL; if (!smu_clk_dpm_is_enabled(smu, clk_type)) return 0; clk_id = smu_clk_get_index(smu, clk_type); if (clk_id < 0) return clk_id; param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff)); ret = smu_send_smc_msg_with_param(smu,SMU_MSG_GetDpmFreqByIndex, param); if (ret) return ret; ret = smu_read_smc_arg(smu, ¶m); if (ret) return ret; /* BIT31: 0 - Fine grained DPM, 1 - Dicrete DPM * now, we un-support it */ *value = param & 0x7fffffff; return ret; } int smu_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *value) { return smu_get_dpm_freq_by_index(smu, clk_type, 0xff, value); } bool smu_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type) { enum smu_feature_mask feature_id = 0; switch (clk_type) { case SMU_MCLK: case SMU_UCLK: feature_id = SMU_FEATURE_DPM_UCLK_BIT; break; case SMU_GFXCLK: case SMU_SCLK: feature_id = SMU_FEATURE_DPM_GFXCLK_BIT; break; case SMU_SOCCLK: feature_id = SMU_FEATURE_DPM_SOCCLK_BIT; break; default: return true; } if(!smu_feature_is_enabled(smu, feature_id)) { return false; } return true; } int smu_dpm_set_power_gate(struct smu_context *smu, uint32_t block_type, bool gate) { int ret = 0; switch (block_type) { case AMD_IP_BLOCK_TYPE_UVD: ret = smu_dpm_set_uvd_enable(smu, gate); break; case AMD_IP_BLOCK_TYPE_VCE: ret = smu_dpm_set_vce_enable(smu, gate); break; case AMD_IP_BLOCK_TYPE_GFX: ret = smu_gfx_off_control(smu, gate); break; default: break; } return ret; } enum amd_pm_state_type smu_get_current_power_state(struct smu_context *smu) { /* not support power state */ return POWER_STATE_TYPE_DEFAULT; } int smu_get_power_num_states(struct smu_context *smu, struct pp_states_info *state_info) { if (!state_info) return -EINVAL; /* not support power state */ memset(state_info, 0, sizeof(struct pp_states_info)); state_info->nums = 1; state_info->states[0] = POWER_STATE_TYPE_DEFAULT; return 0; } int smu_common_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int ret = 0; if(!data || !size) return -EINVAL; switch (sensor) { case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK: *((uint32_t *)data) = smu->pstate_sclk; *size = 4; break; case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK: *((uint32_t *)data) = smu->pstate_mclk; *size = 4; break; case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK: ret = smu_feature_get_enabled_mask(smu, (uint32_t *)data, 2); *size = 8; break; case AMDGPU_PP_SENSOR_UVD_POWER: *(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0; *size = 4; break; case AMDGPU_PP_SENSOR_VCE_POWER: *(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0; *size = 4; break; case AMDGPU_PP_SENSOR_VCN_POWER_STATE: *(uint32_t *)data = power_gate->vcn_gated ? 0 : 1; *size = 4; break; default: ret = -EINVAL; break; } if (ret) *size = 0; return ret; } int smu_update_table(struct smu_context *smu, enum smu_table_id table_index, int argument, void *table_data, bool drv2smu) { struct smu_table_context *smu_table = &smu->smu_table; struct amdgpu_device *adev = smu->adev; struct smu_table *table = NULL; int ret = 0; int table_id = smu_table_get_index(smu, table_index); if (!table_data || table_id >= smu_table->table_count || table_id < 0) return -EINVAL; table = &smu_table->tables[table_index]; if (drv2smu) memcpy(table->cpu_addr, table_data, table->size); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrHigh, upper_32_bits(table->mc_address)); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrLow, lower_32_bits(table->mc_address)); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, drv2smu ? SMU_MSG_TransferTableDram2Smu : SMU_MSG_TransferTableSmu2Dram, table_id | ((argument & 0xFFFF) << 16)); if (ret) return ret; /* flush hdp cache */ adev->nbio_funcs->hdp_flush(adev, NULL); if (!drv2smu) memcpy(table_data, table->cpu_addr, table->size); return ret; } bool is_support_sw_smu(struct amdgpu_device *adev) { if (adev->asic_type == CHIP_VEGA20) return (amdgpu_dpm == 2) ? true : false; else if (adev->asic_type >= CHIP_ARCTURUS) return true; else