/* * libata-core.c - helper library for ATA * * Maintained by: Jeff Garzik * Please ALWAYS copy linux-ide@vger.kernel.org * on emails. * * Copyright 2003-2004 Red Hat, Inc. All rights reserved. * Copyright 2003-2004 Jeff Garzik * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/DocBook/libata.* * * Hardware documentation available from http://www.t13.org/ and * http://www.sata-io.org/ * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "scsi_priv.h" #include #include #include #include #include #include #include "libata.h" static unsigned int ata_dev_init_params(struct ata_device *dev, u16 heads, u16 sectors); static unsigned int ata_dev_set_xfermode(struct ata_device *dev); static void ata_dev_xfermask(struct ata_device *dev); static unsigned int ata_unique_id = 1; static struct workqueue_struct *ata_wq; int atapi_enabled = 1; module_param(atapi_enabled, int, 0444); MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); int atapi_dmadir = 0; module_param(atapi_dmadir, int, 0444); MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); int libata_fua = 0; module_param_named(fua, libata_fua, int, 0444); MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); MODULE_AUTHOR("Jeff Garzik"); MODULE_DESCRIPTION("Library module for ATA devices"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); /** * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure * @tf: Taskfile to convert * @fis: Buffer into which data will output * @pmp: Port multiplier port * * Converts a standard ATA taskfile to a Serial ATA * FIS structure (Register - Host to Device). * * LOCKING: * Inherited from caller. */ void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp) { fis[0] = 0x27; /* Register - Host to Device FIS */ fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number, bit 7 indicates Command FIS */ fis[2] = tf->command; fis[3] = tf->feature; fis[4] = tf->lbal; fis[5] = tf->lbam; fis[6] = tf->lbah; fis[7] = tf->device; fis[8] = tf->hob_lbal; fis[9] = tf->hob_lbam; fis[10] = tf->hob_lbah; fis[11] = tf->hob_feature; fis[12] = tf->nsect; fis[13] = tf->hob_nsect; fis[14] = 0; fis[15] = tf->ctl; fis[16] = 0; fis[17] = 0; fis[18] = 0; fis[19] = 0; } /** * ata_tf_from_fis - Convert SATA FIS to ATA taskfile * @fis: Buffer from which data will be input * @tf: Taskfile to output * * Converts a serial ATA FIS structure to a standard ATA taskfile. * * LOCKING: * Inherited from caller. */ void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) { tf->command = fis[2]; /* status */ tf->feature = fis[3]; /* error */ tf->lbal = fis[4]; tf->lbam = fis[5]; tf->lbah = fis[6]; tf->device = fis[7]; tf->hob_lbal = fis[8]; tf->hob_lbam = fis[9]; tf->hob_lbah = fis[10]; tf->nsect = fis[12]; tf->hob_nsect = fis[13]; } static const u8 ata_rw_cmds[] = { /* pio multi */ ATA_CMD_READ_MULTI, ATA_CMD_WRITE_MULTI, ATA_CMD_READ_MULTI_EXT, ATA_CMD_WRITE_MULTI_EXT, 0, 0, 0, ATA_CMD_WRITE_MULTI_FUA_EXT, /* pio */ ATA_CMD_PIO_READ, ATA_CMD_PIO_WRITE, ATA_CMD_PIO_READ_EXT, ATA_CMD_PIO_WRITE_EXT, 0, 0, 0, 0, /* dma */ ATA_CMD_READ, ATA_CMD_WRITE, ATA_CMD_READ_EXT, ATA_CMD_WRITE_EXT, 0, 0, 0, ATA_CMD_WRITE_FUA_EXT }; /** * ata_rwcmd_protocol - set taskfile r/w commands and protocol * @qc: command to examine and configure * * Examine the device configuration and tf->flags to calculate * the proper read/write commands and protocol to use. * * LOCKING: * caller. */ int ata_rwcmd_protocol(struct ata_queued_cmd *qc) { struct ata_taskfile *tf = &qc->tf; struct ata_device *dev = qc->dev; u8 cmd; int index, fua, lba48, write; fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; if (dev->flags & ATA_DFLAG_PIO) { tf->protocol = ATA_PROT_PIO; index = dev->multi_count ? 0 : 8; } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) { /* Unable to use DMA due to host limitation */ tf->protocol = ATA_PROT_PIO; index = dev->multi_count ? 0 : 8; } else { tf->protocol = ATA_PROT_DMA; index = 16; } cmd = ata_rw_cmds[index + fua + lba48 + write]; if (cmd) { tf->command = cmd; return 0; } return -1; } /** * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask * @pio_mask: pio_mask * @mwdma_mask: mwdma_mask * @udma_mask: udma_mask * * Pack @pio_mask, @mwdma_mask and @udma_mask into a single * unsigned int xfer_mask. * * LOCKING: * None. * * RETURNS: * Packed xfer_mask. */ static unsigned int ata_pack_xfermask(unsigned int pio_mask, unsigned int mwdma_mask, unsigned int udma_mask) { return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); } /** * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks * @xfer_mask: xfer_mask to unpack * @pio_mask: resulting pio_mask * @mwdma_mask: resulting mwdma_mask * @udma_mask: resulting udma_mask * * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. * Any NULL distination masks will be ignored. */ static void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, unsigned int *mwdma_mask, unsigned int *udma_mask) { if (pio_mask) *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; if (mwdma_mask) *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; if (udma_mask) *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; } static const struct ata_xfer_ent { int shift, bits; u8 base; } ata_xfer_tbl[] = { { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 }, { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 }, { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 }, { -1, }, }; /** * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask * @xfer_mask: xfer_mask of interest * * Return matching XFER_* value for @xfer_mask. Only the highest * bit of @xfer_mask is considered. * * LOCKING: * None. * * RETURNS: * Matching XFER_* value, 0 if no match found. */ static u8 ata_xfer_mask2mode(unsigned int xfer_mask) { int highbit = fls(xfer_mask) - 1; const struct ata_xfer_ent *ent; for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) if (highbit >= ent->shift && highbit < ent->shift + ent->bits) return ent->base + highbit - ent->shift; return 0; } /** * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* * @xfer_mode: XFER_* of interest * * Return matching xfer_mask for @xfer_mode. * * LOCKING: * None. * * RETURNS: * Matching xfer_mask, 0 if no match found. */ static unsigned int ata_xfer_mode2mask(u8 xfer_mode) { const struct ata_xfer_ent *ent; for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) return 1 << (ent->shift + xfer_mode - ent->base); return 0; } /** * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* * @xfer_mode: XFER_* of interest * * Return matching xfer_shift for @xfer_mode. * * LOCKING: * None. * * RETURNS: * Matching xfer_shift, -1 if no match found. */ static int ata_xfer_mode2shift(unsigned int xfer_mode) { const struct ata_xfer_ent *ent; for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) return ent->shift; return -1; } /** * ata_mode_string - convert xfer_mask to string * @xfer_mask: mask of bits supported; only highest bit counts. * * Determine string which represents the highest speed * (highest bit in @modemask). * * LOCKING: * None. * * RETURNS: * Constant C string representing highest speed listed in * @mode_mask, or the constant C string "". */ static const char *ata_mode_string(unsigned int xfer_mask) { static const char * const xfer_mode_str[] = { "PIO0", "PIO1", "PIO2", "PIO3", "PIO4", "MWDMA0", "MWDMA1", "MWDMA2", "UDMA/16", "UDMA/25", "UDMA/33", "UDMA/44", "UDMA/66", "UDMA/100", "UDMA/133", "UDMA7", }; int highbit; highbit = fls(xfer_mask) - 1; if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) return xfer_mode_str[highbit]; return ""; } static const char *sata_spd_string(unsigned int spd) { static const char * const spd_str[] = { "1.5 Gbps", "3.0 Gbps", }; if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) return ""; return spd_str[spd - 1]; } void ata_dev_disable(struct ata_device *dev) { if (ata_dev_enabled(dev)) { ata_dev_printk(dev, KERN_WARNING, "disabled\n"); dev->class++; } } /** * ata_pio_devchk - PATA device presence detection * @ap: ATA channel to examine * @device: Device to examine (starting at zero) * * This technique was originally described in * Hale Landis's ATADRVR (www.ata-atapi.com), and * later found its way into the ATA/ATAPI spec. * * Write a pattern to the ATA shadow registers, * and if a device is present, it will respond by * correctly storing and echoing back the * ATA shadow register contents. * * LOCKING: * caller. */ static unsigned int ata_pio_devchk(struct ata_port *ap, unsigned int device) { struct ata_ioports *ioaddr = &ap->ioaddr; u8 nsect, lbal; ap->ops->dev_select(ap, device); outb(0x55, ioaddr->nsect_addr); outb(0xaa, ioaddr->lbal_addr); outb(0xaa, ioaddr->nsect_addr); outb(0x55, ioaddr->lbal_addr); outb(0x55, ioaddr->nsect_addr); outb(0xaa, ioaddr->lbal_addr); nsect = inb(ioaddr->nsect_addr); lbal = inb(ioaddr->lbal_addr); if ((nsect == 0x55) && (lbal == 0xaa)) return 1; /* we found a device */ return 0; /* nothing found */ } /** * ata_mmio_devchk - PATA device presence detection * @ap: ATA channel to examine * @device: Device to examine (starting at zero) * * This technique was originally described in * Hale Landis's ATADRVR (www.ata-atapi.com), and * later found its way into the ATA/ATAPI spec. * * Write a pattern to the ATA shadow registers, * and if a device is present, it will respond by * correctly storing and echoing back the * ATA shadow register contents. * * LOCKING: * caller. */ static unsigned int ata_mmio_devchk(struct ata_port *ap, unsigned int device) { struct ata_ioports *ioaddr = &ap->ioaddr; u8 nsect, lbal; ap->ops->dev_select(ap, device); writeb(0x55, (void __iomem *) ioaddr->nsect_addr); writeb(0xaa, (void __iomem *) ioaddr->lbal_addr); writeb(0xaa, (void __iomem *) ioaddr->nsect_addr); writeb(0x55, (void __iomem *) ioaddr->lbal_addr); writeb(0x55, (void __iomem *) ioaddr->nsect_addr); writeb(0xaa, (void __iomem *) ioaddr->lbal_addr); nsect = readb((void __iomem *) ioaddr->nsect_addr); lbal = readb((void __iomem *) ioaddr->lbal_addr); if ((nsect == 0x55) && (lbal == 0xaa)) return 1; /* we found a device */ return 0; /* nothing found */ } /** * ata_devchk - PATA device presence detection * @ap: ATA channel to examine * @device: Device to examine (starting at zero) * * Dispatch ATA device presence detection, depending * on whether we are using PIO or MMIO to talk to the * ATA shadow registers. * * LOCKING: * caller. */ static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) { if (ap->flags & ATA_FLAG_MMIO) return ata_mmio_devchk(ap, device); return ata_pio_devchk(ap, device); } /** * ata_dev_classify - determine device type based on ATA-spec signature * @tf: ATA taskfile register set for device to be identified * * Determine from taskfile register contents whether a device is * ATA or ATAPI, as per "Signature and persistence" section * of ATA/PI spec (volume 1, sect 5.14). * * LOCKING: * None. * * RETURNS: * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN * the event of failure. */ unsigned int ata_dev_classify(const struct ata_taskfile *tf) { /* Apple's open source Darwin code hints that some devices only * put a proper signature into the LBA mid/high registers, * So, we only check those. It's sufficient for uniqueness. */ if (((tf->lbam == 0) && (tf->lbah == 0)) || ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) { DPRINTK("found ATA device by sig\n"); return ATA_DEV_ATA; } if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) || ((tf->lbam == 0x69) && (tf->lbah == 0x96))) { DPRINTK("found ATAPI device by sig\n"); return ATA_DEV_ATAPI; } DPRINTK("unknown device\n"); return ATA_DEV_UNKNOWN; } /** * ata_dev_try_classify - Parse returned ATA device signature * @ap: ATA channel to examine * @device: Device to examine (starting at zero) * @r_err: Value of error register on completion * * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, * an ATA/ATAPI-defined set of values is placed in the ATA * shadow registers, indicating the results of device detection * and diagnostics. * * Select the ATA device, and read the values from the ATA shadow * registers. Then parse according to the Error register value, * and the spec-defined values examined by ata_dev_classify(). * * LOCKING: * caller. * * RETURNS: * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. */ static unsigned int ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err) { struct ata_taskfile tf; unsigned int class; u8 err; ap->ops->dev_select(ap, device); memset(&tf, 0, sizeof(tf)); ap->ops->tf_read(ap, &tf); err = tf.feature; if (r_err) *r_err = err; /* see if device passed diags */ if (err == 1) /* do nothing */ ; else if ((device == 0) && (err == 0x81)) /* do nothing */ ; else return ATA_DEV_NONE; /* determine if device is ATA or ATAPI */ class = ata_dev_classify(&tf); if (class == ATA_DEV_UNKNOWN) return ATA_DEV_NONE; if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0)) return ATA_DEV_NONE; return class; } /** * ata_id_string - Convert IDENTIFY DEVICE page into string * @id: IDENTIFY DEVICE results we will examine * @s: string into which data is output * @ofs: offset into identify device page * @len: length of string to return. must be an even number. * * The strings in the IDENTIFY DEVICE page are broken up into * 16-bit chunks. Run through the string, and output each * 8-bit chunk linearly, regardless of platform. * * LOCKING: * caller. */ void ata_id_string(const u16 *id, unsigned char *s, unsigned int ofs, unsigned int len) { unsigned int c; while (len > 0) { c = id[ofs] >> 8; *s = c; s++; c = id[ofs] & 0xff; *s = c; s++; ofs++; len -= 2; } } /** * ata_id_c_string - Convert IDENTIFY DEVICE page into C string * @id: IDENTIFY DEVICE results we will examine * @s: string into which data is output * @ofs: offset into identify device page * @len: length of string to return. must be an odd number. * * This function is identical to ata_id_string except that it * trims trailing spaces and terminates the resulting string with * null. @len must be actual maximum length (even number) + 1. * * LOCKING: * caller. */ void ata_id_c_string(const u16 *id, unsigned char *s, unsigned int ofs, unsigned int len) { unsigned char *p; WARN_ON(!