/* * Copyright 2018 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * */ #include #include "amdgpu.h" #include "amdgpu_gmc.h" #include "amdgpu_ras.h" #include "amdgpu_xgmi.h" #include /** * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0 * * @adev: amdgpu_device pointer * * Allocate video memory for pdb0 and map it for CPU access * Returns 0 for success, error for failure. */ int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev) { int r; struct amdgpu_bo_param bp; u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21; uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift; memset(&bp, 0, sizeof(bp)); bp.size = PAGE_ALIGN((npdes + 1) * 8); bp.byte_align = PAGE_SIZE; bp.domain = AMDGPU_GEM_DOMAIN_VRAM; bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; bp.type = ttm_bo_type_kernel; bp.resv = NULL; bp.bo_ptr_size = sizeof(struct amdgpu_bo); r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo); if (r) return r; r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false); if (unlikely(r != 0)) goto bo_reserve_failure; r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM); if (r) goto bo_pin_failure; r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0); if (r) goto bo_kmap_failure; amdgpu_bo_unreserve(adev->gmc.pdb0_bo); return 0; bo_kmap_failure: amdgpu_bo_unpin(adev->gmc.pdb0_bo); bo_pin_failure: amdgpu_bo_unreserve(adev->gmc.pdb0_bo); bo_reserve_failure: amdgpu_bo_unref(&adev->gmc.pdb0_bo); return r; } /** * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO * * @bo: the BO to get the PDE for * @level: the level in the PD hirarchy * @addr: resulting addr * @flags: resulting flags * * Get the address and flags to be used for a PDE (Page Directory Entry). */ void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level, uint64_t *addr, uint64_t *flags) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); switch (bo->tbo.resource->mem_type) { case TTM_PL_TT: *addr = bo->tbo.ttm->dma_address[0]; break; case TTM_PL_VRAM: *addr = amdgpu_bo_gpu_offset(bo); break; default: *addr = 0; break; } *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource); amdgpu_gmc_get_vm_pde(adev, level, addr, flags); } /* * amdgpu_gmc_pd_addr - return the address of the root directory */ uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); uint64_t pd_addr; /* TODO: move that into ASIC specific code */ if (adev->asic_type >= CHIP_VEGA10) { uint64_t flags = AMDGPU_PTE_VALID; amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags); pd_addr |= flags; } else { pd_addr = amdgpu_bo_gpu_offset(bo); } return pd_addr; } /** * amdgpu_gmc_set_pte_pde - update the page tables using CPU * * @adev: amdgpu_device pointer * @cpu_pt_addr: cpu address of the page table * @gpu_page_idx: entry in the page table to update * @addr: dst addr to write into pte/pde * @flags: access flags * * Update the page tables using CPU. */ int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, uint32_t gpu_page_idx, uint64_t addr, uint64_t flags) { void __iomem *ptr = (void *)cpu_pt_addr; uint64_t value; /* * The following is for PTE only. GART does not have PDEs. */ value = addr & 0x0000FFFFFFFFF000ULL; value |= flags; writeq(value, ptr + (gpu_page_idx * 8)); return 0; } /** * amdgpu_gmc_agp_addr - return the address in the AGP address space * * @bo: TTM BO which needs the address, must be in GTT domain * * Tries to figure out how to access the BO through the AGP aperture. Returns * AMDGPU_BO_INVALID_OFFSET if that is not possible. */ uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached) return AMDGPU_BO_INVALID_OFFSET; if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size) return AMDGPU_BO_INVALID_OFFSET; return adev->gmc.agp_start + bo->ttm->dma_address[0]; } /** * amdgpu_gmc_vram_location - try to find VRAM location * * @adev: amdgpu device structure holding all necessary information * @mc: memory controller structure holding memory information * @base: base address at which to put VRAM * * Function will try to place VRAM at base address provided * as parameter. */ void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, u64 base) { uint64_t limit = (uint64_t)amdgpu_vram_limit << 