return false; } bool is_support_sw_smu_xgmi(struct amdgpu_device *adev) { if (amdgpu_dpm != 1) return false; if (adev->asic_type == CHIP_VEGA20) return true; return false; } int smu_sys_get_pp_table(struct smu_context *smu, void **table) { struct smu_table_context *smu_table = &smu->smu_table; if (!smu_table->power_play_table && !smu_table->hardcode_pptable) return -EINVAL; if (smu_table->hardcode_pptable) *table = smu_table->hardcode_pptable; else *table = smu_table->power_play_table; return smu_table->power_play_table_size; } int smu_sys_set_pp_table(struct smu_context *smu, void *buf, size_t size) { struct smu_table_context *smu_table = &smu->smu_table; ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf; int ret = 0; if (!smu->pm_enabled) return -EINVAL; if (header->usStructureSize != size) { pr_err("pp table size not matched !\n"); return -EIO; } mutex_lock(&smu->mutex); if (!smu_table->hardcode_pptable) smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL); if (!smu_table->hardcode_pptable) { ret = -ENOMEM; goto failed; } memcpy(smu_table->hardcode_pptable, buf, size); smu_table->power_play_table = smu_table->hardcode_pptable; smu_table->power_play_table_size = size; mutex_unlock(&smu->mutex); ret = smu_reset(smu); if (ret) pr_info("smu reset failed, ret = %d\n", ret); return ret; failed: mutex_unlock(&smu->mutex); return ret; } int smu_feature_init_dpm(struct smu_context *smu) { struct smu_feature *feature = &smu->smu_feature; int ret = 0; uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32]; if (!smu->pm_enabled) return ret; mutex_lock(&feature->mutex); bitmap_zero(feature->allowed, SMU_FEATURE_MAX); mutex_unlock(&feature->mutex); ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask, SMU_FEATURE_MAX/32); if (ret) return ret; mutex_lock(&feature->mutex); bitmap_or(feature->allowed, feature->allowed, (unsigned long *)allowed_feature_mask, feature->feature_num); mutex_unlock(&feature->mutex); return ret; } int smu_feature_update_enable_state(struct smu_context *smu, uint64_t feature_mask, bool enabled) { uint32_t feature_low = 0, feature_high = 0; int ret = 0; if (!smu->pm_enabled) return ret; feature_low = (feature_mask >> 0 ) & 0xffffffff; feature_high = (feature_mask >> 32) & 0xffffffff; if (enabled) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow, feature_low); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh, feature_high); if (ret) return ret; } else { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow, feature_low); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh, feature_high); if (ret) return ret; } return ret; } int smu_feature_is_enabled(struct smu_context *smu, enum smu_feature_mask mask) { struct smu_feature *feature = &smu->smu_feature; int feature_id; int ret = 0; feature_id = smu_feature_get_index(smu, mask); if (feature_id < 0) return 0; WARN_ON(feature_id > feature->feature_num); mutex_lock(&feature->mutex); ret = test_bit(feature_id, feature->enabled); mutex_unlock(&feature->mutex); return ret; } int smu_feature_set_enabled(struct smu_context *smu, enum smu_feature_mask mask, bool enable) { struct smu_feature *feature = &smu->smu_feature; int feature_id; uint64_t feature_mask = 0; int ret = 0; feature_id = smu_feature_get_index(smu, mask); if (feature_id < 0) return -EINVAL; WARN_ON(feature_id > feature->feature_num); feature_mask = 1ULL << feature_id; mutex_lock(&feature->mutex); ret = smu_feature_update_enable_state(smu, feature_mask, enable); if (ret) goto failed; if (enable) test_and_set_bit(feature_id, feature->enabled); else test_and_clear_bit(feature_id, feature->enabled); failed: mutex_unlock(&feature->mutex); return ret; } int smu_feature_is_supported(struct smu_context *smu, enum smu_feature_mask mask) { struct smu_feature *feature = &smu->smu_feature; int feature_id; int ret = 0; feature_id = smu_feature_get_index(smu, mask); if (feature_id < 0) return 0; WARN_ON(feature_id > feature->feature_num); mutex_lock(&feature->mutex); ret = test_bit(feature_id, feature->supported); mutex_unlock(&feature->mutex); return ret; } int smu_feature_set_supported(struct smu_context *smu, enum smu_feature_mask mask, bool enable) { struct smu_feature *feature = &smu->smu_feature; int feature_id; int ret = 0; feature_id = smu_feature_get_index(smu, mask); if (feature_id < 0) return -EINVAL; WARN_ON(feature_id > feature->feature_num); mutex_lock(&feature->mutex); if (enable) test_and_set_bit(feature_id, feature->supported); else test_and_clear_bit(feature_id, feature->supported); mutex_unlock(&feature->mutex); return ret; } static int smu_set_funcs(struct amdgpu_device *adev) { struct smu_context *smu = &adev->smu; switch (adev->asic_type) { case CHIP_VEGA20: case CHIP_NAVI10: case CHIP_NAVI14: case CHIP_NAVI12: case CHIP_ARCTURUS: if (adev->pm.pp_feature & PP_OVERDRIVE_MASK) smu->od_enabled = true; smu_v11_0_set_smu_funcs(smu); break; case CHIP_RENOIR: if (adev->pm.pp_feature & PP_OVERDRIVE_MASK) smu->od_enabled = true; smu_v12_0_set_smu_funcs(smu); break; default: return -EINVAL; } return 0; } static int smu_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; smu->adev = adev; smu->pm_enabled = !!amdgpu_dpm; mutex_init(&smu->mutex); return smu_set_funcs(adev); } static int smu_late_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; if (!smu->pm_enabled) return 0; /* To be removed after dpm is enabled */ if (adev->asic_type == CHIP_RENOIR) return 0; mutex_lock(&smu->mutex); smu_handle_task(&adev->smu, smu->smu_dpm.dpm_level, AMD_PP_TASK_COMPLETE_INIT); mutex_unlock(&smu->mutex); return 0; } int smu_get_atom_data_table(struct smu_context *smu, uint32_t table, uint16_t *size, uint8_t *frev, uint8_t *crev, uint8_t **addr) { struct amdgpu_device *adev = smu->adev; uint16_t data_start; if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, table, size, frev, crev, &data_start)) return -EINVAL; *addr = (uint8_t *)adev->mode_info.atom_context->bios + data_start; return 0; } static int smu_initialize_pptable(struct smu_context *smu) { /* TODO */ return 0; } static int smu_smc_table_sw_init(struct smu_context *smu) { int ret; ret = smu_initialize_pptable(smu); if (ret) { pr_err("Failed to init smu_initialize_pptable!\n"); return ret; } /** * Create smu_table structure, and init smc tables such as * TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc. */ ret = smu_init_smc_tables(smu); if (ret) { pr_err("Failed to init smc tables!\n"); return ret; } /** * Create smu_power_context structure, and allocate smu_dpm_context and * context size to fill the smu_power_context data. */ ret = smu_init_power(smu); if (ret) { pr_err("Failed to init smu_init_power!\n"); return ret; } return 0; } static int smu_smc_table_sw_fini(struct smu_context *smu) { int ret; ret = smu_fini_smc_tables(smu); if (ret) { pr_err("Failed to smu_fini_smc_tables!\n"); return ret; } return 0; } static int smu_sw_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; int ret; smu->pool_size = adev->pm.smu_prv_buffer_size; smu->smu_feature.feature_num = SMU_FEATURE_MAX; mutex_init(&smu->smu_feature.mutex); bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX); bitmap_zero(smu->smu_feature.enabled, SMU_FEATURE_MAX); bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX); mutex_init(&smu->smu_baco.mutex); smu->smu_baco.state = SMU_BACO_STATE_EXIT; smu->smu_baco.platform_support = false; smu->watermarks_bitmap = 0; smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT]; smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0; smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1; smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2; smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3; smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4; smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5; smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6; smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D; smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING; smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO; smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR; smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE; smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM; smu->display_config = &adev->pm.pm_display_cfg; smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO; smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO; ret = smu_init_microcode(smu); if (ret) { pr_err("Failed to load smu firmware!