// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2019, Intel Corporation. * * Heterogeneous Memory Attributes Table (HMAT) representation * * This program parses and reports the platform's HMAT tables, and registers * the applicable attributes with the node's interfaces. */ #define pr_fmt(fmt) "acpi/hmat: " fmt #define dev_fmt(fmt) "acpi/hmat: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include static u8 hmat_revision; static LIST_HEAD(targets); static LIST_HEAD(initiators); static LIST_HEAD(localities); static DEFINE_MUTEX(target_lock); /* * The defined enum order is used to prioritize attributes to break ties when * selecting the best performing node. */ enum locality_types { WRITE_LATENCY, READ_LATENCY, WRITE_BANDWIDTH, READ_BANDWIDTH, }; static struct memory_locality *localities_types[4]; struct target_cache { struct list_head node; struct node_cache_attrs cache_attrs; }; struct memory_target { struct list_head node; unsigned int memory_pxm; unsigned int processor_pxm; struct resource memregions; struct node_hmem_attrs hmem_attrs; struct list_head caches; struct node_cache_attrs cache_attrs; bool registered; }; struct memory_initiator { struct list_head node; unsigned int processor_pxm; }; struct memory_locality { struct list_head node; struct acpi_hmat_locality *hmat_loc; }; static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm) { struct memory_initiator *initiator; list_for_each_entry(initiator, &initiators, node) if (initiator->processor_pxm == cpu_pxm) return initiator; return NULL; } static struct memory_target *find_mem_target(unsigned int mem_pxm) { struct memory_target *target; list_for_each_entry(target, &targets, node) if (target->memory_pxm == mem_pxm) return target; return NULL; } static __init void alloc_memory_initiator(unsigned int cpu_pxm) { struct memory_initiator *initiator; if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE) return; initiator = find_mem_initiator(cpu_pxm); if (initiator) return; initiator = kzalloc(sizeof(*initiator), GFP_KERNEL); if (!initiator) return; initiator->processor_pxm = cpu_pxm; list_add_tail(&initiator->node, &initiators); } static __init void alloc_memory_target(unsigned int mem_pxm, resource_size_t start, resource_size_t len) { struct memory_target *target; target = find_mem_target(mem_pxm); if (!target) { target = kzalloc(sizeof(*target), GFP_KERNEL); if (!target) return; target->memory_pxm = mem_pxm; target->processor_pxm = PXM_INVAL; target->memregions = (struct resource) { .name = "ACPI mem", .start = 0, .end = -1, .flags = IORESOURCE_MEM, }; list_add_tail(&target->node, &targets); INIT_LIST_HEAD(&target->caches); } /* * There are potentially multiple ranges per PXM, so record each * in the per-target memregions resource tree. */ if (!__request_region(&target->memregions, start, len, "memory target", IORESOURCE_MEM)) pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n", start, start + len, mem_pxm); } static __init const char *hmat_data_type(u8 type) { switch (type) { case ACPI_HMAT_ACCESS_LATENCY: return "Access Latency"; case ACPI_HMAT_READ_LATENCY: return "Read Latency"; case ACPI_HMAT_WRITE_LATENCY: return "Write Latency"; case ACPI_HMAT_ACCESS_BANDWIDTH: return "Access Bandwidth"; case ACPI_HMAT_READ_BANDWIDTH: return "Read Bandwidth"; case ACPI_HMAT_WRITE_BANDWIDTH: return "Write Bandwidth"; default: return "Reserved"; } } static __init const char *hmat_data_type_suffix(u8 type) { switch (type) { case ACPI_HMAT_ACCESS_LATENCY: case ACPI_HMAT_READ_LATENCY: case ACPI_HMAT_WRITE_LATENCY: return " nsec"; case ACPI_HMAT_ACCESS_BANDWIDTH: case ACPI_HMAT_READ_BANDWIDTH: case ACPI_HMAT_WRITE_BANDWIDTH: return " MB/s"; default: return ""; } } static u32 hmat_normalize(u16 entry, u64 base, u8 type) { u32 value; /* * Check for invalid and overflow values */ if (entry == 0xffff || !entry) return 0; else if (base > (UINT_MAX / (entry))) return 0; /* * Divide by the base unit for