/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * */ #include #include #include #include #include "gpu_scheduler.h" #define CREATE_TRACE_POINTS #include "gpu_sched_trace.h" static bool amd_sched_entity_is_ready(struct amd_sched_entity *entity); static void amd_sched_wakeup(struct amd_gpu_scheduler *sched); struct kmem_cache *sched_fence_slab; atomic_t sched_fence_slab_ref = ATOMIC_INIT(0); /* Initialize a given run queue struct */ static void amd_sched_rq_init(struct amd_sched_rq *rq) { spin_lock_init(&rq->lock); INIT_LIST_HEAD(&rq->entities); rq->current_entity = NULL; } static void amd_sched_rq_add_entity(struct amd_sched_rq *rq, struct amd_sched_entity *entity) { if (!list_empty(&entity->list)) return; spin_lock(&rq->lock); list_add_tail(&entity->list, &rq->entities); spin_unlock(&rq->lock); } static void amd_sched_rq_remove_entity(struct amd_sched_rq *rq, struct amd_sched_entity *entity) { if (list_empty(&entity->list)) return; spin_lock(&rq->lock); list_del_init(&entity->list); if (rq->current_entity == entity) rq->current_entity = NULL; spin_unlock(&rq->lock); } /** * Select an entity which could provide a job to run * * @rq The run queue to check. * * Try to find a ready entity, returns NULL if none found. */ static struct amd_sched_entity * amd_sched_rq_select_entity(struct amd_sched_rq *rq) { struct amd_sched_entity *entity; spin_lock(&rq->lock); entity = rq->current_entity; if (entity) { list_for_each_entry_continue(entity, &rq->entities, list) { if (amd_sched_entity_is_ready(entity)) { rq->current_entity = entity; spin_unlock(&rq->lock); return entity; } } } list_for_each_entry(entity, &rq->entities, list) { if (amd_sched_entity_is_ready(entity)) { rq->current_entity = entity; spin_unlock(&rq->lock); return entity; } if (entity == rq->current_entity) break; } spin_unlock(&rq->lock); return NULL; } /** * Init a context entity used by scheduler when submit to HW ring. * * @sched The pointer to the scheduler * @entity The pointer to a valid amd_sched_entity * @rq The run queue this entity belongs * @kernel If this is an entity for the kernel * @jobs The max number of jobs in the job queue * * return 0 if succeed. negative error code on failure */ int amd_sched_entity_init(struct amd_gpu_scheduler *sched, struct amd_sched_entity *entity, struct amd_sched_rq *rq, uint32_t jobs) { int r; if (!(sched && entity && rq)) return -EINVAL; memset(entity, 0, sizeof(struct amd_sched_entity)); INIT_LIST_HEAD(&entity->list); entity->rq = rq; entity->sched = sched; spin_lock_init(&entity->queue_lock); r = kfifo_alloc(&entity->job_queue, jobs * sizeof(void *), GFP_KERNEL); if (r) return r; atomic_set(&entity->fence_seq, 0); entity->fence_context = fence_context_alloc(1); return 0; } /** * Query if entity is initialized * * @sched Pointer to scheduler instance * @entity The pointer to a valid scheduler entity * * return true if entity is initialized, false otherwise */ static bool amd_sched_entity_is_initialized(struct amd_gpu_scheduler *sched, struct amd_sched_entity *entity) { return entity->sched == sched && entity->rq != NULL; } /** * Check if entity is idle * * @entity The pointer to a valid scheduler entity * * Return true if entity don't has any unscheduled jobs. */ static bool amd_sched_entity_is_idle(struct amd_sched_entity *entity) { rmb(); if (kfifo_is_empty(&entity->job_queue)) return true; return false; } /** * Check if entity is ready * * @entity The pointer to a valid scheduler entity * * Return true if entity could provide a job. */ static bool amd_sched_entity_is_ready(struct amd_sched_entity *entity) { if (kfifo_is_empty(&entity->job_queue)) return false; if (ACCESS_ONCE(entity->dependency)) return false; return true; } /** * Destroy a context entity * * @sched Pointer to scheduler instance * @entity The pointer to a valid scheduler entity * * Cleanup and free the allocated resources. */ void amd_sched_entity_fini(struct amd_gpu_scheduler *sched, struct amd_sched_entity *entity) { struct amd_sched_rq *rq = entity->rq; if (!amd_sched_entity_is_initialized(sched, entity)) return; /** * The client will not queue more IBs during this fini, consume existing * queued IBs */ wait_event(sched->job_scheduled, amd_sched_entity_is_idle(entity)); amd_sched_rq_remove_entity(rq, entity); kfifo_free(&entity->job_queue); } static