/* * drivers/net/ethernet/freescale/gianfar.c * * Gianfar Ethernet Driver * This driver is designed for the non-CPM ethernet controllers * on the 85xx and 83xx family of integrated processors * Based on 8260_io/fcc_enet.c * * Author: Andy Fleming * Maintainer: Kumar Gala * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> * * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc. * Copyright 2007 MontaVista Software, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * Gianfar: AKA Lambda Draconis, "Dragon" * RA 11 31 24.2 * Dec +69 19 52 * V 3.84 * B-V +1.62 * * Theory of operation * * The driver is initialized through of_device. Configuration information * is therefore conveyed through an OF-style device tree. * * The Gianfar Ethernet Controller uses a ring of buffer * descriptors. The beginning is indicated by a register * pointing to the physical address of the start of the ring. * The end is determined by a "wrap" bit being set in the * last descriptor of the ring. * * When a packet is received, the RXF bit in the * IEVENT register is set, triggering an interrupt when the * corresponding bit in the IMASK register is also set (if * interrupt coalescing is active, then the interrupt may not * happen immediately, but will wait until either a set number * of frames or amount of time have passed). In NAPI, the * interrupt handler will signal there is work to be done, and * exit. This method will start at the last known empty * descriptor, and process every subsequent descriptor until there * are none left with data (NAPI will stop after a set number of * packets to give time to other tasks, but will eventually * process all the packets). The data arrives inside a * pre-allocated skb, and so after the skb is passed up to the * stack, a new skb must be allocated, and the address field in * the buffer descriptor must be updated to indicate this new * skb. * * When the kernel requests that a packet be transmitted, the * driver starts where it left off last time, and points the * descriptor at the buffer which was passed in. The driver * then informs the DMA engine that there are packets ready to * be transmitted. Once the controller is finished transmitting * the packet, an interrupt may be triggered (under the same * conditions as for reception, but depending on the TXF bit). * The driver then cleans up the buffer. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define DEBUG #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/unistd.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/of_mdio.h> #include <linux/of_platform.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/in.h> #include <linux/net_tstamp.h> #include <asm/io.h> #include <asm/reg.h> #include <asm/irq.h> #include <asm/uaccess.h> #include <linux/module.h> #include <linux/dma-mapping.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/phy.h> #include <linux/phy_fixed.h> #include <linux/of.h> #include <linux/of_net.h> #include "gianfar.h" #include "fsl_pq_mdio.h" #define TX_TIMEOUT (1*HZ) const char gfar_driver_version[] = "1.3"; static int gfar_enet_open(struct net_device *dev); static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); static void gfar_reset_task(struct work_struct *work); static void gfar_timeout(struct net_device *dev); static int gfar_close(struct net_device *dev); struct sk_buff *gfar_new_skb(struct net_device *dev); static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, struct sk_buff *skb); static int gfar_set_mac_address(struct net_device *dev); static int gfar_change_mtu(struct net_device *dev, int new_mtu); static irqreturn_t gfar_error(int irq, void *dev_id); static irqreturn_t gfar_transmit(int irq, void *dev_id); static irqreturn_t gfar_interrupt(int irq, void *dev_id); static void adjust_link(struct net_device *dev); static void init_registers(struct net_device *dev); static int init_phy(struct net_device *dev); static int gfar_probe(struct platform_device *ofdev); static int gfar_remove(struct platform_device *ofdev); static void free_skb_resources(struct gfar_private *priv); static void gfar_set_multi(struct net_device *dev); static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); static void gfar_configure_serdes(struct net_device *dev); static int gfar_poll(struct napi_struct *napi, int budget); #ifdef CONFIG_NET_POLL_CONTROLLER static void gfar_netpoll(struct net_device *dev); #endif int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit); static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue); static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int amount_pull, struct napi_struct *napi); void gfar_halt(struct net_device *dev); static void gfar_halt_nodisable(struct net_device *dev); void gfar_start(struct net_device *dev); static void gfar_clear_exact_match(struct net_device *dev); static void gfar_set_mac_for_addr(struct net_device *dev, int num, const u8 *addr); static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); MODULE_AUTHOR("Freescale Semiconductor, Inc"); MODULE_DESCRIPTION("Gianfar Ethernet Driver"); MODULE_LICENSE("GPL"); static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, dma_addr_t buf) { u32 lstatus; bdp->bufPtr = buf; lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) lstatus |= BD_LFLAG(RXBD_WRAP); eieio(); bdp->lstatus = lstatus; } static int gfar_init_bds(struct net_device *ndev) { struct gfar_private *priv = netdev_priv(ndev); struct gfar_priv_tx_q *tx_queue = NULL; struct gfar_priv_rx_q *rx_queue = NULL; struct txbd8 *txbdp; struct rxbd8 *rxbdp; int i, j; for (i = 0; i < priv->num_tx_queues; i++) { tx_queue = priv->tx_queue[i]; /* Initialize some variables in our dev structure */ tx_queue->num_txbdfree = tx_queue->tx_ring_size; tx_queue->dirty_tx = tx_queue->tx_bd_base; tx_queue->cur_tx = tx_queue->tx_bd_base; tx_queue->skb_curtx = 0; tx_queue->skb_dirtytx = 0; /* Initialize Transmit Descriptor Ring */ txbdp = tx_queue->tx_bd_base; for (j = 0; j < tx_queue->tx_ring_size; j++) { txbdp->lstatus = 0; txbdp->bufPtr = 0; txbdp++; } /* Set the last descriptor in the ring to indicate wrap */ txbdp--; txbdp->status |= TXBD_WRAP; } for (i = 0; i < priv->num_rx_queues; i++) { rx_queue = priv->rx_queue[i]; rx_queue->cur_rx = rx_queue->rx_bd_base; rx_queue->skb_currx = 0; rxbdp = rx_queue->rx_bd_base; for (j = 0; j < rx_queue->rx_ring_size; j++) { struct sk_buff *skb = rx_queue->rx_skbuff[j]; if (skb) { gfar_init_rxbdp(rx_queue, rxbdp, rxbdp->bufPtr); } else { skb = gfar_new_skb(ndev); if (!skb) { netdev_err(ndev, "Can't allocate RX buffers\n"); goto err_rxalloc_fail; } rx_queue->rx_skbuff[j] = skb; gfar_new_rxbdp(rx_queue, rxbdp, skb); } rxbdp++; } } return 0; err_rxalloc_fail: free_skb_resources(priv); return -ENOMEM; } static int gfar_alloc_skb_resources(struct net_device *ndev) { void *vaddr; dma_addr_t addr; int i, j, k; struct gfar_private *priv = netdev_priv(ndev); struct device *dev = &priv->ofdev->dev; struct gfar_priv_tx_q *tx_queue = NULL; struct gfar_priv_rx_q *rx_queue = NULL; priv->total_tx_ring_size = 0; for (i = 0; i < priv->num_tx_queues; i++) priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; priv->total_rx_ring_size = 0; for (i = 0; i < priv->num_rx_queues; i++) priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; /* Allocate memory for the buffer descriptors */ vaddr = dma_alloc_coherent(dev, sizeof(struct txbd8) * priv->total_tx_ring_size + sizeof(struct rxbd8) * priv->total_rx_ring_size, &addr, GFP_KERNEL); if (!vaddr) { netif_err(priv, ifup, ndev, "Could not allocate buffer descriptors!\n"); return -ENOMEM; } for (i = 0; i < priv->num_tx_queues; i++) { tx_queue = priv->tx_queue[i]; tx_queue->tx_bd_base = vaddr; tx_queue->tx_bd_dma_base = addr; tx_queue->dev = ndev; /* enet DMA only understands physical addresses */ addr += sizeof(struct txbd8) *tx_queue->tx_ring_size; vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size; } /* Start the rx descriptor ring where the tx ring leaves off */ for (i = 0; i < priv->num_rx_queues; i++) { rx_queue = priv->rx_queue[i]; rx_queue->rx_bd_base = vaddr; rx_queue->rx_bd_dma_base = addr; rx_queue->dev = ndev; addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size; vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size; } /* Setup the skbuff rings */ for (i = 0; i < priv->num_tx_queues; i++) { tx_queue = priv->tx_queue[i]; tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) * tx_queue->tx_ring_size, GFP_KERNEL); if (!tx_queue->tx_skbuff) { netif_err(priv, ifup, ndev, "Could not allocate tx_skbuff\n"); goto cleanup; } for (k = 0; k < tx_queue->tx_ring_size; k++) tx_queue->tx_skbuff[k] = NULL; } for (i = 0; i < priv->num_rx_queues; i++) { rx_queue = priv->rx_queue[i]; rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) * rx_queue->rx_ring_size, GFP_KERNEL); if (!rx_queue->rx_skbuff) { netif_err(priv, ifup, ndev, "Could not allocate rx_skbuff\n"); goto cleanup; } for (j = 0; j < rx_queue->rx_ring_size; j++) rx_queue->rx_skbuff[j] = NULL; } if (gfar_init_bds(ndev)) goto cleanup; return 0; cleanup: free_skb_resources(priv); return -ENOMEM; } static void gfar_init_tx_rx_base(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 __iomem *baddr; int i; baddr = ®s->tbase0; for(i = 0; i < priv->num_tx_queues; i++) { gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); baddr += 2; } baddr = ®s->rbase0; for(i = 0; i < priv->num_rx_queues; i++) { gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); baddr += 2; } } static void gfar_init_mac(struct net_device *ndev) { struct gfar_private *priv = netdev_priv(ndev); struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 rctrl = 0; u32 tctrl = 0; u32 attrs = 0; /* write the tx/rx base registers */ gfar_init_tx_rx_base(priv); /* Configure the coalescing support */ gfar_configure_coalescing(priv, 0xFF, 0xFF); if (priv->rx_filer_enable) { rctrl |= RCTRL_FILREN; /* Program the RIR0 reg with the required distribution */ gfar_write(®s->rir0, DEFAULT_RIR0); } if (ndev->features & NETIF_F_RXCSUM) rctrl |= RCTRL_CHECKSUMMING; if (priv->extended_hash) { rctrl |= RCTRL_EXTHASH; gfar_clear_exact_match(ndev); rctrl |= RCTRL_EMEN; } if (priv->padding) { rctrl &= ~RCTRL_PAL_MASK; rctrl |= RCTRL_PADDING(priv->padding); } /* Insert receive time stamps into padding alignment bytes */ if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) { rctrl &= ~RCTRL_PAL_MASK; rctrl |= RCTRL_PADDING(8); priv->padding = 8; } /* Enable HW time stamping if requested from user space */ if (priv->hwts_rx_en) rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; if (ndev->features & NETIF_F_HW_VLAN_RX) rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; /* Init rctrl based on our settings */ gfar_write(®s->rctrl, rctrl); if (ndev->features & NETIF_F_IP_CSUM) tctrl |= TCTRL_INIT_CSUM; tctrl |= TCTRL_TXSCHED_PRIO; gfar_write(®s->tctrl, tctrl); /* Set the extraction length and index */ attrs = ATTRELI_EL(priv->rx_stash_size) | ATTRELI_EI(priv->rx_stash_index); gfar_write(®s->attreli, attrs); /* Start with defaults, and add stashing or locking * depending on the approprate variables */ attrs = ATTR_INIT_SETTINGS; if (priv->bd_stash_en) attrs |= ATTR_BDSTASH; if (priv->rx_stash_size != 0) attrs |= ATTR_BUFSTASH; gfar_write(®s->attr, attrs); gfar_write(®s->fifo_tx_thr, priv->fifo_threshold); gfar_write(®s->fifo_tx_starve, priv->fifo_starve); gfar_write(®s->fifo_tx_starve_shutoff, priv->fifo_starve_off); } static struct net_device_stats *gfar_get_stats(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; unsigned long tx_packets = 0, tx_bytes = 0; int i = 0; for (i = 0; i < priv->num_rx_queues; i++) { rx_packets += priv->rx_queue[i]->stats.rx_packets; rx_bytes += priv->rx_queue[i]->stats.rx_bytes; rx_dropped += priv->rx_queue[i]->stats.rx_dropped; } dev->stats.rx_packets = rx_packets; dev->stats.rx_bytes = rx_bytes; dev->stats.rx_dropped = rx_dropped; for (i = 0; i < priv->num_tx_queues; i++) { tx_bytes += priv->tx_queue[i]->stats.tx_bytes; tx_packets += priv->tx_queue[i]->stats.tx_packets; } dev->stats.tx_bytes = tx_bytes; dev->stats.tx_packets = tx_packets; return &dev->stats; } static const struct net_device_ops gfar_netdev_ops = { .ndo_open = gfar_enet_open, .ndo_start_xmit = gfar_start_xmit, .ndo_stop = gfar_close, .ndo_change_mtu = gfar_change_mtu, .ndo_set_features = gfar_set_features, .ndo_set_rx_mode = gfar_set_multi, .ndo_tx_timeout = gfar_timeout, .ndo_do_ioctl = gfar_ioctl, .ndo_get_stats = gfar_get_stats, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = gfar_netpoll, #endif }; void lock_rx_qs(struct gfar_private *priv) { int i = 0x0; for (i = 0; i < priv->num_rx_queues; i++) spin_lock(&priv->rx_queue[i]->rxlock); } void lock_tx_qs(struct gfar_private *priv) { int i = 0x0; for (i = 0; i < priv->num_tx_queues; i++) spin_lock(&priv->tx_queue[i]->txlock); } void unlock_rx_qs(struct gfar_private *priv) { int i = 0x0; for (i = 0; i < priv->num_rx_queues; i++) spin_unlock(&priv->rx_queue[i]->rxlock); } void unlock_tx_qs(struct gfar_private *priv) { int i = 0x0; for (i = 0; i < priv->num_tx_queues; i++) spin_unlock(&priv->tx_queue[i]->txlock); } static bool gfar_is_vlan_on(struct gfar_private *priv) { return (priv->ndev->features & NETIF_F_HW_VLAN_RX) || (priv->ndev->features & NETIF_F_HW_VLAN_TX); } /* Returns 1 if incoming frames use an FCB */ static inline int gfar_uses_fcb(struct gfar_private *priv) { return gfar_is_vlan_on(priv) || (priv->ndev->features & NETIF_F_RXCSUM) || (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER); } static void free_tx_pointers(struct gfar_private *priv) { int i = 0; for (i = 0; i < priv->num_tx_queues; i++) kfree(priv->tx_queue[i]); } static void free_rx_pointers(struct gfar_private *priv) { int i = 0; for (i = 0; i < priv->num_rx_queues; i++) kfree(priv->rx_queue[i]); } static void unmap_group_regs(struct gfar_private *priv) { int i = 0; for (i = 0; i < MAXGROUPS; i++) if (priv->gfargrp[i].regs) iounmap(priv->gfargrp[i].regs); } static void disable_napi(struct gfar_private *priv) { int i = 0; for (i = 0; i < priv->num_grps; i++) napi_disable(&priv->gfargrp[i].napi); } static void enable_napi(struct gfar_private *priv) { int i = 0; for (i = 0; i < priv->num_grps; i++) napi_enable(&priv->gfargrp[i].napi); } static int gfar_parse_group(struct device_node *np, struct gfar_private *priv, const char *model) { u32 *queue_mask; priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0); if (!priv->gfargrp[priv->num_grps].regs) return -ENOMEM; priv->gfargrp[priv->num_grps].interruptTransmit = irq_of_parse_and_map(np, 0); /* If we aren't the FEC we have multiple interrupts */ if (model && strcasecmp(model, "FEC")) { priv->gfargrp[priv->num_grps].interruptReceive = irq_of_parse_and_map(np, 1); priv->gfargrp[priv->num_grps].interruptError = irq_of_parse_and_map(np,2); if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ || priv->gfargrp[priv->num_grps].interruptReceive == NO_IRQ || priv->gfargrp[priv->num_grps].interruptError == NO_IRQ) return -EINVAL; } priv->gfargrp[priv->num_grps].grp_id = priv->num_grps; priv->gfargrp[priv->num_grps].priv = priv; spin_lock_init(&priv->gfargrp[priv->num_grps].grplock); if(priv->mode == MQ_MG_MODE) { queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL); priv->gfargrp[priv->num_grps].rx_bit_map = queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps); queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL); priv->gfargrp[priv->num_grps].tx_bit_map = queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps); } else { priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF; priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF; } priv->num_grps++; return 0; } static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) { const char *model; const char *ctype; const void *mac_addr; int err = 0, i; struct net_device *dev = NULL; struct gfar_private *priv = NULL; struct device_node *np = ofdev->dev.of_node; struct device_node *child = NULL; const u32 *stash; const u32 *stash_len; const u32 *stash_idx; unsigned int num_tx_qs, num_rx_qs; u32 *tx_queues, *rx_queues; if (!np || !of_device_is_available(np)) return -ENODEV; /* parse the num of tx and rx queues */ tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL); num_tx_qs = tx_queues ? *tx_queues : 1; if (num_tx_qs > MAX_TX_QS) { pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", num_tx_qs, MAX_TX_QS); pr_err("Cannot do alloc_etherdev, aborting\n"); return -EINVAL; } rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL); num_rx_qs = rx_queues ? *rx_queues : 1; if (num_rx_qs > MAX_RX_QS) { pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", num_rx_qs, MAX_RX_QS); pr_err("Cannot do alloc_etherdev, aborting\n"); return -EINVAL; } *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); dev = *pdev; if (NULL == dev) return -ENOMEM; priv = netdev_priv(dev); priv->node = ofdev->dev.of_node; priv->ndev = dev; priv->num_tx_queues = num_tx_qs; netif_set_real_num_rx_queues(dev, num_rx_qs); priv->num_rx_queues = num_rx_qs; priv->num_grps = 0x0; /* Init Rx queue filer rule set linked list*/ INIT_LIST_HEAD(&priv->rx_list.list); priv->rx_list.count = 0; mutex_init(&priv->rx_queue_access); model = of_get_property(np, "model", NULL); for (i = 0; i < MAXGROUPS; i++) priv->gfargrp[i].regs = NULL; /* Parse and initialize group specific information */ if (of_device_is_compatible(np, "fsl,etsec2")) { priv->mode = MQ_MG_MODE; for_each_child_of_node(np, child) { err = gfar_parse_group(child, priv, model); if (err) goto err_grp_init; } } else { priv->mode = SQ_SG_MODE; err = gfar_parse_group(np, priv, model); if(err) goto err_grp_init; } for (i = 0; i < priv->num_tx_queues; i++) priv->tx_queue[i] = NULL; for (i = 0; i < priv->num_rx_queues; i++) priv->rx_queue[i] = NULL; for (i = 0; i < priv->num_tx_queues; i++) { priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), GFP_KERNEL); if (!priv->tx_queue[i]) { err = -ENOMEM; goto tx_alloc_failed; } priv->tx_queue[i]->tx_skbuff = NULL; priv->tx_queue[i]->qindex = i; priv->tx_queue[i]->dev = dev; spin_lock_init(&(priv->tx_queue[i]->txlock)); } for (i = 0; i < priv->num_rx_queues; i++) { priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), GFP_KERNEL); if (!priv->rx_queue[i]) { err = -ENOMEM; goto rx_alloc_failed; } priv->rx_queue[i]->rx_skbuff = NULL; priv->rx_queue[i]->qindex = i; priv->rx_queue[i]->dev = dev; spin_lock_init(&(priv->rx_queue[i]->rxlock)); } stash = of_get_property(np, "bd-stash", NULL); if (stash) { priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; priv->bd_stash_en = 1; } stash_len = of_get_property(np, "rx-stash-len", NULL); if (stash_len) priv->rx_stash_size = *stash_len; stash_idx = of_get_property(np, "rx-stash-idx", NULL); if (stash_idx) priv->rx_stash_index = *stash_idx; if (stash_len || stash_idx) priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; mac_addr = of_get_mac_address(np); if (mac_addr) memcpy(dev->dev_addr, mac_addr, ETH_ALEN); if (model && !strcasecmp(model, "TSEC")) priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT | FSL_GIANFAR_DEV_HAS_COALESCE | FSL_GIANFAR_DEV_HAS_RMON | FSL_GIANFAR_DEV_HAS_MULTI_INTR; if (model && !strcasecmp(model, "eTSEC")) priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT | FSL_GIANFAR_DEV_HAS_COALESCE | FSL_GIANFAR_DEV_HAS_RMON | FSL_GIANFAR_DEV_HAS_MULTI_INTR | FSL_GIANFAR_DEV_HAS_PADDING | FSL_GIANFAR_DEV_HAS_CSUM | FSL_GIANFAR_DEV_HAS_VLAN | FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | FSL_GIANFAR_DEV_HAS_TIMER; ctype = of_get_property(np, "phy-connection-type", NULL); /* We only care about rgmii-id. The rest are autodetected */ if (ctype && !strcmp(ctype, "rgmii-id")) priv->interface = PHY_INTERFACE_MODE_RGMII_ID; else priv->interface = PHY_INTERFACE_MODE_MII; if (of_get_property(np, "fsl,magic-packet", NULL)) priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; priv->phy_node = of_parse_phandle(np, "phy-handle", 0); /* Find the TBI PHY. If it's not there, we don't support SGMII */ priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); return 0; rx_alloc_failed: free_rx_pointers(priv); tx_alloc_failed: free_tx_pointers(priv); err_grp_init: