/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include #include #include #include "kfd_priv.h" #include "kfd_device_queue_manager.h" #include "kfd_mqd_manager.h" #include "cik_regs.h" #include "kfd_kernel_queue.h" /* Size of the per-pipe EOP queue */ #define CIK_HPD_EOP_BYTES_LOG2 11 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid, unsigned int vmid); static int create_compute_queue_nocpsch(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd); static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock); static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock); static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd); static void deallocate_sdma_queue(struct device_queue_manager *dqm, unsigned int sdma_queue_id); static inline enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) { if (type == KFD_QUEUE_TYPE_SDMA) return KFD_MQD_TYPE_SDMA; return KFD_MQD_TYPE_CP; } inline unsigned int get_pipes_num(struct device_queue_manager *dqm) { BUG_ON(!dqm || !dqm->dev); return dqm->dev->shared_resources.compute_pipe_count; } static inline unsigned int get_first_pipe(struct device_queue_manager *dqm) { BUG_ON(!dqm); return dqm->dev->shared_resources.first_compute_pipe; } static inline unsigned int get_pipes_num_cpsch(void) { return PIPE_PER_ME_CP_SCHEDULING; } inline unsigned int get_sh_mem_bases_nybble_64(struct kfd_process_device *pdd) { uint32_t nybble; nybble = (pdd->lds_base >> 60) & 0x0E; return nybble; } inline unsigned int get_sh_mem_bases_32(struct kfd_process_device *pdd) { unsigned int shared_base; shared_base = (pdd->lds_base >> 16) & 0xFF; return shared_base; } void program_sh_mem_settings(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid, qpd->sh_mem_config, qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit, qpd->sh_mem_bases); } static int allocate_vmid(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { int bit, allocated_vmid; if (dqm->vmid_bitmap == 0) return -ENOMEM; bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM); clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap); /* Kaveri kfd vmid's starts from vmid 8 */ allocated_vmid = bit + KFD_VMID_START_OFFSET; pr_debug("kfd: vmid allocation %d\n", allocated_vmid); qpd->vmid = allocated_vmid; q->properties.vmid = allocated_vmid; set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid); program_sh_mem_settings(dqm, qpd); return 0; } static void deallocate_vmid(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { int bit = qpd->vmid - KFD_VMID_START_OFFSET; /* Release the vmid mapping */ set_pasid_vmid_mapping(dqm, 0, qpd->vmid); set_bit(bit, (unsigned long *)&dqm->vmid_bitmap); qpd->vmid = 0; q->properties.vmid = 0; } static int create_queue_nocpsch(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd, int *allocated_vmid) { int retval; BUG_ON(!dqm || !q || !qpd || !allocated_vmid); pr_debug("kfd: In func %s\n", __func__); print_queue(q); mutex_lock(&dqm->lock); if (list_empty(&qpd->queues_list)) { retval = allocate_vmid(dqm, qpd, q); if (retval != 0) { mutex_unlock(&dqm->lock); return retval; } } *allocated_vmid = qpd->vmid; q->properties.vmid = qpd->vmid; if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) retval = create_compute_queue_nocpsch(dqm, q, qpd); if (q->properties.type == KFD_QUEUE_TYPE_SDMA) retval = create_sdma_queue_nocpsch(dqm, q, qpd); if (retval != 0) { if (list_empty(&qpd->queues_list)) { deallocate_vmid(dqm, qpd, q); *allocated_vmid = 0; } mutex_unlock(&dqm->lock); return retval; } list_add(&q->list, &qpd->queues_list); dqm->queue_count++; if (q->properties.type == KFD_QUEUE_TYPE_SDMA) dqm->sdma_queue_count++; mutex_unlock(&dqm->lock); return 0; } static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) { bool set; int pipe, bit, i; set = false; for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm); pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) { if (dqm->allocated_queues[pipe] != 0) { bit = find_first_bit( (unsigned long *)&dqm->allocated_queues[pipe], QUEUES_PER_PIPE); clear_bit(bit, (unsigned long *)&dqm->allocated_queues[pipe]); q->pipe = pipe; q->queue = bit; set = true; break; } } if (set == false) return -EBUSY; pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n", __func__, q->pipe, q->queue); /* horizontal hqd allocation */ dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm); return 0; } static inline void deallocate_hqd(struct device_queue_manager *dqm, struct queue *q) { set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]); } static int create_compute_queue_nocpsch(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd) { int