\n"); return ret; } ret = smu_smc_table_sw_init(smu); if (ret) { pr_err("Failed to sw init smc table!\n"); return ret; } ret = smu_register_irq_handler(smu); if (ret) { pr_err("Failed to register smc irq handler!\n"); return ret; } return 0; } static int smu_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; int ret; kfree(smu->irq_source); smu->irq_source = NULL; ret = smu_smc_table_sw_fini(smu); if (ret) { pr_err("Failed to sw fini smc table!\n"); return ret; } ret = smu_fini_power(smu); if (ret) { pr_err("Failed to init smu_fini_power!\n"); return ret; } return 0; } static int smu_init_fb_allocations(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; uint32_t table_count = smu_table->table_count; uint32_t i = 0; int32_t ret = 0; if (table_count <= 0) return -EINVAL; for (i = 0 ; i < table_count; i++) { if (tables[i].size == 0) continue; ret = amdgpu_bo_create_kernel(adev, tables[i].size, tables[i].align, tables[i].domain, &tables[i].bo, &tables[i].mc_address, &tables[i].cpu_addr); if (ret) goto failed; } return 0; failed: for (; i > 0; i--) { if (tables[i].size == 0) continue; amdgpu_bo_free_kernel(&tables[i].bo, &tables[i].mc_address, &tables[i].cpu_addr); } return ret; } static int smu_fini_fb_allocations(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; uint32_t table_count = smu_table->table_count; uint32_t i = 0; if (table_count == 0 || tables == NULL) return 0; for (i = 0 ; i < table_count; i++) { if (tables[i].size == 0) continue; amdgpu_bo_free_kernel(&tables[i].bo, &tables[i].mc_address, &tables[i].cpu_addr); } return 0; } static int smu_override_pcie_parameters(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t pcie_gen = 0, pcie_width = 0, smu_pcie_arg; int ret; if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4) pcie_gen = 3; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) pcie_gen = 2; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) pcie_gen = 1; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1) pcie_gen = 0; /* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1 * Bit 15:8: PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4 * Bit 7:0: PCIE lane width, 1 to 7 corresponds is x1 to x32 */ if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16) pcie_width = 6; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12) pcie_width = 5; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8) pcie_width = 4; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4) pcie_width = 3; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2) pcie_width = 2; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1) pcie_width = 1; smu_pcie_arg = (1 << 16) | (pcie_gen << 8) | pcie_width; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_OverridePcieParameters, smu_pcie_arg); if (ret) pr_err("[%s] Attempt to override pcie params failed!\n", __func__); return ret; } static int smu_smc_table_hw_init(struct smu_context *smu, bool initialize) { struct amdgpu_device *adev = smu->adev; int ret; if (adev->flags & AMD_IS_APU) return 0; if (smu_is_dpm_running(smu) && adev->in_suspend) { pr_info("dpm has been enabled\n"); return 0; } if (adev->asic_type != CHIP_ARCTURUS) { ret = smu_init_display_count(smu, 0); if (ret) return ret; } if (initialize) { /* get boot_values from vbios to set revision, gfxclk, and etc. */ ret = smu_get_vbios_bootup_values(smu); if (ret) return ret; ret = smu_setup_pptable(smu); if (ret) return ret; ret = smu_get_clk_info_from_vbios(smu); if (ret) return ret; /* * check if the format_revision