unmap_group_regs(priv); free_netdev(dev); return err; } static int gfar_hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct hwtstamp_config config; struct gfar_private *priv = netdev_priv(netdev); if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; /* reserved for future extensions */ if (config.flags) return -EINVAL; switch (config.tx_type) { case HWTSTAMP_TX_OFF: priv->hwts_tx_en = 0; break; case HWTSTAMP_TX_ON: if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) return -ERANGE; priv->hwts_tx_en = 1; break; default: return -ERANGE; } switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: if (priv->hwts_rx_en) { stop_gfar(netdev); priv->hwts_rx_en = 0; startup_gfar(netdev); } break; default: if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) return -ERANGE; if (!priv->hwts_rx_en) { stop_gfar(netdev); priv->hwts_rx_en = 1; startup_gfar(netdev); } config.rx_filter = HWTSTAMP_FILTER_ALL; break; } return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } /* Ioctl MII Interface */ static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct gfar_private *priv = netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; if (cmd == SIOCSHWTSTAMP) return gfar_hwtstamp_ioctl(dev, rq, cmd); if (!priv->phydev) return -ENODEV; return phy_mii_ioctl(priv->phydev, rq, cmd); } static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs) { unsigned int new_bit_map = 0x0; int mask = 0x1 << (max_qs - 1), i; for (i = 0; i < max_qs; i++) { if (bit_map & mask) new_bit_map = new_bit_map + (1 << i); mask = mask >> 0x1; } return new_bit_map; } static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, u32 class) { u32 rqfpr = FPR_FILER_MASK; u32 rqfcr = 0x0; rqfar--; rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; priv->ftp_rqfpr[rqfar] = rqfpr; priv->ftp_rqfcr[rqfar] = rqfcr; gfar_write_filer(priv, rqfar, rqfcr, rqfpr); rqfar--; rqfcr = RQFCR_CMP_NOMATCH; priv->ftp_rqfpr[rqfar] = rqfpr; priv->ftp_rqfcr[rqfar] = rqfcr; gfar_write_filer(priv, rqfar, rqfcr, rqfpr); rqfar--; rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; rqfpr = class; priv->ftp_rqfcr[rqfar] = rqfcr; priv->ftp_rqfpr[rqfar] = rqfpr; gfar_write_filer(priv, rqfar, rqfcr, rqfpr); rqfar--; rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; rqfpr = class; priv->ftp_rqfcr[rqfar] = rqfcr; priv->ftp_rqfpr[rqfar] = rqfpr; gfar_write_filer(priv, rqfar, rqfcr, rqfpr); return rqfar; } static void gfar_init_filer_table(struct gfar_private *priv) { int i = 0x0; u32 rqfar = MAX_FILER_IDX; u32 rqfcr = 0x0; u32 rqfpr = FPR_FILER_MASK; /* Default rule */ rqfcr = RQFCR_CMP_MATCH; priv->ftp_rqfcr[rqfar] = rqfcr; priv->ftp_rqfpr[rqfar] = rqfpr; gfar_write_filer(priv, rqfar, rqfcr, rqfpr); rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); /* cur_filer_idx indicated the first non-masked rule */ priv->cur_filer_idx = rqfar; /* Rest are masked rules */ rqfcr = RQFCR_CMP_NOMATCH; for (i = 0; i < rqfar; i++) { priv->ftp_rqfcr[i] = rqfcr; priv->ftp_rqfpr[i] = rqfpr; gfar_write_filer(priv, i, rqfcr, rqfpr); } } static void gfar_detect_errata(struct gfar_private *priv) { struct device *dev = &priv->ofdev->dev; unsigned int pvr = mfspr(SPRN_PVR); unsigned int svr = mfspr(SPRN_SVR); unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ unsigned int rev = svr & 0xffff; /* MPC8313 Rev 2.0 and higher; All MPC837x */ if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) priv->errata |= GFAR_ERRATA_74; /* MPC8313 and MPC837x all rev */ if ((pvr == 0x80850010 && mod == 0x80b0) || (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) priv->errata |= GFAR_ERRATA_76; /* MPC8313 and MPC837x all rev */ if ((pvr == 0x80850010 && mod == 0x80b0) || (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) priv->errata |= GFAR_ERRATA_A002; /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */ if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) || (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020)) priv->errata |= GFAR_ERRATA_12; if (priv->errata) dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", priv->errata); } /* Set up the ethernet device structure, private data, * and anything else we need before we start */ static int gfar_probe(struct platform_device *ofdev) { u32 tempval; struct net_device *dev = NULL; struct gfar_private *priv = NULL; struct gfar __iomem *regs = NULL; int err = 0, i, grp_idx = 0; u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0; u32 isrg = 0; u32 __iomem *baddr; err = gfar_of_init(ofdev, &dev); if (err) return err; priv = netdev_priv(dev); priv->ndev = dev; priv->ofdev = ofdev; priv->node = ofdev->dev.of_node; SET_NETDEV_DEV(dev, &ofdev->dev); spin_lock_init(&priv->bflock); INIT_WORK(&priv->reset_task, gfar_reset_task); dev_set_drvdata(&ofdev->dev, priv); regs = priv->gfargrp[0].regs; gfar_detect_errata(priv); /* Stop the DMA engine now, in case it was running before */ /* (The firmware could have used it, and left it running). */ gfar_halt(dev); /* Reset MAC layer */ gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); /* We need to delay at least 3 TX clocks */ udelay(2); tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); gfar_write(®s->maccfg1, tempval); /* Initialize MACCFG2. */ tempval = MACCFG2_INIT_SETTINGS; if (gfar_has_errata(priv, GFAR_ERRATA_74)) tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; gfar_write(®s->maccfg2, tempval); /* Initialize ECNTRL */ gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); /* Set the dev->base_addr to the gfar reg region */ dev->base_addr = (unsigned long) regs; SET_NETDEV_DEV(dev, &ofdev->dev); /* Fill in the dev structure */ dev->watchdog_timeo = TX_TIMEOUT; dev->mtu = 1500; dev->netdev_ops = &gfar_netdev_ops; dev->ethtool_ops = &gfar_ethtool_ops; /* Register for napi ...We are registering NAPI for each grp */ for (i = 0; i < priv->num_grps; i++) netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT); if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM; dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM | NETIF_F_HIGHDMA; } if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; } if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { priv->extended_hash = 1; priv->hash_width = 9; priv->hash_regs[0] = ®s->igaddr0; priv->hash_regs[1] = ®s->igaddr1; priv->hash_regs[2] = ®s->igaddr2; priv->hash_regs[3] = ®s->igaddr3; priv->hash_regs[4] = ®s->igaddr4; priv->hash_regs[5] = ®s->igaddr5; priv->hash_regs[6] = ®s->igaddr6; priv->hash_regs[7] = ®s->igaddr7; priv->hash_regs[8] = ®s->gaddr0; priv->hash_regs[9] = ®s->gaddr1; priv->hash_regs[10] = ®s->gaddr2; priv->hash_regs[11] = ®s->gaddr3; priv->hash_regs[12] = ®s->gaddr4; priv->hash_regs[13] = ®s->gaddr5; priv->hash_regs[14] = ®s->gaddr6; priv->hash_regs[15] = ®s->gaddr7; } else { priv->extended_hash = 0; priv->hash_width = 8; priv->hash_regs[0] = ®s->gaddr0; priv->hash_regs[1] = ®s->gaddr1; priv->hash_regs[2] = ®s->gaddr2; priv->hash_regs[3] = ®s->gaddr3; priv->hash_regs[4] = ®s->gaddr4; priv->hash_regs[5] = ®s->gaddr5; priv->hash_regs[6] = ®s->gaddr6; priv->hash_regs[7] = ®s->gaddr7; } if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING) priv->padding = DEFAULT_PADDING; else priv->padding = 0; if (dev->features & NETIF_F_IP_CSUM || priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) dev->needed_headroom = GMAC_FCB_LEN; /* Program the isrg regs only if number of grps > 1 */ if (priv->num_grps > 1) { baddr = ®s->isrg0; for (i = 0; i < priv->num_grps; i++) { isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX); isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX); gfar_write(baddr, isrg); baddr++; isrg = 0x0; } } /* Need to reverse the bit maps as bit_map's MSB is q0 * but, for_each_set_bit parses from right to left, which * basically reverses the queue numbers */ for (i = 0; i< priv->num_grps; i++) { priv->gfargrp[i].tx_bit_map = reverse_bitmap( priv->gfargrp[i].tx_bit_map, MAX_TX_QS); priv->gfargrp[i].rx_bit_map = reverse_bitmap( priv->gfargrp[i].rx_bit_map, MAX_RX_QS); } /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, * also assign queues to groups */ for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) { priv->gfargrp[grp_idx].num_rx_queues = 0x0; for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map, priv->num_rx_queues) { priv->gfargrp[grp_idx].num_rx_queues++; priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx]; rstat = rstat | (RSTAT_CLEAR_RHALT >> i); rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i); } priv->gfargrp[grp_idx].num_tx_queues = 0x0; for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map, priv->num_tx_queues) { priv->gfargrp[grp_idx].num_tx_queues++; priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx]; tstat = tstat | (TSTAT_CLEAR_THALT >> i); tqueue = tqueue | (TQUEUE_EN0 >> i); } priv->gfargrp[grp_idx].rstat = rstat; priv->gfargrp[grp_idx].tstat = tstat; rstat = tstat =0; } gfar_write(®s->rqueue, rqueue); gfar_write(®s->tqueue, tqueue); priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; /* Initializing some of the rx/tx queue level parameters */ for (i = 0; i < priv->num_tx_queues; i++) { priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; priv->tx_queue[i]->txic = DEFAULT_TXIC; } for (i = 0; i < priv->num_rx_queues; i++) { priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; priv->rx_queue[i]->rxic = DEFAULT_RXIC; } /* always enable rx filer*/ priv->rx_filer_enable = 1; /* Enable most messages by default */ priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; /* Carrier starts down, phylib will bring it up */ netif_carrier_off(dev); err = register_netdev(dev); if (err) { pr_err("%s: Cannot register net device, aborting\n", dev->name); goto register_fail; } device_init_wakeup(&dev->dev, priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); /* fill out IRQ number and name fields */ for (i = 0; i < priv->num_grps; i++) { if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { sprintf(priv->gfargrp[i].int_name_tx, "%s%s%c%s", dev->name, "_g", '0' + i, "_tx"); sprintf(priv->gfargrp[i].int_name_rx, "%s%s%c%s", dev->name, "_g", '0' + i, "_rx"); sprintf(priv->gfargrp[i].int_name_er, "%s%s%c%s", dev->name, "_g", '0' + i, "_er"); } else