retval; struct mqd_manager *mqd; BUG_ON(!dqm || !q || !qpd); mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE); if (mqd == NULL) return -ENOMEM; retval = allocate_hqd(dqm, q); if (retval != 0) return retval; retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj, &q->gart_mqd_addr, &q->properties); if (retval != 0) { deallocate_hqd(dqm, q); return retval; } pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n", q->pipe, q->queue); retval = mqd->load_mqd(mqd, q->mqd, q->pipe, q->queue, (uint32_t __user *) q->properties.write_ptr); if (retval != 0) { deallocate_hqd(dqm, q); mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); return retval; } return 0; } static int destroy_queue_nocpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { int retval; struct mqd_manager *mqd; BUG_ON(!dqm || !q || !q->mqd || !qpd); retval = 0; pr_debug("kfd: In Func %s\n", __func__); mutex_lock(&dqm->lock); if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE); if (mqd == NULL) { retval = -ENOMEM; goto out; } deallocate_hqd(dqm, q); } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA); if (mqd == NULL) { retval = -ENOMEM; goto out; } dqm->sdma_queue_count--; deallocate_sdma_queue(dqm, q->sdma_id); } retval = mqd->destroy_mqd(mqd, q->mqd, KFD_PREEMPT_TYPE_WAVEFRONT_RESET, QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS, q->pipe, q->queue); if (retval != 0) goto out; mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); list_del(&q->list); if (list_empty(&qpd->queues_list)) deallocate_vmid(dqm, qpd, q); dqm->queue_count--; out: mutex_unlock(&dqm->lock); return retval; } static int update_queue(struct device_queue_manager *dqm, struct queue *q) { int retval; struct mqd_manager *mqd; bool prev_active = false; BUG_ON(!dqm || !q || !q->mqd); mutex_lock(&dqm->lock); mqd = dqm->ops.get_mqd_manager(dqm, q->properties.type); if (mqd == NULL) { mutex_unlock(&dqm->lock); return -ENOMEM; } if (q->properties.is_active == true) prev_active = true; /* * * check active state vs. the previous state * and modify counter accordingly */ retval = mqd->update_mqd(mqd, q->mqd, &q->properties); if ((q->properties.is_active == true) && (prev_active == false)) dqm->queue_count++; else if ((q->properties.is_active == false) && (prev_active == true)) dqm->queue_count--; if (sched_policy != KFD_SCHED_POLICY_NO_HWS) retval = execute_queues_cpsch(dqm, false); mutex_unlock(&dqm->lock); return retval; } static struct mqd_manager *get_mqd_manager_nocpsch( struct device_queue_manager *dqm, enum KFD_MQD_TYPE type) { struct mqd_manager *mqd; BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX); pr_debug("kfd: In func %s mqd type %d\n", __func__, type); mqd = dqm->mqds[type]; if (!mqd) { mqd = mqd_manager_init(type, dqm->dev); if (mqd == NULL) pr_err("kfd: mqd manager is NULL"); dqm->mqds[type] = mqd; } return mqd; } static int register_process_nocpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct device_process_node *n; int retval; BUG_ON(!dqm || !qpd); pr_debug("kfd: In func %s\n", __func__); n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL); if (!n) return -ENOMEM; n->qpd = qpd; mutex_lock(&dqm->lock); list_add(&n->list, &dqm->queues); retval = dqm->ops_asic_specific.register_process(dqm, qpd); dqm->processes_count++; mutex_unlock(&dqm->lock); return retval; } static int unregister_process_nocpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { int retval; struct device_process_node *cur, *next; BUG_ON(!dqm || !qpd); BUG_ON(!list_empty(&qpd->queues_list)); pr_debug("kfd: In func %s\n", __func__); retval = 0; mutex_lock(&dqm->lock); list_for_each_entry_safe(cur, next, &dqm->queues, list) { if (qpd == cur->qpd) { list_del(&cur->list); kfree(cur); dqm->processes_count--; goto out; } } /* qpd not found in dqm list */ retval = 1; out: mutex_unlock(&dqm->lock); return retval; } static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid, unsigned int vmid) { uint32_t pasid_mapping; pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | ATC_VMID_PASID_MAPPING_VALID; return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping, vmid); } int init_pipelines(struct device_queue_manager *dqm, unsigned int pipes_num, unsigned int first_pipe) { void *hpdptr; struct mqd_manager *mqd; unsigned int i, err, inx; uint64_t pipe_hpd_addr; BUG_ON(!dqm || !dqm->dev); pr_debug("kfd: In func %s\n", __func__); /* * Allocate memory for the HPDs. This is hardware-owned per-pipe data. * The driver never accesses this memory after zeroing it. * It doesn't even have to be saved/restored on suspend/resume * because it contains