in vbios is up to pptable header * version, and the structure size is not 0. */ ret = smu_check_pptable(smu); if (ret) return ret; /* * allocate vram bos to store smc table contents. */ ret = smu_init_fb_allocations(smu); if (ret) return ret; /* * Parse pptable format and fill PPTable_t smc_pptable to * smu_table_context structure. And read the smc_dpm_table from vbios, * then fill it into smc_pptable. */ ret = smu_parse_pptable(smu); if (ret) return ret; /* * Send msg GetDriverIfVersion to check if the return value is equal * with DRIVER_IF_VERSION of smc header. */ ret = smu_check_fw_version(smu); if (ret) return ret; } /* smu_dump_pptable(smu); */ /* * Copy pptable bo in the vram to smc with SMU MSGs such as * SetDriverDramAddr and TransferTableDram2Smu. */ ret = smu_write_pptable(smu); if (ret) return ret; /* issue RunAfllBtc msg */ ret = smu_run_afll_btc(smu); if (ret) return ret; ret = smu_feature_set_allowed_mask(smu); if (ret) return ret; ret = smu_system_features_control(smu, true); if (ret) return ret; if (adev->asic_type != CHIP_ARCTURUS) { ret = smu_override_pcie_parameters(smu); if (ret) return ret; ret = smu_notify_display_change(smu); if (ret) return ret; /* * Set min deep sleep dce fclk with bootup value from vbios via * SetMinDeepSleepDcefclk MSG. */ ret = smu_set_min_dcef_deep_sleep(smu); if (ret) return ret; } /* * Set initialized values (get from vbios) to dpm tables context such as * gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each * type of clks. */ if (initialize) { ret = smu_populate_smc_pptable(smu); if (ret) return ret; ret = smu_init_max_sustainable_clocks(smu); if (ret) return ret; } ret = smu_set_default_od_settings(smu, initialize); if (ret) return ret; if (initialize) { ret = smu_populate_umd_state_clk(smu); if (ret) return ret; ret = smu_get_power_limit(smu, &smu->default_power_limit, true); if (ret) return ret; } /* * Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools. */ ret = smu_set_tool_table_location(smu); if (!smu_is_dpm_running(smu)) pr_info("dpm has been disabled\n"); return ret; } /** * smu_alloc_memory_pool - allocate memory pool in the system memory * * @smu: amdgpu_device pointer * * This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr * and DramLogSetDramAddr can notify it changed. * * Returns 0 on success, error on failure. */ static int smu_alloc_memory_pool(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *memory_pool = &smu_table->memory_pool; uint64_t pool_size = smu->pool_size; int ret = 0; if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO) return ret; memory_pool->size = pool_size; memory_pool->align = PAGE_SIZE; memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT; switch (pool_size) { case SMU_MEMORY_POOL_SIZE_256_MB: case SMU_MEMORY_POOL_SIZE_512_MB: case SMU_MEMORY_POOL_SIZE_1_GB: case SMU_MEMORY_POOL_SIZE_2_GB: ret = amdgpu_bo_create_kernel(adev, memory_pool->size, memory_pool->align, memory_pool->domain, &memory_pool->bo, &memory_pool->mc_address, &memory_pool->cpu_addr); break; default: break; } return ret; } static int smu_free_memory_pool(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *memory_pool = &smu_table->memory_pool; int ret = 0; if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO) return ret; amdgpu_bo_free_kernel(&memory_pool->bo, &memory_pool->mc_address, &memory_pool->cpu_addr); memset(memory_pool, 0, sizeof(struct smu_table)); return ret; } static int smu_hw_init(void *handle) { int ret; struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { if (adev->asic_type < CHIP_NAVI10) { ret = smu_load_microcode(smu); if (ret) return ret; } } ret = smu_check_fw_status(smu); if (ret) { pr_err("SMC firmware status is not correct\n"); return ret; } if (adev->flags & AMD_IS_APU) { smu_powergate_sdma(&adev->smu, false); smu_powergate_vcn(&adev->smu, false); } if (!smu->pm_enabled) return 0; /* To be removed after dpm is enabled */ if (adev->asic_type == CHIP_RENOIR) return 0; ret = smu_feature_init_dpm(smu); if (ret) goto failed; ret = smu_smc_table_hw_init(smu, true); if (ret) goto failed; ret = smu_alloc_memory_pool(smu); if (ret) goto failed; /* * Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify * pool location. */ ret = smu_notify_memory_pool_location(smu); if (ret) goto failed; ret = smu_start_thermal_control(smu); if (ret) goto failed; if (!smu->pm_enabled) adev->pm.dpm_enabled = false; else adev->pm.dpm_enabled = true; /* TODO: will set dpm_enabled flag while VCN and DAL DPM is workable */ pr_info("SMU is initialized successfully!