strcpy(priv->gfargrp[i].int_name_tx, dev->name); } /* Initialize the filer table */ gfar_init_filer_table(priv); /* Create all the sysfs files */ gfar_init_sysfs(dev); /* Print out the device info */ netdev_info(dev, "mac: %pM\n", dev->dev_addr); /* Even more device info helps when determining which kernel */ /* provided which set of benchmarks. */ netdev_info(dev, "Running with NAPI enabled\n"); for (i = 0; i < priv->num_rx_queues; i++) netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", i, priv->rx_queue[i]->rx_ring_size); for(i = 0; i < priv->num_tx_queues; i++) netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", i, priv->tx_queue[i]->tx_ring_size); return 0; register_fail: unmap_group_regs(priv); free_tx_pointers(priv); free_rx_pointers(priv); if (priv->phy_node) of_node_put(priv->phy_node); if (priv->tbi_node) of_node_put(priv->tbi_node); free_netdev(dev); return err; } static int gfar_remove(struct platform_device *ofdev) { struct gfar_private *priv = dev_get_drvdata(&ofdev->dev); if (priv->phy_node) of_node_put(priv->phy_node); if (priv->tbi_node) of_node_put(priv->tbi_node); dev_set_drvdata(&ofdev->dev, NULL); unregister_netdev(priv->ndev); unmap_group_regs(priv); free_netdev(priv->ndev); return 0; } #ifdef CONFIG_PM static int gfar_suspend(struct device *dev) { struct gfar_private *priv = dev_get_drvdata(dev); struct net_device *ndev = priv->ndev; struct gfar __iomem *regs = priv->gfargrp[0].regs; unsigned long flags; u32 tempval; int magic_packet = priv->wol_en && (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); netif_device_detach(ndev); if (netif_running(ndev)) { local_irq_save(flags); lock_tx_qs(priv); lock_rx_qs(priv); gfar_halt_nodisable(ndev); /* Disable Tx, and Rx if wake-on-LAN is disabled. */ tempval = gfar_read(®s->maccfg1); tempval &= ~MACCFG1_TX_EN; if (!magic_packet) tempval &= ~MACCFG1_RX_EN; gfar_write(®s->maccfg1, tempval); unlock_rx_qs(priv); unlock_tx_qs(priv); local_irq_restore(flags); disable_napi(priv); if (magic_packet) { /* Enable interrupt on Magic Packet */ gfar_write(®s->imask, IMASK_MAG); /* Enable Magic Packet mode */ tempval = gfar_read(®s->maccfg2); tempval |= MACCFG2_MPEN; gfar_write(®s->maccfg2, tempval); } else { phy_stop(priv->phydev); } } return 0; } static int gfar_resume(struct device *dev) { struct gfar_private *priv = dev_get_drvdata(dev); struct net_device *ndev = priv->ndev; struct gfar __iomem *regs = priv->gfargrp[0].regs; unsigned long flags; u32 tempval; int magic_packet = priv->wol_en && (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); if (!netif_running(ndev)) { netif_device_attach(ndev); return 0; } if (!magic_packet && priv->phydev) phy_start(priv->phydev); /* Disable Magic Packet mode, in case something * else woke us up. */ local_irq_save(flags); lock_tx_qs(priv); lock_rx_qs(priv); tempval = gfar_read(®s->maccfg2); tempval &= ~MACCFG2_MPEN; gfar_write(®s->maccfg2, tempval); gfar_start(ndev); unlock_rx_qs(priv); unlock_tx_qs(priv); local_irq_restore(flags); netif_device_attach(ndev); enable_napi(priv); return 0; } static int gfar_restore(struct device *dev) { struct gfar_private *priv = dev_get_drvdata(dev); struct net_device *ndev = priv->ndev; if (!netif_running(ndev)) return 0; gfar_init_bds(ndev); init_registers(ndev); gfar_set_mac_address(ndev); gfar_init_mac(ndev); gfar_start(ndev); priv->oldlink = 0; priv->oldspeed = 0; priv->oldduplex = -1; if (priv->phydev) phy_start(priv->phydev); netif_device_attach(ndev); enable_napi(priv); return 0; } static struct dev_pm_ops gfar_pm_ops = { .suspend = gfar_suspend, .resume = gfar_resume, .freeze = gfar_suspend, .thaw = gfar_resume, .restore = gfar_restore, }; #define GFAR_PM_OPS (&gfar_pm_ops) #else #define GFAR_PM_OPS NULL #endif /* Reads the controller's registers to determine what interface * connects it to the PHY. */ static phy_interface_t gfar_get_interface(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 ecntrl; ecntrl = gfar_read(®s->ecntrl); if (ecntrl & ECNTRL_SGMII_MODE) return PHY_INTERFACE_MODE_SGMII; if (ecntrl & ECNTRL_TBI_MODE) { if (ecntrl & ECNTRL_REDUCED_MODE) return PHY_INTERFACE_MODE_RTBI; else return PHY_INTERFACE_MODE_TBI; } if (ecntrl & ECNTRL_REDUCED_MODE) { if (ecntrl & ECNTRL_REDUCED_MII_MODE) return PHY_INTERFACE_MODE_RMII; else { phy_interface_t interface = priv->interface; /* * This isn't autodetected right now, so it must * be set by the device tree or platform code. */ if (interface == PHY_INTERFACE_MODE_RGMII_ID) return PHY_INTERFACE_MODE_RGMII_ID; return PHY_INTERFACE_MODE_RGMII; } } if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) return PHY_INTERFACE_MODE_GMII; return PHY_INTERFACE_MODE_MII; } /* Initializes driver's PHY state, and attaches to the PHY. * Returns 0 on success. */ static int init_phy(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); uint gigabit_support = priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? SUPPORTED_1000baseT_Full : 0; phy_interface_t interface; priv->oldlink = 0; priv->oldspeed = 0; priv->oldduplex = -1; interface = gfar_get_interface(dev); priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, interface); if (!priv->phydev) priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link, interface); if (!priv->phydev) { dev_err(&dev->dev, "could not attach to PHY\n"); return -ENODEV; } if (interface == PHY_INTERFACE_MODE_SGMII) gfar_configure_serdes(dev); /* Remove any features not supported by the controller */ priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support); priv->phydev->advertising = priv->phydev->supported; return 0; } /* * Initialize TBI PHY interface for communicating with the * SERDES lynx PHY on the chip. We communicate with this PHY * through the MDIO bus on each controller, treating it as a * "normal" PHY at the address found in the TBIPA register. We assume * that the TBIPA register is valid. Either the MDIO bus code will set * it to a value that doesn't conflict with other PHYs on the bus, or the * value doesn't matter, as there are no other PHYs on the bus. */ static void gfar_configure_serdes(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct phy_device *tbiphy; if (!priv->tbi_node) { dev_warn(&dev->dev, "error: SGMII mode requires that the " "device tree specify a tbi-handle\n"); return; } tbiphy = of_phy_find_device(priv->tbi_node); if (!tbiphy) { dev_err(&dev->dev, "error: Could not get TBI device\n"); return; } /* * If the link is already up, we must already be ok, and don't need to * configure and reset the TBI<->SerDes link. Maybe U-Boot configured * everything for us? Resetting it takes the link down and requires * several seconds for it to come back. */ if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) return; /* Single clk mode, mii mode off(for serdes communication) */ phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); phy_write(tbiphy, MII_ADVERTISE, ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM); phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000); } static void init_registers(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = NULL; int i = 0; for (i = 0; i < priv->num_grps; i++) { regs = priv->gfargrp[i].regs; /* Clear IEVENT */ gfar_write(®s->ievent, IEVENT_INIT_CLEAR); /* Initialize IMASK */ gfar_write(®s->imask, IMASK_INIT_CLEAR); } regs = priv->gfargrp[0].regs; /* Init hash registers to zero */ gfar_write(®s->igaddr0, 0); gfar_write(®s->igaddr1, 0); gfar_write(®s->igaddr2, 0); gfar_write(®s->igaddr3, 0); gfar_write(®s->igaddr4, 0); gfar_write(®s->igaddr5, 0); gfar_write(®s->igaddr6, 0); gfar_write(®s->igaddr7, 0); gfar_write(®s->gaddr0, 0); gfar_write(®s->gaddr1, 0); gfar_write(®s->gaddr2, 0); gfar_write(®s->gaddr3, 0); gfar_write(®s->gaddr4, 0); gfar_write(®s->gaddr5, 0); gfar_write(®s->gaddr6, 0); gfar_write(®s->gaddr7, 0); /* Zero out the rmon mib registers if it has them */ if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib)); /* Mask off the CAM interrupts */ gfar_write(®s->rmon.cam1, 0xffffffff); gfar_write(®s->rmon.cam2, 0xffffffff); } /* Initialize the max receive buffer length */ gfar_write(®s->mrblr, priv->rx_buffer_size); /* Initialize the Minimum Frame Length Register */ gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); } static int __gfar_is_rx_idle(struct gfar_private *priv) { u32 res; /* * Normaly TSEC should not hang on GRS commands, so we should * actually wait for IEVENT_GRSC flag. */ if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002))) return 0; /* * Read the eTSEC register at offset 0xD1C. If bits 7-14 are * the same as bits 23-30, the eTSEC Rx is assumed to be idle * and the Rx can be safely reset. */ res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); res &= 0x7f807f80; if ((res & 0xffff) == (res >> 16)) return 1; return 0; } /* Halt the receive and transmit queues */ static void gfar_halt_nodisable(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = NULL; u32 tempval; int i = 0; for (i = 0; i < priv->num_grps; i++) { regs = priv->gfargrp[i].regs; /* Mask all interrupts */ gfar_write(®s->imask, IMASK_INIT_CLEAR); /* Clear all interrupts */ gfar_write(®s->ievent, IEVENT_INIT_CLEAR); } regs = priv->gfargrp[0].regs; /* Stop the DMA, and wait for it to stop */ tempval = gfar_read(®s->dmactrl); if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) != (DMACTRL_GRS | DMACTRL_GTS)) { int ret; tempval |= (DMACTRL_GRS | DMACTRL_GTS); gfar_write(®s->dmactrl, tempval); do { ret = spin_event_timeout(((gfar_read(®s->ievent) & (IEVENT_GRSC | IEVENT_GTSC)) == (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0); if (!ret && !