no data when there are no active queues. */ err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num, &dqm->pipeline_mem); if (err) { pr_err("kfd: error allocate vidmem num pipes: %d\n", pipes_num); return -ENOMEM; } hpdptr = dqm->pipeline_mem->cpu_ptr; dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr; memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num); mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE); if (mqd == NULL) { kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem); return -ENOMEM; } for (i = 0; i < pipes_num; i++) { inx = i + first_pipe; pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES; pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr); /* = log2(bytes/4)-1 */ kfd2kgd->init_pipeline(dqm->dev->kgd, i, CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr); } return 0; } static int init_scheduler(struct device_queue_manager *dqm) { int retval; BUG_ON(!dqm); pr_debug("kfd: In %s\n", __func__); retval = init_pipelines(dqm, get_pipes_num(dqm), KFD_DQM_FIRST_PIPE); return retval; } static int initialize_nocpsch(struct device_queue_manager *dqm) { int i; BUG_ON(!dqm); pr_debug("kfd: In func %s num of pipes: %d\n", __func__, get_pipes_num(dqm)); mutex_init(&dqm->lock); INIT_LIST_HEAD(&dqm->queues); dqm->queue_count = dqm->next_pipe_to_allocate = 0; dqm->sdma_queue_count = 0; dqm->allocated_queues = kcalloc(get_pipes_num(dqm), sizeof(unsigned int), GFP_KERNEL); if (!dqm->allocated_queues) { mutex_destroy(&dqm->lock); return -ENOMEM; } for (i = 0; i < get_pipes_num(dqm); i++) dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1; dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1; dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1; init_scheduler(dqm); return 0; } static void uninitialize_nocpsch(struct device_queue_manager *dqm) { int i; BUG_ON(!dqm); BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0); kfree(dqm->allocated_queues); for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) kfree(dqm->mqds[i]); mutex_destroy(&dqm->lock); kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem); } static int start_nocpsch(struct device_queue_manager *dqm) { return 0; } static int stop_nocpsch(struct device_queue_manager *dqm) { return 0; } static int allocate_sdma_queue(struct device_queue_manager *dqm, unsigned int *sdma_queue_id) { int bit; if (dqm->sdma_bitmap == 0) return -ENOMEM; bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap, CIK_SDMA_QUEUES); clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap); *sdma_queue_id = bit; return 0; } static void deallocate_sdma_queue(struct device_queue_manager *dqm, unsigned int sdma_queue_id) { if (sdma_queue_id >= CIK_SDMA_QUEUES) return; set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap); } static void init_sdma_vm(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd) { uint32_t value = SDMA_ATC; if (q->process->is_32bit_user_mode) value |= SDMA_VA_PTR32 | get_sh_mem_bases_32(qpd_to_pdd(qpd)); else value |= SDMA_VA_SHARED_BASE(get_sh_mem_bases_nybble_64( qpd_to_pdd(qpd))); q->properties.sdma_vm_addr = value; } static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd) { struct mqd_manager *mqd; int retval; mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA); if (!mqd) return -ENOMEM; retval = allocate_sdma_queue(dqm, &q->sdma_id); if (retval != 0) return retval; q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE; q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM; pr_debug("kfd: sdma id is: %d\n", q->sdma_id); pr_debug(" sdma queue id: %d\n", q->properties.sdma_queue_id); pr_debug(" sdma engine id: %d\n", q->properties.sdma_engine_id); retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj, &q->gart_mqd_addr, &q->properties); if (retval != 0) { deallocate_sdma_queue(dqm, q->sdma_id); return retval; } init_sdma_vm(dqm, q, qpd); return 0; } /* * Device Queue Manager implementation for cp scheduler */ static int set_sched_resources(struct device_queue_manager *dqm) { struct scheduling_resources res; unsigned int queue_num, queue_mask; BUG_ON(!dqm); pr_debug("kfd: In func %s\n", __func__); queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE; queue_mask = (1 << queue_num) - 1; res.vmid_mask = (1 << VMID_PER_DEVICE) - 1; res.vmid_mask <<= KFD_VMID_START_OFFSET; res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE); res.gws_mask = res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; pr_debug("kfd: scheduling resources:\n" " vmid mask: 0x%8X\n" " queue mask: 0x%8llX\n", res.vmid_mask, res.queue_mask); return pm_send_set_resources(&dqm->packets, &res); } static