// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2009 Felix Fietkau * Copyright (C) 2011-2012 Gabor Juhos * Copyright (c) 2015, 2019, The Linux Foundation. All rights reserved. * Copyright (c) 2016 John Crispin */ #include #include #include #include #include #include #include #include #include #include #include #include "qca8k.h" #define MIB_DESC(_s, _o, _n) \ { \ .size = (_s), \ .offset = (_o), \ .name = (_n), \ } static const struct qca8k_mib_desc ar8327_mib[] = { MIB_DESC(1, 0x00, "RxBroad"), MIB_DESC(1, 0x04, "RxPause"), MIB_DESC(1, 0x08, "RxMulti"), MIB_DESC(1, 0x0c, "RxFcsErr"), MIB_DESC(1, 0x10, "RxAlignErr"), MIB_DESC(1, 0x14, "RxRunt"), MIB_DESC(1, 0x18, "RxFragment"), MIB_DESC(1, 0x1c, "Rx64Byte"), MIB_DESC(1, 0x20, "Rx128Byte"), MIB_DESC(1, 0x24, "Rx256Byte"), MIB_DESC(1, 0x28, "Rx512Byte"), MIB_DESC(1, 0x2c, "Rx1024Byte"), MIB_DESC(1, 0x30, "Rx1518Byte"), MIB_DESC(1, 0x34, "RxMaxByte"), MIB_DESC(1, 0x38, "RxTooLong"), MIB_DESC(2, 0x3c, "RxGoodByte"), MIB_DESC(2, 0x44, "RxBadByte"), MIB_DESC(1, 0x4c, "RxOverFlow"), MIB_DESC(1, 0x50, "Filtered"), MIB_DESC(1, 0x54, "TxBroad"), MIB_DESC(1, 0x58, "TxPause"), MIB_DESC(1, 0x5c, "TxMulti"), MIB_DESC(1, 0x60, "TxUnderRun"), MIB_DESC(1, 0x64, "Tx64Byte"), MIB_DESC(1, 0x68, "Tx128Byte"), MIB_DESC(1, 0x6c, "Tx256Byte"), MIB_DESC(1, 0x70, "Tx512Byte"), MIB_DESC(1, 0x74, "Tx1024Byte"), MIB_DESC(1, 0x78, "Tx1518Byte"), MIB_DESC(1, 0x7c, "TxMaxByte"), MIB_DESC(1, 0x80, "TxOverSize"), MIB_DESC(2, 0x84, "TxByte"), MIB_DESC(1, 0x8c, "TxCollision"), MIB_DESC(1, 0x90, "TxAbortCol"), MIB_DESC(1, 0x94, "TxMultiCol"), MIB_DESC(1, 0x98, "TxSingleCol"), MIB_DESC(1, 0x9c, "TxExcDefer"), MIB_DESC(1, 0xa0, "TxDefer"), MIB_DESC(1, 0xa4, "TxLateCol"), }; /* The 32bit switch registers are accessed indirectly. To achieve this we need * to set the page of the register. Track the last page that was set to reduce * mdio writes */ static u16 qca8k_current_page = 0xffff; static void qca8k_split_addr(u32 regaddr, u16 *r1, u16 *r2, u16 *page) { regaddr >>= 1; *r1 = regaddr & 0x1e; regaddr >>= 5; *r2 = regaddr & 0x7; regaddr >>= 3; *page = regaddr & 0x3ff; } static u32 qca8k_mii_read32(struct mii_bus *bus, int phy_id, u32 regnum) { u32 val; int ret; ret = bus->read(bus, phy_id, regnum); if (ret >= 0) { val = ret; ret = bus->read(bus, phy_id, regnum + 1); val |= ret << 16; } if (ret < 0) { dev_err_ratelimited(&bus->dev, "failed to read qca8k 32bit register\n"); return ret; } return val; } static void qca8k_mii_write32(struct mii_bus *bus, int phy_id, u32 regnum, u32 val) { u16 lo, hi; int ret; lo = val & 0xffff; hi = (u16)(val >> 16); ret = bus->write(bus, phy_id, regnum, lo); if (ret >= 0) ret = bus->write(bus, phy_id, regnum + 1, hi); if (ret < 0) dev_err_ratelimited(&bus->dev, "failed to write qca8k 32bit register\n"); } static int qca8k_set_page(struct mii_bus *bus, u16 page) { int ret; if (page == qca8k_current_page) return 0; ret = bus->write(bus, 0x18, 0, page); if (ret < 0) { dev_err_ratelimited(&bus->dev, "failed to set qca8k page\n"); return ret; } qca8k_current_page = page; return 0; } static u32 qca8k_read(struct qca8k_priv *priv, u32 reg) { struct mii_bus *bus = priv->bus; u16 r1, r2, page; u32 val; qca8k_split_addr(reg, &r1, &r2, &page); mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); val = qca8k_set_page(bus, page); if (val < 0) goto exit; val = qca8k_mii_read32(bus, 0x10 | r2, r1); exit: mutex_unlock(&bus->mdio_lock); return val; } static void qca8k_write(struct qca8k_priv *priv, u32 reg, u32 val) { struct mii_bus *bus = priv->bus; u16 r1, r2, page; int ret; qca8k_split_addr(reg, &r1, &r2, &page); mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); ret = qca8k_set_page(bus, page); if (ret < 0) goto exit; qca8k_mii_write32(bus, 0x10 | r2, r1, val); exit: mutex_unlock(&bus->mdio_lock); } static u32 qca8k_rmw(struct qca8k_priv *priv, u32 reg, u32 mask, u32 val) { struct mii_bus *bus = priv->bus; u16 r1, r2, page; u32 ret; qca8k_split_addr(reg, &r1, &r2, &page); mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); ret = qca8k_set_page(bus, page); if (ret < 0) goto exit; ret = qca8k_mii_read32(bus, 0x10 | r2, r1); ret &= ~mask; ret |= val; qca8k_mii_write32(bus, 0x10 | r2, r1, ret); exit: mutex_unlock(&bus->mdio_lock); return ret; } static void qca8k_reg_set(struct qca8k_priv *priv, u32 reg, u32 val) { qca8k_rmw(priv, reg, 0, val); } static void qca8k_reg_clear(struct qca8k_priv *priv, u32 reg, u32 val) { qca8k_rmw(priv, reg, val, 