(len & 1)); ata_id_string(id, s, ofs, len - 1); p = s + strnlen(s, len - 1); while (p > s && p[-1] == ' ') p--; *p = '\0'; } static u64 ata_id_n_sectors(const u16 *id) { if (ata_id_has_lba(id)) { if (ata_id_has_lba48(id)) return ata_id_u64(id, 100); else return ata_id_u32(id, 60); } else { if (ata_id_current_chs_valid(id)) return ata_id_u32(id, 57); else return id[1] * id[3] * id[6]; } } /** * ata_noop_dev_select - Select device 0/1 on ATA bus * @ap: ATA channel to manipulate * @device: ATA device (numbered from zero) to select * * This function performs no actual function. * * May be used as the dev_select() entry in ata_port_operations. * * LOCKING: * caller. */ void ata_noop_dev_select (struct ata_port *ap, unsigned int device) { } /** * ata_std_dev_select - Select device 0/1 on ATA bus * @ap: ATA channel to manipulate * @device: ATA device (numbered from zero) to select * * Use the method defined in the ATA specification to * make either device 0, or device 1, active on the * ATA channel. Works with both PIO and MMIO. * * May be used as the dev_select() entry in ata_port_operations. * * LOCKING: * caller. */ void ata_std_dev_select (struct ata_port *ap, unsigned int device) { u8 tmp; if (device == 0) tmp = ATA_DEVICE_OBS; else tmp = ATA_DEVICE_OBS | ATA_DEV1; if (ap->flags & ATA_FLAG_MMIO) { writeb(tmp, (void __iomem *) ap->ioaddr.device_addr); } else { outb(tmp, ap->ioaddr.device_addr); } ata_pause(ap); /* needed; also flushes, for mmio */ } /** * ata_dev_select - Select device 0/1 on ATA bus * @ap: ATA channel to manipulate * @device: ATA device (numbered from zero) to select * @wait: non-zero to wait for Status register BSY bit to clear * @can_sleep: non-zero if context allows sleeping * * Use the method defined in the ATA specification to * make either device 0, or device 1, active on the * ATA channel. * * This is a high-level version of ata_std_dev_select(), * which additionally provides the services of inserting * the proper pauses and status polling, where needed. * * LOCKING: * caller. */ void ata_dev_select(struct ata_port *ap, unsigned int device, unsigned int wait, unsigned int can_sleep) { VPRINTK("ENTER, ata%u: device %u, wait %u\n", ap->id, device, wait); if (wait) ata_wait_idle(ap); ap->ops->dev_select(ap, device); if (wait) { if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI) msleep(150); ata_wait_idle(ap); } } /** * ata_dump_id - IDENTIFY DEVICE info debugging output * @id: IDENTIFY DEVICE page to dump * * Dump selected 16-bit words from the given IDENTIFY DEVICE * page. * * LOCKING: * caller. */ static inline void ata_dump_id(const u16 *id) { DPRINTK("49==0x%04x " "53==0x%04x " "63==0x%04x " "64==0x%04x " "75==0x%04x \n", id[49], id[53], id[63], id[64], id[75]); DPRINTK("80==0x%04x " "81==0x%04x " "82==0x%04x " "83==0x%04x " "84==0x%04x \n", id[80], id[81], id[82], id[83], id[84]); DPRINTK("88==0x%04x " "93==0x%04x\n", id[88], id[93]); } /** * ata_id_xfermask - Compute xfermask from the given IDENTIFY data * @id: IDENTIFY data to compute xfer mask from * * Compute the xfermask for this device. This is not as trivial * as it seems if we must consider early devices correctly. * * FIXME: pre IDE drive timing (do we care ?). * * LOCKING: * None. * * RETURNS: * Computed xfermask */ static unsigned int ata_id_xfermask(const u16 *id) { unsigned int pio_mask, mwdma_mask, udma_mask; /* Usual case. Word 53 indicates word 64 is valid */ if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { pio_mask = id[ATA_ID_PIO_MODES] & 0x03; pio_mask <<= 3; pio_mask |= 0x7; } else { /* If word 64 isn't valid then Word 51 high byte holds * the PIO timing number for the maximum. Turn it into * a mask. */ pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ; /* But wait.. there's more. Design your standards by * committee and you too can get a free iordy field to * process. However its the speeds not the modes that * are supported... Note drivers using the timing API * will get this right anyway */ } mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; udma_mask = 0; if (id[ATA_ID_FIELD_VALID] & (1 << 2)) udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); } /** * ata_port_queue_task - Queue port_task * @ap: The ata_port to queue port_task for * * Schedule @fn(@data) for execution after @delay jiffies using * port_task. There is one port_task per port and it's the * user(low level driver)'s responsibility to make sure that only * one task is active at any given time. * * libata core layer takes care of synchronization between * port_task and EH. ata_port_queue_task() may be ignored for EH * synchronization. * * LOCKING: * Inherited from caller. */ void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data, unsigned long delay) { int rc; if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK) return; PREPARE_WORK(&ap->port_task, fn, data); if (!delay) rc = queue_work(ata_wq, &ap->port_task); else rc = queue_delayed_work(ata_wq, &ap->port_task, delay); /* rc == 0 means that another user is using port task */ WARN_ON(rc == 0); } /** * ata_port_flush_task - Flush port_task * @ap: The ata_port to flush port_task for * * After this function completes, port_task is guranteed not to * be running or scheduled. * * LOCKING: * Kernel thread context (may sleep) */ void ata_port_flush_task(struct ata_port *ap) { unsigned long flags; DPRINTK("ENTER\n"); spin_lock_irqsave(&ap->host_set->lock, flags); ap->flags |= ATA_FLAG_FLUSH_PORT_TASK; spin_unlock_irqrestore(&ap->host_set->lock, flags); DPRINTK("flush #1\n"); flush_workqueue(ata_wq); /* * At this point, if a task is running, it's guaranteed to see * the FLUSH flag; thus, it will never queue pio tasks again. * Cancel and flush. */ if (!cancel_delayed_work(&ap->port_task)) { DPRINTK("flush #2\n"); flush_workqueue(ata_wq); } spin_lock_irqsave(&ap->host_set->lock, flags); ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK; spin_unlock_irqrestore(&ap->host_set->lock, flags); DPRINTK("EXIT\n"); } void ata_qc_complete_internal(struct ata_queued_cmd *qc) { struct completion *waiting = qc->private_data; complete(waiting); } /** * ata_exec_internal - execute libata internal command * @dev: Device to which the command is sent * @tf: Taskfile registers for the command and the result * @cdb: CDB for packet command * @dma_dir: Data tranfer direction of the command * @buf: Data buffer of the command * @buflen: Length of data buffer * * Executes libata internal command with timeout. @tf contains * command on entry and result on return. Timeout and error * conditions are reported via return value. No recovery action * is taken after a command times out. It's caller's duty to * clean up after timeout. * * LOCKING: * None. Should be called with kernel context, might sleep. */ unsigned ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf, const u8 *cdb, int dma_dir, void *buf, unsigned int buflen) { struct ata_port *ap = dev->ap; u8 command = tf->command; struct ata_queued_cmd *qc; unsigned int tag, preempted_tag; DECLARE_COMPLETION(wait); unsigned long flags; unsigned int err_mask; int rc; spin_lock_irqsave(&ap->host_set->lock, flags); /* no internal command while frozen */ if (ap->flags & ATA_FLAG_FROZEN) { spin_unlock_irqrestore(&ap->host_set->lock, flags); return AC_ERR_SYSTEM; } /* initialize internal qc */ /* XXX: Tag 0 is used for drivers with legacy EH as some * drivers choke if any other tag is given. This breaks * ata_tag_internal() test for those drivers. Don't use new * EH stuff without converting to it. */ if (ap->ops->error_handler) tag = ATA_TAG_INTERNAL; else tag = 0; if (test_and_set_bit(tag, &ap->qactive)) BUG(); qc = __ata_qc_from_tag(ap, tag); qc->tag = tag; qc->scsicmd = NULL; qc->ap = ap; qc->dev = dev; ata_qc_reinit(qc); preempted_tag = ap->active_tag; ap->active_tag = ATA_TAG_POISON; /* prepare & issue qc */ qc->tf = *tf; if (cdb) memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); qc->flags |= ATA_QCFLAG_RESULT_TF; qc->dma_dir = dma_dir; if (dma_dir != DMA_NONE) { ata_sg_init_one(qc, buf, buflen); qc->nsect = buflen / ATA_SECT_SIZE; } qc->private_data = &wait; qc->complete_fn = ata_qc_complete_internal; ata_qc_issue(qc); spin_unlock_irqrestore(&ap->host_set->lock, flags); rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL); ata_port_flush_task(ap); if (!rc) { spin_lock_irqsave(&ap->host_set->lock, flags); /* We're racing with irq here. If we lose, the * following test prevents us from completing the qc * twice. If we win, the port is frozen and will be * cleaned up by ->post_internal_cmd(). */ if (qc->flags & ATA_QCFLAG_ACTIVE) { qc->err_mask |= AC_ERR_TIMEOUT; if (ap->ops->error_handler) ata_port_freeze(ap); else ata_qc_complete(qc); ata_dev_printk(dev, KERN_WARNING, "qc timeout (cmd 0x%x)\n", command); } spin_unlock_irqrestore(&ap->host_set->lock, flags); } /* do post_internal_cmd */ if (ap->ops->post_internal_cmd) ap->ops->post_internal_cmd(qc); if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) { ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed " "internal command, assuming AC_ERR_OTHER\n"); qc->err_mask |= AC_ERR_OTHER; } /* finish up */ spin_lock_irqsave(&ap->host_set->lock, flags); *tf = qc->result_tf; err_mask = qc->err_mask; ata_qc_free(qc); ap->active_tag = preempted_tag; /* XXX - Some LLDDs (sata_mv) disable port on command failure. * Until those drivers are fixed, we detect the condition * here, fail the command with AC_ERR_SYSTEM and reenable the * port. * * Note that this doesn't change any behavior as internal * command failure results in disabling the device in the * higher layer for LLDDs without new reset/EH callbacks. * * Kill the following code as soon as those drivers are fixed. */ if (ap->flags & ATA_FLAG_DISABLED) { err_mask |= AC_ERR_SYSTEM; ata_port_probe(ap); } spin_unlock_irqrestore(&ap->host_set->lock, flags); return err_mask; } /** * ata_pio_need_iordy - check if iordy needed * @adev: ATA device * * Check if the current speed of the device requires IORDY. Used * by various controllers for chip configuration. */ unsigned int ata_pio_need_iordy(const struct ata_device *adev) { int pio; int speed = adev->pio_mode - XFER_PIO_0; if (speed < 2) return 0; if (speed > 2) return 1; /* If we have no drive specific rule, then PIO 2 is non IORDY */ if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ pio = adev->id[ATA_ID_EIDE_PIO]; /* Is the speed faster than the drive allows non IORDY ? */ if (pio) { /* This is cycle times not frequency - watch the logic! */ if (pio > 240) /* PIO2 is 240nS per cycle */ return 1; return 0; } } return 0; } /** * ata_dev_read_id - Read ID data from the specified device * @dev: target device * @p_class: pointer to class of the target device (may be changed) * @post_reset: is this read ID post-reset? * @id: buffer to read IDENTIFY data into * * Read ID data from the specified device. ATA_CMD_ID_ATA is * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS * for pre-ATA4 drives. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise. */ static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, int post_reset, u16 *id) { struct ata_port *ap = dev->ap; unsigned int class = *p_class; struct ata_taskfile tf; unsigned int err_mask = 0; const char *reason; int rc; DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno); ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */ retry: ata_tf_init(dev, &tf); switch (class) { case ATA_DEV_ATA: tf.command = ATA_CMD_ID_ATA; break; case ATA_DEV_ATAPI: tf.command = ATA_CMD_ID_ATAPI; break; default: rc = -ENODEV; reason = "unsupported class"; goto err_out; } tf.protocol = ATA_PROT_PIO; err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, id, sizeof(id[0]) * ATA_ID_WORDS); if (err_mask) { rc = -EIO; reason = "I/O error"; goto err_out; } swap_buf_le16(id, ATA_ID_WORDS); /* sanity check */ if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) { rc = -EINVAL; reason = "device reports illegal type"; goto err_out; } if (post_reset && class == ATA_DEV_ATA) { /* * The exact sequence expected by certain pre-ATA4 drives is: * SRST RESET * IDENTIFY * INITIALIZE DEVICE PARAMETERS * anything else.. * Some drives were very specific about that exact sequence. */ if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { err_mask = ata_dev_init_params(dev, id[3], id[6]); if (err_mask) { rc = -EIO; reason = "INIT_DEV_PARAMS failed"; goto err_out; } /* current CHS translation info (id[53-58]) might be * changed. reread the identify device info. */ post_reset = 0; goto retry; } } *p_class = class; return 0; err_out: ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " "(%s, err_mask=0x%x)\n", reason, err_mask); return rc; } static inline u8 ata_dev_knobble(struct ata_device *dev) { return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); } /** * ata_dev_configure - Configure the specified ATA/ATAPI device * @dev: Target device to configure * @print_info: Enable device info printout * * Configure @dev according to @dev->id. Generic and low-level * driver specific fixups are also applied. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise */ static int ata_dev_configure(struct ata_device *dev, int print_info) { struct ata_port *ap = dev->ap; const u16 *id = dev->id; unsigned int xfer_mask; int i, rc; if (!ata_dev_enabled(dev)) { DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n", ap->id, dev->devno); return 0; } DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno); /* print device capabilities */ if (print_info) ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x " "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n", id[49], id[82], id[83], id[84], id[85], id[86], id[87], id[88]); /* initialize to-be-configured parameters */ dev->flags &= ~ATA_DFLAG_CFG_MASK; dev->max_sectors = 0; dev->cdb_len = 0; dev->n_sectors = 0; dev->cylinders = 0; dev->heads = 0; dev->sectors = 0; /* * common ATA, ATAPI feature tests */ /* find max transfer mode; for printk only */ xfer_mask = ata_id_xfermask(id); ata_dump_id(id); /* ATA-specific feature tests */ if (dev->class == ATA_DEV_ATA) { dev->n_sectors = ata_id_n_sectors(id); if (ata_id_has_lba(id)) { const char *lba_desc; lba_desc = "LBA"; dev->flags |= ATA_DFLAG_LBA; if (ata_id_has_lba48(id)) { dev->flags |= ATA_DFLAG_LBA48; lba_desc = "LBA48"; } /* print device info to dmesg */ if (print_info) ata_dev_printk(dev, KERN_INFO, "ATA-%d, " "max %s, %Lu sectors: %s\n", ata_id_major_version(id), ata_mode_string(xfer_mask), (unsigned long long)dev->n_sectors, lba_desc); } else { /* CHS */ /* Default translation */ dev->cylinders = id[1]; dev->heads = id[3]; dev->sectors = id[6]; if (ata_id_current_chs_valid(id)) { /* Current CHS translation is valid. */ dev->cylinders = id[54]; dev->heads = id[55]; dev->sectors = id[56]; } /* print device info to dmesg */ if (print_info) ata_dev_printk(dev, KERN_INFO, "ATA-%d, " "max %s, %Lu sectors: CHS %u/%u/%u\n", ata_id_major_version(id), ata_mode_string(xfer_mask), (unsigned long long)dev->n_sectors, dev->cylinders, dev->heads, dev->sectors); } dev->cdb_len = 16; } /* ATAPI-specific feature tests */ else if (dev->class == ATA_DEV_ATAPI) { rc = atapi_cdb_len(id); if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { ata_dev_printk(dev, KERN_WARNING, "unsupported CDB len\n"); rc = -EINVAL; goto err_out_nosup; } dev->cdb_len = (unsigned int) rc; /* print device info to dmesg */ if (print_info) ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s\n", ata_mode_string(xfer_mask)); } ap->host->max_cmd_len = 0; for (i = 0; i < ATA_MAX_DEVICES; i++) ap->host->max_cmd_len = max_t(unsigned int, ap->host->max_cmd_len, ap->device[i].cdb_len); /* limit bridge transfers to udma5, 200 sectors */ if (ata_dev_knobble(dev)) { if (print_info) ata_dev_printk(dev, KERN_INFO, "applying bridge limits\n"); dev->udma_mask &= ATA_UDMA5; dev->max_sectors = ATA_MAX_SECTORS; } if (ap->ops->dev_config) ap->ops->dev_config(ap, dev); DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap)); return 0; err_out_nosup: DPRINTK("EXIT, err\n"); return rc; } /** * ata_bus_probe - Reset and probe ATA bus * @ap: Bus to probe * * Master ATA bus probing function. Initiates a hardware-dependent * bus reset, then attempts to identify any devices found on * the bus. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * Zero on success, negative errno otherwise. */ static int ata_bus_probe(struct ata_port *ap) { unsigned int classes[ATA_MAX_DEVICES]; int tries[ATA_MAX_DEVICES]; int i, rc, down_xfermask; struct ata_device *dev; ata_port_probe(ap); for (i = 0; i < ATA_MAX_DEVICES; i++) tries[i] = ATA_PROBE_MAX_TRIES; retry: down_xfermask = 0; /* reset and determine device classes */ for (i = 0; i < ATA_MAX_DEVICES; i++) classes[i] = ATA_DEV_UNKNOWN; if (ap->ops->probe_reset) { rc = ap->ops->probe_reset(ap, classes); if (rc) { ata_port_printk(ap, KERN_ERR, "reset failed (errno=%d)\n", rc); return rc; } } else { ap->ops->phy_reset(ap); for (i = 0; i < ATA_MAX_DEVICES; i++) { if (!(ap->flags & ATA_FLAG_DISABLED)) classes[i] = ap->device[i].class; ap->device[i].class = ATA_DEV_UNKNOWN; } ata_port_probe(ap); } for (i = 0; i < ATA_MAX_DEVICES; i++) if (classes[i] == ATA_DEV_UNKNOWN) classes[i] = ATA_DEV_NONE; /* read IDENTIFY page and configure devices */ for (i = 0; i < ATA_MAX_DEVICES; i++) { dev = &ap->device[i]; if (tries[i]) dev->class = classes[i]; if (!ata_dev_enabled(dev)) continue; rc = ata_dev_read_id(dev, &dev->class, 1, dev->id); if (rc) goto fail; rc = ata_dev_configure(dev, 1); if (rc) goto fail; } /* configure transfer mode */ rc = ata_set_mode(ap, &dev); if (rc) { down_xfermask = 1; goto fail; } for (i = 0; i < ATA_MAX_DEVICES; i++) if (ata_dev_enabled(&ap->device[i])) return 0; /* no device present, disable port */ ata_port_disable(ap); ap->ops->port_disable(ap); return -ENODEV; fail: switch (rc) { case -EINVAL: case -ENODEV: tries[dev->devno] = 0; break; case -EIO: sata_down_spd_limit(ap); /* fall through */ default: tries[dev->devno]--; if (down_xfermask && ata_down_xfermask_limit(dev, tries[dev->devno] == 1)) tries[dev->devno] = 0; } if (!tries[dev->devno]) { ata_down_xfermask_limit(dev, 1); ata_dev_disable(dev); } goto retry; } /** * ata_port_probe - Mark port as enabled * @ap: Port for which we indicate enablement * * Modify @ap data structure such that the system * thinks that the entire port is enabled. * * LOCKING: host_set lock, or some other form of * serialization. */ void ata_port_probe(struct ata_port *ap) { ap->flags &= ~ATA_FLAG_DISABLED; } /** * sata_print_link_status - Print SATA link status * @ap: SATA port to printk link status about * * This function prints link speed and status of a SATA link. * * LOCKING: * None. */ static void sata_print_link_status(struct ata_port *ap) { u32 sstatus, scontrol, tmp; if (sata_scr_read(ap, SCR_STATUS, &sstatus)) return; sata_scr_read(ap, SCR_CONTROL, &scontrol); if (ata_port_online(ap)) { tmp = (sstatus >> 4) & 0xf; ata_port_printk(ap, KERN_INFO, "SATA link up %s (SStatus %X SControl %X)\n", sata_spd_string(tmp), sstatus, scontrol); } else { ata_port_printk(ap, KERN_INFO, "SATA link down (SStatus %X SControl %X)\n", sstatus, scontrol); } } /** * __sata_phy_reset - Wake/reset a low-level SATA PHY * @ap: SATA port associated with target SATA PHY. * * This function issues commands to standard SATA Sxxx * PHY registers, to wake up the phy (and device), and * clear any reset condition. * * LOCKING: * PCI/etc. bus probe sem. * */ void __sata_phy_reset(struct ata_port *ap) { u32 sstatus; unsigned long timeout = jiffies + (HZ * 5); if (ap->flags & ATA_FLAG_SATA_RESET) { /* issue phy wake/reset */ sata_scr_write_flush(ap, SCR_CONTROL, 0x301); /* Couldn't find anything in SATA I/II specs, but * AHCI-1.1 10.4.2 says at least 1 ms. */ mdelay(1); } /* phy wake/clear reset */ sata_scr_write_flush(ap, SCR_CONTROL, 0x300); /* wait for phy to become ready, if necessary */ do { msleep(200); sata_scr_read(ap, SCR_STATUS, &sstatus); if ((sstatus & 0xf) != 1) break; } while (time_before(jiffies, timeout)); /* print link status */ sata_print_link_status(ap); /* TODO: phy layer with polling, timeouts, etc. */ if (!ata_port_offline(ap)) ata_port_probe(ap); else ata_port_disable(ap); if (ap->flags & ATA_FLAG_DISABLED) return; if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { ata_port_disable(ap); return; } ap->cbl = ATA_CBL_SATA; } /** * sata_phy_reset - Reset SATA bus. * @ap: SATA port associated with target SATA PHY. * * This function resets the SATA bus, and then probes * the bus for devices. * * LOCKING: * PCI/etc. bus probe sem. * */ void sata_phy_reset(struct ata_port *ap) { __sata_phy_reset(ap); if (ap->flags & ATA_FLAG_DISABLED) return; ata_bus_reset(ap); } /** * ata_dev_pair - return other device on cable * @adev: device * * Obtain the other device on the same cable, or if none is * present NULL is returned */ struct ata_device *ata_dev_pair(struct ata_device *adev) { struct ata_port *ap = adev->ap; struct ata_device *pair = &ap->device[1 - adev->devno]; if (!ata_dev_enabled(pair)) return NULL; return pair; } /** * ata_port_disable - Disable port. * @ap: Port to be disabled. * * Modify @ap data structure such that the system * thinks that the entire port is disabled, and should * never attempt to probe or communicate with devices * on this port. * * LOCKING: host_set lock, or some other form of * serialization. */ void ata_port_disable(struct ata_port *ap) { ap->device[0].class = ATA_DEV_NONE; ap->device[1].class = ATA_DEV_NONE; ap->flags |= ATA_FLAG_DISABLED; } /** * sata_down_spd_limit - adjust SATA spd limit downward * @ap: Port to adjust SATA spd limit for * * Adjust SATA spd limit of @ap downward. Note that this * function only adjusts the limit. The change must be applied * using sata_set_spd(). * * LOCKING: * Inherited from caller. * * RETURNS: * 0 on success, negative errno on failure */ int sata_down_spd_limit(struct ata_port *ap) { u32 sstatus, spd, mask; int rc, highbit; rc = sata_scr_read(ap, SCR_STATUS, &sstatus); if (rc) return rc; mask = ap->sata_spd_limit; if (mask <= 1) return -EINVAL; highbit = fls(mask) - 1; mask &= ~(1 << highbit); spd = (sstatus >> 4) & 0xf; if (spd <= 1) return -EINVAL; spd--; mask &= (1 << spd) - 1; if (!mask) return -EINVAL; ap->sata_spd_limit = mask; ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n", sata_spd_string(fls(mask))); return 0; } static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol) { u32 spd, limit; if (ap->sata_spd_limit == UINT_MAX) limit = 0; else limit = fls(ap->sata_spd_limit); spd = (*scontrol >> 4) & 0xf; *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4); return spd != limit; } /** * sata_set_spd_needed - is SATA spd configuration needed * @ap: Port in question * * Test whether the spd limit in SControl matches * @ap->sata_spd_limit. This function is used to determine * whether hardreset is necessary to apply SATA spd * configuration. * * LOCKING: * Inherited from caller. * * RETURNS: * 1 if SATA spd configuration is needed, 0 otherwise. */ int sata_set_spd_needed(struct ata_port *ap) { u32 scontrol; if (sata_scr_read(ap, SCR_CONTROL, &scontrol)) return 0; return __sata_set_spd_needed(ap, &scontrol); } /** * sata_set_spd - set SATA spd according to spd limit * @ap: Port to set SATA spd for * * Set SATA spd of @ap according to sata_spd_limit. * * LOCKING: * Inherited from caller. * * RETURNS: * 0 if spd doesn't need to be changed, 1 if spd has been * changed. Negative errno if SCR registers are inaccessible. */ int sata_set_spd(struct ata_port *ap) { u32 scontrol; int rc; if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) return rc; if (!__sata_set_spd_needed(ap, &scontrol)) return 0; if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) return rc; return 1; } /* * This mode timing computation functionality is ported over from * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik */ /* * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). * These were taken from ATA/ATAPI-6 standard, rev 0a, except * for PIO 5, which is a nonstandard extension and UDMA6, which * is currently supported only by Maxtor drives. */ static const struct ata_timing ata_timing[] = { { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */ { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ { 0xFF } }; #define ENOUGH(v,unit) (((v)-1)/(unit)+1) #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) { q->setup = EZ(t->setup * 1000, T); q->act8b = EZ(t->act8b * 1000, T); q->rec8b = EZ(t->rec8b * 1000, T); q->cyc8b = EZ(t->cyc8b * 1000, T); q->active = EZ(t->active * 1000, T); q->recover = EZ(t->recover * 1000, T); q->cycle = EZ(t->cycle * 1000, T); q->udma = EZ(t->udma * 1000, UT); } void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, struct ata_timing *m, unsigned int what) { if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); } static const struct ata_timing* ata_timing_find_mode(unsigned short speed) { const struct ata_timing *t; for (t = ata_timing; t->mode != speed; t++) if (t->mode == 0xFF) return NULL; return t; } int ata_timing_compute(struct ata_device *adev, unsigned short speed, struct ata_timing *t, int T, int UT) { const struct ata_timing *s; struct ata_timing p; /* * Find the mode. */ if (!(s = ata_timing_find_mode(speed))) return -EINVAL; memcpy(t, s, sizeof(*s)); /* * If the drive is an EIDE drive, it can tell us it needs extended * PIO/MW_DMA cycle timing. */ if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ memset(&p, 0, sizeof(p)); if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; } ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); } /* * Convert the timing to bus clock counts. */ ata_timing_quantize(t, t, T, UT); /* * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, * S.M.A.R.T * and some other commands. We have to ensure that the * DMA cycle timing is slower/equal than the fastest PIO timing. */ if (speed > XFER_PIO_4) { ata_timing_compute(adev, adev->pio_mode, &p, T, UT); ata_timing_merge(&p, t, t, ATA_TIMING_ALL); } /* * Lengthen active & recovery time so that cycle time is correct. */ if (t->act8b + t->rec8b < t->cyc8b) { t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; t->rec8b = t->cyc8b - t->act8b; } if (t->active + t->recover < t->cycle) { t->active += (t->cycle - (t->active + t->recover)) / 2; t->recover = t->cycle - t->active; } return 0; } /** * ata_down_xfermask_limit - adjust dev xfer masks downward * @dev: Device to adjust xfer masks * @force_pio0: Force PIO0 * * Adjust xfer masks of @dev downward. Note that this function * does not apply the change. Invoking ata_set_mode() afterwards * will apply the limit. * * LOCKING: * Inherited from caller. * * RETURNS: * 0 on success, negative errno on failure */ int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0) { unsigned long xfer_mask; int highbit; xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask, dev->udma_mask); if (!xfer_mask) goto fail; /* don't gear down to MWDMA from UDMA, go directly to PIO */ if (xfer_mask & ATA_MASK_UDMA) xfer_mask &= ~ATA_MASK_MWDMA; highbit = fls(xfer_mask) - 1; xfer_mask &= ~(1 << highbit); if (force_pio0) xfer_mask &= 1 << ATA_SHIFT_PIO; if (!xfer_mask) goto fail; ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, &dev->udma_mask); ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n", ata_mode_string(xfer_mask)); return 0; fail: return -EINVAL; } static int ata_dev_set_mode(struct ata_device *dev) { unsigned int err_mask; int rc; dev->flags &= ~ATA_DFLAG_PIO; if (dev->xfer_shift == ATA_SHIFT_PIO) dev->flags |= ATA_DFLAG_PIO; err_mask = ata_dev_set_xfermode(dev); if (err_mask) { ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " "(err_mask=0x%x)\n", err_mask); return -EIO; } rc = ata_dev_revalidate(dev, 0); if (rc) return rc; DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", dev->xfer_shift, (int)dev->xfer_mode); ata_dev_printk(dev, KERN_INFO, "configured for %s\n", ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode))); return 0; } /** * ata_set_mode - Program timings and issue SET FEATURES - XFER * @ap: port on which timings will be programmed * @r_failed_dev: out paramter for failed device * * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If * ata_set_mode() fails, pointer to the failing device is * returned in @r_failed_dev. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * 0 on success, negative errno otherwise */ int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev) { struct ata_device *dev; int i, rc = 0, used_dma = 0, found = 0; /* has private set_mode? */ if (ap->ops->set_mode) { /* FIXME: make ->set_mode handle no device case and * return error code and failing device on failure. */ for (i = 0; i < ATA_MAX_DEVICES; i++) { if (ata_dev_enabled(&ap->device[i])) { ap->ops->set_mode(ap); break; } } return 0; } /* step 1: calculate xfer_mask */ for (i = 0; i < ATA_MAX_DEVICES; i++) { unsigned int pio_mask, dma_mask; dev = &ap->device[i]; if (!ata_dev_enabled(dev)) continue; ata_dev_xfermask(dev); pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); dev->pio_mode = ata_xfer_mask2mode(pio_mask); dev->dma_mode = ata_xfer_mask2mode(dma_mask); found = 1; if (dev->dma_mode) used_dma = 1; } if (!found) goto out; /* step 2: always set host PIO timings */ for (i = 0; i < ATA_MAX_DEVICES; i++) { dev = &ap->device[i]; if (!ata_dev_enabled(dev)) continue; if (!dev->pio_mode) { ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); rc = -EINVAL; goto out; } dev->xfer_mode = dev->pio_mode; dev->xfer_shift = ATA_SHIFT_PIO; if (ap->ops->set_piomode) ap->ops->set_piomode(ap, dev); } /* step 3: set host DMA timings */ for (i = 0; i < ATA_MAX_DEVICES; i++) { dev = &ap->device[i]; if (!ata_dev_enabled(dev) || !dev->dma_mode) continue; dev->xfer_mode = dev->dma_mode; dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); if (ap->ops->set_dmamode) ap->ops->set_dmamode(ap, dev); } /* step 4: update devices' xfer mode */ for (i = 0; i < ATA_MAX_DEVICES; i++) { dev = &ap->device[i]; if (!ata_dev_enabled(dev)) continue; rc = ata_dev_set_mode(dev); if (rc) goto out; } /* Record simplex status. If we selected DMA then the other * host channels are not permitted to do so. */ if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX)) ap->host_set->simplex_claimed = 1; /* step5: chip specific finalisation */ if (ap->ops->post_set_mode) ap->ops->post_set_mode(ap); out: if (rc) *r_failed_dev = dev; return rc; } /** * ata_tf_to_host - issue ATA taskfile to host controller * @ap: port to which command is being issued * @tf: ATA taskfile register set * * Issues ATA taskfile register set to ATA host controller, * with proper synchronization with interrupt handler and * other