\n"); return 0; failed: return ret; } static int smu_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; struct smu_table_context *table_context = &smu->smu_table; int ret = 0; if (adev->flags & AMD_IS_APU) { smu_powergate_sdma(&adev->smu, true); smu_powergate_vcn(&adev->smu, true); } kfree(table_context->driver_pptable); table_context->driver_pptable = NULL; kfree(table_context->max_sustainable_clocks); table_context->max_sustainable_clocks = NULL; kfree(table_context->overdrive_table); table_context->overdrive_table = NULL; ret = smu_fini_fb_allocations(smu); if (ret) return ret; ret = smu_free_memory_pool(smu); if (ret) return ret; return 0; } int smu_reset(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; ret = smu_hw_fini(adev); if (ret) return ret; ret = smu_hw_init(adev); if (ret) return ret; return ret; } static int smu_suspend(void *handle) { int ret; struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; bool baco_feature_is_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT); ret = smu_system_features_control(smu, false); if (ret) return ret; if (adev->in_gpu_reset && baco_feature_is_enabled) { ret = smu_feature_set_enabled(smu, SMU_FEATURE_BACO_BIT, true); if (ret) { pr_warn("set BACO feature enabled failed, return %d\n", ret); return ret; } } smu->watermarks_bitmap &= ~(WATERMARKS_LOADED); if (adev->asic_type >= CHIP_NAVI10 && adev->gfx.rlc.funcs->stop) adev->gfx.rlc.funcs->stop(adev); return 0; } static int smu_resume(void *handle) { int ret; struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; pr_info("SMU is resuming...\n"); mutex_lock(&smu->mutex); ret = smu_smc_table_hw_init(smu, false); if (ret) goto failed; ret = smu_start_thermal_control(smu); if (ret) goto failed; mutex_unlock(&smu->mutex); pr_info("SMU is resumed successfully!\n"); return 0; failed: mutex_unlock(&smu->mutex); return ret; } int smu_display_configuration_change(struct smu_context *smu, const struct amd_pp_display_configuration *display_config) { int index = 0; int num_of_active_display = 0; if (!smu->pm_enabled || !is_support_sw_smu(smu->adev)) return -EINVAL; if (!display_config) return -EINVAL; mutex_lock(&smu->mutex); smu_set_deep_sleep_dcefclk(smu, display_config->min_dcef_deep_sleep_set_clk / 100); for (index = 0; index < display_config->num_path_including_non_display; index++) { if (display_config->displays[index].controller_id != 0) num_of_active_display++; } smu_set_active_display_count(smu, num_of_active_display); smu_store_cc6_data(smu, display_config->cpu_pstate_separation_time, display_config->cpu_cc6_disable, display_config->cpu_pstate_disable, display_config->nb_pstate_switch_disable); mutex_unlock(&smu->mutex); return 0; } static int smu_get_clock_info(struct smu_context *smu, struct smu_clock_info *clk_info, enum smu_perf_level_designation designation) { int ret; struct smu_performance_level level = {0}; if (!clk_info) return -EINVAL; ret = smu_get_perf_level(smu, PERF_LEVEL_ACTIVITY, &level); if (ret) return -EINVAL; clk_info->min_mem_clk = level.memory_clock; clk_info->min_eng_clk = level.core_clock; clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width; ret = smu_get_perf_level(smu, designation, &level); if (ret) return -EINVAL; clk_info->min_mem_clk = level.memory_clock; clk_info->min_eng_clk = level.core_clock; clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width; return 0; } int smu_get_current_clocks(struct