version 1, convert latency from * picosenonds to nanoseconds if revision 2. */ value = entry * base; if (hmat_revision == 1) { if (value < 10) return 0; value = DIV_ROUND_UP(value, 10); } else if (hmat_revision == 2) { switch (type) { case ACPI_HMAT_ACCESS_LATENCY: case ACPI_HMAT_READ_LATENCY: case ACPI_HMAT_WRITE_LATENCY: value = DIV_ROUND_UP(value, 1000); break; default: break; } } return value; } static void hmat_update_target_access(struct memory_target *target, u8 type, u32 value) { switch (type) { case ACPI_HMAT_ACCESS_LATENCY: target->hmem_attrs.read_latency = value; target->hmem_attrs.write_latency = value; break; case ACPI_HMAT_READ_LATENCY: target->hmem_attrs.read_latency = value; break; case ACPI_HMAT_WRITE_LATENCY: target->hmem_attrs.write_latency = value; break; case ACPI_HMAT_ACCESS_BANDWIDTH: target->hmem_attrs.read_bandwidth = value; target->hmem_attrs.write_bandwidth = value; break; case ACPI_HMAT_READ_BANDWIDTH: target->hmem_attrs.read_bandwidth = value; break; case ACPI_HMAT_WRITE_BANDWIDTH: target->hmem_attrs.write_bandwidth = value; break; default: break; } } static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc) { struct memory_locality *loc; loc = kzalloc(sizeof(*loc), GFP_KERNEL); if (!loc) { pr_notice_once("Failed to allocate HMAT locality\n"); return; } loc->hmat_loc = hmat_loc; list_add_tail(&loc->node, &localities); switch (hmat_loc->data_type) { case ACPI_HMAT_ACCESS_LATENCY: localities_types[READ_LATENCY] = loc; localities_types[WRITE_LATENCY] = loc; break; case ACPI_HMAT_READ_LATENCY: localities_types[READ_LATENCY] = loc; break; case ACPI_HMAT_WRITE_LATENCY: localities_types[WRITE_LATENCY] = loc; break; case ACPI_HMAT_ACCESS_BANDWIDTH: localities_types[READ_BANDWIDTH] = loc; localities_types[WRITE_BANDWIDTH] = loc; break; case ACPI_HMAT_READ_BANDWIDTH: localities_types[READ_BANDWIDTH] = loc; break; case ACPI_HMAT_WRITE_BANDWIDTH: localities_types[WRITE_BANDWIDTH] = loc; break; default: break; } } static __init int hmat_parse_locality(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_hmat_locality *hmat_loc = (void *)header; struct memory_target *target; unsigned int init, targ, total_size, ipds, tpds; u32 *inits, *targs, value; u16 *entries; u8 type, mem_hier; if (hmat_loc->header.length < sizeof(*hmat_loc)) { pr_notice("HMAT: Unexpected locality header length: %u\n", hmat_loc->header.length); return -EINVAL; } type = hmat_loc->data_type; mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY; ipds = hmat_loc->number_of_initiator_Pds; tpds = hmat_loc->number_of_target_Pds; total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds + sizeof(*inits) * ipds + sizeof(*targs) * tpds; if (hmat_loc->header.length < total_size) { pr_notice("HMAT: Unexpected locality header length:%u, minimum required:%u\n", hmat_loc->header.length, total_size); return -EINVAL; } pr_info("HMAT: Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n", hmat_loc->flags, hmat_data_type(type), ipds, tpds, hmat_loc->entry_base_unit); inits = (u32 *)(hmat_loc + 1); targs = inits + ipds; entries = (u16 *)(targs + tpds); for (init = 0; init < ipds; init++) { alloc_memory_initiator(inits[init]); for (targ = 0; targ < tpds; targ++) { value = hmat_normalize(entries[init * tpds + targ], hmat_loc->entry_base_unit, type); pr_info(" Initiator-Target[%u-%u]:%u%s\n", inits[init], targs[targ], value, hmat_data_type_suffix(type)); if (mem_hier == ACPI_HMAT_MEMORY) { target = find_mem_target(targs[targ]); if (target && target->processor_pxm == inits[init]) hmat_update_target_access(target, type, value); } } } if (mem_hier == ACPI_HMAT_MEMORY) hmat_add_locality(hmat_loc); return 0; } static __init int hmat_parse_cache(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_hmat_cache *cache = (void *)header; struct memory_target *target; struct target_cache *tcache; u32 attrs; if (cache->header.length < sizeof(*cache)) { pr_notice("HMAT: Unexpected cache header length: %u\n", cache->header.length); return -EINVAL; } attrs = cache->cache_attributes; pr_info("HMAT: Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n", cache->memory_PD, cache->cache_size, attrs, cache->number_of_SMBIOShandles); target = find_mem_target(cache->memory_PD); if (!target) return 0; tcache = kzalloc(sizeof(*tcache), GFP_KERNEL); if (!tcache) { pr_notice_once("Failed to allocate HMAT cache info\n"); return 0; } tcache->cache_attrs.size = cache->cache_size; tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4; tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16; switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) { case ACPI_HMAT_CA_DIRECT_MAPPED: tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP; break; case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING: tcache->cache_attrs.indexing = NODE_CACHE_INDEXED; break; case ACPI_HMAT_CA_NONE: default: tcache->cache_attrs.indexing = NODE_CACHE_OTHER; break; } switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) { case ACPI_HMAT_CP_WB: tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK; break; case ACPI_HMAT_CP_WT: tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH; break; case ACPI_HMAT_CP_NONE: default: tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER; break; } list_add_tail(&tcache->node, &target->caches); return 0; } static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_hmat_proximity_domain *p = (void *)header; struct memory_target *target = NULL; if (p->header.length != sizeof(*p)) { pr_notice("HMAT: Unexpected address range header length: %u\n", p->header.length); return -EINVAL; } if (hmat_revision == 1) pr_info("HMAT: Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n", p->reserved3, p->reserved4, p->flags, p->processor_PD, p->memory_PD); else pr_info("HMAT: Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n", p->flags, p->processor_PD, p->memory_PD); if (p->flags & ACPI_HMAT_MEMORY_PD_VALID && hmat_revision == 1) { target = find_mem_target(p->memory_PD); if (!target) { pr_debug("HMAT: Memory Domain missing from SRAT\n"); return -EINVAL; } } if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) { int p_node = pxm_to_node(p->processor_PD); if (p_node == NUMA_NO_NODE) { pr_debug("HMAT: Invalid Processor Domain\n"); return -EINVAL; } target->processor_pxm = p->processor_PD; } return 0; } static int __init hmat_parse_subtable(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_hmat_structure *hdr = (void *)header; if (!hdr) return -EINVAL; switch (hdr->type) { case ACPI_HMAT_TYPE_PROXIMITY: return hmat_parse_proximity_domain(header, end); case ACPI_HMAT_TYPE_LOCALITY: return hmat_parse_locality(header, end); case ACPI_HMAT_TYPE_CACHE: return hmat_parse_cache(header, end); default: return -EINVAL; } } static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_srat_mem_affinity *ma = (void *)header; if (!ma) return -EINVAL; if (!(ma->flags & ACPI_SRAT_MEM_ENABLED)) return 0; alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length); return 0; } static u32 hmat_initiator_perf(struct memory_target *target, struct memory_initiator *initiator, struct acpi_hmat_locality *hmat_loc) { unsigned int ipds, tpds, i, idx = 0, tdx = 0; u32 *inits, *targs; u16 *entries; ipds = hmat_loc->number_of_initiator_Pds; tpds = hmat_loc->number_of_target_Pds; inits = (u32 *)(hmat_loc + 1); targs = inits + ipds; entries = (u16 *)(targs + tpds); for (i = 0; i < ipds; i++) { if (inits[i] == initiator->processor_pxm) { idx = i; break; } } if (i == ipds) return 0; for (i = 0; i < tpds; i++) { if (targs[i] == target->memory_pxm) { tdx = i; break; } } if (i == tpds) return 0; return hmat_normalize(entries[idx * tpds + tdx], hmat_loc->entry_base_unit, hmat_loc->data_type); } static bool hmat_update_best(u8 type, u32 value, u32 *best) { bool updated = false; if (!value) return false; switch (type) { case ACPI_HMAT_ACCESS_LATENCY: case ACPI_HMAT_READ_LATENCY: case ACPI_HMAT_WRITE_LATENCY: if (!