(gfar_read(®s->ievent) & IEVENT_GRSC)) ret = __gfar_is_rx_idle(priv); } while (!ret); } } /* Halt the receive and transmit queues */ void gfar_halt(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 tempval; gfar_halt_nodisable(dev); /* Disable Rx and Tx */ tempval = gfar_read(®s->maccfg1); tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); gfar_write(®s->maccfg1, tempval); } static void free_grp_irqs(struct gfar_priv_grp *grp) { free_irq(grp->interruptError, grp); free_irq(grp->interruptTransmit, grp); free_irq(grp->interruptReceive, grp); } void stop_gfar(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); unsigned long flags; int i; phy_stop(priv->phydev); /* Lock it down */ local_irq_save(flags); lock_tx_qs(priv); lock_rx_qs(priv); gfar_halt(dev); unlock_rx_qs(priv); unlock_tx_qs(priv); local_irq_restore(flags); /* Free the IRQs */ if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { for (i = 0; i < priv->num_grps; i++) free_grp_irqs(&priv->gfargrp[i]); } else { for (i = 0; i < priv->num_grps; i++) free_irq(priv->gfargrp[i].interruptTransmit, &priv->gfargrp[i]); } free_skb_resources(priv); } static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) { struct txbd8 *txbdp; struct gfar_private *priv = netdev_priv(tx_queue->dev); int i, j; txbdp = tx_queue->tx_bd_base; for (i = 0; i < tx_queue->tx_ring_size; i++) { if (!tx_queue->tx_skbuff[i]) continue; dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr, txbdp->length, DMA_TO_DEVICE); txbdp->lstatus = 0; for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; j++) { txbdp++; dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr, txbdp->length, DMA_TO_DEVICE); } txbdp++; dev_kfree_skb_any(tx_queue->tx_skbuff[i]); tx_queue->tx_skbuff[i] = NULL; } kfree(tx_queue->tx_skbuff); } static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) { struct rxbd8 *rxbdp; struct gfar_private *priv = netdev_priv(rx_queue->dev); int i; rxbdp = rx_queue->rx_bd_base; for (i = 0; i < rx_queue->rx_ring_size; i++) { if (rx_queue->rx_skbuff[i]) { dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr, priv->rx_buffer_size, DMA_FROM_DEVICE); dev_kfree_skb_any(rx_queue->rx_skbuff[i]); rx_queue->rx_skbuff[i] = NULL; } rxbdp->lstatus = 0; rxbdp->bufPtr = 0; rxbdp++; } kfree(rx_queue->rx_skbuff); } /* If there are any tx skbs or rx skbs still around, free them. * Then free tx_skbuff and rx_skbuff */ static void free_skb_resources(struct gfar_private *priv) { struct gfar_priv_tx_q *tx_queue = NULL; struct gfar_priv_rx_q *rx_queue = NULL; int i; /* Go through all the buffer descriptors and free their data buffers */ for (i = 0; i < priv->num_tx_queues; i++) { struct netdev_queue *txq; tx_queue = priv->tx_queue[i]; txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); if(tx_queue->tx_skbuff) free_skb_tx_queue(tx_queue); netdev_tx_reset_queue(txq); } for (i = 0; i < priv->num_rx_queues; i++) { rx_queue = priv->rx_queue[i]; if(rx_queue->rx_skbuff) free_skb_rx_queue(rx_queue); } dma_free_coherent(&priv->ofdev->dev, sizeof(struct txbd8) * priv->total_tx_ring_size + sizeof(struct rxbd8) * priv->total_rx_ring_size, priv->tx_queue[0]->tx_bd_base, priv->tx_queue[0]->tx_bd_dma_base); skb_queue_purge(&priv->rx_recycle); } void gfar_start(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 tempval; int i = 0; /* Enable Rx and Tx in MACCFG1 */ tempval = gfar_read(®s->maccfg1); tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); gfar_write(®s->maccfg1, tempval); /* Initialize DMACTRL to have WWR and WOP */ tempval = gfar_read(®s->dmactrl); tempval |= DMACTRL_INIT_SETTINGS; gfar_write(®s->dmactrl, tempval); /* Make sure we aren't stopped */ tempval = gfar_read(®s->dmactrl); tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); gfar_write(®s->dmactrl, tempval); for (i = 0; i < priv->num_grps; i++) { regs = priv->gfargrp[i].regs; /* Clear THLT/RHLT, so that the DMA starts polling now */ gfar_write(®s->tstat, priv->gfargrp[i].tstat); gfar_write(®s->rstat, priv->gfargrp[i].rstat); /* Unmask the interrupts we look for */ gfar_write(®s->imask, IMASK_DEFAULT); } dev->trans_start = jiffies; /* prevent tx timeout */ } void gfar_configure_coalescing(struct gfar_private *priv, unsigned long tx_mask, unsigned long rx_mask) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 __iomem *baddr; int i = 0; /* Backward compatible case ---- even if we enable * multiple queues, there's only single reg to program */ gfar_write(®s->txic, 0); if(likely(priv->tx_queue[0]->txcoalescing)) gfar_write(®s->txic, priv->tx_queue[0]->txic); gfar_write(®s->rxic, 0); if(unlikely(priv->rx_queue[0]->rxcoalescing)) gfar_write(®s->rxic, priv->rx_queue[0]->rxic); if (priv->mode == MQ_MG_MODE) { baddr = ®s->txic0; for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { gfar_write(baddr + i, 0); if (likely(priv->tx_queue[i]->txcoalescing)) gfar_write(baddr + i, priv->tx_queue[i]->txic); } baddr = ®s->rxic0; for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { gfar_write(baddr + i, 0); if (likely(priv->rx_queue[i]->rxcoalescing)) gfar_write(baddr + i, priv->rx_queue[i]->rxic); } } } static int register_grp_irqs(struct gfar_priv_grp *grp) { struct gfar_private *priv = grp->priv; struct net_device *dev = priv->ndev; int err; /* If the device has multiple interrupts, register for * them. Otherwise, only register for the one */ if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { /* Install our interrupt handlers for Error, * Transmit, and Receive */ if ((err = request_irq(grp->interruptError, gfar_error, 0, grp->int_name_er,grp)) < 0) { netif_err(priv, intr, dev, "Can't get IRQ %d\n", grp->interruptError); goto err_irq_fail; } if ((err = request_irq(grp->interruptTransmit, gfar_transmit, 0, grp->int_name_tx, grp)) < 0) { netif_err(priv, intr, dev, "Can't get IRQ %d\n", grp->interruptTransmit); goto tx_irq_fail; } if ((err = request_irq(grp->interruptReceive, gfar_receive, 0, grp->int_name_rx, grp)) < 0) { netif_err(priv, intr, dev, "Can't get IRQ %d\n", grp->interruptReceive); goto rx_irq_fail; } } else { if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0, grp->int_name_tx, grp)) < 0) { netif_err(priv, intr, dev, "Can't get IRQ %d\n", grp->interruptTransmit); goto err_irq_fail; } } return 0; rx_irq_fail: free_irq(grp->interruptTransmit, grp); tx_irq_fail: free_irq(grp->interruptError, grp); err_irq_fail: return err; } /* Bring the controller up and running */ int startup_gfar(struct net_device *ndev) { struct gfar_private *priv = netdev_priv(ndev); struct gfar __iomem *regs = NULL; int err, i, j; for (i = 0; i < priv->num_grps; i++) { regs= priv->gfargrp[i].regs; gfar_write(®s->imask, IMASK_INIT_CLEAR); } regs= priv->gfargrp[0].regs; err = gfar_alloc_skb_resources(ndev); if (err) return err; gfar_init_mac(ndev); for (i = 0; i < priv->num_grps; i++) { err = register_grp_irqs(&priv->gfargrp[i]); if (err) { for (j = 0; j < i; j++) free_grp_irqs(&priv->gfargrp[j]); goto irq_fail; } } /* Start the controller */ gfar_start(ndev); phy_start(priv->phydev); gfar_configure_coalescing(priv, 0xFF, 0xFF); return 0; irq_fail: free_skb_resources(priv); return err; } /* Called when something needs to use the ethernet device */ /* Returns 0 for success. */ static int gfar_enet_open(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); int err; enable_napi(priv); skb_queue_head_init(&priv->rx_recycle); /* Initialize a bunch of registers */ init_registers(dev); gfar_set_mac_address(dev); err = init_phy(dev); if (err) { disable_napi(priv); return err; } err = startup_gfar(dev); if (err) { disable_napi(priv); return err; } netif_tx_start_all_queues(dev); device_set_wakeup_enable(&dev->dev, priv->wol_en); return err; } static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) { struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN); memset(fcb, 0, GMAC_FCB_LEN); return fcb; } static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, int fcb_length) { u8 flags = 0; /* If we're here, it's a IP packet with a TCP or UDP * payload. We set it to checksum, using a pseudo-header * we provide */ flags = TXFCB_DEFAULT; /* Tell the controller what the protocol is */ /* And provide the already calculated phcs */ if (ip_hdr(skb)->protocol == IPPROTO_UDP) { flags |= TXFCB_UDP; fcb->phcs = udp_hdr(skb)->check; } else fcb->phcs = tcp_hdr(skb)->check; /* l3os is the distance between the start of the * frame (skb->data) and the start of the IP hdr. * l4os is the distance between the start of the * l3 hdr and the l4 hdr */ fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length); fcb->l4os = skb_network_header_len(skb); fcb->flags = flags; } void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) { fcb->flags |= TXFCB_VLN; fcb->vlctl = vlan_tx_tag_get(skb); } static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, struct txbd8 *base, int ring_size) { struct txbd8 *new_bd = bdp + stride; return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; } static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, int ring_size) { return skip_txbd(bdp, 1, base, ring_size); } /* This is called by the kernel when a frame is ready for transmission. */ /* It is pointed to by the dev->hard_start_xmit function pointer */ static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar_priv_tx_q *tx_queue = NULL; struct netdev_queue *txq; struct gfar __iomem *regs = NULL; struct txfcb *fcb = NULL; struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; u32 lstatus; int i, rq = 0, do_tstamp = 0; u32 bufaddr; unsigned long flags; unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN; /* * TOE=1 frames larger than 2500 bytes may see excess delays * before start of transmission. */ if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) && skb->ip_summed == CHECKSUM_PARTIAL && skb->len > 2500)) { int ret; ret = skb_checksum_help(skb); if (ret) return ret; } rq = skb->queue_mapping; tx_queue = priv->tx_queue[rq]; txq = netdev_get_tx_queue(dev, rq); base = tx_queue->tx_bd_base; regs = tx_queue->grp->regs; /* check if time stamp should be generated */ if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && priv->hwts_tx_en)) { do_tstamp = 1; fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN; } /* make space for additional header when fcb is needed */ if (((skb->ip_summed == CHECKSUM_PARTIAL) || vlan_tx_tag_present(skb) || unlikely(do_tstamp)) && (skb_headroom(skb) < fcb_length)) { struct sk_buff *skb_new; skb_new = skb_realloc_headroom(skb, fcb_length); if (!skb_new) { dev->stats.tx_errors++; kfree_skb(skb); return NETDEV_TX_OK; } /* Steal sock reference for processing TX time stamps */ swap(skb_new->sk, skb->sk); swap(skb_new->destructor, skb->destructor); kfree_skb(skb); skb = skb_new; } /* total number of fragments in the SKB */ nr_frags = skb_shinfo(skb)->nr_frags; /* calculate the required number of TxBDs for this skb */ if (unlikely(do_tstamp)) nr_txbds = nr_frags + 2; else nr_txbds = nr_frags + 1; /* check if there is space to queue this packet */ if (nr_txbds > tx_queue->num_txbdfree) { /* no space, stop the queue */ netif_tx_stop_queue(txq); dev->stats.tx_fifo_errors++; return NETDEV_TX_BUSY; } /* Update transmit stats */ tx_queue->stats.tx_bytes += skb->len; tx_queue->stats.tx_packets++; txbdp = txbdp_start = tx_queue->cur_tx; lstatus = txbdp->lstatus; /* Time stamp insertion requires one additional TxBD */ if (unlikely(do_tstamp)) txbdp_tstamp = txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); if (nr_frags == 0) { if (unlikely(do_tstamp)) txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); else lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); } else { /* Place the fragment addresses and lengths into the TxBDs */ for (i = 0; i < nr_frags; i++) { /* Point at the next BD, wrapping as needed */ txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); length = skb_shinfo(skb)->frags[i].size; lstatus = txbdp->lstatus | length | BD_LFLAG(TXBD_READY); /* Handle the last BD specially */ if (i == nr_frags - 1) lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); bufaddr = skb_frag_dma_map(&priv->ofdev->dev, &skb_shinfo(skb)->frags[i], 0, length, DMA_TO_DEVICE); /* set the TxBD length and buffer pointer */ txbdp->bufPtr = bufaddr; txbdp->lstatus = lstatus; } lstatus = txbdp_start->lstatus; } /* Add TxPAL between FCB and frame if required */ if (unlikely(do_tstamp)) { skb_push(skb, GMAC_TXPAL_LEN); memset(skb->data, 0, GMAC_TXPAL_LEN); } /* Set up checksumming */ if (CHECKSUM_PARTIAL == skb->ip_summed) { fcb = gfar_add_fcb(skb); /* as specified by errata */ if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) && ((unsigned long)fcb % 0x20) > 0x18)) { __skb_pull(skb, GMAC_FCB_LEN); skb_checksum_help(skb); } else { lstatus |= BD_LFLAG(TXBD_TOE); gfar_tx_checksum(skb, fcb, fcb_length); } } if (vlan_tx_tag_present(skb)) { if (unlikely(NULL == fcb)) { fcb = gfar_add_fcb(skb); lstatus |= BD_LFLAG(TXBD_TOE); } gfar_tx_vlan(skb, fcb); } /* Setup tx hardware time stamping if requested */ if (unlikely(do_tstamp)) { skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; if (fcb == NULL) fcb = gfar_add_fcb(skb); fcb->ptp = 1; lstatus |= BD_LFLAG(TXBD_TOE); } txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); /* * If time stamping is requested one additional TxBD must be set up. The * first TxBD points to the FCB and must have a data length of * GMAC_FCB_LEN. The second TxBD points to the actual frame data with * the full frame length. */ if (unlikely(do_tstamp)) { txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length; txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) | (skb_headlen(skb) - fcb_length); lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; } else { lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); } netdev_tx_sent_queue(txq, skb->len); /* * We can work in parallel with gfar_clean_tx_ring(), except * when modifying num_txbdfree. Note that we didn't grab the lock * when we were reading the num_txbdfree and checking for available * space, that's because outside of this function it can only grow, * and once we've got needed space, it cannot suddenly disappear. * * The lock also protects us from gfar_error(), which can modify * regs->tstat and thus retrigger the transfers, which is why we * also must grab the lock before setting ready bit for the first * to be transmitted BD. */ spin_lock_irqsave(&tx_queue->txlock, flags); /* * The powerpc-specific eieio() is used, as wmb() has too strong * semantics (it requires synchronization between cacheable and * uncacheable mappings, which eieio doesn't provide and which we * don't need), thus requiring a more expensive sync instruction. At * some point, the set of architecture-independent barrier functions * should be expanded to include weaker barriers. */ eieio(); txbdp_start->lstatus = lstatus; eieio(); /* force lstatus write before tx_skbuff */ tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; /* Update the current skb pointer to the next entry we will use * (wrapping if necessary) */ tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & TX_RING_MOD_MASK(tx_queue->tx_ring_size); tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); /* reduce TxBD free count */ tx_queue->num_txbdfree -= (nr_txbds); /* If the next BD still needs to be cleaned up, then the bds are full. We need to tell the kernel to stop sending us stuff. */ if (!tx_queue->num_txbdfree) { netif_tx_stop_queue(txq); dev->stats.tx_fifo_errors++; } /* Tell the DMA to go go go */ gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); /* Unlock priv */ spin_unlock_irqrestore(&tx_queue->txlock, flags); return NETDEV_TX_OK; } /* Stops the kernel queue, and halts the controller */ static int gfar_close(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); disable_napi(priv); cancel_work_sync(&priv->reset_task); stop_gfar(dev); /* Disconnect from the PHY */ phy_disconnect(priv->phydev); priv->phydev = NULL; netif_tx_stop_all_queues(dev); return 0; } /* Changes the mac address if the controller is not running. */ static int gfar_set_mac_address(struct net_device *dev) { gfar_set_mac_for_addr(dev, 0, dev->dev_addr); return 0; } /* Check if rx parser should be activated */ void gfar_check_rx_parser_mode(struct gfar_private *priv) { struct gfar __iomem *regs; u32 tempval; regs = priv->gfargrp[0].regs; tempval = gfar_read(®s->rctrl); /* If parse is no longer required, then disable parser */ if (tempval & RCTRL_REQ_PARSER) tempval |= RCTRL_PRSDEP_INIT; else tempval &= ~RCTRL_PRSDEP_INIT; gfar_write(®s->rctrl, tempval); } /* Enables and disables VLAN insertion/extraction */ void gfar_vlan_mode(struct net_device *dev, netdev_features_t features) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = NULL; unsigned long flags; u32 tempval; regs = priv->gfargrp[0].regs; local_irq_save(flags); lock_rx_qs(priv); if (features & NETIF_F_HW_VLAN_TX) { /* Enable VLAN tag insertion */ tempval = gfar_read(®s->tctrl); tempval |= TCTRL_VLINS; gfar_write(®s->tctrl, tempval); } else { /* Disable VLAN tag insertion */ tempval = gfar_read(®s->tctrl); tempval &= ~TCTRL_VLINS; gfar_write(®s->tctrl, tempval); } if (features & NETIF_F_HW_VLAN_RX) { /* Enable VLAN tag extraction */ tempval = gfar_read(®s->rctrl); tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT); gfar_write(®s->rctrl, tempval); } else { /* Disable VLAN tag extraction */ tempval = gfar_read(®s->rctrl); tempval &= ~RCTRL_VLEX; gfar_write(®s->rctrl, tempval); gfar_check_rx_parser_mode(priv); } gfar_change_mtu(dev, dev->mtu); unlock_rx_qs(priv); local_irq_restore(flags); } static int gfar_change_mtu(struct net_device *dev, int new_mtu) { int tempsize, tempval; struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->gfargrp[0].regs; int oldsize = priv->rx_buffer_size; int frame_size = new_mtu + ETH_HLEN; if (gfar_is_vlan_on(priv)) frame_size += VLAN_HLEN; if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { netif_err(priv, drv, dev, "Invalid MTU setting\n"); return -EINVAL; } if (gfar_uses_fcb(priv)) frame_size += GMAC_FCB_LEN; frame_size += priv->padding; tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + INCREMENTAL_BUFFER_SIZE; /* Only stop and start the controller if it isn't already * stopped, and we changed something */ if ((oldsize != tempsize) && (dev->flags & IFF_UP)) stop_gfar(dev); priv->rx_buffer_size = tempsize; dev->mtu = new_mtu; gfar_write(®s->mrblr, priv->rx_buffer_size); gfar_write(®s->maxfrm, priv->rx_buffer_size); /* If the mtu is larger than the max size for standard * ethernet frames (ie, a jumbo frame), then set maccfg2 * to allow huge frames, and to check the length */ tempval = gfar_read(®s->maccfg2); if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE || gfar_has_errata(priv, GFAR_ERRATA_74)) tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); else tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); gfar_write(®s->maccfg2, tempval); if ((oldsize != tempsize) && (dev->flags & IFF_UP)) startup_gfar(dev); return 0; } /* gfar_reset_task gets scheduled when a packet has not been * transmitted after a set amount of time. * For now, assume that clearing out all the structures, and * starting over will fix the problem. */ static void gfar_reset_task(struct work_struct *work) { struct gfar_private *priv = container_of(work, struct gfar_private, reset_task); struct net_device *dev = priv->ndev; if (dev->flags & IFF_UP) { netif_tx_stop_all_queues(dev); stop_gfar(dev); startup_gfar(dev); netif_tx_start_all_queues(dev); } netif_tx_schedule_all(dev); } static void gfar_timeout(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); dev->stats.tx_errors++; schedule_work(&priv->reset_task); } static void gfar_align_skb(struct sk_buff *skb) { /* We need the data buffer to be aligned properly. We will reserve * as many bytes as needed to align the data properly */ skb_reserve(skb, RXBUF_ALIGNMENT - (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1))); } /* Interrupt Handler for Transmit complete */ static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) { struct net_device *dev = tx_queue->dev; struct netdev_queue *txq; struct gfar_private *priv = netdev_priv(dev); struct gfar_priv_rx_q *rx_queue = NULL; struct txbd8 *bdp, *next = NULL; struct txbd8 *lbdp = NULL; struct txbd8 *base = tx_queue->tx_bd_base; struct sk_buff *skb; int skb_dirtytx; int tx_ring_size = tx_queue->tx_ring_size; int frags = 0, nr_txbds = 0; int i; int howmany = 0; int tqi = tx_queue->qindex; unsigned int bytes_sent = 0; u32 lstatus; size_t buflen; rx_queue = priv->rx_queue[tqi]; txq = netdev_get_tx_queue(dev, tqi); bdp = tx_queue->dirty_tx; skb_dirtytx = tx_queue->skb_dirtytx; while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { unsigned long flags; frags = skb_shinfo(skb)->nr_frags; /* * When time stamping, one additional TxBD must be freed. * Also, we need to dma_unmap_single() the TxPAL. */ if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) nr_txbds = frags + 2; else nr_txbds = frags + 1; lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); lstatus = lbdp->lstatus; /* Only clean completed frames */ if ((lstatus & BD_LFLAG(TXBD_READY)) && (lstatus & BD_LENGTH_MASK)) break; if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { next = next_txbd(bdp, base, tx_ring_size); buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN; } else buflen = bdp->length; dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr, buflen, DMA_TO_DEVICE); if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { struct skb_shared_hwtstamps shhwtstamps; u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7); memset(&shhwtstamps, 0, sizeof(shhwtstamps)); shhwtstamps.hwtstamp = ns_to_ktime(*ns); skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); skb_tstamp_tx(skb, &shhwtstamps); bdp->lstatus &= BD_LFLAG(TXBD_WRAP); bdp = next; } bdp->lstatus &= BD_LFLAG(TXBD_WRAP); bdp = next_txbd(bdp, base, tx_ring_size); for (i = 0; i < frags; i++) { dma_unmap_page(&priv->ofdev->dev, bdp->bufPtr, bdp->length, DMA_TO_DEVICE); bdp->lstatus &= BD_LFLAG(TXBD_WRAP); bdp = next_txbd(bdp, base, tx_ring_size); } bytes_sent += skb->len; /* * If there's room in the queue (limit it to rx_buffer_size) * we add this skb back into the pool, if it's the right size */ if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size && skb_recycle_check(skb, priv->rx_buffer_size + RXBUF_ALIGNMENT)) { gfar_align_skb(skb); skb_queue_head(&priv->rx_recycle, skb); } else dev_kfree_skb_any(skb); tx_queue->tx_skbuff[skb_dirtytx] = NULL; skb_dirtytx = (skb_dirtytx + 1) & TX_RING_MOD_MASK(tx_ring_size); howmany++; spin_lock_irqsave(&tx_queue->txlock, flags); tx_queue->num_txbdfree += nr_txbds; spin_unlock_irqrestore(&tx_queue->txlock, flags); } /* If we freed a buffer, we can restart transmission, if necessary */ if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree) netif_wake_subqueue(dev, tqi); /* Update dirty indicators */ tx_queue->skb_dirtytx = skb_dirtytx; tx_queue->dirty_tx = bdp; netdev_tx_completed_queue(txq, howmany, bytes_sent); return howmany; } static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp) { unsigned long flags; spin_lock_irqsave(&gfargrp->grplock, flags); if (napi_schedule_prep(&gfargrp->napi)) { gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED); __napi_schedule(&gfargrp->napi); } else { /* * Clear IEVENT, so interrupts aren't called again * because of the packets that have already arrived. */ gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK); } spin_unlock_irqrestore(&gfargrp->grplock, flags); } /* Interrupt Handler for Transmit complete */ static irqreturn_t gfar_transmit(int irq, void *grp_id) { gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id); return IRQ_HANDLED; } static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, struct sk_buff *skb) { struct net_device *dev = rx_queue->dev; struct gfar_private *priv = netdev_priv(dev); dma_addr_t buf; buf = dma_map_single(&priv->ofdev->dev, skb->data, priv->rx_buffer_size, DMA_FROM_DEVICE); gfar_init_rxbdp(rx_queue, bdp, buf); } static struct sk_buff * gfar_alloc_skb(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct sk_buff *skb = NULL; skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT); if (!skb) return NULL; gfar_align_skb(skb); return skb; } struct sk_buff * gfar_new_skb(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct sk_buff *skb = NULL; skb = skb_dequeue(&priv->rx_recycle); if (!skb) skb = gfar_alloc_skb(dev); return skb; } static inline void count_errors(unsigned short status, struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; struct gfar_extra_stats *estats = &priv->extra_stats; /* If the packet was truncated, none of the other errors * matter */ if (status & RXBD_TRUNCATED) { stats->rx_length_errors++; estats->rx_trunc++; return; } /* Count the errors, if there were any */ if (status & (RXBD_LARGE | RXBD_SHORT)) { stats->rx_length_errors++; if (status & RXBD_LARGE) estats->rx_large++; else estats->rx_short++; } if (status & RXBD_NONOCTET) { stats->rx_frame_errors++; estats->rx_nonoctet++; } if (status & RXBD_CRCERR) { estats->rx_crcerr++; stats->rx_crc_errors++; } if (status & RXBD_OVERRUN) { estats->rx_overrun++; stats->rx_crc_errors++; } } irqreturn_t gfar_receive(int irq, void *grp_id) { gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id); return IRQ_HANDLED; } static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) { /* If valid headers were found, and valid sums * were verified, then we tell the kernel that no * checksumming is necessary. Otherwise, it is */ if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); } /* gfar_process_frame() -- handle one incoming packet if skb * isn't NULL. */ static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int amount_pull, struct napi_struct *napi) { struct gfar_private *priv = netdev_priv(dev); struct rxfcb *fcb = NULL; gro_result_t ret; /* fcb is at the beginning if exists */ fcb = (struct rxfcb *)skb->data; /* Remove the FCB from the skb */ /* Remove the padded bytes, if there are any */ if (amount_pull) { skb_record_rx_queue(skb, fcb->rq); skb_pull(skb, amount_pull); } /* Get receive timestamp from the skb */ if (priv->hwts_rx_en) { struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); u64 *ns = (u64 *) skb->data; memset(shhwtstamps, 0, sizeof(*shhwtstamps)); shhwtstamps->hwtstamp = ns_to_ktime(*ns); } if (priv->padding) skb_pull(skb, priv->padding); if (dev->features & NETIF_F_RXCSUM) gfar_rx_checksum(skb, fcb); /* Tell the skb what kind of packet this is */ skb->protocol = eth_type_trans(skb, dev); /* * There's need to check for NETIF_F_HW_VLAN_RX here. * Even if vlan rx accel is disabled, on some chips * RXFCB_VLN is pseudo randomly set. */ if (dev->features & NETIF_F_HW_VLAN_RX && fcb->flags & RXFCB_VLN) __vlan_hwaccel_put_tag(skb, fcb->vlctl); /* Send the packet up the stack */ ret = napi_gro_receive(napi, skb); if (GRO_DROP == ret) priv->extra_stats.kernel_dropped++; return 0; } /* gfar_clean_rx_ring() -- Processes each frame in the rx ring * until the budget/quota has been reached. Returns the number * of frames handled */ int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit) { struct net_device *dev = rx_queue->dev; struct rxbd8 *bdp, *base; struct sk_buff *skb; int pkt_len; int amount_pull; int howmany = 0; struct gfar_private *priv = netdev_priv(dev); /* Get the first full descriptor */ bdp = rx_queue->cur_rx; base = rx_queue->rx_bd_base; amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0); while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { struct sk_buff *newskb; rmb(); /* Add another skb for the future */ newskb = gfar_new_skb(dev); skb = rx_queue->rx_skbuff[rx_queue->skb_currx]; dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr, priv->rx_buffer_size, DMA_FROM_DEVICE); if (unlikely(!(bdp->status & RXBD_ERR) && bdp->length > priv->rx_buffer_size)) bdp->status = RXBD_LARGE; /* We drop the frame if we failed to allocate a new buffer */ if (unlikely(!newskb || !(bdp->status & RXBD_LAST) || bdp->status & RXBD_ERR)) { count_errors(bdp->status, dev); if (unlikely(!newskb)) newskb = skb; else if (skb) skb_queue_head(&priv->rx_recycle, skb); } else { /* Increment the number of packets */ rx_queue->stats.rx_packets++; howmany++; if (likely(skb)) { pkt_len = bdp->length - ETH_FCS_LEN; /* Remove the FCS from the packet length */ skb_put(skb, pkt_len); rx_queue->stats.rx_bytes += pkt_len; skb_record_rx_queue(skb, rx_queue->qindex); gfar_process_frame(dev, skb, amount_pull, &rx_queue->grp->napi); } else { netif_warn(priv, rx_err, dev, "Missing skb!\n"); rx_queue->stats.rx_dropped++; priv->extra_stats.rx_skbmissing++; } } rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb; /* Setup the new bdp */ gfar_new_rxbdp(rx_queue, bdp, newskb); /* Update to the next pointer */ bdp = next_bd(bdp, base, rx_queue->rx_ring_size); /* update to point at the next skb */ rx_queue->skb_currx = (rx_queue->skb_currx + 1) & RX_RING_MOD_MASK(rx_queue->rx_ring_size); } /* Update the current rxbd pointer to be the next one */ rx_queue->cur_rx = bdp; return howmany; } static int gfar_poll(struct napi_struct *napi, int budget) { struct gfar_priv_grp *gfargrp = container_of(napi, struct gfar_priv_grp, napi); struct gfar_private *priv = gfargrp->priv; struct gfar __iomem *regs = gfargrp->regs; struct gfar_priv_tx_q *tx_queue = NULL; struct gfar_priv_rx_q *rx_queue = NULL; int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0; int tx_cleaned = 0, i, left_over_budget = budget; unsigned long serviced_queues = 0; int num_queues = 0; num_queues = gfargrp->num_rx_queues; budget_per_queue = budget/num_queues; /* Clear IEVENT, so interrupts aren't called again * because of the packets that have already arrived */ gfar_write(®s->ievent, IEVENT_RTX_MASK); while (num_queues && left_over_budget) { budget_per_queue = left_over_budget/num_queues; left_over_budget = 0; for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { if (test_bit(i, &serviced_queues)) continue; rx_queue = priv->rx_queue[i]; tx_queue = priv->tx_queue[rx_queue->qindex]; tx_cleaned += gfar_clean_tx_ring(tx_queue); rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue, budget_per_queue); rx_cleaned += rx_cleaned_per_queue; if(rx_cleaned_per_queue < budget_per_queue) { left_over_budget = left_over_budget + (budget_per_queue - rx_cleaned_per_queue); set_bit(i, &serviced_queues); num_queues--; } } } if (tx_cleaned) return budget; if (rx_cleaned < budget) { napi_complete(napi); /* Clear the halt bit in RSTAT */ gfar_write(®s->rstat, gfargrp->rstat); gfar_write(®s->imask, IMASK_DEFAULT); /* If