threads. * * LOCKING: * spin_lock_irqsave(host_set lock) */ static inline void ata_tf_to_host(struct ata_port *ap, const struct ata_taskfile *tf) { ap->ops->tf_load(ap, tf); ap->ops->exec_command(ap, tf); } /** * ata_busy_sleep - sleep until BSY clears, or timeout * @ap: port containing status register to be polled * @tmout_pat: impatience timeout * @tmout: overall timeout * * Sleep until ATA Status register bit BSY clears, * or a timeout occurs. * * LOCKING: None. */ unsigned int ata_busy_sleep (struct ata_port *ap, unsigned long tmout_pat, unsigned long tmout) { unsigned long timer_start, timeout; u8 status; status = ata_busy_wait(ap, ATA_BUSY, 300); timer_start = jiffies; timeout = timer_start + tmout_pat; while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) { msleep(50); status = ata_busy_wait(ap, ATA_BUSY, 3); } if (status & ATA_BUSY) ata_port_printk(ap, KERN_WARNING, "port is slow to respond, please be patient\n"); timeout = timer_start + tmout; while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) { msleep(50); status = ata_chk_status(ap); } if (status & ATA_BUSY) { ata_port_printk(ap, KERN_ERR, "port failed to respond " "(%lu secs)\n", tmout / HZ); return 1; } return 0; } static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int dev0 = devmask & (1 << 0); unsigned int dev1 = devmask & (1 << 1); unsigned long timeout; /* if device 0 was found in ata_devchk, wait for its * BSY bit to clear */ if (dev0) ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); /* if device 1 was found in ata_devchk, wait for * register access, then wait for BSY to clear */ timeout = jiffies + ATA_TMOUT_BOOT; while (dev1) { u8 nsect, lbal; ap->ops->dev_select(ap, 1); if (ap->flags & ATA_FLAG_MMIO) { nsect = readb((void __iomem *) ioaddr->nsect_addr); lbal = readb((void __iomem *) ioaddr->lbal_addr); } else { nsect = inb(ioaddr->nsect_addr); lbal = inb(ioaddr->lbal_addr); } if ((nsect == 1) && (lbal == 1)) break; if (time_after(jiffies, timeout)) { dev1 = 0; break; } msleep(50); /* give drive a breather */ } if (dev1) ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); /* is all this really necessary? */ ap->ops->dev_select(ap, 0); if (dev1) ap->ops->dev_select(ap, 1); if (dev0) ap->ops->dev_select(ap, 0); } static unsigned int ata_bus_softreset(struct ata_port *ap, unsigned int devmask) { struct ata_ioports *ioaddr = &ap->ioaddr; DPRINTK("ata%u: bus reset via SRST\n", ap->id); /* software reset. causes dev0 to be selected */ if (ap->flags & ATA_FLAG_MMIO) { writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); udelay(20); /* FIXME: flush */ writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr); udelay(20); /* FIXME: flush */ writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); } else { outb(ap->ctl, ioaddr->ctl_addr); udelay(10); outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr); udelay(10); outb(ap->ctl, ioaddr->ctl_addr); } /* spec mandates ">= 2ms" before checking status. * We wait 150ms, because that was the magic delay used for * ATAPI devices in Hale Landis's ATADRVR, for the period of time * between when the ATA command register is written, and then * status is checked. Because waiting for "a while" before * checking status is fine, post SRST, we perform this magic * delay here as well. * * Old drivers/ide uses the 2mS rule and then waits for ready */ msleep(150); /* Before we perform post reset processing we want to see if * the bus shows 0xFF because the odd clown forgets the D7 * pulldown resistor. */ if (ata_check_status(ap) == 0xFF) { ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n"); return AC_ERR_OTHER; } ata_bus_post_reset(ap, devmask); return 0; } /** * ata_bus_reset - reset host port and associated ATA channel * @ap: port to reset * * This is typically the first time we actually start issuing * commands to the ATA channel. We wait for BSY to clear, then * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its * result. Determine what devices, if any, are on the channel * by looking at the device 0/1 error register. Look at the signature * stored in each device's taskfile registers, to determine if * the device is ATA or ATAPI. * * LOCKING: * PCI/etc. bus probe sem. * Obtains host_set lock. * * SIDE EFFECTS: * Sets ATA_FLAG_DISABLED if bus reset fails. */ void ata_bus_reset(struct ata_port *ap) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; u8 err; unsigned int dev0, dev1 = 0, devmask = 0; DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no); /* determine if device 0/1 are present */ if (ap->flags & ATA_FLAG_SATA_RESET) dev0 = 1; else { dev0 = ata_devchk(ap, 0); if (slave_possible) dev1 = ata_devchk(ap, 1); } if (dev0) devmask |= (1 << 0); if (dev1) devmask |= (1 << 1); /* select device 0 again */ ap->ops->dev_select(ap, 0); /* issue bus reset */ if (ap->flags & ATA_FLAG_SRST) if (ata_bus_softreset(ap, devmask)) goto err_out; /* * determine by signature whether we have ATA or ATAPI devices */ ap->device[0].class = ata_dev_try_classify(ap, 0, &err); if ((slave_possible) && (err != 0x81)) ap->device[1].class = ata_dev_try_classify(ap, 1, &err); /* re-enable interrupts */ if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */ ata_irq_on(ap); /* is double-select really necessary? */ if (ap->device[1].class != ATA_DEV_NONE) ap->ops->dev_select(ap, 1); if (ap->device[0].class != ATA_DEV_NONE) ap->ops->dev_select(ap, 0); /* if no devices were detected, disable this port */ if ((ap->device[0].class == ATA_DEV_NONE) && (ap->device[1].class == ATA_DEV_NONE)) goto err_out; if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { /* set up device control for ATA_FLAG_SATA_RESET */ if (ap->flags & ATA_FLAG_MMIO) writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); else outb(ap->ctl, ioaddr->ctl_addr); } DPRINTK("EXIT\n"); return; err_out: ata_port_printk(ap, KERN_ERR, "disabling port\n"); ap->ops->port_disable(ap); DPRINTK("EXIT\n"); } static int sata_phy_resume(struct ata_port *ap) { unsigned long timeout = jiffies + (HZ * 5); u32 scontrol, sstatus; int rc; if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) return rc; scontrol = (scontrol & 0x0f0) | 0x300; if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) return rc; /* Wait for phy to become ready, if necessary. */ do { msleep(200); if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus))) return rc; if ((sstatus & 0xf) != 1) return 0; } while (time_before(jiffies, timeout)); return -EBUSY; } /** * ata_std_probeinit - initialize probing * @ap: port to be probed * * @ap is about to be probed. Initialize it. This function is * to be used as standard callback for ata_drive_probe_reset(). * * NOTE!!! Do not use this function as probeinit if a low level * driver implements only hardreset. Just pass NULL as probeinit * in that case. Using this function is probably okay but doing * so makes reset sequence different from the original * ->phy_reset implementation and Jeff nervous. :-P */ void ata_std_probeinit(struct ata_port *ap) { u32 scontrol; /* resume link */ sata_phy_resume(ap); /* init sata_spd_limit to the current value */ if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) { int spd = (scontrol >> 4) & 0xf; ap->sata_spd_limit &= (1 << spd) - 1; } /* wait for device */ if (ata_port_online(ap)) ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); } /** * ata_std_softreset - reset host port via ATA SRST * @ap: port to reset * @classes: resulting classes of attached devices * * Reset host port using ATA SRST. This function is to be used * as standard callback for ata_drive_*_reset() functions. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise. */ int ata_std_softreset(struct ata_port *ap, unsigned int *classes) { unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; unsigned int devmask = 0, err_mask; u8 err; DPRINTK("ENTER\n"); if (ata_port_offline(ap)) { classes[0] = ATA_DEV_NONE; goto out; } /* determine if device 0/1 are present */ if (ata_devchk(ap, 0)) devmask |= (1 << 0); if (slave_possible && ata_devchk(ap, 1)) devmask |= (1 << 1); /* select device 0 again */ ap->ops->dev_select(ap, 0); /* issue bus reset */ DPRINTK("about to softreset, devmask=%x\n", devmask); err_mask = ata_bus_softreset(ap, devmask); if (err_mask) { ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n", err_mask); return -EIO; } /* determine by signature whether we have ATA or ATAPI devices */ classes[0] = ata_dev_try_classify(ap, 0, &err); if (slave_possible && err != 0x81) classes[1] = ata_dev_try_classify(ap, 1, &err); out: DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); return 0; } /** * sata_std_hardreset - reset host port via SATA phy reset * @ap: port to reset * @class: resulting class of attached device * * SATA phy-reset host port using DET bits of SControl register. * This function is to be used as standard callback for * ata_drive_*_reset(). * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise. */ int sata_std_hardreset(struct ata_port *ap, unsigned int *class) { u32 scontrol; int rc; DPRINTK("ENTER\n"); if (sata_set_spd_needed(ap)) { /* SATA spec says nothing about how to reconfigure * spd. To be on the safe side, turn off phy during * reconfiguration. This works for at least ICH7 AHCI * and Sil3124. */ if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) return rc; scontrol = (scontrol & 0x0f0) | 0x302; if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol))) return rc; sata_set_spd(ap); } /* issue phy wake/reset */ if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol))) return rc; scontrol = (scontrol & 0x0f0) | 0x301; if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol))) return rc; /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 * 10.4.2 says at least 1 ms. */ msleep(1); /* bring phy back */ sata_phy_resume(ap); /* TODO: phy layer with polling, timeouts, etc. */ if (ata_port_offline(ap)) { *class = ATA_DEV_NONE; DPRINTK("EXIT, link offline\n"); return 0; } if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { ata_port_printk(ap, KERN_ERR, "COMRESET failed (device not ready)\n"); return -EIO; } ap->ops->dev_select(ap, 0); /* probably unnecessary */ *class = ata_dev_try_classify(ap, 0, NULL); DPRINTK("EXIT, class=%u\n", *class); return 0; } /** * ata_std_postreset - standard postreset callback * @ap: the target ata_port * @classes: classes of attached devices * * This function is invoked after a successful reset. Note that * the device might have been reset more than once using * different reset methods before postreset is invoked. * * This function is to be used as standard callback for * ata_drive_*_reset(). * * LOCKING: * Kernel thread context (may sleep) */ void ata_std_postreset(struct ata_port *ap, unsigned int *classes) { u32 serror; DPRINTK("ENTER\n"); /* print link status */ sata_print_link_status(ap); /* clear SError */ if (sata_scr_read(ap, SCR_ERROR, &serror) == 0) sata_scr_write(ap, SCR_ERROR, serror); /* re-enable interrupts */ if (!ap->ops->error_handler) { /* FIXME: hack. create a hook instead */ if (ap->ioaddr.ctl_addr) ata_irq_on(ap); } /* is double-select really necessary? */ if (classes[0] != ATA_DEV_NONE) ap->ops->dev_select(ap, 1); if (classes[1] != ATA_DEV_NONE) ap->ops->dev_select(ap, 0); /* bail out if no device is present */ if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { DPRINTK("EXIT, no device\n"); return; } /* set up device control */ if (ap->ioaddr.ctl_addr) { if (ap->flags & ATA_FLAG_MMIO) writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr); else outb(ap->ctl, ap->ioaddr.ctl_addr); } DPRINTK("EXIT\n"); } /** * ata_std_probe_reset - standard probe reset method * @ap: prot to perform probe-reset * @classes: resulting classes of attached devices * * The stock off-the-shelf ->probe_reset method. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise. */ int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes) { ata_reset_fn_t hardreset; hardreset = NULL; if (sata_scr_valid(ap)) hardreset = sata_std_hardreset; return ata_drive_probe_reset(ap, ata_std_probeinit, ata_std_softreset, hardreset, ata_std_postreset, classes); } int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset, unsigned int *classes) { int i, rc; for (i = 0; i < ATA_MAX_DEVICES; i++) classes[i] = ATA_DEV_UNKNOWN; rc = reset(ap, classes); if (rc) return rc; /* If any class isn't ATA_DEV_UNKNOWN, consider classification * is complete and convert all ATA_DEV_UNKNOWN to * ATA_DEV_NONE. */ for (i = 0; i < ATA_MAX_DEVICES; i++) if (classes[i] != ATA_DEV_UNKNOWN) break; if (i < ATA_MAX_DEVICES) for (i = 0; i < ATA_MAX_DEVICES; i++) if (classes[i] == ATA_DEV_UNKNOWN) classes[i] = ATA_DEV_NONE; return 0; } /** * ata_drive_probe_reset - Perform probe reset with given methods * @ap: port to reset * @probeinit: probeinit method (can be NULL) * @softreset: softreset method (can be NULL) * @hardreset: hardreset method (can be NULL) * @postreset: postreset method (can be NULL) * @classes: resulting classes of attached devices * * Reset the specified port and classify attached devices using * given methods. This function prefers softreset but tries all * possible reset sequences to reset and classify devices. This * function is intended to be used for constructing ->probe_reset * callback by low level drivers. * * Reset methods should follow the following rules. * * - Return 0 on sucess, -errno on failure. * - If classification is supported, fill classes[] with * recognized class codes. * - If classification is not supported, leave classes[] alone. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV * if classification fails, and any error code from reset * methods. */ int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit, ata_reset_fn_t softreset, ata_reset_fn_t hardreset, ata_postreset_fn_t postreset, unsigned int *classes) { int rc = -EINVAL; ata_eh_freeze_port(ap); if (probeinit) probeinit(ap); if (softreset && !sata_set_spd_needed(ap)) { rc = ata_do_reset(ap, softreset, classes); if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN) goto done; ata_port_printk(ap, KERN_INFO, "softreset failed, " "will try hardreset in 5 secs\n"); ssleep(5); } if (!hardreset) goto done; while (1) { rc = ata_do_reset(ap, hardreset, classes); if (rc == 0) { if (classes[0] != ATA_DEV_UNKNOWN) goto done; break; } if (sata_down_spd_limit(ap)) goto done; ata_port_printk(ap, KERN_INFO, "hardreset failed, " "will retry in 5 secs\n"); ssleep(5); } if (softreset) { ata_port_printk(ap, KERN_INFO, "hardreset succeeded without classification, " "will retry softreset in 5 secs\n"); ssleep(5); rc = ata_do_reset(ap, softreset, classes); } done: if (rc == 0) { if (postreset) postreset(ap, classes); ata_eh_thaw_port(ap); if (classes[0] == ATA_DEV_UNKNOWN) rc = -ENODEV; } return rc; } /** * ata_dev_same_device - Determine whether new ID matches configured device * @dev: device to compare against * @new_class: class of the new device * @new_id: IDENTIFY page of the new device * * Compare @new_class and @new_id against @dev and determine * whether @dev is the device indicated by @new_class and * @new_id. * * LOCKING: * None. * * RETURNS: * 1 if @dev matches @new_class and @new_id, 0 otherwise. */ static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, const u16 *new_id) { const u16 *old_id = dev->id; unsigned char model[2][41], serial[2][21]; u64 new_n_sectors; if (dev->class != new_class) { ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", dev->class, new_class); return 0; } ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0])); ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1])); ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0])); ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1])); new_n_sectors = ata_id_n_sectors(new_id); if (strcmp(model[0], model[1])) { ata_dev_printk(dev, KERN_INFO, "model number mismatch " "'%s' != '%s'\n", model[0], model[1]); return 0; } if (strcmp(serial[0], serial[1])) { ata_dev_printk(dev, KERN_INFO, "serial number mismatch " "'%s' != '%s'\n", serial[0], serial[1]); return 0; } if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) { ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " "%llu != %llu\n", (unsigned long long)dev->n_sectors, (unsigned long long)new_n_sectors); return 0; } return 1; } /** * ata_dev_revalidate - Revalidate ATA device * @dev: device to revalidate * @post_reset: is this revalidation after reset? * * Re-read IDENTIFY page and make sure @dev is still attached to * the port. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, negative errno otherwise */ int ata_dev_revalidate(struct ata_device *dev, int post_reset) { unsigned int class = dev->class; u16 *id = (void *)dev->ap->sector_buf; int rc; if (!ata_dev_enabled(dev)) { rc = -ENODEV; goto fail; } /* read ID data */ rc = ata_dev_read_id(dev, &class, post_reset, id); if (rc) goto fail; /* is the device still there? */ if (!ata_dev_same_device(dev, class, id)) { rc = -ENODEV; goto fail; } memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); /* configure device according to the new ID */ rc = ata_dev_configure(dev, 0); if (rc == 0) return 0; fail: ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); return rc; } static const char * const ata_dma_blacklist [] = { "WDC AC11000H", NULL, "WDC AC22100H", NULL, "WDC AC32500H", NULL, "WDC AC33100H", NULL, "WDC AC31600H", NULL, "WDC AC32100H", "24.09P07", "WDC AC23200L", "21.10N21", "Compaq CRD-8241B", NULL, "CRD-8400B", NULL, "CRD-8480B", NULL, "CRD-8482B", NULL, "CRD-84", NULL, "SanDisk SDP3B", NULL, "SanDisk SDP3B-64", NULL, "SANYO CD-ROM CRD", NULL, "HITACHI CDR-8", NULL, "HITACHI CDR-8335", NULL, "HITACHI CDR-8435", NULL, "Toshiba CD-ROM XM-6202B", NULL, "TOSHIBA CD-ROM XM-1702BC", NULL, "CD-532E-A", NULL, "E-IDE CD-ROM CR-840", NULL, "CD-ROM Drive/F5A", NULL, "WPI CDD-820", NULL, "SAMSUNG CD-ROM SC-148C", NULL, "SAMSUNG CD-ROM SC", NULL, "SanDisk SDP3B-64", NULL, "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL, "_NEC DV5800A", NULL, "SAMSUNG CD-ROM SN-124", "N001" }; static int ata_strim(char *s, size_t len) { len = strnlen(s, len); /* ATAPI specifies that empty space is blank-filled; remove blanks */ while ((len > 0) && (s[len - 1] == ' ')) { len--; s[len] = 0; } return len; } static int ata_dma_blacklisted(const struct ata_device *dev) { unsigned char model_num[40]; unsigned char model_rev[16]; unsigned int nlen, rlen; int i; ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS, sizeof(model_num)); ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS, sizeof(model_rev)); nlen = ata_strim(model_num, sizeof(model_num)); rlen = ata_strim(model_rev, sizeof(model_rev)); for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) { if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) { if (ata_dma_blacklist[i+1] == NULL) return 1; if (!strncmp(ata_dma_blacklist[i], model_rev, rlen)) return 1; } } return 0; } /** * ata_dev_xfermask - Compute supported xfermask of the given device * @dev: Device to compute xfermask for * * Compute supported xfermask of @dev and store it in * dev->*_mask. This function is responsible for applying all * known limits including host controller limits, device * blacklist, etc... * * FIXME: The current implementation limits all transfer modes to * the fastest of the lowested device on the port. This is not * required on most controllers. * * LOCKING: * None. */ static void ata_dev_xfermask(struct ata_device *dev) { struct ata_port *ap = dev->ap; struct ata_host_set *hs = ap->host_set; unsigned long xfer_mask; int i; xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, ap->udma_mask); /* Apply cable rule here. Don't apply it early because when * we handle hot plug the cable type can itself change. */ if (ap->cbl == ATA_CBL_PATA40) xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); /* FIXME: Use port-wide xfermask for now */ for (i = 0; i < ATA_MAX_DEVICES; i++) { struct ata_device *d = &ap->device[i]; if (ata_dev_absent(d)) continue; if (ata_dev_disabled(d)) { /* to avoid violating device selection timing */ xfer_mask &= ata_pack_xfermask(d->pio_mask, UINT_MAX, UINT_MAX); continue; } xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask, d->udma_mask); xfer_mask &= ata_id_xfermask(d->id); if (ata_dma_blacklisted(d)) xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); } if (ata_dma_blacklisted(dev)) ata_dev_printk(dev, KERN_WARNING, "device is on DMA blacklist, disabling DMA\n"); if (hs->flags & ATA_HOST_SIMPLEX) { if (hs->simplex_claimed) xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); } if (ap->ops->mode_filter) xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask); ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, &dev->udma_mask); } /** * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command * @dev: Device to which command will be sent * * Issue SET FEATURES - XFER MODE command to device @dev * on port @ap. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * 0 on success, AC_ERR_* mask otherwise. */ static unsigned int ata_dev_set_xfermode(struct ata_device *dev) { struct ata_taskfile tf; unsigned int err_mask; /* set up set-features taskfile */ DPRINTK("set features - xfer mode\n"); ata_tf_init(dev, &tf); tf.command = ATA_CMD_SET_FEATURES; tf.feature = SETFEATURES_XFER; tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; tf.protocol = ATA_PROT_NODATA; tf.nsect = dev->xfer_mode; err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); DPRINTK("EXIT, err_mask=%x\n", err_mask); return err_mask; } /** * ata_dev_init_params - Issue INIT DEV PARAMS command * @dev: Device to which command will be sent * @heads: Number of heads * @sectors: Number of sectors * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, AC_ERR_* mask otherwise. */ static unsigned int ata_dev_init_params(struct ata_device *dev, u16 heads, u16 sectors) { struct ata_taskfile tf; unsigned int err_mask; /* Number of sectors per track 1-255. Number of heads 1-16 */ if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) return AC_ERR_INVALID; /* set up init dev params taskfile */ DPRINTK("init dev params \n"); ata_tf_init(dev, &tf); tf.command = ATA_CMD_INIT_DEV_PARAMS; tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; tf.protocol = ATA_PROT_NODATA; tf.nsect = sectors; tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); DPRINTK("EXIT, err_mask=%x\n", err_mask); return err_mask; } /** * ata_sg_clean - Unmap DMA memory associated with command * @qc: Command containing DMA memory to be released * * Unmap all mapped DMA memory associated with this command. * * LOCKING: * spin_lock_irqsave(host_set lock) */ static void ata_sg_clean(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scatterlist *sg = qc->__sg; int dir = qc->dma_dir; void *pad_buf = NULL; WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP)); WARN_ON(sg == NULL); if (qc->flags & ATA_QCFLAG_SINGLE) WARN_ON(qc->n_elem > 1); VPRINTK("unmapping %u sg elements\n", qc->n_elem); /* if we padded the buffer out to 32-bit bound, and data * xfer direction is from-device, we must copy from the * pad buffer back into the supplied buffer */ if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE)) pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); if (qc->flags & ATA_QCFLAG_SG) { if (qc->n_elem) dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); /* restore last sg */ sg[qc->orig_n_elem - 1].length += qc->pad_len; if (pad_buf) { struct scatterlist *psg = &qc->pad_sgent; void *addr = kmap_atomic(psg->page, KM_IRQ0); memcpy(addr + psg->offset, pad_buf, qc->pad_len); kunmap_atomic(addr, KM_IRQ0); } } else { if (qc->n_elem) dma_unmap_single(ap->dev, sg_dma_address(&sg[0]), sg_dma_len(&sg[0]), dir); /* restore sg */ sg->length += qc->pad_len; if (pad_buf) memcpy(qc->buf_virt + sg->length - qc->pad_len, pad_buf, qc->pad_len); } qc->flags &= ~ATA_QCFLAG_DMAMAP; qc->__sg = NULL; } /** * ata_fill_sg - Fill PCI IDE PRD table * @qc: Metadata associated with taskfile to be transferred * * Fill PCI IDE PRD (scatter-gather) table with segments * associated with the current disk command. * * LOCKING: * spin_lock_irqsave(host_set lock) * */ static void ata_fill_sg(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scatterlist *sg; unsigned int idx; WARN_ON(qc->__sg == NULL); WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); idx = 0; ata_for_each_sg(sg, qc) { u32 addr, offset; u32 sg_len, len; /* determine if physical DMA addr spans 64K boundary. * Note h/w doesn't support 64-bit, so we unconditionally * truncate dma_addr_t to u32. */ addr = (u32) sg_dma_address(sg); sg_len = sg_dma_len(sg); while (sg_len) { offset = addr & 0xffff; len = sg_len; if ((offset + sg_len) > 0x10000) len = 0x10000 - offset; ap->prd[idx].addr = cpu_to_le32(addr); ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff); VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); idx++; sg_len -= len; addr += len; } } if (idx) ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); } /** * ata_check_atapi_dma - Check whether ATAPI DMA can be supported * @qc: Metadata associated with taskfile to check * * Allow low-level driver to filter ATA PACKET commands, returning * a status indicating whether or not it is OK to use DMA for the * supplied PACKET command. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: 0 when ATAPI DMA can be used * nonzero otherwise */ int ata_check_atapi_dma(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; int rc = 0; /* Assume ATAPI DMA is OK by default */ if (ap->ops->check_atapi_dma) rc = ap->ops->check_atapi_dma(qc); return rc; } /** * ata_qc_prep - Prepare taskfile for submission * @qc: Metadata associated with taskfile to be prepared * * Prepare ATA taskfile for submission. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_qc_prep(struct ata_queued_cmd *qc) { if (!(qc->flags & ATA_QCFLAG_DMAMAP)) return; ata_fill_sg(qc); } void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } /** * ata_sg_init_one - Associate command with memory buffer * @qc: Command to be associated * @buf: Memory buffer * @buflen: Length of memory buffer, in bytes. * * Initialize the data-related elements of queued_cmd @qc * to point to a single memory buffer, @buf of byte length @buflen. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen) { struct scatterlist *sg; qc->flags |= ATA_QCFLAG_SINGLE; memset(&qc->sgent, 0, sizeof(qc->sgent)); qc->__sg = &qc->sgent; qc->n_elem = 1; qc->orig_n_elem = 1; qc->buf_virt = buf; sg = qc->__sg; sg_init_one(sg, buf, buflen); } /** * ata_sg_init - Associate command with scatter-gather table. * @qc: Command to be associated * @sg: Scatter-gather table. * @n_elem: Number of elements in s/g table. * * Initialize the data-related elements of queued_cmd @qc * to point to a scatter-gather table @sg, containing @n_elem * elements. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, unsigned int n_elem) { qc->flags |= ATA_QCFLAG_SG; qc->__sg = sg; qc->n_elem = n_elem; qc->orig_n_elem = n_elem; } /** * ata_sg_setup_one - DMA-map the memory buffer associated with a command. * @qc: Command with memory buffer to be mapped. * * DMA-map the memory buffer associated with queued_cmd @qc. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Zero on success, negative on error. */ static int ata_sg_setup_one(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; int dir = qc->dma_dir; struct scatterlist *sg = qc->__sg; dma_addr_t dma_address; int trim_sg = 0; /* we must lengthen transfers to end on a 32-bit boundary */ qc->pad_len = sg->length & 3; if (qc->pad_len) { void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); struct scatterlist *psg = &qc->pad_sgent; WARN_ON(qc->dev->class != ATA_DEV_ATAPI); memset(pad_buf, 0, ATA_DMA_PAD_SZ); if (qc->tf.flags & ATA_TFLAG_WRITE) memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len, qc->pad_len); sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); sg_dma_len(psg) = ATA_DMA_PAD_SZ; /* trim sg */ sg->length -= qc->pad_len; if (sg->length == 0) trim_sg = 1; DPRINTK("padding done, sg->length=%u pad_len=%u\n", sg->length, qc->pad_len); } if (trim_sg) { qc->n_elem--; goto skip_map; } dma_address = dma_map_single(ap->dev, qc->buf_virt, sg->length, dir); if (dma_mapping_error(dma_address)) { /* restore sg */ sg->length += qc->pad_len; return -1; } sg_dma_address(sg) = dma_address; sg_dma_len(sg) = sg->length; skip_map: DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg), qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); return 0; } /** * ata_sg_setup - DMA-map the scatter-gather table associated with a command. * @qc: Command with scatter-gather table to be mapped. * * DMA-map the scatter-gather table associated with queued_cmd @qc. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Zero on success, negative on error. * */ static int ata_sg_setup(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scatterlist *sg = qc->__sg; struct scatterlist *lsg = &sg[qc->n_elem - 1]; int n_elem, pre_n_elem, dir, trim_sg = 0; VPRINTK("ENTER, ata%u\n", ap->id); WARN_ON(!