*best || *best > value) { *best = value; updated = true; } break; case ACPI_HMAT_ACCESS_BANDWIDTH: case ACPI_HMAT_READ_BANDWIDTH: case ACPI_HMAT_WRITE_BANDWIDTH: if (!*best || *best < value) { *best = value; updated = true; } break; } return updated; } static int initiator_cmp(void *priv, struct list_head *a, struct list_head *b) { struct memory_initiator *ia; struct memory_initiator *ib; unsigned long *p_nodes = priv; ia = list_entry(a, struct memory_initiator, node); ib = list_entry(b, struct memory_initiator, node); set_bit(ia->processor_pxm, p_nodes); set_bit(ib->processor_pxm, p_nodes); return ia->processor_pxm - ib->processor_pxm; } static void hmat_register_target_initiators(struct memory_target *target) { static DECLARE_BITMAP(p_nodes, MAX_NUMNODES); struct memory_initiator *initiator; unsigned int mem_nid, cpu_nid; struct memory_locality *loc = NULL; u32 best = 0; int i; mem_nid = pxm_to_node(target->memory_pxm); /* * If the Address Range Structure provides a local processor pxm, link * only that one. Otherwise, find the best performance attributes and * register all initiators that match. */ if (target->processor_pxm != PXM_INVAL) { cpu_nid = pxm_to_node(target->processor_pxm); register_memory_node_under_compute_node(mem_nid, cpu_nid, 0); return; } if (list_empty(&localities)) return; /* * We need the initiator list sorted so we can use bitmap_clear for * previously set initiators when we find a better memory accessor. * We'll also use the sorting to prime the candidate nodes with known * initiators. */ bitmap_zero(p_nodes, MAX_NUMNODES); list_sort(p_nodes, &initiators, initiator_cmp); for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) { loc = localities_types[i]; if (!loc) continue; best = 0; list_for_each_entry(initiator, &initiators, node) { u32 value; if (!test_bit(initiator->processor_pxm, p_nodes)) continue; value = hmat_initiator_perf(target, initiator, loc->hmat_loc); if (hmat_update_best(loc->hmat_loc->data_type, value, &best)) bitmap_clear(p_nodes, 0, initiator->processor_pxm); if (value != best) clear_bit(initiator->processor_pxm, p_nodes); } if (best) hmat_update_target_access(target, loc->hmat_loc->data_type, best); } for_each_set_bit(i, p_nodes, MAX_NUMNODES) { cpu_nid = pxm_to_node(i); register_memory_node_under_compute_node(mem_nid, cpu_nid, 0); } } static void hmat_register_target_cache(struct memory_target *target) { unsigned mem_nid = pxm_to_node(target->memory_pxm); struct target_cache *tcache; list_for_each_entry(tcache, &target->caches, node) node_add_cache(mem_nid, &tcache->cache_attrs); } static void hmat_register_target_perf(struct memory_target *target) { unsigned mem_nid = pxm_to_node(target->memory_pxm); node_set_perf_attrs(mem_nid, &target->hmem_attrs, 0); } static void hmat_register_target_device(struct memory_target *target, struct resource *r) { /* define a clean / non-busy resource for the platform device */ struct resource res = { .start = r->start, .end = r->end, .flags = IORESOURCE_MEM, }; struct platform_device *pdev; struct memregion_info info; int rc, id; rc = region_intersects(res.start, resource_size(&res), IORESOURCE_MEM, IORES_DESC_SOFT_RESERVED); if (rc != REGION_INTERSECTS) return; id = memregion_alloc(GFP_KERNEL); if (id < 0) { pr_err("memregion allocation failure for %pr\n", &res); return; } pdev = platform_device_alloc("hmem", id); if (!pdev) { pr_err("hmem device allocation failure for %pr\n", &res); goto out_pdev; } pdev->dev.numa_node = pxm_to_online_node(target->memory_pxm); info = (struct memregion_info) { .target_node = pxm_to_node(target->memory_pxm), }; rc = platform_device_add_data(pdev, &info, sizeof(info)); if (rc < 0) { pr_err("hmem memregion_info allocation failure for %pr\n", &res); goto out_pdev; } rc = platform_device_add_resources(pdev, &res, 1); if (rc < 0) { pr_err("hmem resource allocation failure for %pr\n", &res); goto out_resource; } rc = platform_device_add(pdev); if (rc < 0) { dev_err(&pdev->dev, "device add failed for %pr\n", &res); goto out_resource; } return; out_resource: put_device(&pdev->dev); out_pdev: memregion_free(id); } static void hmat_register_target_devices(struct memory_target *target) { struct resource *res; /* * Do not bother creating devices if no driver is available to * consume them. */ if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM)) return; for (res = target->memregions.child; res; res = res->sibling) hmat_register_target_device(target, res); } static void hmat_register_target(struct memory_target *target) { int nid = pxm_to_node(target->memory_pxm); /* * Devices may belong to either an offline or online * node, so unconditionally add them. */ hmat_register_target_devices(target); /* * Skip offline nodes. This can happen when memory * marked EFI_MEMORY_SP, "specific purpose", is applied * to all the memory in a promixity domain leading to * the node being marked offline / unplugged, or if * memory-only "hotplug" node is offline. */ if (nid == NUMA_NO_NODE || !node_online(nid)) return; mutex_lock(&target_lock); if (!target->registered) { hmat_register_target_initiators(target); hmat_register_target_cache(target); hmat_register_target_perf(target); target->registered = true; } mutex_unlock(&target_lock); } static void hmat_register_targets(void) { struct memory_target *target; list_for_each_entry(target, &targets, node) hmat_register_target(target); } static int hmat_callback(struct notifier_block *self, unsigned long action, void *arg) { struct memory_target *target; struct memory_notify *mnb = arg; int pxm, nid = mnb->status_change_nid; if (nid == NUMA_NO_NODE || action != MEM_ONLINE) return NOTIFY_OK; pxm = node_to_pxm(nid); target = find_mem_target(pxm); if (!target) return NOTIFY_OK; hmat_register_target(target); return NOTIFY_OK; } static struct notifier_block hmat_callback_nb = { .notifier_call = hmat_callback, .priority = 2, }; static __init void hmat_free_structures(void) { struct memory_target *target, *tnext; struct memory_locality *loc, *lnext; struct memory_initiator *initiator, *inext; struct target_cache *tcache, *cnext; list_for_each_entry_safe(target, tnext, &targets, node) { struct resource *res, *res_next; list_for_each_entry_safe(tcache, cnext, &target->caches, node) { list_del(&tcache->node); kfree(tcache); } list_del(&target->node); res = target->memregions.child; while (res) { res_next = res->sibling; __release_region(&target->memregions, res->start, resource_size(res)); res = res_next; } kfree(target); } list_for_each_entry_safe(initiator, inext, &initiators, node) { list_del(&initiator->node); kfree(initiator); } list_for_each_entry_safe(loc, lnext, &localities, node) { list_del(&loc->node); kfree(loc); } } static __init int hmat_init(void) { struct acpi_table_header *tbl; enum acpi_hmat_type i; acpi_status status; if (srat_disabled()) return 0; status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl); if (ACPI_FAILURE(status)) return 0; if (acpi_table_parse_entries(ACPI_SIG_SRAT, sizeof(struct acpi_table_srat), ACPI_SRAT_TYPE_MEMORY_AFFINITY, srat_parse_mem_affinity, 0) < 0) goto out_put; acpi_put_table(tbl); status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl); if (ACPI_FAILURE(status)) goto out_put; hmat_revision = tbl->revision; switch (hmat_revision) { case 1: case 2: break; default: pr_notice("Ignoring HMAT: Unknown revision:%d\n", hmat_revision); goto out_put; } for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) { if (acpi_table_parse_entries(ACPI_SIG_HMAT, sizeof(struct acpi_table_hmat), i, hmat_parse_subtable, 0) < 0) { pr_notice("Ignoring HMAT: Invalid table"); goto out_put; } } hmat_register_targets(); /* Keep the table and structures if the notifier may use them */ if (!register_hotmemory_notifier(&hmat_callback_nb)) return 0; out_put: hmat_free_structures(); acpi_put_table(tbl); return 0; } device_initcall(hmat_init);