0); } static int qca8k_regmap_read(void *ctx, uint32_t reg, uint32_t *val) { struct qca8k_priv *priv = (struct qca8k_priv *)ctx; int ret; ret = qca8k_read(priv, reg); if (ret < 0) return ret; *val = ret; return 0; } static int qca8k_regmap_write(void *ctx, uint32_t reg, uint32_t val) { struct qca8k_priv *priv = (struct qca8k_priv *)ctx; qca8k_write(priv, reg, val); return 0; } static const struct regmap_range qca8k_readable_ranges[] = { regmap_reg_range(0x0000, 0x00e4), /* Global control */ regmap_reg_range(0x0100, 0x0168), /* EEE control */ regmap_reg_range(0x0200, 0x0270), /* Parser control */ regmap_reg_range(0x0400, 0x0454), /* ACL */ regmap_reg_range(0x0600, 0x0718), /* Lookup */ regmap_reg_range(0x0800, 0x0b70), /* QM */ regmap_reg_range(0x0c00, 0x0c80), /* PKT */ regmap_reg_range(0x0e00, 0x0e98), /* L3 */ regmap_reg_range(0x1000, 0x10ac), /* MIB - Port0 */ regmap_reg_range(0x1100, 0x11ac), /* MIB - Port1 */ regmap_reg_range(0x1200, 0x12ac), /* MIB - Port2 */ regmap_reg_range(0x1300, 0x13ac), /* MIB - Port3 */ regmap_reg_range(0x1400, 0x14ac), /* MIB - Port4 */ regmap_reg_range(0x1500, 0x15ac), /* MIB - Port5 */ regmap_reg_range(0x1600, 0x16ac), /* MIB - Port6 */ }; static const struct regmap_access_table qca8k_readable_table = { .yes_ranges = qca8k_readable_ranges, .n_yes_ranges = ARRAY_SIZE(qca8k_readable_ranges), }; static struct regmap_config qca8k_regmap_config = { .reg_bits = 16, .val_bits = 32, .reg_stride = 4, .max_register = 0x16ac, /* end MIB - Port6 range */ .reg_read = qca8k_regmap_read, .reg_write = qca8k_regmap_write, .rd_table = &qca8k_readable_table, }; static int qca8k_busy_wait(struct qca8k_priv *priv, u32 reg, u32 mask) { u32 val; int ret; ret = read_poll_timeout(qca8k_read, val, !(val & mask), 0, QCA8K_BUSY_WAIT_TIMEOUT * USEC_PER_MSEC, false, priv, reg); /* Check if qca8k_read has failed for a different reason * before returning -ETIMEDOUT */ if (ret < 0 && val < 0) return val; return ret; } static int qca8k_fdb_read(struct qca8k_priv *priv, struct qca8k_fdb *fdb) { u32 reg[4], val; int i; /* load the ARL table into an array */ for (i = 0; i < 4; i++) { val = qca8k_read(priv, QCA8K_REG_ATU_DATA0 + (i * 4)); if (val < 0) return val; reg[i] = val; } /* vid - 83:72 */ fdb->vid = (reg[2] >> QCA8K_ATU_VID_S) & QCA8K_ATU_VID_M; /* aging - 67:64 */ fdb->aging = reg[2] & QCA8K_ATU_STATUS_M; /* portmask - 54:48 */ fdb->port_mask = (reg[1] >> QCA8K_ATU_PORT_S) & QCA8K_ATU_PORT_M; /* mac - 47:0 */ fdb->mac[0] = (reg[1] >> QCA8K_ATU_ADDR0_S) & 0xff; fdb->mac[1] = reg[1] & 0xff; fdb->mac[2] = (reg[0] >> QCA8K_ATU_ADDR2_S) & 0xff; fdb->mac[3] = (reg[0] >> QCA8K_ATU_ADDR3_S) & 0xff; fdb->mac[4] = (reg[0] >> QCA8K_ATU_ADDR4_S) & 0xff; fdb->mac[5] = reg[0] & 0xff; return 0; } static void qca8k_fdb_write(struct qca8k_priv *priv, u16 vid, u8 port_mask, const u8 *mac, u8 aging) { u32 reg[3] = { 0 }; int i; /* vid - 83:72 */ reg[2] = (vid & QCA8K_ATU_VID_M) << QCA8K_ATU_VID_S; /* aging - 67:64 */ reg[2] |= aging & QCA8K_ATU_STATUS_M; /* portmask - 54:48 */ reg[1] = (port_mask & QCA8K_ATU_PORT_M) << QCA8K_ATU_PORT_S; /* mac - 47:0 */ reg[1] |= mac[0] << QCA8K_ATU_ADDR0_S; reg[1] |= mac[1]; reg[0] |= mac[2] << QCA8K_ATU_ADDR2_S; reg[0] |= mac[3] << QCA8K_ATU_ADDR3_S; reg[0] |= mac[4] << QCA8K_ATU_ADDR4_S; reg[0] |= mac[5]; /* load the array into the ARL table */ for (i = 0; i < 3; i++) qca8k_write(priv, QCA8K_REG_ATU_DATA0 + (i * 4), reg[i]); } static int qca8k_fdb_access(struct qca8k_priv *priv, enum qca8k_fdb_cmd cmd, int port) { u32 reg; /* Set the command and FDB index */ reg = QCA8K_ATU_FUNC_BUSY; reg |= cmd; if (port >= 0) { reg |= QCA8K_ATU_FUNC_PORT_EN; reg |= (port & QCA8K_ATU_FUNC_PORT_M) << QCA8K_ATU_FUNC_PORT_S; } /* Write the function register triggering the table access */ qca8k_write(priv, QCA8K_REG_ATU_FUNC, reg); /* wait for completion */ if (qca8k_busy_wait(priv, QCA8K_REG_ATU_FUNC, QCA8K_ATU_FUNC_BUSY)) return -1; /* Check for table full violation when adding an entry */ if (cmd == QCA8K_FDB_LOAD) { reg = qca8k_read(priv, QCA8K_REG_ATU_FUNC); if (reg < 0) return reg; if (reg & QCA8K_ATU_FUNC_FULL) return -1; } return 0; } static int qca8k_fdb_next(struct qca8k_priv *priv, struct qca8k_fdb *fdb, int port) { int ret; qca8k_fdb_write(priv, fdb->vid, fdb->port_mask, fdb->mac, fdb->aging); ret = qca8k_fdb_access(priv, QCA8K_FDB_NEXT, port); if (ret < 0) return ret; return qca8k_fdb_read(priv, fdb); } static int qca8k_fdb_add(struct qca8k_priv *priv, const u8 *mac, u16 port_mask, u16 