void amd_sched_entity_wakeup(struct fence *f, struct fence_cb *cb) { struct amd_sched_entity *entity = container_of(cb, struct amd_sched_entity, cb); entity->dependency = NULL; fence_put(f); amd_sched_wakeup(entity->sched); } static void amd_sched_entity_clear_dep(struct fence *f, struct fence_cb *cb) { struct amd_sched_entity *entity = container_of(cb, struct amd_sched_entity, cb); entity->dependency = NULL; fence_put(f); } static bool amd_sched_entity_add_dependency_cb(struct amd_sched_entity *entity) { struct amd_gpu_scheduler *sched = entity->sched; struct fence * fence = entity->dependency; struct amd_sched_fence *s_fence; if (fence->context == entity->fence_context) { /* We can ignore fences from ourself */ fence_put(entity->dependency); return false; } s_fence = to_amd_sched_fence(fence); if (s_fence && s_fence->sched == sched) { /* Fence is from the same scheduler */ if (test_bit(AMD_SCHED_FENCE_SCHEDULED_BIT, &fence->flags)) { /* Ignore it when it is already scheduled */ fence_put(entity->dependency); return false; } /* Wait for fence to be scheduled */ entity->cb.func = amd_sched_entity_clear_dep; list_add_tail(&entity->cb.node, &s_fence->scheduled_cb); return true; } if (!fence_add_callback(entity->dependency, &entity->cb, amd_sched_entity_wakeup)) return true; fence_put(entity->dependency); return false; } static struct amd_sched_job * amd_sched_entity_pop_job(struct amd_sched_entity *entity) { struct amd_gpu_scheduler *sched = entity->sched; struct amd_sched_job *sched_job; if (!kfifo_out_peek(&entity->job_queue, &sched_job, sizeof(sched_job))) return NULL; while ((entity->dependency = sched->ops->dependency(sched_job))) if (amd_sched_entity_add_dependency_cb(entity)) return NULL; return sched_job; } /** * Helper to submit a job to the job queue * * @sched_job The pointer to job required to submit * * Returns true if we could submit the job. */ static bool amd_sched_entity_in(struct amd_sched_job *sched_job) { struct amd_gpu_scheduler *sched = sched_job->sched; struct amd_sched_entity *entity = sched_job->s_entity; bool added, first = false; spin_lock(&entity->queue_lock); added = kfifo_in(&entity->job_queue, &sched_job, sizeof(sched_job)) == sizeof(sched_job); if (added && kfifo_len(&entity->job_queue) == sizeof(sched_job)) first = true; spin_unlock(&entity->queue_lock); /* first job wakes up scheduler */ if (first) { /* Add the entity to the run queue */ amd_sched_rq_add_entity(entity->rq, entity); amd_sched_wakeup(sched); } return added; } /** * Submit a job to the job queue * * @sched_job The pointer to job required to submit * * Returns 0 for success, negative error code otherwise. */ void amd_sched_entity_push_job(struct amd_sched_job *sched_job) { struct amd_sched_entity *entity = sched_job->s_entity; trace_amd_sched_job(sched_job); wait_event(entity->sched->job_scheduled, amd_sched_entity_in(sched_job)); } /* init a sched_job with basic field */ int amd_sched_job_init(struct amd_sched_job *job, struct amd_gpu_scheduler *sched, struct amd_sched_entity *entity, void *owner, struct fence **fence) { job->sched = sched; job->s_entity = entity; job->s_fence = amd_sched_fence_create(entity, owner); if (!job->s_fence) return -ENOMEM; if (fence) *fence = &job->s_fence->base; return 0; } /** * Return ture if we can push more jobs to the hw. */ static bool amd_sched_ready(struct amd_gpu_scheduler *sched) { return atomic_read(&sched->hw_rq_count) < sched->hw_submission_limit; } /** * Wake up the scheduler when it is ready */ static void amd_sched_wakeup(struct amd_gpu_scheduler *sched) { if (amd_sched_ready(sched)) wake_up_interruptible(&sched->wake_up_worker); } /** * Select next entity to process */ static struct amd_sched_entity * amd_sched_select_entity(struct amd_gpu_scheduler *sched) { struct amd_sched_entity *entity; int i; if (!amd_sched_ready(sched)) return NULL; /* Kernel run queue has higher priority than normal run queue*/ for (i = 0; i < AMD_SCHED_MAX_PRIORITY; i++) { entity = amd_sched_rq_select_entity(&sched->sched_rq[i]); if (entity) break; } return entity; } static void amd_sched_process_job(struct fence *f, struct fence_cb *cb) { struct amd_sched_fence *s_fence = container_of(cb, struct