smu_context *smu, struct amd_pp_clock_info *clocks) { struct amd_pp_simple_clock_info simple_clocks = {0}; struct smu_clock_info hw_clocks; int ret = 0; if (!is_support_sw_smu(smu->adev)) return -EINVAL; mutex_lock(&smu->mutex); smu_get_dal_power_level(smu, &simple_clocks); if (smu->support_power_containment) ret = smu_get_clock_info(smu, &hw_clocks, PERF_LEVEL_POWER_CONTAINMENT); else ret = smu_get_clock_info(smu, &hw_clocks, PERF_LEVEL_ACTIVITY); if (ret) { pr_err("Error in smu_get_clock_info\n"); goto failed; } clocks->min_engine_clock = hw_clocks.min_eng_clk; clocks->max_engine_clock = hw_clocks.max_eng_clk; clocks->min_memory_clock = hw_clocks.min_mem_clk; clocks->max_memory_clock = hw_clocks.max_mem_clk; clocks->min_bus_bandwidth = hw_clocks.min_bus_bandwidth; clocks->max_bus_bandwidth = hw_clocks.max_bus_bandwidth; clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk; clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk; if (simple_clocks.level == 0) clocks->max_clocks_state = PP_DAL_POWERLEVEL_7; else clocks->max_clocks_state = simple_clocks.level; if (!smu_get_current_shallow_sleep_clocks(smu, &hw_clocks)) { clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk; clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk; } failed: mutex_unlock(&smu->mutex); return ret; } static int smu_set_clockgating_state(void *handle, enum amd_clockgating_state state) { return 0; } static int smu_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static int smu_enable_umd_pstate(void *handle, enum amd_dpm_forced_level *level) { uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK | AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; struct smu_context *smu = (struct smu_context*)(handle); struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); if (!smu->pm_enabled || !smu_dpm_ctx->dpm_context) return -EINVAL; if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) { /* enter umd pstate, save current level, disable gfx cg*/ if (*level & profile_mode_mask) { smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level; smu_dpm_ctx->enable_umd_pstate = true; amdgpu_device_ip_set_clockgating_state(smu->adev, AMD_IP_BLOCK_TYPE_GFX, AMD_CG_STATE_UNGATE); amdgpu_device_ip_set_powergating_state(smu->adev, AMD_IP_BLOCK_TYPE_GFX, AMD_PG_STATE_UNGATE); } } else { /* exit umd pstate, restore level, enable gfx cg*/ if (!(*level & profile_mode_mask)) { if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT) *level = smu_dpm_ctx->saved_dpm_level; smu_dpm_ctx->enable_umd_pstate = false; amdgpu_device_ip_set_clockgating_state(smu->adev, AMD_IP_BLOCK_TYPE_GFX, AMD_CG_STATE_GATE); amdgpu_device_ip_set_powergating_state(smu->adev, AMD_IP_BLOCK_TYPE_GFX, AMD_PG_STATE_GATE); } } return 0; } static int smu_default_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level) { int ret = 0; uint32_t sclk_mask, mclk_mask, soc_mask; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: ret = smu_force_dpm_limit_value(smu, true); break; case AMD_DPM_FORCED_LEVEL_LOW: ret = smu_force_dpm_limit_value(smu, false); break; case AMD_DPM_FORCED_LEVEL_AUTO: case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: ret = smu_unforce_dpm_levels(smu); break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: ret = smu_get_profiling_clk_mask(smu, level, &sclk_mask, &mclk_mask, &soc_mask); if (ret) return ret; smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask); smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask); smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask); break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: default: break; } return ret; } int smu_adjust_power_state_dynamic(struct smu_context *smu, enum amd_dpm_forced_level level, bool skip_display_settings) { int ret = 0; int index = 0; long workload; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); if (!smu->pm_enabled) return -EINVAL; if (!skip_display_settings) { ret = smu_display_config_changed(smu); if (ret) { pr_err("Failed to