vid, u8 aging) { int ret; mutex_lock(&priv->reg_mutex); qca8k_fdb_write(priv, vid, port_mask, mac, aging); ret = qca8k_fdb_access(priv, QCA8K_FDB_LOAD, -1); mutex_unlock(&priv->reg_mutex); return ret; } static int qca8k_fdb_del(struct qca8k_priv *priv, const u8 *mac, u16 port_mask, u16 vid) { int ret; mutex_lock(&priv->reg_mutex); qca8k_fdb_write(priv, vid, port_mask, mac, 0); ret = qca8k_fdb_access(priv, QCA8K_FDB_PURGE, -1); mutex_unlock(&priv->reg_mutex); return ret; } static void qca8k_fdb_flush(struct qca8k_priv *priv) { mutex_lock(&priv->reg_mutex); qca8k_fdb_access(priv, QCA8K_FDB_FLUSH, -1); mutex_unlock(&priv->reg_mutex); } static int qca8k_vlan_access(struct qca8k_priv *priv, enum qca8k_vlan_cmd cmd, u16 vid) { u32 reg; /* Set the command and VLAN index */ reg = QCA8K_VTU_FUNC1_BUSY; reg |= cmd; reg |= vid << QCA8K_VTU_FUNC1_VID_S; /* Write the function register triggering the table access */ qca8k_write(priv, QCA8K_REG_VTU_FUNC1, reg); /* wait for completion */ if (qca8k_busy_wait(priv, QCA8K_REG_VTU_FUNC1, QCA8K_VTU_FUNC1_BUSY)) return -ETIMEDOUT; /* Check for table full violation when adding an entry */ if (cmd == QCA8K_VLAN_LOAD) { reg = qca8k_read(priv, QCA8K_REG_VTU_FUNC1); if (reg < 0) return reg; if (reg & QCA8K_VTU_FUNC1_FULL) return -ENOMEM; } return 0; } static int qca8k_vlan_add(struct qca8k_priv *priv, u8 port, u16 vid, bool untagged) { u32 reg; int ret; /* We do the right thing with VLAN 0 and treat it as untagged while preserving the tag on egress. */ if (vid == 0) return 0; mutex_lock(&priv->reg_mutex); ret = qca8k_vlan_access(priv, QCA8K_VLAN_READ, vid); if (ret < 0) goto out; reg = qca8k_read(priv, QCA8K_REG_VTU_FUNC0); if (reg < 0) return reg; reg |= QCA8K_VTU_FUNC0_VALID | QCA8K_VTU_FUNC0_IVL_EN; reg &= ~(QCA8K_VTU_FUNC0_EG_MODE_MASK << QCA8K_VTU_FUNC0_EG_MODE_S(port)); if (untagged) reg |= QCA8K_VTU_FUNC0_EG_MODE_UNTAG << QCA8K_VTU_FUNC0_EG_MODE_S(port); else reg |= QCA8K_VTU_FUNC0_EG_MODE_TAG << QCA8K_VTU_FUNC0_EG_MODE_S(port); qca8k_write(priv, QCA8K_REG_VTU_FUNC0, reg); ret = qca8k_vlan_access(priv, QCA8K_VLAN_LOAD, vid); out: mutex_unlock(&priv->reg_mutex); return ret; } static int qca8k_vlan_del(struct qca8k_priv *priv, u8 port, u16 vid) { u32 reg, mask; int ret, i; bool del; mutex_lock(&priv->reg_mutex); ret = qca8k_vlan_access(priv, QCA8K_VLAN_READ, vid); if (ret < 0) goto out; reg = qca8k_read(priv, QCA8K_REG_VTU_FUNC0); if (reg < 0) return reg; reg &= ~(3 << QCA8K_VTU_FUNC0_EG_MODE_S(port)); reg |= QCA8K_VTU_FUNC0_EG_MODE_NOT << QCA8K_VTU_FUNC0_EG_MODE_S(port); /* Check if we're the last member to be removed */ del = true; for (i = 0; i < QCA8K_NUM_PORTS; i++) { mask = QCA8K_VTU_FUNC0_EG_MODE_NOT; mask <<= QCA8K_VTU_FUNC0_EG_MODE_S(i); if ((reg & mask) != mask) { del = false; break; } } if (del) { ret = qca8k_vlan_access(priv, QCA8K_VLAN_PURGE, vid); } else { qca8k_write(priv, QCA8K_REG_VTU_FUNC0, reg); ret = qca8k_vlan_access(priv, QCA8K_VLAN_LOAD, vid); } out: mutex_unlock(&priv->reg_mutex); return ret; } static void qca8k_mib_init(struct qca8k_priv *priv) { mutex_lock(&priv->reg_mutex); qca8k_reg_set(priv, QCA8K_REG_MIB, QCA8K_MIB_FLUSH | QCA8K_MIB_BUSY); qca8k_busy_wait(priv, QCA8K_REG_MIB, QCA8K_MIB_BUSY); qca8k_reg_set(priv, QCA8K_REG_MIB, QCA8K_MIB_CPU_KEEP); qca8k_write(priv, QCA8K_REG_MODULE_EN, QCA8K_MODULE_EN_MIB); mutex_unlock(&priv->reg_mutex); } static void qca8k_port_set_status(struct qca8k_priv *priv, int port, int enable) { u32 mask = QCA8K_PORT_STATUS_TXMAC | QCA8K_PORT_STATUS_RXMAC; /* Port 0 and 6 have no internal PHY */ if (port > 0 && port < 6) mask |= QCA8K_PORT_STATUS_LINK_AUTO; if (enable) qca8k_reg_set(priv, QCA8K_REG_PORT_STATUS(port), mask); else qca8k_reg_clear(priv, QCA8K_REG_PORT_STATUS(port), mask); } static u32 qca8k_port_to_phy(int port) { /* From Andrew Lunn: * Port 0 has no internal phy. * Port 1 has an internal PHY at MDIO address 0. * Port 2 has an internal PHY at MDIO address 1. * ... * Port 5 has an internal PHY at MDIO address 4. * Port 6 has no internal PHY. */ return port - 1; } static int qca8k_mdio_write(struct qca8k_priv *priv, int port, u32 regnum, u16 data) { u32 phy, val; if (regnum >= QCA8K_MDIO_MASTER_MAX_REG) return -EINVAL; /* callee is responsible for not passing bad ports, * but we still would like to make spills impossible. */ phy = qca8k_port_to_phy(port) % PHY_MAX_ADDR; val = QCA8K_MDIO_MASTER_BUSY | QCA8K_MDIO_MASTER_EN | QCA8K_MDIO_MASTER_WRITE | QCA8K_MDIO_MASTER_PHY_ADDR(phy) | QCA8K_MDIO_MASTER_REG_ADDR(regnum) | QCA8K_MDIO_MASTER_DATA(data); qca8k_write(priv, QCA8K_MDIO_MASTER_CTRL, val); return qca8k_busy_wait(priv, QCA8K_MDIO_MASTER_CTRL, QCA8K_MDIO_MASTER_BUSY); } static int qca8k_mdio_read(struct qca8k_priv *priv, int port, u32 regnum) { u32 phy, val; if (regnum >= QCA8K_MDIO_MASTER_MAX_REG) return -EINVAL; /* callee is responsible for not passing bad ports, * but we still would like to make spills impossible. */ phy = qca8k_port_to_phy(port) % PHY_MAX_ADDR; val = QCA8K_MDIO_MASTER_BUSY | QCA8K_MDIO_MASTER_EN | QCA8K_MDIO_MASTER_READ | QCA8K_MDIO_MASTER_PHY_ADDR(phy) | QCA8K_MDIO_MASTER_REG_ADDR(regnum); qca8k_write(priv, QCA8K_MDIO_MASTER_CTRL, val); if (qca8k_busy_wait(priv, QCA8K_MDIO_MASTER_CTRL, QCA8K_MDIO_MASTER_BUSY)) return -ETIMEDOUT; val = qca8k_read(priv, QCA8K_MDIO_MASTER_CTRL); if (val < 0) return val; val &= QCA8K_MDIO_MASTER_DATA_MASK; return val; } static int qca8k_phy_write(struct dsa_switch *ds, int port, int regnum, u16 data) { struct qca8k_priv *priv = ds->priv; return qca8k_mdio_write(priv, port, regnum, data); } static int qca8k_phy_read(struct dsa_switch *ds, int port, int regnum) { struct qca8k_priv *priv = ds->priv; int ret; ret = qca8k_mdio_read(priv, port, regnum); if (ret < 0) return 0xffff; return ret; } static int qca8k_setup_mdio_bus(struct qca8k_priv *priv) { u32 internal_mdio_mask = 0, external_mdio_mask = 0, reg; struct device_node *ports, *port; int err; ports = of_get_child_by_name(priv->dev->of_node, "ports"); if (!ports) return -EINVAL; for_each_available_child_of_node(ports, port) { err = of_property_read_u32(port, "reg", ®); if (err) { of_node_put(port); of_node_put(ports); return err; } if (!dsa_is_user_port(priv->ds, reg)) continue; if (of_property_read_bool(port, "phy-handle")) external_mdio_mask |= BIT(reg); else internal_mdio_mask |= BIT(reg); } of_node_put(ports); if (!external_mdio_mask && !internal_mdio_mask) { dev_err(priv->dev, "no PHYs are defined.\n"); return -EINVAL; } /* The QCA8K_MDIO_MASTER_EN Bit, which grants access to PHYs through * the MDIO_MASTER register also _disconnects_ the external MDC * passthrough to the internal PHYs. It's not possible to use both * configurations at the same time! * * Because this came up during the review process: * If the external mdio-bus driver is capable magically disabling * the QCA8K_MDIO_MASTER_EN and mutex/spin-locking out the qca8k's * accessors for the time being, it would be possible to pull this * off. */ if (!!external_mdio_mask && !!internal_mdio_mask) { dev_err(priv->dev, "either internal or external mdio bus configuration is supported.\n"); return -EINVAL; } if (external_mdio_mask) { /* Make sure to disable the internal mdio bus in cases * a dt-overlay and driver reload changed the configuration */ qca8k_reg_clear(priv, QCA8K_MDIO_MASTER_CTRL, QCA8K_MDIO_MASTER_EN); return 0; } priv->ops.phy_read = qca8k_phy_read; priv->ops.phy_write = qca8k_phy_write; return 0; } static int qca8k_setup(struct dsa_switch *ds) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; int ret, i; /* Make sure that port 0 is the cpu port */ if (!dsa_is_cpu_port(ds, 0)) { dev_err(priv->dev, "port 0 is not the CPU port"); return -EINVAL; } mutex_init(&priv->reg_mutex); /* Start by setting up the register mapping */ priv->regmap = devm_regmap_init(ds->dev, NULL, priv, &qca8k_regmap_config); if (IS_ERR(priv->regmap)) dev_warn(priv->dev, "regmap initialization failed"); ret = qca8k_setup_mdio_bus(priv); if (ret) return ret; /* Enable CPU Port */ qca8k_reg_set(priv, QCA8K_REG_GLOBAL_FW_CTRL0, QCA8K_GLOBAL_FW_CTRL0_CPU_PORT_EN); /* Enable MIB counters */ qca8k_mib_init(priv); /* Enable QCA header mode on the cpu port */ qca8k_write(priv, QCA8K_REG_PORT_HDR_CTRL(QCA8K_CPU_PORT), QCA8K_PORT_HDR_CTRL_ALL << QCA8K_PORT_HDR_CTRL_TX_S | QCA8K_PORT_HDR_CTRL_ALL << QCA8K_PORT_HDR_CTRL_RX_S); /* Disable forwarding by default on all ports */ for (i = 0; i < QCA8K_NUM_PORTS; i++) qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(i), QCA8K_PORT_LOOKUP_MEMBER, 0); /* Disable MAC by default on all ports */ for (i = 1; i < QCA8K_NUM_PORTS; i++) qca8k_port_set_status(priv, i, 0); /* Forward all unknown frames to CPU port for Linux processing */ qca8k_write(priv, QCA8K_REG_GLOBAL_FW_CTRL1, BIT(0) << QCA8K_GLOBAL_FW_CTRL1_IGMP_DP_S | BIT(0) << QCA8K_GLOBAL_FW_CTRL1_BC_DP_S | BIT(0) << QCA8K_GLOBAL_FW_CTRL1_MC_DP_S | BIT(0) << QCA8K_GLOBAL_FW_CTRL1_UC_DP_S); /* Setup connection between CPU port & user ports */ for (i = 0; i < QCA8K_NUM_PORTS; i++) { /* CPU port gets connected to all user ports of the switch */ if (dsa_is_cpu_port(ds, i)) { qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(QCA8K_CPU_PORT), QCA8K_PORT_LOOKUP_MEMBER, dsa_user_ports(ds)); } /* Individual user ports get connected to CPU port only */ if (dsa_is_user_port(ds, i)) { int shift = 16 * (i % 2); qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(i), QCA8K_PORT_LOOKUP_MEMBER, BIT(QCA8K_CPU_PORT)); /* Enable ARP Auto-learning by default */ qca8k_reg_set(priv, QCA8K_PORT_LOOKUP_CTRL(i), QCA8K_PORT_LOOKUP_LEARN); /* For port based vlans to work we need to set the * default egress vid */ qca8k_rmw(priv, QCA8K_EGRESS_VLAN(i), 0xfff << shift, QCA8K_PORT_VID_DEF << shift); qca8k_write(priv, QCA8K_REG_PORT_VLAN_CTRL0(i), QCA8K_PORT_VLAN_CVID(QCA8K_PORT_VID_DEF) | QCA8K_PORT_VLAN_SVID(QCA8K_PORT_VID_DEF)); } } /* Setup our port MTUs to match power on defaults */ for (i = 0; i < QCA8K_NUM_PORTS; i++) priv->port_mtu[i] = ETH_FRAME_LEN + ETH_FCS_LEN; qca8k_write(priv, QCA8K_MAX_FRAME_SIZE, ETH_FRAME_LEN + ETH_FCS_LEN); /* Flush the FDB table */ qca8k_fdb_flush(priv); /* We don't have interrupts for link changes, so we need to poll */ ds->pcs_poll = true; return 0; } static void qca8k_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode, const struct phylink_link_state *state) { struct qca8k_priv *priv = ds->priv; u32 reg, val; switch (port) { case 0: /* 1st CPU port */ if (state->interface != PHY_INTERFACE_MODE_RGMII && state->interface != PHY_INTERFACE_MODE_RGMII_ID && state->interface != PHY_INTERFACE_MODE_SGMII) return; reg = QCA8K_REG_PORT0_PAD_CTRL; break; case 1: case 2: case 3: case 4: case 5: /* Internal PHY, nothing to do */ return; case 6: /* 2nd CPU port / external PHY */ if (state->interface != PHY_INTERFACE_MODE_RGMII && state->interface != PHY_INTERFACE_MODE_RGMII_ID && state->interface != PHY_INTERFACE_MODE_SGMII && state->interface != PHY_INTERFACE_MODE_1000BASEX) return; reg = QCA8K_REG_PORT6_PAD_CTRL; break; default: dev_err(ds->dev, "%s: unsupported port: %i\n", __func__, port); return; } if (port != 6 && phylink_autoneg_inband(mode)) { dev_err(ds->dev, "%s: in-band negotiation unsupported\n", __func__); return; } switch (state->interface) { case PHY_INTERFACE_MODE_RGMII: /* RGMII mode means no delay so don't enable the delay */ qca8k_write(priv, reg, QCA8K_PORT_PAD_RGMII_EN); break; case PHY_INTERFACE_MODE_RGMII_ID: /* RGMII_ID needs internal delay. This is enabled through * PORT5_PAD_CTRL for all ports, rather than individual port * registers */ qca8k_write(priv, reg, QCA8K_PORT_PAD_RGMII_EN | QCA8K_PORT_PAD_RGMII_TX_DELAY(QCA8K_MAX_DELAY) | QCA8K_PORT_PAD_RGMII_RX_DELAY(QCA8K_MAX_DELAY)); qca8k_write(priv, QCA8K_REG_PORT5_PAD_CTRL, QCA8K_PORT_PAD_RGMII_RX_DELAY_EN); break; case PHY_INTERFACE_MODE_SGMII: case PHY_INTERFACE_MODE_1000BASEX: /* Enable SGMII on the port */ qca8k_write(priv, reg, QCA8K_PORT_PAD_SGMII_EN); /* Enable/disable SerDes auto-negotiation as necessary */ val = qca8k_read(priv, QCA8K_REG_PWS); if (phylink_autoneg_inband(mode)) val &= ~QCA8K_PWS_SERDES_AEN_DIS; else val |= QCA8K_PWS_SERDES_AEN_DIS; qca8k_write(priv, QCA8K_REG_PWS, val); /* Configure the SGMII parameters */ val = qca8k_read(priv, QCA8K_REG_SGMII_CTRL); val |= QCA8K_SGMII_EN_PLL | QCA8K_SGMII_EN_RX | QCA8K_SGMII_EN_TX | QCA8K_SGMII_EN_SD; if (dsa_is_cpu_port(ds, port)) { /* CPU port, we're talking to the CPU MAC, be a PHY */ val &= ~QCA8K_SGMII_MODE_CTRL_MASK; val |= QCA8K_SGMII_MODE_CTRL_PHY; } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { val &= ~QCA8K_SGMII_MODE_CTRL_MASK; val |= QCA8K_SGMII_MODE_CTRL_MAC; } else if (state->interface == PHY_INTERFACE_MODE_1000BASEX) { val &= ~QCA8K_SGMII_MODE_CTRL_MASK; val |= QCA8K_SGMII_MODE_CTRL_BASEX; } qca8k_write(priv, QCA8K_REG_SGMII_CTRL, val); break; default: dev_err(ds->dev, "xMII mode %s not supported for port %d\n", phy_modes(state->interface), port); return; } } static void qca8k_phylink_validate(struct dsa_switch *ds, int port, unsigned long *supported, struct phylink_link_state *state) { __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; switch (port) { case 0: /* 1st CPU port */ if (state->interface != PHY_INTERFACE_MODE_NA && state->interface != PHY_INTERFACE_MODE_RGMII && state->interface != PHY_INTERFACE_MODE_RGMII_ID && state->interface != PHY_INTERFACE_MODE_SGMII) goto unsupported; break; case 1: case 2: case 3: case 4: case 5: /* Internal PHY */ if (state->interface != PHY_INTERFACE_MODE_NA && state->interface != PHY_INTERFACE_MODE_GMII) goto unsupported; break; case 6: /* 2nd CPU port / external PHY */ if (state->interface != PHY_INTERFACE_MODE_NA && state->interface != PHY_INTERFACE_MODE_RGMII && state->interface != PHY_INTERFACE_MODE_RGMII_ID && state->interface != PHY_INTERFACE_MODE_SGMII && state->interface != PHY_INTERFACE_MODE_1000BASEX) goto unsupported; break; default: unsupported: linkmode_zero(supported); return; } phylink_set_port_modes(mask); phylink_set(mask, Autoneg); phylink_set(mask, 1000baseT_Full); phylink_set(mask, 10baseT_Half); phylink_set(mask, 10baseT_Full); phylink_set(mask, 100baseT_Half); phylink_set(mask, 100baseT_Full); if (state->interface == PHY_INTERFACE_MODE_1000BASEX) phylink_set(mask, 1000baseX_Full); phylink_set(mask, Pause); phylink_set(mask, Asym_Pause); linkmode_and(supported, supported, mask); linkmode_and(state->advertising, state->advertising, mask); } static int qca8k_phylink_mac_link_state(struct dsa_switch *ds, int port, struct phylink_link_state *state) { struct qca8k_priv *priv = ds->priv; u32 reg; reg = qca8k_read(priv, QCA8K_REG_PORT_STATUS(port)); if (reg < 0) return reg; state->link = !!(reg & QCA8K_PORT_STATUS_LINK_UP); state->an_complete = state->link; state->an_enabled = !!(reg & QCA8K_PORT_STATUS_LINK_AUTO); state->duplex = (reg & QCA8K_PORT_STATUS_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF; switch (reg & QCA8K_PORT_STATUS_SPEED) { case QCA8K_PORT_STATUS_SPEED_10: state->speed = SPEED_10; break; case QCA8K_PORT_STATUS_SPEED_100: state->speed = SPEED_100; break; case QCA8K_PORT_STATUS_SPEED_1000: state->speed = SPEED_1000; break; default: state->speed = SPEED_UNKNOWN; break; } state->pause = MLO_PAUSE_NONE; if (reg & QCA8K_PORT_STATUS_RXFLOW) state->pause |= MLO_PAUSE_RX; if (reg & QCA8K_PORT_STATUS_TXFLOW) state->pause |= MLO_PAUSE_TX; return 1; } static void qca8k_phylink_mac_link_down(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { struct qca8k_priv *priv = ds->priv; qca8k_port_set_status(priv, port, 0); } static void qca8k_phylink_mac_link_up(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface, struct phy_device *phydev, int speed, int duplex, bool tx_pause, bool rx_pause) { struct qca8k_priv *priv = ds->priv; u32 reg; if (phylink_autoneg_inband(mode)) { reg = QCA8K_PORT_STATUS_LINK_AUTO; } else { switch (speed) { case SPEED_10: reg = QCA8K_PORT_STATUS_SPEED_10; break; case SPEED_100: reg = QCA8K_PORT_STATUS_SPEED_100; break; case SPEED_1000: reg = QCA8K_PORT_STATUS_SPEED_1000; break; default: reg = QCA8K_PORT_STATUS_LINK_AUTO; break; } if (duplex == DUPLEX_FULL) reg |= QCA8K_PORT_STATUS_DUPLEX; if (rx_pause || dsa_is_cpu_port(ds, port)) reg |= QCA8K_PORT_STATUS_RXFLOW; if (tx_pause || dsa_is_cpu_port(ds, port)) reg |= QCA8K_PORT_STATUS_TXFLOW; } reg |= QCA8K_PORT_STATUS_TXMAC | QCA8K_PORT_STATUS_RXMAC; qca8k_write(priv, QCA8K_REG_PORT_STATUS(port), reg); } static void qca8k_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *data) { int i; if (stringset != ETH_SS_STATS) return; for (i = 0; i < ARRAY_SIZE(ar8327_mib); i++) strncpy(data + i * ETH_GSTRING_LEN, ar8327_mib[i].name, ETH_GSTRING_LEN); } static void qca8k_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; const struct qca8k_mib_desc *mib; u32 reg, i, val; u64 hi; for (i = 0; i < ARRAY_SIZE(ar8327_mib); i++) { mib = &ar8327_mib[i]; reg = QCA8K_PORT_MIB_COUNTER(port) + mib->offset; val = qca8k_read(priv, reg); if (val < 0) continue; if (mib->size == 2) { hi = qca8k_read(priv, reg + 4); if (hi < 0) continue; } data[i] = val; if (mib->size == 2) data[i] |= hi << 32; } } static int qca8k_get_sset_count(struct dsa_switch *ds, int port, int sset) { if (sset != ETH_SS_STATS) return 0; return ARRAY_SIZE(ar8327_mib); } static int qca8k_set_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *eee) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; u32 lpi_en = QCA8K_REG_EEE_CTRL_LPI_EN(port); int ret = 0; u32 reg; mutex_lock(&priv->reg_mutex); reg = qca8k_read(priv, QCA8K_REG_EEE_CTRL); if (reg < 0) { ret = reg; goto exit; } if (eee->eee_enabled) reg |= lpi_en; else reg &= ~lpi_en; qca8k_write(priv, QCA8K_REG_EEE_CTRL, reg); exit: mutex_unlock(&priv->reg_mutex); return ret; } static int qca8k_get_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e) { /* Nothing to do on the port's MAC */ return 0; } static void qca8k_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; u32 stp_state; switch (state) { case BR_STATE_DISABLED: stp_state = QCA8K_PORT_LOOKUP_STATE_DISABLED; break; case BR_STATE_BLOCKING: stp_state = QCA8K_PORT_LOOKUP_STATE_BLOCKING; break; case BR_STATE_LISTENING: stp_state = QCA8K_PORT_LOOKUP_STATE_LISTENING; break; case BR_STATE_LEARNING: stp_state = QCA8K_PORT_LOOKUP_STATE_LEARNING; break; case BR_STATE_FORWARDING: default: stp_state = QCA8K_PORT_LOOKUP_STATE_FORWARD; break; } qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port), QCA8K_PORT_LOOKUP_STATE_MASK, stp_state); } static int qca8k_port_bridge_join(struct dsa_switch *ds, int port, struct net_device *br) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; int port_mask = BIT(QCA8K_CPU_PORT); int i; for (i = 1; i < QCA8K_NUM_PORTS; i++) { if (dsa_to_port(ds, i)->bridge_dev != br) continue; /* Add this port to the portvlan mask of the other ports * in the bridge */ qca8k_reg_set(priv, QCA8K_PORT_LOOKUP_CTRL(i), BIT(port)); if (i != port) port_mask |= BIT(i); } /* Add all other ports to this ports portvlan mask */ qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port), QCA8K_PORT_LOOKUP_MEMBER, port_mask); return 0; } static void qca8k_port_bridge_leave(struct dsa_switch *ds, int port, struct net_device *br) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; int i; for (i = 1; i < QCA8K_NUM_PORTS; i++) { if (dsa_to_port(ds, i)->bridge_dev != br) continue; /* Remove this port to the portvlan mask of the other ports * in the bridge */ qca8k_reg_clear(priv, QCA8K_PORT_LOOKUP_CTRL(i), BIT(port)); } /* Set the cpu port to be the only one in the portvlan mask of * this port */ qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port), QCA8K_PORT_LOOKUP_MEMBER, BIT(QCA8K_CPU_PORT)); } static int qca8k_port_enable(struct dsa_switch *ds, int port, struct phy_device *phy) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; qca8k_port_set_status(priv, port, 1); priv->port_sts[port].enabled = 1; if (dsa_is_user_port(ds, port)) phy_support_asym_pause(phy); return 0; } static void qca8k_port_disable(struct dsa_switch *ds, int port) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; qca8k_port_set_status(priv, port, 0); priv->port_sts[port].enabled = 0; } static int qca8k_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu) { struct qca8k_priv *priv = ds->priv; int i, mtu = 0; priv->port_mtu[port] = new_mtu; for (i = 0; i < QCA8K_NUM_PORTS; i++) if (priv->port_mtu[i] > mtu) mtu = priv->port_mtu[i]; /* Include L2 header / FCS length */ qca8k_write(priv, QCA8K_MAX_FRAME_SIZE, mtu + ETH_HLEN + ETH_FCS_LEN); return 0; } static int qca8k_port_max_mtu(struct dsa_switch *ds, int port) { return QCA8K_MAX_MTU; } static int qca8k_port_fdb_insert(struct qca8k_priv *priv, const u8 *addr, u16 port_mask, u16 vid) { /* Set the vid to the port vlan id if no vid is set */ if (!vid) vid = QCA8K_PORT_VID_DEF; return qca8k_fdb_add(priv, addr, port_mask, vid, QCA8K_ATU_STATUS_STATIC); } static int qca8k_port_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; u16 port_mask = BIT(port); return qca8k_port_fdb_insert(priv, addr, port_mask, vid); } static int qca8k_port_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; u16 port_mask = BIT(port); if (!vid) vid = QCA8K_PORT_VID_DEF; return qca8k_fdb_del(priv, addr, port_mask, vid); } static int qca8k_port_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb, void *data) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; struct qca8k_fdb _fdb = { 0 }; int cnt = QCA8K_NUM_FDB_RECORDS; bool is_static; int ret = 0; mutex_lock(&priv->reg_mutex); while (cnt-- && !qca8k_fdb_next(priv, &_fdb, port)) { if (!_fdb.aging) break; is_static = (_fdb.aging == QCA8K_ATU_STATUS_STATIC); ret = cb(_fdb.mac, _fdb.vid, is_static, data); if (ret) break; } mutex_unlock(&priv->reg_mutex); return 0; } static int qca8k_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering, struct netlink_ext_ack *extack) { struct qca8k_priv *priv = ds->priv; if (vlan_filtering) { qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port), QCA8K_PORT_LOOKUP_VLAN_MODE, QCA8K_PORT_LOOKUP_VLAN_MODE_SECURE); } else { qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port), QCA8K_PORT_LOOKUP_VLAN_MODE, QCA8K_PORT_LOOKUP_VLAN_MODE_NONE); } return 0; } static int qca8k_port_vlan_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan, struct netlink_ext_ack *extack) { bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; struct qca8k_priv *priv = ds->priv; int ret = 0; ret = qca8k_vlan_add(priv, port, vlan->vid, untagged); if (ret) { dev_err(priv->dev, "Failed to add VLAN to port %d (%d)", port, ret); return ret; } if (pvid) { int shift = 16 * (port % 2); qca8k_rmw(priv, QCA8K_EGRESS_VLAN(port), 0xfff << shift, vlan->vid << shift); qca8k_write(priv, QCA8K_REG_PORT_VLAN_CTRL0(port), QCA8K_PORT_VLAN_CVID(vlan->vid) | QCA8K_PORT_VLAN_SVID(vlan->vid)); } return 0; } static int qca8k_port_vlan_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct qca8k_priv *priv = ds->priv; int ret = 0; ret = qca8k_vlan_del(priv, port, vlan->vid); if (ret) dev_err(priv->dev, "Failed to delete VLAN from port %d (%d)", port, ret); return ret; } static enum dsa_tag_protocol qca8k_get_tag_protocol(struct dsa_switch *ds, int port, enum dsa_tag_protocol mp) { return DSA_TAG_PROTO_QCA; } static const struct dsa_switch_ops qca8k_switch_ops = { .get_tag_protocol = qca8k_get_tag_protocol, .setup = qca8k_setup, .get_strings = qca8k_get_strings, .get_ethtool_stats = qca8k_get_ethtool_stats, .get_sset_count = qca8k_get_sset_count, .get_mac_eee = qca8k_get_mac_eee, .set_mac_eee = qca8k_set_mac_eee, .port_enable = qca8k_port_enable, .port_disable = qca8k_port_disable, .port_change_mtu = qca8k_port_change_mtu, .port_max_mtu = qca8k_port_max_mtu, .port_stp_state_set = qca8k_port_stp_state_set, .port_bridge_join = qca8k_port_bridge_join, .port_bridge_leave = qca8k_port_bridge_leave, .port_fdb_add = qca8k_port_fdb_add, .port_fdb_del = qca8k_port_fdb_del, .port_fdb_dump = qca8k_port_fdb_dump, .port_vlan_filtering = qca8k_port_vlan_filtering, .port_vlan_add = qca8k_port_vlan_add, .port_vlan_del = qca8k_port_vlan_del, .phylink_validate = qca8k_phylink_validate, .phylink_mac_link_state = qca8k_phylink_mac_link_state, .phylink_mac_config = qca8k_phylink_mac_config, .phylink_mac_link_down = qca8k_phylink_mac_link_down, .phylink_mac_link_up = qca8k_phylink_mac_link_up, }; static int qca8k_sw_probe(struct mdio_device *mdiodev) { struct qca8k_priv *priv; u32 id; /* allocate the private data struct so that we can probe the switches * ID register */ priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->bus = mdiodev->bus; priv->dev = &mdiodev->dev; priv->reset_gpio = devm_gpiod_get_optional(priv->dev, "reset", GPIOD_ASIS); if (IS_ERR(priv->reset_gpio)) return PTR_ERR(priv->reset_gpio); if (priv->reset_gpio) { gpiod_set_value_cansleep(priv->reset_gpio, 1); /* The active low duration must be greater than 10 ms * and checkpatch.pl wants 20 ms. */ msleep(20); gpiod_set_value_cansleep(priv->reset_gpio, 0); } /* read the switches ID register */ id = qca8k_read(priv, QCA8K_REG_MASK_CTRL); if (id < 0) return id; id >>= QCA8K_MASK_CTRL_ID_S; id &= QCA8K_MASK_CTRL_ID_M; if (id != QCA8K_ID_QCA8337) return -ENODEV; priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL); if (!priv->ds) return -ENOMEM; priv->ds->dev = &mdiodev->dev; priv->ds->num_ports = QCA8K_NUM_PORTS; priv->ds->priv = priv; priv->ops = qca8k_switch_ops; priv->ds->ops = &priv->ops; mutex_init(&priv->reg_mutex); dev_set_drvdata(&mdiodev->dev, priv); return dsa_register_switch(priv->ds); } static void qca8k_sw_remove(struct mdio_device *mdiodev) { struct qca8k_priv *priv = dev_get_drvdata(&mdiodev->dev); int i; for (i = 0; i < QCA8K_NUM_PORTS; i++) qca8k_port_set_status(priv, i, 0); dsa_unregister_switch(priv->ds); } #ifdef CONFIG_PM_SLEEP static void qca8k_set_pm(struct qca8k_priv *priv, int enable) { int i; for (i = 0; i < QCA8K_NUM_PORTS; i++) { if (!priv->port_sts[i].enabled) continue; qca8k_port_set_status(priv, i, enable); } } static int qca8k_suspend(struct device *dev) { struct qca8k_priv *priv = dev_get_drvdata(dev); qca8k_set_pm(priv, 0); return dsa_switch_suspend(priv->ds); } static int qca8k_resume(struct device *dev) { struct qca8k_priv *priv = dev_get_drvdata(dev); qca8k_set_pm(priv, 1); return dsa_switch_resume(priv->ds); } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(qca8k_pm_ops, qca8k_suspend, qca8k_resume); static const struct of_device_id qca8k_of_match[] = { { .compatible = "qca,qca8334" }, { .compatible = "qca,qca8337" }, { /* sentinel */ }, }; static struct mdio_driver qca8kmdio_driver = { .probe = qca8k_sw_probe, .remove = qca8k_sw_remove, .mdiodrv.driver = { .name = "qca8k", .of_match_table = qca8k_of_match, .pm = &qca8k_pm_ops, }, }; mdio_module_driver(qca8kmdio_driver); MODULE_AUTHOR("Mathieu Olivari, John Crispin "); MODULE_DESCRIPTION("Driver for QCA8K ethernet switch family"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:qca8k");