20; mc->vram_start = base; mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; if (limit && limit < mc->real_vram_size) mc->real_vram_size = limit; if (mc->xgmi.num_physical_nodes == 0) { mc->fb_start = mc->vram_start; mc->fb_end = mc->vram_end; } dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", mc->mc_vram_size >> 20, mc->vram_start, mc->vram_end, mc->real_vram_size >> 20); } /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture * * @adev: amdgpu device structure holding all necessary information * @mc: memory controller structure holding memory information * * This function is only used if use GART for FB translation. In such * case, we use sysvm aperture (vmid0 page tables) for both vram * and gart (aka system memory) access. * * GPUVM (and our organization of vmid0 page tables) require sysvm * aperture to be placed at a location aligned with 8 times of native * page size. For example, if vm_context0_cntl.page_table_block_size * is 12, then native page size is 8G (2M*2^12), sysvm should start * with a 64G aligned address. For simplicity, we just put sysvm at * address 0. So vram start at address 0 and gart is right after vram. */ void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) { u64 hive_vram_start = 0; u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1; mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id; mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1; mc->gart_start = hive_vram_end + 1; mc->gart_end = mc->gart_start + mc->gart_size - 1; mc->fb_start = hive_vram_start; mc->fb_end = hive_vram_end; dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", mc->mc_vram_size >> 20, mc->vram_start, mc->vram_end, mc->real_vram_size >> 20); dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", mc->gart_size >> 20, mc->gart_start, mc->gart_end); } /** * amdgpu_gmc_gart_location - try to find GART location * * @adev: amdgpu device structure holding all necessary information * @mc: memory controller structure holding memory information * * Function will place try to place GART before or after VRAM. * If GART size is bigger than space left then we ajust GART size. * Thus function will never fails. */ void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) { const uint64_t four_gb = 0x100000000ULL; u64 size_af, size_bf; /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/ u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1); /* VCE doesn't like it when BOs cross a 4GB segment, so align * the GART base on a 4GB boundary as well. */ size_bf = mc->fb_start; size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb); if (mc->gart_size > max(size_bf, size_af)) { dev_warn(adev->dev, "limiting GART\n"); mc->gart_size = max(size_bf, size_af); } if ((size_bf >= mc->gart_size && size_bf < size_af) || (size_af < mc->gart_size)) mc->gart_start = 0; else mc->gart_start = max_mc_address - mc->gart_size + 1; mc->gart_start &= ~(four_gb - 1); mc->gart_end = mc->gart_start + mc->gart_size - 1; dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", mc->gart_size >> 20, mc->gart_start, mc->gart_end); } /** * amdgpu_gmc_agp_location - try to find AGP location * @adev: amdgpu device structure holding all necessary information * @mc: memory controller structure holding memory information * * Function will place try to find a place for the AGP BAR in the MC address * space. * * AGP BAR will be assigned the largest available hole in the address space. * Should be called after VRAM and GART locations are setup. */ void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) { const uint64_t sixteen_gb = 1ULL << 34; const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1); u64 size_af, size_bf; if (amdgpu_sriov_vf(adev)) { mc->agp_start = 0xffffffffffff; mc->agp_end = 0x0; mc->agp_size = 0; return; } if (mc->fb_start > mc->gart_start) { size_bf = (mc->fb_start & sixteen_gb_mask) - ALIGN(mc->gart_end + 1, sixteen_gb); size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb); } else { size_bf = mc->fb_start & sixteen_gb_mask; size_af = (mc->gart_start & sixteen_gb_mask) - ALIGN(mc->fb_end + 1, sixteen_gb); } if (size_bf > size_af) { mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask; mc->agp_size = size_bf; } else { mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb); mc->agp_size = size_af; } mc->agp_end = mc->agp_start + mc->agp_size - 1; dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n", mc->agp_size >> 20, mc->agp_start, mc->agp_end); } /** * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid * * @addr: 48 bit physical address, page aligned (36 significant bits) * @pasid: 16 bit process address space identifier */ static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid) { return addr << 4 | pasid; } /** * amdgpu_gmc_filter_faults - filter VM faults * * @adev: amdgpu device structure * @ih: interrupt ring that the fault received from * @addr: address of the VM fault * @pasid: PASID of the process causing the fault * @timestamp: timestamp of the fault * * Returns: * True if the fault was filtered and should not be processed further. * False if the fault is a new one and needs to be handled. */ bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, struct amdgpu_ih_ring *ih, uint64_t addr, uint16_t pasid, uint64_t timestamp) { struct amdgpu_gmc *gmc = &adev->gmc; uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid); struct amdgpu_gmc_fault *fault; uint32_t hash; /* Stale retry fault if timestamp goes backward */ if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp)) return true; /* If we don't have space left in the ring buffer return immediately */ stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) - AMDGPU_GMC_FAULT_TIMEOUT; if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp) return true; /* Try to find the fault in the hash */ hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; while (fault->timestamp >= stamp) { uint64_t tmp; if (atomic64_read(&fault->key) == key) return true; tmp = fault->timestamp; fault = &gmc->fault_ring[fault->next]; /* Check if the entry was reused */ if (fault->timestamp >= tmp) break; } /* Add the fault to the ring */ fault = &gmc->fault_ring[gmc->last_fault]; atomic64_set(&fault->key, key); fault->timestamp = timestamp; /* And update the hash */ fault->next = gmc->fault_hash[hash].idx; gmc->fault_hash[hash].idx = gmc->last_fault++; return false; } /** * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter * * @adev: amdgpu device structure * @addr: address of the VM fault * @pasid: PASID of the process causing the fault * * Remove the address from fault filter, then future vm fault on this address * will pass to retry fault handler to recover. */ void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr, uint16_t pasid) { struct amdgpu_gmc *gmc = &adev->gmc; uint64_t key = amdgpu_gmc_fault_key(addr, pasid); struct amdgpu_gmc_fault *fault; uint32_t hash; uint64_t tmp; hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; do { if (atomic64_cmpxchg(&fault->key, key, 0) == key) break; tmp = fault->timestamp; fault = &gmc->fault_ring[fault->next]; } while (fault->timestamp < tmp); } int amdgpu_gmc_ras_early_init(struct amdgpu_device *adev) { if (!adev->gmc.xgmi.connected_to_cpu) { adev->gmc.xgmi.ras = &xgmi_ras; amdgpu_ras_register_ras_block(adev, &adev->gmc.xgmi.ras->ras_block); adev->gmc.xgmi.ras_if = &adev->gmc.xgmi.ras->ras_block.ras_comm; } return 0; } int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev) { return 0; } void amdgpu_gmc_ras_fini(struct amdgpu_device *adev) { if (adev->umc.ras && adev->umc.ras->ras_block.ras_fini) adev->umc.ras->ras_block.ras_fini(adev, NULL); if (adev->mmhub.ras && adev->mmhub.ras->ras_block.ras_fini) adev->mmhub.ras->ras_block.ras_fini(adev, NULL); if (adev->gmc.xgmi.ras && adev->gmc.xgmi.ras->ras_block.ras_fini) adev->gmc.xgmi.ras->ras_block.ras_fini(adev, NULL); if (adev->hdp.ras && adev->hdp.ras->ras_block.ras_fini) adev->hdp.ras->ras_block.ras_fini(adev, NULL); } /* * The latest engine allocation on gfx9/10 is: * Engine 2, 3: firmware * Engine 0, 1, 4~16: amdgpu ring, * subject to change when ring number changes * Engine 17: Gart flushes */ #define GFXHUB_FREE_VM_INV_ENGS_BITMAP 0x1FFF3 #define MMHUB_FREE_VM_INV_ENGS_BITMAP 0x1FFF3 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev) { struct amdgpu_ring *ring; unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP, GFXHUB_FREE_VM_INV_ENGS_BITMAP}; unsigned i; unsigned vmhub, inv_eng; for (i = 0; i < adev->num_rings; ++i) { ring = adev->rings[i]; vmhub = ring->funcs->vmhub; if (ring == &adev->mes.ring) continue; inv_eng = ffs(vm_inv_engs[vmhub]); if (!inv_eng) { dev_err(adev->dev, "no VM inv eng for ring %s\n", ring->name); return -EINVAL; } ring->vm_inv_eng = inv_eng - 1; vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng); dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n", ring->name, ring->vm_inv_eng, ring->funcs->vmhub); } return 0; } /** * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ * @adev: amdgpu_device pointer * * Check and set if an the device @adev supports Trusted Memory * Zones (TMZ). */ void amdgpu_gmc_tmz_set(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_RAVEN: case CHIP_RENOIR: if (amdgpu_tmz == 0) { adev->gmc.tmz_enabled = false; dev_info(adev->dev, "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n"); } else { adev->gmc.tmz_enabled = true; dev_info(adev->dev, "Trusted Memory Zone (TMZ) feature enabled\n"); } break; case CHIP_NAVI10: case CHIP_NAVI14: case CHIP_NAVI12: case CHIP_VANGOGH: case CHIP_YELLOW_CARP: case CHIP_IP_DISCOVERY: /* Don't enable it by default yet. */ if (amdgpu_tmz < 1) { adev->gmc.tmz_enabled = false; dev_info(adev->dev, "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n"); } else { adev->gmc.tmz_enabled = true; dev_info(adev->dev, "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n"); } break; default: adev->gmc.tmz_enabled = false; dev_info(adev->dev, "Trusted Memory Zone (TMZ) feature not supported\n"); break; } } /** * amdgpu_gmc_noretry_set -- set per asic noretry defaults * @adev: amdgpu_device pointer * * Set a per asic default for the no-retry parameter. * */ void amdgpu_gmc_noretry_set(struct amdgpu_device *adev) { struct amdgpu_gmc *gmc = &adev->gmc; switch (adev->asic_type) { case CHIP_VEGA10: case CHIP_VEGA20: case CHIP_ARCTURUS: case CHIP_ALDEBARAN: /* * noretry = 0 will cause kfd page fault tests fail * for some ASICs, so set default to 1 for these ASICs. */ if (amdgpu_noretry == -1) gmc->noretry = 1; else gmc->noretry = amdgpu_noretry; break; case CHIP_RAVEN: default: /* Raven currently has issues with noretry * regardless of what we decide for other * asics, we should leave raven with * noretry = 0 until we root cause the * issues. * * default this to 0 for now, but we may want * to change this in the future for certain * GPUs as it can increase performance in * certain cases. */ if (amdgpu_noretry == -1) gmc->noretry = 0; else gmc->noretry = amdgpu_noretry; break; } } void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type, bool enable) { struct amdgpu_vmhub *hub; u32 tmp, reg, i; hub = &adev->vmhub[hub_type]; for (i = 0; i < 16; i++) { reg = hub->vm_context0_cntl + hub->ctx_distance * i; tmp = (hub_type == AMDGPU_GFXHUB_0) ? RREG32_SOC15_IP(GC, reg) : RREG32_SOC15_IP(MMHUB, reg); if (enable) tmp |= hub->vm_cntx_cntl_vm_fault; else tmp &= ~hub->vm_cntx_cntl_vm_fault; (hub_type == AMDGPU_GFXHUB_0) ? WREG32_SOC15_IP(GC, reg, tmp) : WREG32_SOC15_IP(MMHUB, reg, tmp); } } void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev) { unsigned size; /* * TODO: * Currently there is a bug where some memory client outside * of the driver writes to first 8M of VRAM on S3 resume, * this overrides GART which by default gets placed in first 8M and * causes VM_FAULTS once GTT is accessed. * Keep the stolen memory reservation until the while this is not solved. */ switch (adev->asic_type) { case CHIP_VEGA10: case CHIP_RAVEN: case CHIP_RENOIR: adev->mman.keep_stolen_vga_memory = true; break; default: adev->mman.keep_stolen_vga_memory = false; break; } if (amdgpu_sriov_vf(adev) || !amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_DCE)) { size = 0; } else { size = amdgpu_gmc_get_vbios_fb_size(adev); if (adev->mman.keep_stolen_vga_memory) size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION); } /* set to 0 if the pre-OS buffer uses up most of vram */ if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) size = 0; if (size > AMDGPU_VBIOS_VGA_ALLOCATION) { adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION; adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size; } else { adev->mman.stolen_vga_size = size; adev->mman.stolen_extended_size = 0; } } /** * amdgpu_gmc_init_pdb0 - initialize PDB0 * * @adev: amdgpu_device pointer * * This function is only used when GART page table is used * for FB address translatioin. In such a case, we construct * a 2-level system VM page table: PDB0->PTB, to cover both * VRAM of the hive and system memory. * * PDB0 is static, initialized once on driver initialization. * The first n entries of PDB0 are used as PTE by setting * P bit to 1, pointing to VRAM. The n+1'th entry points * to a big PTB covering system memory. * */ void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev) { int i; uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW? /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M */ u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; u64 pde0_page_size = (1ULL<gmc.vmid0_page_table_block_size)<<21; u64 vram_addr = adev->vm_manager.vram_base_offset - adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; u64 vram_end = vram_addr + vram_size; u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo); int idx; if (!drm_dev_enter(adev_to_drm(adev), &idx)) return; flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; flags |= AMDGPU_PTE_WRITEABLE; flags |= AMDGPU_PTE_SNOOPED; flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1)); flags |= AMDGPU_PDE_PTE; /* The first n PDE0 entries are used as PTE, * pointing to vram */ for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size) amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags); /* The n+1'th PDE0 entry points to a huge * PTB who has more than 512 entries each * pointing to a 4K system page */ flags = AMDGPU_PTE_VALID; flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED; /* Requires gart_ptb_gpu_pa to be 4K aligned */ amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags); drm_dev_exit(idx); } /** * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC * address * * @adev: amdgpu_device pointer * @mc_addr: MC address of buffer */ uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr) { return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset; } /** * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from * GPU's view * * @adev: amdgpu_device pointer * @bo: amdgpu buffer object */ uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) { return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo)); } /** * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address * from CPU's view * * @adev: amdgpu_device pointer * @bo: amdgpu buffer object */ uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) { return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base; } void amdgpu_gmc_get_reserved_allocation(struct amdgpu_device *adev) { /* Some ASICs need to reserve a region of video memory to avoid access * from driver */ adev->mman.stolen_reserved_offset = 0; adev->mman.stolen_reserved_size = 0; switch (adev->asic_type) { case CHIP_YELLOW_CARP: if (amdgpu_discovery == 0) { adev->mman.stolen_reserved_offset = 0x1ffb0000; adev->mman.stolen_reserved_size = 64 * PAGE_SIZE; } break; default: break; } } int amdgpu_gmc_vram_checking(struct amdgpu_device *adev) { struct amdgpu_bo *vram_bo = NULL; uint64_t vram_gpu = 0; void *vram_ptr = NULL; int ret, size = 0x100000; uint8_t cptr[10]; ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM, &vram_bo, &vram_gpu, &vram_ptr); if (ret) return ret; memset(vram_ptr, 0x86, size); memset(cptr, 0x86, 10); /** * Check the start, the mid, and the end of the memory if the content of * each byte is the pattern "0x86". If yes, we suppose the vram bo is * workable. * * Note: If check the each byte of whole 1M bo, it will cost too many * seconds, so here, we just pick up three parts for emulation. */ ret = memcmp(vram_ptr, cptr, 10); if (ret) return ret; ret = memcmp(vram_ptr + (size / 2), cptr, 10); if (ret) return ret; ret = memcmp(vram_ptr + size - 10, cptr, 10); if (ret) return ret; amdgpu_bo_free_kernel(&vram_bo, &vram_gpu, &vram_ptr); return 0; }