change display config!"); return ret; } } ret = smu_apply_clocks_adjust_rules(smu); if (ret) { pr_err("Failed to apply clocks adjust rules!"); return ret; } if (!skip_display_settings) { ret = smu_notify_smc_dispaly_config(smu); if (ret) { pr_err("Failed to notify smc display config!"); return ret; } } if (smu_dpm_ctx->dpm_level != level) { ret = smu_asic_set_performance_level(smu, level); if (ret) { ret = smu_default_set_performance_level(smu, level); if (ret) { pr_err("Failed to set performance level!"); return ret; } } /* update the saved copy */ smu_dpm_ctx->dpm_level = level; } if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) { index = fls(smu->workload_mask); index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0; workload = smu->workload_setting[index]; if (smu->power_profile_mode != workload) smu_set_power_profile_mode(smu, &workload, 0); } return ret; } int smu_handle_task(struct smu_context *smu, enum amd_dpm_forced_level level, enum amd_pp_task task_id) { int ret = 0; switch (task_id) { case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE: ret = smu_pre_display_config_changed(smu); if (ret) return ret; ret = smu_set_cpu_power_state(smu); if (ret) return ret; ret = smu_adjust_power_state_dynamic(smu, level, false); break; case AMD_PP_TASK_COMPLETE_INIT: case AMD_PP_TASK_READJUST_POWER_STATE: ret = smu_adjust_power_state_dynamic(smu, level, true); break; default: break; } return ret; } int smu_switch_power_profile(struct smu_context *smu, enum PP_SMC_POWER_PROFILE type, bool en) { struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); long workload; uint32_t index; if (!smu->pm_enabled) return -EINVAL; if (!(type < PP_SMC_POWER_PROFILE_CUSTOM)) return -EINVAL; mutex_lock(&smu->mutex); if (!en) { smu->workload_mask &= ~(1 << smu->workload_prority[type]); index = fls(smu->workload_mask); index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0; workload = smu->workload_setting[index]; } else { smu->workload_mask |= (1 << smu->workload_prority[type]); index = fls(smu->workload_mask); index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0; workload = smu->workload_setting[index]; } if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) smu_set_power_profile_mode(smu, &workload, 0); mutex_unlock(&smu->mutex); return 0; } enum amd_dpm_forced_level smu_get_performance_level(struct smu_context *smu) { struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); enum amd_dpm_forced_level level; if (!smu_dpm_ctx->dpm_context) return -EINVAL; mutex_lock(&(smu->mutex)); level = smu_dpm_ctx->dpm_level; mutex_unlock(&(smu->mutex)); return level; } int smu_force_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level) { struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); int ret = 0; if (!smu_dpm_ctx->dpm_context) return -EINVAL; ret = smu_enable_umd_pstate(smu, &level); if (ret) return ret; ret = smu_handle_task(smu, level, AMD_PP_TASK_READJUST_POWER_STATE); return ret; } int smu_set_display_count(struct smu_context *smu, uint32_t count) { int ret = 0; mutex_lock(&smu->mutex); ret = smu_init_display_count(smu, count); mutex_unlock(&smu->mutex); return ret; } const struct amd_ip_funcs smu_ip_funcs = { .name = "smu", .early_init = smu_early_init, .late_init = smu_late_init, .sw_init = smu_sw_init, .sw_fini = smu_sw_fini, .hw_init = smu_hw_init, .hw_fini = smu_hw_fini, .suspend = smu_suspend, .resume = smu_resume, .is_idle = NULL, .check_soft_reset = NULL, .wait_for_idle = NULL, .soft_reset = NULL, .set_clockgating_state = smu_set_clockgating_state, .set_powergating_state = smu_set_powergating_state, .enable_umd_pstate = smu_enable_umd_pstate, }; const struct amdgpu_ip_block_version smu_v11_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_SMC, .major = 11, .minor = 0, .rev = 0, .funcs = &smu_ip_funcs, }; const struct amdgpu_ip_block_version smu_v12_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_SMC, .major = 12, .minor = 0, .rev = 0, .funcs = &smu_ip_funcs, };