(qc->flags & ATA_QCFLAG_SG)); /* we must lengthen transfers to end on a 32-bit boundary */ qc->pad_len = lsg->length & 3; if (qc->pad_len) { void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); struct scatterlist *psg = &qc->pad_sgent; unsigned int offset; WARN_ON(qc->dev->class != ATA_DEV_ATAPI); memset(pad_buf, 0, ATA_DMA_PAD_SZ); /* * psg->page/offset are used to copy to-be-written * data in this function or read data in ata_sg_clean. */ offset = lsg->offset + lsg->length - qc->pad_len; psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT); psg->offset = offset_in_page(offset); if (qc->tf.flags & ATA_TFLAG_WRITE) { void *addr = kmap_atomic(psg->page, KM_IRQ0); memcpy(pad_buf, addr + psg->offset, qc->pad_len); kunmap_atomic(addr, KM_IRQ0); } sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); sg_dma_len(psg) = ATA_DMA_PAD_SZ; /* trim last sg */ lsg->length -= qc->pad_len; if (lsg->length == 0) trim_sg = 1; DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n", qc->n_elem - 1, lsg->length, qc->pad_len); } pre_n_elem = qc->n_elem; if (trim_sg && pre_n_elem) pre_n_elem--; if (!pre_n_elem) { n_elem = 0; goto skip_map; } dir = qc->dma_dir; n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir); if (n_elem < 1) { /* restore last sg */ lsg->length += qc->pad_len; return -1; } DPRINTK("%d sg elements mapped\n", n_elem); skip_map: qc->n_elem = n_elem; return 0; } /** * ata_poll_qc_complete - turn irq back on and finish qc * @qc: Command to complete * @err_mask: ATA status register content * * LOCKING: * None. (grabs host lock) */ void ata_poll_qc_complete(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; unsigned long flags; spin_lock_irqsave(&ap->host_set->lock, flags); if (ap->ops->error_handler) { /* EH might have kicked in while host_set lock is released */ qc = ata_qc_from_tag(ap, qc->tag); if (qc) { if (!(qc->err_mask & AC_ERR_HSM)) { ap->flags &= ~ATA_FLAG_NOINTR; ata_irq_on(ap); ata_qc_complete(qc); } else ata_port_freeze(ap); } } else { /* old EH */ ap->flags &= ~ATA_FLAG_NOINTR; ata_irq_on(ap); ata_qc_complete(qc); } spin_unlock_irqrestore(&ap->host_set->lock, flags); } /** * ata_pio_poll - poll using PIO, depending on current state * @qc: qc in progress * * LOCKING: * None. (executing in kernel thread context) * * RETURNS: * timeout value to use */ static unsigned long ata_pio_poll(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; u8 status; unsigned int poll_state = HSM_ST_UNKNOWN; unsigned int reg_state = HSM_ST_UNKNOWN; switch (ap->hsm_task_state) { case HSM_ST: case HSM_ST_POLL: poll_state = HSM_ST_POLL; reg_state = HSM_ST; break; case HSM_ST_LAST: case HSM_ST_LAST_POLL: poll_state = HSM_ST_LAST_POLL; reg_state = HSM_ST_LAST; break; default: BUG(); break; } status = ata_chk_status(ap); if (status & ATA_BUSY) { if (time_after(jiffies, ap->pio_task_timeout)) { qc->err_mask |= AC_ERR_TIMEOUT; ap->hsm_task_state = HSM_ST_TMOUT; return 0; } ap->hsm_task_state = poll_state; return ATA_SHORT_PAUSE; } ap->hsm_task_state = reg_state; return 0; } /** * ata_pio_complete - check if drive is busy or idle * @qc: qc to complete * * LOCKING: * None. (executing in kernel thread context) * * RETURNS: * Non-zero if qc completed, zero otherwise. */ static int ata_pio_complete(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; u8 drv_stat; /* * This is purely heuristic. This is a fast path. Sometimes when * we enter, BSY will be cleared in a chk-status or two. If not, * the drive is probably seeking or something. Snooze for a couple * msecs, then chk-status again. If still busy, fall back to * HSM_ST_POLL state. */ drv_stat = ata_busy_wait(ap, ATA_BUSY, 10); if (drv_stat & ATA_BUSY) { msleep(2); drv_stat = ata_busy_wait(ap, ATA_BUSY, 10); if (drv_stat & ATA_BUSY) { ap->hsm_task_state = HSM_ST_LAST_POLL; ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO; return 0; } } drv_stat = ata_wait_idle(ap); if (!ata_ok(drv_stat)) { qc->err_mask |= __ac_err_mask(drv_stat); ap->hsm_task_state = HSM_ST_ERR; return 0; } ap->hsm_task_state = HSM_ST_IDLE; WARN_ON(qc->err_mask); ata_poll_qc_complete(qc); /* another command may start at this point */ return 1; } /** * swap_buf_le16 - swap halves of 16-bit words in place * @buf: Buffer to swap * @buf_words: Number of 16-bit words in buffer. * * Swap halves of 16-bit words if needed to convert from * little-endian byte order to native cpu byte order, or * vice-versa. * * LOCKING: * Inherited from caller. */ void swap_buf_le16(u16 *buf, unsigned int buf_words) { #ifdef __BIG_ENDIAN unsigned int i; for (i = 0; i < buf_words; i++) buf[i] = le16_to_cpu(buf[i]); #endif /* __BIG_ENDIAN */ } /** * ata_mmio_data_xfer - Transfer data by MMIO * @ap: port to read/write * @buf: data buffer * @buflen: buffer length * @write_data: read/write * * Transfer data from/to the device data register by MMIO. * * LOCKING: * Inherited from caller. */ static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf, unsigned int buflen, int write_data) { unsigned int i; unsigned int words = buflen >> 1; u16 *buf16 = (u16 *) buf; void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr; /* Transfer multiple of 2 bytes */ if (write_data) { for (i = 0; i < words; i++) writew(le16_to_cpu(buf16[i]), mmio); } else { for (i = 0; i < words; i++) buf16[i] = cpu_to_le16(readw(mmio)); } /* Transfer trailing 1 byte, if any. */ if (unlikely(buflen & 0x01)) { u16 align_buf[1] = { 0 }; unsigned char *trailing_buf = buf + buflen - 1; if (write_data) { memcpy(align_buf, trailing_buf, 1); writew(le16_to_cpu(align_buf[0]), mmio); } else { align_buf[0] = cpu_to_le16(readw(mmio)); memcpy(trailing_buf, align_buf, 1); } } } /** * ata_pio_data_xfer - Transfer data by PIO * @ap: port to read/write * @buf: data buffer * @buflen: buffer length * @write_data: read/write * * Transfer data from/to the device data register by PIO. * * LOCKING: * Inherited from caller. */ static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf, unsigned int buflen, int write_data) { unsigned int words = buflen >> 1; /* Transfer multiple of 2 bytes */ if (write_data) outsw(ap->ioaddr.data_addr, buf, words); else insw(ap->ioaddr.data_addr, buf, words); /* Transfer trailing 1 byte, if any. */ if (unlikely(buflen & 0x01)) { u16 align_buf[1] = { 0 }; unsigned char *trailing_buf = buf + buflen - 1; if (write_data) { memcpy(align_buf, trailing_buf, 1); outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr); } else { align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr)); memcpy(trailing_buf, align_buf, 1); } } } /** * ata_data_xfer - Transfer data from/to the data register. * @ap: port to read/write * @buf: data buffer * @buflen: buffer length * @do_write: read/write * * Transfer data from/to the device data register. * * LOCKING: * Inherited from caller. */ static void ata_data_xfer(struct ata_port *ap, unsigned char *buf, unsigned int buflen, int do_write) { /* Make the crap hardware pay the costs not the good stuff */ if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) { unsigned long flags; local_irq_save(flags); if (ap->flags & ATA_FLAG_MMIO) ata_mmio_data_xfer(ap, buf, buflen, do_write); else ata_pio_data_xfer(ap, buf, buflen, do_write); local_irq_restore(flags); } else { if (ap->flags & ATA_FLAG_MMIO) ata_mmio_data_xfer(ap, buf, buflen, do_write); else ata_pio_data_xfer(ap, buf, buflen, do_write); } } /** * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data. * @qc: Command on going * * Transfer ATA_SECT_SIZE of data from/to the ATA device. * * LOCKING: * Inherited from caller. */ static void ata_pio_sector(struct ata_queued_cmd *qc) { int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); struct scatterlist *sg = qc->__sg; struct ata_port *ap = qc->ap; struct page *page; unsigned int offset; unsigned char *buf; if (qc->cursect == (qc->nsect - 1)) ap->hsm_task_state = HSM_ST_LAST; page = sg[qc->cursg].page; offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE; /* get the current page and offset */ page = nth_page(page, (offset >> PAGE_SHIFT)); offset %= PAGE_SIZE; buf = kmap(page) + offset; qc->cursect++; qc->cursg_ofs++; if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) { qc->cursg++; qc->cursg_ofs = 0; } DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); /* do the actual data transfer */ do_write = (qc->tf.flags & ATA_TFLAG_WRITE); ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write); kunmap(page); } /** * __atapi_pio_bytes - Transfer data from/to the ATAPI device. * @qc: Command on going * @bytes: number of bytes * * Transfer Transfer data from/to the ATAPI device. * * LOCKING: * Inherited from caller. * */ static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) { int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); struct scatterlist *sg = qc->__sg; struct ata_port *ap = qc->ap; struct page *page; unsigned char *buf; unsigned int offset, count; if (qc->curbytes + bytes >= qc->nbytes) ap->hsm_task_state = HSM_ST_LAST; next_sg: if (unlikely(qc->cursg >= qc->n_elem)) { /* * The end of qc->sg is reached and the device expects * more data to transfer. In order not to overrun qc->sg * and fulfill length specified in the byte count register, * - for read case, discard trailing data from the device * - for write case, padding zero data to the device */ u16 pad_buf[1] = { 0 }; unsigned int words = bytes >> 1; unsigned int i; if (words) /* warning if bytes > 1 */ ata_dev_printk(qc->dev, KERN_WARNING, "%u bytes trailing data\n", bytes); for (i = 0; i < words; i++) ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write); ap->hsm_task_state = HSM_ST_LAST; return; } sg = &qc->__sg[qc->cursg]; page = sg->page; offset = sg->offset + qc->cursg_ofs; /* get the current page and offset */ page = nth_page(page, (offset >> PAGE_SHIFT)); offset %= PAGE_SIZE; /* don't overrun current sg */ count = min(sg->length - qc->cursg_ofs, bytes); /* don't cross page boundaries */ count = min(count, (unsigned int)PAGE_SIZE - offset); buf = kmap(page) + offset; bytes -= count; qc->curbytes += count; qc->cursg_ofs += count; if (qc->cursg_ofs == sg->length) { qc->cursg++; qc->cursg_ofs = 0; } DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); /* do the actual data transfer */ ata_data_xfer(ap, buf, count, do_write); kunmap(page); if (bytes) goto next_sg; } /** * atapi_pio_bytes - Transfer data from/to the ATAPI device. * @qc: Command on going * * Transfer Transfer data from/to the ATAPI device. * * LOCKING: * Inherited from caller. */ static void atapi_pio_bytes(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct ata_device *dev = qc->dev; unsigned int ireason, bc_lo, bc_hi, bytes; int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; ap->ops->tf_read(ap, &qc->tf); ireason = qc->tf.nsect; bc_lo = qc->tf.lbam; bc_hi = qc->tf.lbah; bytes = (bc_hi << 8) | bc_lo; /* shall be cleared to zero, indicating xfer of data */ if (ireason & (1 << 0)) goto err_out; /* make sure transfer direction matches expected */ i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; if (do_write != i_write) goto err_out; __atapi_pio_bytes(qc, bytes); return; err_out: ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n"); qc->err_mask |= AC_ERR_HSM; ap->hsm_task_state = HSM_ST_ERR; } /** * ata_pio_block - start PIO on a block * @qc: qc to transfer block for * * LOCKING: * None. (executing in kernel thread context) */ static void ata_pio_block(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; u8 status; /* * This is purely heuristic. This is a fast path. * Sometimes when we enter, BSY will be cleared in * a chk-status or two. If not, the drive is probably seeking * or something. Snooze for a couple msecs, then * chk-status again. If still busy, fall back to * HSM_ST_POLL state. */ status = ata_busy_wait(ap, ATA_BUSY, 5); if (status & ATA_BUSY) { msleep(2); status = ata_busy_wait(ap, ATA_BUSY, 10); if (status & ATA_BUSY) { ap->hsm_task_state = HSM_ST_POLL; ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO; return; } } /* check error */ if (status & (ATA_ERR | ATA_DF)) { qc->err_mask |= AC_ERR_DEV; ap->hsm_task_state = HSM_ST_ERR; return; } /* transfer data if any */ if (is_atapi_taskfile(&qc->tf)) { /* DRQ=0 means no more data to transfer */ if ((status & ATA_DRQ) == 0) { ap->hsm_task_state = HSM_ST_LAST; return; } atapi_pio_bytes(qc); } else { /* handle BSY=0, DRQ=0 as error */ if ((status & ATA_DRQ) == 0) { qc->err_mask |= AC_ERR_HSM; ap->hsm_task_state = HSM_ST_ERR; return; } ata_pio_sector(qc); } } static void ata_pio_error(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; if (qc->tf.command != ATA_CMD_PACKET) ata_dev_printk(qc->dev, KERN_WARNING, "PIO error\n"); /* make sure qc->err_mask is available to * know what's wrong and recover */ WARN_ON(qc->err_mask == 0); ap->hsm_task_state = HSM_ST_IDLE; ata_poll_qc_complete(qc); } static void ata_pio_task(void *_data) { struct ata_queued_cmd *qc = _data; struct ata_port *ap = qc->ap; unsigned long timeout; int qc_completed; fsm_start: timeout = 0; qc_completed = 0; switch (ap->hsm_task_state) { case HSM_ST_IDLE: return; case HSM_ST: ata_pio_block(qc); break; case HSM_ST_LAST: qc_completed = ata_pio_complete(qc); break; case HSM_ST_POLL: case HSM_ST_LAST_POLL: timeout = ata_pio_poll(qc); break; case HSM_ST_TMOUT: case HSM_ST_ERR: ata_pio_error(qc); return; } if (timeout) ata_port_queue_task(ap, ata_pio_task, qc, timeout); else if (!qc_completed) goto fsm_start; } /** * atapi_packet_task - Write CDB bytes to hardware * @_data: qc in progress * * When device has indicated its readiness to accept * a CDB, this function is called. Send the CDB. * If DMA is to be performed, exit immediately. * Otherwise, we are in polling mode, so poll * status under operation succeeds or fails. * * LOCKING: * Kernel thread context (may sleep) */ static void atapi_packet_task(void *_data) { struct ata_queued_cmd *qc = _data; struct ata_port *ap = qc->ap; u8 status; /* sleep-wait for BSY to clear */ DPRINTK("busy wait\n"); if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) { qc->err_mask |= AC_ERR_TIMEOUT; goto err_out; } /* make sure DRQ is set */ status = ata_chk_status(ap); if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) { qc->err_mask |= AC_ERR_HSM; goto err_out; } /* send SCSI cdb */ DPRINTK("send cdb\n"); WARN_ON(qc->dev->cdb_len < 12); if (qc->tf.protocol == ATA_PROT_ATAPI_DMA || qc->tf.protocol == ATA_PROT_ATAPI_NODATA) { unsigned long flags; /* Once we're done issuing command and kicking bmdma, * irq handler takes over. To not lose irq, we need * to clear NOINTR flag before sending cdb, but * interrupt handler shouldn't be invoked before we're * finished. Hence, the following locking. */ spin_lock_irqsave(&ap->host_set->lock, flags); ap->flags &= ~ATA_FLAG_NOINTR; ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1); if (qc->tf.protocol == ATA_PROT_ATAPI_DMA) ap->ops->bmdma_start(qc); /* initiate bmdma */ spin_unlock_irqrestore(&ap->host_set->lock, flags); } else { ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1); /* PIO commands are handled by polling */ ap->hsm_task_state = HSM_ST; ata_port_queue_task(ap, ata_pio_task, qc, 0); } return; err_out: ata_poll_qc_complete(qc); } /** * ata_qc_new - Request an available ATA command, for queueing * @ap: Port associated with device @dev * @dev: Device from whom we request an available command structure * * LOCKING: * None. */ static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) { struct ata_queued_cmd *qc = NULL; unsigned int i; /* no command while frozen */ if (unlikely(ap->flags & ATA_FLAG_FROZEN)) return NULL; /* the last tag is reserved for internal command. */ for (i = 0; i < ATA_MAX_QUEUE - 1; i++) if (!test_and_set_bit(i, &ap->qactive)) { qc = __ata_qc_from_tag(ap, i); break; } if (qc) qc->tag = i; return qc; } /** * ata_qc_new_init - Request an available ATA command, and initialize it * @dev: Device from whom we request an available command structure * * LOCKING: * None. */ struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) { struct ata_port *ap = dev->ap; struct ata_queued_cmd *qc; qc = ata_qc_new(ap); if (qc) { qc->scsicmd = NULL; qc->ap = ap; qc->dev = dev; ata_qc_reinit(qc); } return qc; } /** * ata_qc_free - free unused ata_queued_cmd * @qc: Command to complete * * Designed to free unused ata_queued_cmd object * in case something prevents using it. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_qc_free(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; unsigned int tag; WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ qc->flags = 0; tag = qc->tag; if (likely(ata_tag_valid(tag))) { qc->tag = ATA_TAG_POISON; clear_bit(tag, &ap->qactive); } } void __ata_qc_complete(struct ata_queued_cmd *qc) { WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) ata_sg_clean(qc); /* command should be marked inactive atomically with qc completion */ qc->ap->active_tag = ATA_TAG_POISON; /* atapi: mark qc as inactive to prevent the interrupt handler * from completing the command twice later, before the error handler * is called. (when rc != 0 and atapi request sense is needed) */ qc->flags &= ~ATA_QCFLAG_ACTIVE; /* call completion callback */ qc->complete_fn(qc); } /** * ata_qc_complete - Complete an active ATA command * @qc: Command to complete * @err_mask: ATA Status register contents * * Indicate to the mid and upper layers that an ATA * command has completed, with either an ok or not-ok status. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_qc_complete(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; /* XXX: New EH and old EH use different mechanisms to * synchronize EH with regular execution path. * * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. * Normal execution path is responsible for not accessing a * failed qc. libata core enforces the rule by returning NULL * from ata_qc_from_tag() for failed qcs. * * Old EH depends on ata_qc_complete() nullifying completion * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does * not synchronize with interrupt handler. Only PIO task is * taken care of. */ if (ap->ops->error_handler) { WARN_ON(ap->flags & ATA_FLAG_FROZEN); if (unlikely(qc->err_mask)) qc->flags |= ATA_QCFLAG_FAILED; if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { if (!ata_tag_internal(qc->tag)) { /* always fill result TF for failed qc */ ap->ops->tf_read(ap, &qc->result_tf); ata_qc_schedule_eh(qc); return; } } /* read result TF if requested */ if (qc->flags & ATA_QCFLAG_RESULT_TF) ap->ops->tf_read(ap, &qc->result_tf); __ata_qc_complete(qc); } else { if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) return; /* read result TF if failed or requested */ if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) ap->ops->tf_read(ap, &qc->result_tf); __ata_qc_complete(qc); } } static inline int ata_should_dma_map(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; switch (qc->tf.protocol) { case ATA_PROT_DMA: case ATA_PROT_ATAPI_DMA: return 1; case ATA_PROT_ATAPI: case ATA_PROT_PIO: if (ap->flags & ATA_FLAG_PIO_DMA) return 1; /* fall through */ default: return 0; } /* never reached */ } /** * ata_qc_issue - issue taskfile to device * @qc: command to issue to device * * Prepare an ATA command to submission to device. * This includes mapping the data into a DMA-able * area, filling in the S/G table, and finally * writing the taskfile to hardware, starting the command. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_qc_issue(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; qc->ap->active_tag = qc->tag; qc->flags |= ATA_QCFLAG_ACTIVE; if (ata_should_dma_map(qc)) { if (qc->flags & ATA_QCFLAG_SG) { if (ata_sg_setup(qc)) goto sg_err; } else if (qc->flags & ATA_QCFLAG_SINGLE) { if (ata_sg_setup_one(qc)) goto sg_err; } } else { qc->flags &= ~ATA_QCFLAG_DMAMAP; } ap->ops->qc_prep(qc); qc->err_mask |= ap->ops->qc_issue(qc); if (unlikely(qc->err_mask)) goto err; return; sg_err: qc->flags &= ~ATA_QCFLAG_DMAMAP; qc->err_mask |= AC_ERR_SYSTEM; err: ata_qc_complete(qc); } /** * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner * @qc: command to issue to device * * Using various libata functions and hooks, this function * starts an ATA command. ATA commands are grouped into * classes called "protocols", and issuing each type of protocol * is slightly different. * * May be used as the qc_issue() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Zero on success, AC_ERR_* mask on failure */ unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; ata_dev_select(ap, qc->dev->devno, 1, 0); switch (qc->tf.protocol) { case ATA_PROT_NODATA: ata_tf_to_host(ap, &qc->tf); break; case ATA_PROT_DMA: ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ ap->ops->bmdma_setup(qc); /* set up bmdma */ ap->ops->bmdma_start(qc); /* initiate bmdma */ break; case ATA_PROT_PIO: /* load tf registers, initiate polling pio */ ata_qc_set_polling(qc); ata_tf_to_host(ap, &qc->tf); ap->hsm_task_state = HSM_ST; ata_port_queue_task(ap, ata_pio_task, qc, 0); break; case ATA_PROT_ATAPI: ata_qc_set_polling(qc); ata_tf_to_host(ap, &qc->tf); ata_port_queue_task(ap, atapi_packet_task, qc, 0); break; case ATA_PROT_ATAPI_NODATA: ap->flags |= ATA_FLAG_NOINTR; ata_tf_to_host(ap, &qc->tf); ata_port_queue_task(ap, atapi_packet_task, qc, 0); break; case ATA_PROT_ATAPI_DMA: ap->flags |= ATA_FLAG_NOINTR; ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ ap->ops->bmdma_setup(qc); /* set up bmdma */ ata_port_queue_task(ap, atapi_packet_task, qc, 0); break; default: WARN_ON(1); return AC_ERR_SYSTEM; } return 0; } /** * ata_host_intr - Handle host interrupt for given (port, task) * @ap: Port on which interrupt arrived (possibly...) * @qc: Taskfile currently active in engine * * Handle host interrupt for given queued command. Currently, * only DMA interrupts are handled. All other commands are * handled via polling with interrupts disabled (nIEN bit). * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * One if interrupt was handled, zero if not (shared irq). */ inline unsigned int ata_host_intr (struct ata_port *ap, struct ata_queued_cmd *qc) { u8 status, host_stat; switch (qc->tf.protocol) { case ATA_PROT_DMA: case ATA_PROT_ATAPI_DMA: case ATA_PROT_ATAPI: /* check status of DMA engine */ host_stat = ap->ops->bmdma_status(ap); VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat); /* if it's not our irq... */ if (!(host_stat & ATA_DMA_INTR)) goto idle_irq; /* before we do anything else, clear DMA-Start bit */ ap->ops->bmdma_stop(qc); /* fall through */ case ATA_PROT_ATAPI_NODATA: case ATA_PROT_NODATA: /* check altstatus */ status = ata_altstatus(ap); if (status & ATA_BUSY) goto idle_irq; /* check main status, clearing INTRQ */ status = ata_chk_status(ap); if (unlikely(status & ATA_BUSY)) goto idle_irq; DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n", ap->id, qc->tf.protocol, status); /* ack bmdma irq events */ ap->ops->irq_clear(ap); /* complete taskfile transaction */ qc->err_mask |= ac_err_mask(status); ata_qc_complete(qc); break; default: goto idle_irq; } return 1; /* irq handled */ idle_irq: ap->stats.idle_irq++; #ifdef ATA_IRQ_TRAP if ((ap->stats.idle_irq % 1000) == 0) { ata_irq_ack(ap, 0); /* debug trap */ ata_port_printk(ap, KERN_WARNING, "irq trap\n"); return 1; } #endif return 0; /* irq not handled */ } /** * ata_interrupt - Default ATA host interrupt handler * @irq: irq line (unused) * @dev_instance: pointer to our ata_host_set information structure * @regs: unused * * Default interrupt handler for PCI IDE devices. Calls * ata_host_intr() for each port that is not disabled. * * LOCKING: * Obtains host_set lock during operation. * * RETURNS: * IRQ_NONE or IRQ_HANDLED. */ irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs) { struct ata_host_set *host_set = dev_instance; unsigned int i; unsigned int handled = 0; unsigned long flags; /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ spin_lock_irqsave(&host_set->lock, flags); for (i = 0; i < host_set->n_ports; i++) { struct ata_port *ap; ap = host_set->ports[i]; if (ap && !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) { struct ata_queued_cmd *qc; qc = ata_qc_from_tag(ap, ap->active_tag); if (qc && (!(qc->tf.ctl & ATA_NIEN)) && (qc->flags & ATA_QCFLAG_ACTIVE)) handled |= ata_host_intr(ap, qc); } } spin_unlock_irqrestore(&host_set->lock, flags); return IRQ_RETVAL(handled); } /** * sata_scr_valid - test whether SCRs are accessible * @ap: ATA port to test SCR accessibility for * * Test whether SCRs are accessible for @ap. * * LOCKING: * None. * * RETURNS: * 1 if SCRs are accessible, 0 otherwise. */ int sata_scr_valid(struct ata_port *ap) { return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read; } /** * sata_scr_read - read SCR register of the specified port * @ap: ATA port to read SCR for * @reg: SCR to read * @val: Place to store read value * * Read SCR register @reg of @ap into *@val. This function is * guaranteed to succeed if the cable type of the port is SATA * and the port implements ->scr_read. * * LOCKING: * None. * * RETURNS: * 0 on success, negative errno on failure. */ int sata_scr_read(struct ata_port *ap, int reg, u32 *val) { if (sata_scr_valid(ap)) { *val = ap->ops->scr_read(ap, reg); return 0; } return -EOPNOTSUPP; } /** * sata_scr_write - write SCR register of the specified port * @ap: ATA port to write SCR for * @reg: SCR to write * @val: value to write * * Write @val to SCR register @reg of @ap. This function is * guaranteed to succeed if the cable type of the port is SATA * and the port implements ->scr_read. * * LOCKING: * None. * * RETURNS: * 0 on success, negative errno on failure. */ int sata_scr_write(struct ata_port *ap, int reg, u32 val) { if (sata_scr_valid(ap)) { ap->ops->scr_write(ap, reg, val); return 0; } return -EOPNOTSUPP; } /** * sata_scr_write_flush - write SCR register of the specified port and flush * @ap: ATA port to write SCR for * @reg: SCR to write * @val: value to write * * This function is identical to sata_scr_write() except that this * function performs flush after writing to the register. * * LOCKING: * None. * * RETURNS: * 0 on success, negative errno on failure. */ int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val) { if (sata_scr_valid(ap)) { ap->ops->scr_write(ap, reg, val); ap->ops->scr_read(ap, reg); return 0; } return -EOPNOTSUPP; } /** * ata_port_online - test whether the given port is online * @ap: ATA port to test * * Test whether @ap is online. Note that this function returns 0 * if online status of @ap cannot be obtained, so * ata_port_online(ap) != !ata_port_offline(ap). * * LOCKING: * None. * * RETURNS: * 1 if the port online status is available and online. */ int ata_port_online(struct ata_port *ap) { u32 sstatus; if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3) return 1; return 0; } /** * ata_port_offline - test whether the given port is offline * @ap: ATA port to test * * Test whether @ap is offline. Note that this function returns * 0 if offline status of @ap cannot be obtained, so * ata_port_online(ap) != !ata_port_offline(ap). * * LOCKING: * None. * * RETURNS: * 1 if the port offline status is available and offline. */ int ata_port_offline(struct ata_port *ap) { u32 sstatus; if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3) return 1; return 0; } /* * Execute a 'simple' command, that only consists of the opcode 'cmd' itself, * without filling any other registers */ static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) { struct ata_taskfile tf; int err; ata_tf_init(dev, &tf); tf.command = cmd; tf.flags |= ATA_TFLAG_DEVICE; tf.protocol = ATA_PROT_NODATA; err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0); if (err) ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n", __FUNCTION__, err); return err; } static int ata_flush_cache(struct ata_device *dev) { u8 cmd; if (!ata_try_flush_cache(dev)) return 0; if (ata_id_has_flush_ext(dev->id)) cmd = ATA_CMD_FLUSH_EXT; else cmd = ATA_CMD_FLUSH; return ata_do_simple_cmd(dev, cmd); } static int ata_standby_drive(struct ata_device *dev) { return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1); } static int ata_start_drive(struct ata_device *dev) { return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE); } /** * ata_device_resume - wakeup a previously suspended devices * @dev: the device to resume * * Kick the drive back into action, by sending it an idle immediate * command and making sure its transfer mode matches between drive * and host. * */ int ata_device_resume(struct ata_device *dev) { struct ata_port *ap = dev->ap; if (ap->flags & ATA_FLAG_SUSPENDED) { struct ata_device *failed_dev; ap->flags &= ~ATA_FLAG_SUSPENDED; while (ata_set_mode(ap, &failed_dev)) ata_dev_disable(failed_dev); } if (!ata_dev_enabled(dev)) return 0; if (dev->class == ATA_DEV_ATA) ata_start_drive(dev); return 0; } /** * ata_device_suspend - prepare a device for suspend * @dev: the device to suspend * * Flush the cache on the drive, if appropriate, then issue a * standbynow command. */ int ata_device_suspend(struct ata_device *dev, pm_message_t state) { struct ata_port *ap = dev->ap; if (!ata_dev_enabled(dev)) return 0; if (dev->class == ATA_DEV_ATA) ata_flush_cache(dev); if (state.event != PM_EVENT_FREEZE) ata_standby_drive(dev); ap->flags |= ATA_FLAG_SUSPENDED; return 0; } /** * ata_port_start - Set port up for dma. * @ap: Port to initialize * * Called just after data structures for each port are * initialized. Allocates space for PRD table. * * May be used as the port_start() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ int ata_port_start (struct ata_port *ap) { struct device *dev = ap->dev; int rc; ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL); if (!ap->prd) return -ENOMEM; rc = ata_pad_alloc(ap, dev); if (rc) { dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma); return rc; } DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma); return 0; } /** * ata_port_stop - Undo ata_port_start() * @ap: Port to shut down * * Frees the PRD table. * * May be used as the port_stop() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ void ata_port_stop (struct ata_port *ap) { struct device *dev = ap->dev; dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma); ata_pad_free(ap, dev); } void ata_host_stop (struct ata_host_set *host_set) { if (host_set->mmio_base) iounmap(host_set->mmio_base); } /** * ata_host_remove - Unregister SCSI host structure with upper layers * @ap: Port to unregister * @do_unregister: 1 if we fully unregister, 0 to just stop the port * * LOCKING: * Inherited from caller. */ static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister) { struct Scsi_Host *sh = ap->host; DPRINTK("ENTER\n"); if (do_unregister) scsi_remove_host(sh); ap->ops->port_stop(ap); } /** * ata_host_init - Initialize an ata_port structure * @ap: Structure to initialize * @host: associated SCSI mid-layer structure * @host_set: Collection of hosts to which @ap belongs * @ent: Probe information provided by low-level driver * @port_no: Port number associated with this ata_port * * Initialize a new ata_port structure, and its associated * scsi_host. * * LOCKING: * Inherited from caller. */ static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host, struct ata_host_set *host_set, const struct ata_probe_ent *ent, unsigned int port_no) { unsigned int i; host->max_id = 16; host->max_lun = 1; host->max_channel = 1; host->unique_id = ata_unique_id++; host->max_cmd_len = 12; ap->flags = ATA_FLAG_DISABLED; ap->id = host->unique_id; ap->host = host; ap->ctl = ATA_DEVCTL_OBS; ap->host_set = host_set; ap->dev = ent->dev; ap->port_no = port_no; ap->hard_port_no = ent->legacy_mode ? ent->hard_port_no : port_no; ap->pio_mask = ent->pio_mask; ap->mwdma_mask = ent->mwdma_mask; ap->udma_mask = ent->udma_mask; ap->flags |= ent->host_flags; ap->ops = ent->port_ops; ap->sata_spd_limit = UINT_MAX; ap->active_tag = ATA_TAG_POISON; ap->last_ctl = 0xFF; INIT_WORK(&ap->port_task, NULL, NULL); INIT_LIST_HEAD(&ap->eh_done_q); /* set cable type */ ap->cbl = ATA_CBL_NONE; if (ap->flags & ATA_FLAG_SATA) ap->cbl = ATA_CBL_SATA; for (i = 0; i < ATA_MAX_DEVICES; i++) { struct ata_device *dev = &ap->device[i]; dev->ap = ap; dev->devno = i; dev->pio_mask = UINT_MAX; dev->mwdma_mask = UINT_MAX; dev->udma_mask = UINT_MAX; } #ifdef ATA_IRQ_TRAP ap->stats.unhandled_irq = 1; ap->stats.idle_irq = 1; #endif memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports)); } /** * ata_host_add - Attach low-level ATA driver to system * @ent: Information provided by low-level driver * @host_set: Collections of ports to which we add * @port_no: Port number associated with this host * * Attach low-level ATA driver to system. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * New ata_port on success, for NULL on error. */ static struct ata_port * ata_host_add(const struct ata_probe_ent *ent, struct ata_host_set *host_set, unsigned int port_no) { struct Scsi_Host *host; struct ata_port *ap; int rc; DPRINTK("ENTER\n"); if (!ent->port_ops->probe_reset && !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) { printk(KERN_ERR "ata%u: no reset mechanism available\n", port_no); return NULL; } host = scsi_host_alloc(ent->sht, sizeof(struct ata_port)); if (!host) return NULL; host->transportt = &ata_scsi_transport_template; ap = ata_shost_to_port(host); ata_host_init(ap, host, host_set, ent, port_no); rc = ap->ops->port_start(ap); if (rc) goto err_out; return ap; err_out: scsi_host_put(host); return NULL; } /** * ata_device_add - Register hardware device with ATA and SCSI layers * @ent: Probe information describing hardware device to be registered * * This function processes the information provided in the probe * information struct @ent, allocates the necessary ATA and SCSI * host information structures, initializes them, and registers * everything with requisite kernel subsystems. * * This function requests irqs, probes the ATA bus, and probes * the SCSI bus. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * Number of ports registered. Zero on error (no ports registered). */ int ata_device_add(const struct ata_probe_ent *ent) { unsigned int count = 0, i; struct device *dev = ent->dev; struct ata_host_set *host_set; DPRINTK("ENTER\n"); /* alloc a container for our list of ATA ports (buses) */ host_set = kzalloc(sizeof(struct ata_host_set) + (ent->n_ports * sizeof(void *)), GFP_KERNEL); if (!host_set) return 0; spin_lock_init(&host_set->lock); host_set->dev = dev; host_set->n_ports = ent->n_ports; host_set->irq = ent->irq; host_set->mmio_base = ent->mmio_base; host_set->private_data = ent->private_data; host_set->ops = ent->port_ops; host_set->flags = ent->host_set_flags; /* register each port bound to this device */ for (i = 0; i < ent->n_ports; i++) { struct ata_port *ap; unsigned long xfer_mode_mask; ap = ata_host_add(ent, host_set, i); if (!ap) goto err_out; host_set->ports[i] = ap; xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) | (ap->mwdma_mask << ATA_SHIFT_MWDMA) | (ap->pio_mask << ATA_SHIFT_PIO); /* print per-port info to dmesg */ ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX " "ctl 0x%lX bmdma 0x%lX irq %lu\n", ap->flags & ATA_FLAG_SATA ? 'S' : 'P', ata_mode_string(xfer_mode_mask), ap->ioaddr.cmd_addr, ap->ioaddr.ctl_addr, ap->ioaddr.bmdma_addr, ent->irq); ata_chk_status(ap); host_set->ops->irq_clear(ap); ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */ count++; } if (!count) goto err_free_ret; /* obtain irq, that is shared between channels */ if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags, DRV_NAME, host_set)) goto err_out; /* perform each probe synchronously */ DPRINTK("probe begin\n"); for (i = 0; i < count; i++) { struct ata_port *ap; int rc; ap = host_set->ports[i]; DPRINTK("ata%u: bus probe begin\n", ap->id); rc = ata_bus_probe(ap); DPRINTK("ata%u: bus probe end\n", ap->id); if (rc) { /* FIXME: do something useful here? * Current libata behavior will * tear down everything when * the module is removed * or the h/w is unplugged. */ } rc = scsi_add_host(ap->host, dev); if (rc) { ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n"); /* FIXME: do something useful here */ /* FIXME: handle unconditional calls to * scsi_scan_host and ata_host_remove, below, * at the very least */ } } /* probes are done, now scan each port's disk(s) */ DPRINTK("host probe begin\n"); for (i = 0; i < count; i++) { struct ata_port *ap = host_set->ports[i]; ata_scsi_scan_host(ap); } dev_set_drvdata(dev, host_set); VPRINTK("EXIT, returning %u\n", ent->n_ports); return ent->n_ports; /* success */ err_out: for (i = 0; i < count; i++) { ata_host_remove(host_set->ports[i], 1); scsi_host_put(host_set->ports[i]->host); } err_free_ret: kfree(host_set); VPRINTK("EXIT, returning 0\n"); return 0; } /** * ata_host_set_remove - PCI layer callback for device removal * @host_set: ATA host set that was removed * * Unregister all objects associated with this host set. Free those * objects. * * LOCKING: * Inherited from calling layer (may sleep). */ void ata_host_set_remove(struct ata_host_set *host_set) { struct ata_port *ap; unsigned int i; for (i = 0; i < host_set->n_ports; i++) { ap = host_set->ports[i]; scsi_remove_host(ap->host); } free_irq(host_set->irq, host_set); for (i = 0; i < host_set->n_ports; i++) { ap = host_set->ports[i]; ata_scsi_release(ap->host); if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) { struct ata_ioports *ioaddr = &ap->ioaddr; if (ioaddr->cmd_addr == 0x1f0) release_region(0x1f0, 8); else if (ioaddr->cmd_addr == 0x170) release_region(0x170, 8); } scsi_host_put(ap->host); } if (host_set->ops->host_stop) host_set->ops->host_stop(host_set); kfree(host_set); } /** * ata_scsi_release - SCSI layer callback hook for host unload * @host: libata host to be unloaded * * Performs all duties necessary to shut down a libata port... * Kill port kthread, disable port, and release resources. * * LOCKING: * Inherited from SCSI layer. * * RETURNS: * One. */ int ata_scsi_release(struct Scsi_Host *host) { struct ata_port *ap = ata_shost_to_port(host); DPRINTK("ENTER\n"); ap->ops->port_disable(ap); ata_host_remove(ap, 0); DPRINTK("EXIT\n"); return 1; } /** * ata_std_ports - initialize ioaddr with standard port offsets. * @ioaddr: IO address structure to be initialized * * Utility function which initializes data_addr, error_addr, * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, * device_addr, status_addr, and command_addr to standard offsets * relative to cmd_addr. * * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. */ void ata_std_ports(struct ata_ioports *ioaddr) { ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; } #ifdef CONFIG_PCI void ata_pci_host_stop (struct ata_host_set *host_set) { struct pci_dev *pdev = to_pci_dev(host_set->dev); pci_iounmap(pdev, host_set->mmio_base); } /** * ata_pci_remove_one - PCI layer callback for device removal * @pdev: PCI device that was removed * * PCI layer indicates to libata via this hook that * hot-unplug or module unload event has occurred. * Handle this by unregistering all objects associated * with this PCI device. Free those objects. Then finally * release PCI resources and disable device. * * LOCKING: * Inherited from PCI layer (may sleep). */ void ata_pci_remove_one (struct pci_dev *pdev) { struct device *dev = pci_dev_to_dev(pdev); struct ata_host_set *host_set = dev_get_drvdata(dev); ata_host_set_remove(host_set); pci_release_regions(pdev); pci_disable_device(pdev); dev_set_drvdata(dev, NULL); } /* move to PCI subsystem */ int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) { unsigned long tmp = 0; switch (bits->width) { case 1: { u8 tmp8 = 0; pci_read_config_byte(pdev, bits->reg, &tmp8); tmp = tmp8; break; } case 2: { u16 tmp16 = 0; pci_read_config_word(pdev, bits->reg, &tmp16); tmp = tmp16; break; } case 4: { u32 tmp32 = 0; pci_read_config_dword(pdev, bits->reg, &tmp32); tmp = tmp32; break; } default: return -EINVAL; } tmp &= bits->mask; return (tmp == bits->val) ? 1 : 0; } int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state) { pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, PCI_D3hot); return 0; } int ata_pci_device_resume(struct pci_dev *pdev) { pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); pci_enable_device(pdev); pci_set_master(pdev); return 0; } #endif /* CONFIG_PCI */ static int __init ata_init(void) { ata_wq = create_workqueue("ata"); if (!ata_wq) return -ENOMEM; printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); return 0; } static void __exit ata_exit(void) { destroy_workqueue(ata_wq); } module_init(ata_init); module_exit(ata_exit); static unsigned long ratelimit_time; static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED; int ata_ratelimit(void) { int rc; unsigned long flags; spin_lock_irqsave(&ata_ratelimit_lock, flags); if (time_after(jiffies, ratelimit_time)) { rc = 1; ratelimit_time = jiffies + (HZ/5); } else rc = 0; spin_unlock_irqrestore(&ata_ratelimit_lock, flags); return rc; } /** * ata_wait_register - wait until register value changes * @reg: IO-mapped register * @mask: Mask to apply to read register value * @val: Wait condition * @interval_msec: polling interval in milliseconds * @timeout_msec: timeout in milliseconds * * Waiting for some bits of register to change is a common * operation for ATA controllers. This function reads 32bit LE * IO-mapped register @reg and tests for the following condition. * * (*@reg & mask) != val * * If the condition is met, it returns; otherwise, the process is * repeated after @interval_msec until timeout. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * The final register value. */ u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, unsigned long interval_msec, unsigned long timeout_msec) { unsigned long timeout; u32 tmp; tmp = ioread32(reg); /* Calculate timeout _after_ the first read to make sure * preceding writes reach the controller before starting to * eat away the timeout. */ timeout = jiffies + (timeout_msec * HZ) / 1000; while ((tmp & mask) == val && time_before(jiffies, timeout)) { msleep(interval_msec); tmp = ioread32(reg); } return tmp; } /* * libata is essentially a library of internal helper functions for * low-level ATA host controller drivers. As such, the API/ABI is * likely to change as new drivers are added and updated. * Do not depend on ABI/API stability. */ EXPORT_SYMBOL_GPL(ata_std_bios_param); EXPORT_SYMBOL_GPL(ata_std_ports); EXPORT_SYMBOL_GPL(ata_device_add); EXPORT_SYMBOL_GPL(ata_host_set_remove); EXPORT_SYMBOL_GPL(ata_sg_init); EXPORT_SYMBOL_GPL(ata_sg_init_one); EXPORT_SYMBOL_GPL(ata_qc_complete); EXPORT_SYMBOL_GPL(ata_qc_issue_prot); EXPORT_SYMBOL_GPL(ata_tf_load); EXPORT_SYMBOL_GPL(ata_tf_read); EXPORT_SYMBOL_GPL(ata_noop_dev_select); EXPORT_SYMBOL_GPL(ata_std_dev_select); EXPORT_SYMBOL_GPL(ata_tf_to_fis); EXPORT_SYMBOL_GPL(ata_tf_from_fis); EXPORT_SYMBOL_GPL(ata_check_status); EXPORT_SYMBOL_GPL(ata_altstatus); EXPORT_SYMBOL_GPL(ata_exec_command); EXPORT_SYMBOL_GPL(ata_port_start); EXPORT_SYMBOL_GPL(ata_port_stop); EXPORT_SYMBOL_GPL(ata_host_stop); EXPORT_SYMBOL_GPL(ata_interrupt); EXPORT_SYMBOL_GPL(ata_qc_prep); EXPORT_SYMBOL_GPL(ata_noop_qc_prep); EXPORT_SYMBOL_GPL(ata_bmdma_setup); EXPORT_SYMBOL_GPL(ata_bmdma_start); EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); EXPORT_SYMBOL_GPL(ata_bmdma_status); EXPORT_SYMBOL_GPL(ata_bmdma_stop); EXPORT_SYMBOL_GPL(ata_port_probe); EXPORT_SYMBOL_GPL(sata_set_spd); EXPORT_SYMBOL_GPL(sata_phy_reset); EXPORT_SYMBOL_GPL(__sata_phy_reset); EXPORT_SYMBOL_GPL(ata_bus_reset); EXPORT_SYMBOL_GPL(ata_std_probeinit); EXPORT_SYMBOL_GPL(ata_std_softreset); EXPORT_SYMBOL_GPL(sata_std_hardreset); EXPORT_SYMBOL_GPL(ata_std_postreset); EXPORT_SYMBOL_GPL(ata_std_probe_reset); EXPORT_SYMBOL_GPL(ata_drive_probe_reset); EXPORT_SYMBOL_GPL(ata_dev_revalidate); EXPORT_SYMBOL_GPL(ata_dev_classify); EXPORT_SYMBOL_GPL(ata_dev_pair); EXPORT_SYMBOL_GPL(ata_port_disable); EXPORT_SYMBOL_GPL(ata_ratelimit); EXPORT_SYMBOL_GPL(ata_wait_register); EXPORT_SYMBOL_GPL(ata_busy_sleep); EXPORT_SYMBOL_GPL(ata_port_queue_task); EXPORT_SYMBOL_GPL(ata_scsi_ioctl); EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); EXPORT_SYMBOL_GPL(ata_scsi_slave_config); EXPORT_SYMBOL_GPL(ata_scsi_release); EXPORT_SYMBOL_GPL(ata_host_intr); EXPORT_SYMBOL_GPL(sata_scr_valid); EXPORT_SYMBOL_GPL(sata_scr_read); EXPORT_SYMBOL_GPL(sata_scr_write); EXPORT_SYMBOL_GPL(sata_scr_write_flush); EXPORT_SYMBOL_GPL(ata_port_online); EXPORT_SYMBOL_GPL(ata_port_offline); EXPORT_SYMBOL_GPL(ata_id_string); EXPORT_SYMBOL_GPL(ata_id_c_string); EXPORT_SYMBOL_GPL(ata_scsi_simulate); EXPORT_SYMBOL_GPL(ata_pio_need_iordy); EXPORT_SYMBOL_GPL(ata_timing_compute); EXPORT_SYMBOL_GPL(ata_timing_merge); #ifdef CONFIG_PCI EXPORT_SYMBOL_GPL(pci_test_config_bits); EXPORT_SYMBOL_GPL(ata_pci_host_stop); EXPORT_SYMBOL_GPL(ata_pci_init_native_mode); EXPORT_SYMBOL_GPL(ata_pci_init_one); EXPORT_SYMBOL_GPL(ata_pci_remove_one); EXPORT_SYMBOL_GPL(ata_pci_device_suspend); EXPORT_SYMBOL_GPL(ata_pci_device_resume); EXPORT_SYMBOL_GPL(ata_pci_default_filter); EXPORT_SYMBOL_GPL(ata_pci_clear_simplex); #endif /* CONFIG_PCI */ EXPORT_SYMBOL_GPL(ata_device_suspend); EXPORT_SYMBOL_GPL(ata_device_resume); EXPORT_SYMBOL_GPL(ata_scsi_device_suspend); EXPORT_SYMBOL_GPL(ata_scsi_device_resume); EXPORT_SYMBOL_GPL(ata_eng_timeout); EXPORT_SYMBOL_GPL(ata_port_schedule_eh); EXPORT_SYMBOL_GPL(ata_port_abort); EXPORT_SYMBOL_GPL(ata_port_freeze); EXPORT_SYMBOL_GPL(ata_eh_freeze_port); EXPORT_SYMBOL_GPL(ata_eh_thaw_port); EXPORT_SYMBOL_GPL(ata_eh_qc_complete); EXPORT_SYMBOL_GPL(ata_eh_qc_retry); EXPORT_SYMBOL_GPL(ata_do_eh);