amd_sched_fence, cb); struct amd_gpu_scheduler *sched = s_fence->sched; unsigned long flags; atomic_dec(&sched->hw_rq_count); amd_sched_fence_signal(s_fence); if (sched->timeout != MAX_SCHEDULE_TIMEOUT) { cancel_delayed_work(&s_fence->dwork); spin_lock_irqsave(&sched->fence_list_lock, flags); list_del_init(&s_fence->list); spin_unlock_irqrestore(&sched->fence_list_lock, flags); } trace_amd_sched_process_job(s_fence); fence_put(&s_fence->base); wake_up_interruptible(&sched->wake_up_worker); } static void amd_sched_fence_work_func(struct work_struct *work) { struct amd_sched_fence *s_fence = container_of(work, struct amd_sched_fence, dwork.work); struct amd_gpu_scheduler *sched = s_fence->sched; struct amd_sched_fence *entity, *tmp; unsigned long flags; DRM_ERROR("[%s] scheduler is timeout!\n", sched->name); /* Clean all pending fences */ spin_lock_irqsave(&sched->fence_list_lock, flags); list_for_each_entry_safe(entity, tmp, &sched->fence_list, list) { DRM_ERROR(" fence no %d\n", entity->base.seqno); cancel_delayed_work(&entity->dwork); list_del_init(&entity->list); fence_put(&entity->base); } spin_unlock_irqrestore(&sched->fence_list_lock, flags); } static int amd_sched_main(void *param) { struct sched_param sparam = {.sched_priority = 1}; struct amd_gpu_scheduler *sched = (struct amd_gpu_scheduler *)param; int r, count; spin_lock_init(&sched->fence_list_lock); INIT_LIST_HEAD(&sched->fence_list); sched_setscheduler(current, SCHED_FIFO, &sparam); while (!kthread_should_stop()) { struct amd_sched_entity *entity; struct amd_sched_fence *s_fence; struct amd_sched_job *sched_job; struct fence *fence; unsigned long flags; wait_event_interruptible(sched->wake_up_worker, (entity = amd_sched_select_entity(sched)) || kthread_should_stop()); if (!entity) continue; sched_job = amd_sched_entity_pop_job(entity); if (!sched_job) continue; s_fence = sched_job->s_fence; if (sched->timeout != MAX_SCHEDULE_TIMEOUT) { INIT_DELAYED_WORK(&s_fence->dwork, amd_sched_fence_work_func); schedule_delayed_work(&s_fence->dwork, sched->timeout); spin_lock_irqsave(&sched->fence_list_lock, flags); list_add_tail(&s_fence->list, &sched->fence_list); spin_unlock_irqrestore(&sched->fence_list_lock, flags); } atomic_inc(&sched->hw_rq_count); fence = sched->ops->run_job(sched_job); amd_sched_fence_scheduled(s_fence); if (fence) { r = fence_add_callback(fence, &s_fence->cb, amd_sched_process_job); if (r == -ENOENT) amd_sched_process_job(fence, &s_fence->cb); else if (r) DRM_ERROR("fence add callback failed (%d)\n", r); fence_put(fence); } else { DRM_ERROR("Failed to run job!\n"); amd_sched_process_job(NULL, &s_fence->cb); } count = kfifo_out(&entity->job_queue, &sched_job, sizeof(sched_job)); WARN_ON(count != sizeof(sched_job)); wake_up(&sched->job_scheduled); } return 0; } /** * Init a gpu scheduler instance * * @sched The pointer to the scheduler * @ops The backend operations for this scheduler. * @hw_submissions Number of hw submissions to do. * @name Name used for debugging * * Return 0 on success, otherwise error code. */ int amd_sched_init(struct amd_gpu_scheduler *sched, struct amd_sched_backend_ops *ops, unsigned hw_submission, long timeout, const char *name) { int i; sched->ops = ops; sched->hw_submission_limit = hw_submission; sched->name = name; sched->timeout = timeout; for (i = 0; i < AMD_SCHED_MAX_PRIORITY; i++) amd_sched_rq_init(&sched->sched_rq[i]); init_waitqueue_head(&sched->wake_up_worker); init_waitqueue_head(&sched->job_scheduled); atomic_set(&sched->hw_rq_count, 0); if (atomic_inc_return(&sched_fence_slab_ref) == 1) { sched_fence_slab = kmem_cache_create( "amd_sched_fence", sizeof(struct amd_sched_fence), 0, SLAB_HWCACHE_ALIGN, NULL); if (!sched_fence_slab) return -ENOMEM; } /* Each scheduler will run on a seperate kernel thread */ sched->thread = kthread_run(amd_sched_main, sched, sched->name); if (IS_ERR(sched->thread)) { DRM_ERROR("Failed to create scheduler for %s.\n", name); return PTR_ERR(sched->thread); } return 0; } /** * Destroy a gpu scheduler * * @sched The pointer to the scheduler */ void amd_sched_fini(struct amd_gpu_scheduler *sched) { if (sched->thread) kthread_stop(sched->thread); if (atomic_dec_and_test(&sched_fence_slab_ref)) kmem_cache_destroy(sched_fence_slab); }