we are coalescing interrupts, update the timer */ /* Otherwise, clear it */ gfar_configure_coalescing(priv, gfargrp->rx_bit_map, gfargrp->tx_bit_map); } return rx_cleaned; } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void gfar_netpoll(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); int i = 0; /* If the device has multiple interrupts, run tx/rx */ if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { for (i = 0; i < priv->num_grps; i++) { disable_irq(priv->gfargrp[i].interruptTransmit); disable_irq(priv->gfargrp[i].interruptReceive); disable_irq(priv->gfargrp[i].interruptError); gfar_interrupt(priv->gfargrp[i].interruptTransmit, &priv->gfargrp[i]); enable_irq(priv->gfargrp[i].interruptError); enable_irq(priv->gfargrp[i].interruptReceive); enable_irq(priv->gfargrp[i].interruptTransmit); } } else { for (i = 0; i < priv->num_grps; i++) { disable_irq(priv->gfargrp[i].interruptTransmit); gfar_interrupt(priv->gfargrp[i].interruptTransmit, &priv->gfargrp[i]); enable_irq(priv->gfargrp[i].interruptTransmit); } } } #endif /* The interrupt handler for devices with one interrupt */ static irqreturn_t gfar_interrupt(int irq, void *grp_id) { struct gfar_priv_grp *gfargrp = grp_id; /* Save ievent for future reference */ u32 events = gfar_read(&gfargrp->regs->ievent); /* Check for reception */ if (events & IEVENT_RX_MASK) gfar_receive(irq, grp_id); /* Check for transmit completion */ if (events & IEVENT_TX_MASK) gfar_transmit(irq, grp_id); /* Check for errors */ if (events & IEVENT_ERR_MASK) gfar_error(irq, grp_id); return IRQ_HANDLED; } /* Called every time the controller might need to be made * aware of new link state. The PHY code conveys this * information through variables in the phydev structure, and this * function converts those variables into the appropriate * register values, and can bring down the device if needed. */ static void adjust_link(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->gfargrp[0].regs; unsigned long flags; struct phy_device *phydev = priv->phydev; int new_state = 0; local_irq_save(flags); lock_tx_qs(priv); if (phydev->link) { u32 tempval = gfar_read(®s->maccfg2); u32 ecntrl = gfar_read(®s->ecntrl); /* Now we make sure that we can be in full duplex mode. * If not, we operate in half-duplex mode. */ if (phydev->duplex != priv->oldduplex) { new_state = 1; if (!(phydev->duplex)) tempval &= ~(MACCFG2_FULL_DUPLEX); else tempval |= MACCFG2_FULL_DUPLEX; priv->oldduplex = phydev->duplex; } if (phydev->speed != priv->oldspeed) { new_state = 1; switch (phydev->speed) { case 1000: tempval = ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); ecntrl &= ~(ECNTRL_R100); break; case 100: case 10: tempval = ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); /* Reduced mode distinguishes * between 10 and 100 */ if (phydev->speed == SPEED_100) ecntrl |= ECNTRL_R100; else ecntrl &= ~(ECNTRL_R100); break; default: netif_warn(priv, link, dev, "Ack! Speed (%d) is not 10/100/1000!\n", phydev->speed); break; } priv->oldspeed = phydev->speed; } gfar_write(®s->maccfg2, tempval); gfar_write(®s->ecntrl, ecntrl); if (!priv->oldlink) { new_state = 1; priv->oldlink = 1; } } else if (priv->oldlink) { new_state = 1; priv->oldlink = 0; priv->oldspeed = 0; priv->oldduplex = -1; } if (new_state && netif_msg_link(priv)) phy_print_status(phydev); unlock_tx_qs(priv); local_irq_restore(flags); } /* Update the hash table based on the current list of multicast * addresses we subscribe to. Also, change the promiscuity of * the device based on the flags (this function is called * whenever dev->flags is changed */ static void gfar_set_multi(struct net_device *dev) { struct netdev_hw_addr *ha; struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 tempval; if (dev->flags & IFF_PROMISC) { /* Set RCTRL to PROM */ tempval = gfar_read(®s->rctrl); tempval |= RCTRL_PROM; gfar_write(®s->rctrl, tempval); } else { /* Set RCTRL to not PROM */ tempval = gfar_read(®s->rctrl); tempval &= ~(RCTRL_PROM); gfar_write(®s->rctrl, tempval); } if (dev->flags & IFF_ALLMULTI) { /* Set the hash to rx all multicast frames */ gfar_write(®s->igaddr0, 0xffffffff); gfar_write(®s->igaddr1, 0xffffffff); gfar_write(®s->igaddr2, 0xffffffff); gfar_write(®s->igaddr3, 0xffffffff); gfar_write(®s->igaddr4, 0xffffffff); gfar_write(®s->igaddr5, 0xffffffff); gfar_write(®s->igaddr6, 0xffffffff); gfar_write(®s->igaddr7, 0xffffffff); gfar_write(®s->gaddr0, 0xffffffff); gfar_write(®s->gaddr1, 0xffffffff); gfar_write(®s->gaddr2, 0xffffffff); gfar_write(®s->gaddr3, 0xffffffff); gfar_write(®s->gaddr4, 0xffffffff); gfar_write(®s->gaddr5, 0xffffffff); gfar_write(®s->gaddr6, 0xffffffff); gfar_write(®s->gaddr7, 0xffffffff); } else { int em_num; int idx; /* zero out the hash */ gfar_write(®s->igaddr0, 0x0); gfar_write(®s->igaddr1, 0x0); gfar_write(®s->igaddr2, 0x0); gfar_write(®s->igaddr3, 0x0); gfar_write(®s->igaddr4, 0x0); gfar_write(®s->igaddr5, 0x0); gfar_write(®s->igaddr6, 0x0); gfar_write(®s->igaddr7, 0x0); gfar_write(®s->gaddr0, 0x0); gfar_write(®s->gaddr1, 0x0); gfar_write(®s->gaddr2, 0x0); gfar_write(®s->gaddr3, 0x0); gfar_write(®s->gaddr4, 0x0); gfar_write(®s->gaddr5, 0x0); gfar_write(®s->gaddr6, 0x0); gfar_write(®s->gaddr7, 0x0); /* If we have extended hash tables, we need to * clear the exact match registers to prepare for * setting them */ if (priv->extended_hash) { em_num = GFAR_EM_NUM + 1; gfar_clear_exact_match(dev); idx = 1; } else { idx = 0; em_num = 0; } if (netdev_mc_empty(dev)) return; /* Parse the list, and set the appropriate bits */ netdev_for_each_mc_addr(ha, dev) { if (idx < em_num) { gfar_set_mac_for_addr(dev, idx, ha->addr); idx++; } else gfar_set_hash_for_addr(dev, ha->addr); } } } /* Clears each of the exact match registers to zero, so they * don't interfere with normal reception */ static void gfar_clear_exact_match(struct net_device *dev) { int idx; static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; for(idx = 1;idx < GFAR_EM_NUM + 1;idx++) gfar_set_mac_for_addr(dev, idx, zero_arr); } /* Set the appropriate hash bit for the given addr */ /* The algorithm works like so: * 1) Take the Destination Address (ie the multicast address), and * do a CRC on it (little endian), and reverse the bits of the * result. * 2) Use the 8 most significant bits as a hash into a 256-entry * table. The table is controlled through 8 32-bit registers: * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is * gaddr7. This means that the 3 most significant bits in the * hash index which gaddr register to use, and the 5 other bits * indicate which bit (assuming an IBM numbering scheme, which * for PowerPC (tm) is usually the case) in the register holds * the entry. */ static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) { u32 tempval; struct gfar_private *priv = netdev_priv(dev); u32 result = ether_crc(ETH_ALEN, addr); int width = priv->hash_width; u8 whichbit = (result >> (32 - width)) & 0x1f; u8 whichreg = result >> (32 - width + 5); u32 value = (1 << (31-whichbit)); tempval = gfar_read(priv->hash_regs[whichreg]); tempval |= value; gfar_write(priv->hash_regs[whichreg], tempval); } /* There are multiple MAC Address register pairs on some controllers * This function sets the numth pair to a given address */ static void gfar_set_mac_for_addr(struct net_device *dev, int num, const u8 *addr) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->gfargrp[0].regs; int idx; char tmpbuf[ETH_ALEN]; u32 tempval; u32 __iomem *macptr = ®s->macstnaddr1; macptr += num*2; /* Now copy it into the mac registers backwards, cuz */ /* little endian is silly */ for (idx = 0; idx < ETH_ALEN; idx++) tmpbuf[ETH_ALEN - 1 - idx] = addr[idx]; gfar_write(macptr, *((u32 *) (tmpbuf))); tempval = *((u32 *) (tmpbuf + 4)); gfar_write(macptr+1, tempval); } /* GFAR error interrupt handler */ static irqreturn_t gfar_error(int irq, void *grp_id) { struct gfar_priv_grp *gfargrp = grp_id; struct gfar __iomem *regs = gfargrp->regs; struct gfar_private *priv= gfargrp->priv; struct net_device *dev = priv->ndev; /* Save ievent for future reference */ u32 events = gfar_read(®s->ievent); /* Clear IEVENT */ gfar_write(®s->ievent, events & IEVENT_ERR_MASK); /* Magic Packet is not an error. */ if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && (events & IEVENT_MAG)) events &= ~IEVENT_MAG; /* Hmm... */ if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n", events, gfar_read(®s->imask)); /* Update the error counters */ if (events & IEVENT_TXE) { dev->stats.tx_errors++; if (events & IEVENT_LC) dev->stats.tx_window_errors++; if (events & IEVENT_CRL) dev->stats.tx_aborted_errors++; if (events & IEVENT_XFUN) { unsigned long flags; netif_dbg(priv, tx_err, dev, "TX FIFO underrun, packet dropped\n"); dev->stats.tx_dropped++; priv->extra_stats.tx_underrun++; local_irq_save(flags); lock_tx_qs(priv); /* Reactivate the Tx Queues */ gfar_write(®s->tstat, gfargrp->tstat); unlock_tx_qs(priv); local_irq_restore(flags); } netif_dbg(priv, tx_err, dev, "Transmit Error\n"); } if (events & IEVENT_BSY) { dev->stats.rx_errors++; priv->extra_stats.rx_bsy++; gfar_receive(irq, grp_id); netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", gfar_read(®s->rstat)); } if (events & IEVENT_BABR) { dev->stats.rx_errors++; priv->extra_stats.rx_babr++; netif_dbg(priv, rx_err, dev, "babbling RX error\n"); } if (events & IEVENT_EBERR) { priv->extra_stats.eberr++; netif_dbg(priv, rx_err, dev, "bus error\n"); } if (events & IEVENT_RXC) netif_dbg(priv, rx_status, dev, "control frame\n"); if (events & IEVENT_BABT) { priv->extra_stats.tx_babt++; netif_dbg(priv, tx_err, dev, "babbling TX error\n"); } return IRQ_HANDLED; } static struct of_device_id gfar_match[] = { { .type = "network", .compatible = "gianfar", }, { .compatible = "fsl,etsec2", }, {}, }; MODULE_DEVICE_TABLE(of, gfar_match); /* Structure for a device driver */ static struct platform_driver gfar_driver = { .driver = { .name = "fsl-gianfar", .owner = THIS_MODULE, .pm = GFAR_PM_OPS, .of_match_table = gfar_match, }, .probe = gfar_probe, .remove = gfar_remove, }; module_platform_driver(gfar_driver);