int initialize_cpsch(struct device_queue_manager *dqm) { int retval; BUG_ON(!dqm); pr_debug("kfd: In func %s num of pipes: %d\n", __func__, get_pipes_num_cpsch()); mutex_init(&dqm->lock); INIT_LIST_HEAD(&dqm->queues); dqm->queue_count = dqm->processes_count = 0; dqm->sdma_queue_count = 0; dqm->active_runlist = false; retval = dqm->ops_asic_specific.initialize(dqm); if (retval != 0) goto fail_init_pipelines; return 0; fail_init_pipelines: mutex_destroy(&dqm->lock); return retval; } static int start_cpsch(struct device_queue_manager *dqm) { struct device_process_node *node; int retval; BUG_ON(!dqm); retval = 0; retval = pm_init(&dqm->packets, dqm); if (retval != 0) goto fail_packet_manager_init; retval = set_sched_resources(dqm); if (retval != 0) goto fail_set_sched_resources; pr_debug("kfd: allocating fence memory\n"); /* allocate fence memory on the gart */ retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), &dqm->fence_mem); if (retval != 0) goto fail_allocate_vidmem; dqm->fence_addr = dqm->fence_mem->cpu_ptr; dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; list_for_each_entry(node, &dqm->queues, list) if (node->qpd->pqm->process && dqm->dev) kfd_bind_process_to_device(dqm->dev, node->qpd->pqm->process); execute_queues_cpsch(dqm, true); return 0; fail_allocate_vidmem: fail_set_sched_resources: pm_uninit(&dqm->packets); fail_packet_manager_init: return retval; } static int stop_cpsch(struct device_queue_manager *dqm) { struct device_process_node *node; struct kfd_process_device *pdd; BUG_ON(!dqm); destroy_queues_cpsch(dqm, true); list_for_each_entry(node, &dqm->queues, list) { pdd = qpd_to_pdd(node->qpd); pdd->bound = false; } kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); pm_uninit(&dqm->packets); return 0; } static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, struct kernel_queue *kq, struct qcm_process_device *qpd) { BUG_ON(!dqm || !kq || !qpd); pr_debug("kfd: In func %s\n", __func__); mutex_lock(&dqm->lock); list_add(&kq->list, &qpd->priv_queue_list); dqm->queue_count++; qpd->is_debug = true; execute_queues_cpsch(dqm, false); mutex_unlock(&dqm->lock); return 0; } static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, struct kernel_queue *kq, struct qcm_process_device *qpd) { BUG_ON(!dqm || !kq); pr_debug("kfd: In %s\n", __func__); mutex_lock(&dqm->lock); destroy_queues_cpsch(dqm, false); list_del(&kq->list); dqm->queue_count--; qpd->is_debug = false; execute_queues_cpsch(dqm, false); mutex_unlock(&dqm->lock); } static void select_sdma_engine_id(struct queue *q) { static int sdma_id; q->sdma_id = sdma_id; sdma_id = (sdma_id + 1) % 2; } static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd, int *allocate_vmid) { int retval; struct mqd_manager *mqd; BUG_ON(!dqm || !q || !qpd); retval = 0; if (allocate_vmid) *allocate_vmid = 0; mutex_lock(&dqm->lock); if (q->properties.type == KFD_QUEUE_TYPE_SDMA) select_sdma_engine_id(q); mqd = dqm->ops.get_mqd_manager(dqm, get_mqd_type_from_queue_type(q->properties.type)); if (mqd == NULL) { mutex_unlock(&dqm->lock); return -ENOMEM; } retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj, &q->gart_mqd_addr, &q->properties); if (retval != 0) goto out; list_add(&q->list, &qpd->queues_list); if (q->properties.is_active) { dqm->queue_count++; retval = execute_queues_cpsch(dqm, false); } if (q->properties.type == KFD_QUEUE_TYPE_SDMA) dqm->sdma_queue_count++; out: mutex_unlock(&dqm->lock); return retval; } static int fence_wait_timeout(unsigned int *fence_addr, unsigned int fence_value, unsigned long timeout) { BUG_ON(!fence_addr); timeout += jiffies; while (*fence_addr != fence_value) { if (time_after(jiffies, timeout)) { pr_err("kfd: qcm fence wait loop timeout expired\n"); return -ETIME; } schedule(); } return 0; } static int destroy_sdma_queues(struct device_queue_manager *dqm, unsigned int sdma_engine) { return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA, KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, sdma_engine); } static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock) { int retval; BUG_ON(!dqm); retval = 0; if (lock) mutex_lock(&dqm->lock); if (dqm->active_runlist == false) goto out; pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n", dqm->sdma_queue_count); if (dqm->sdma_queue_count > 0) { destroy_sdma_queues(dqm, 0); destroy_sdma_queues(dqm, 1); } retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE, KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0); if (retval != 0) goto out; *dqm->fence_addr = KFD_FENCE_INIT; pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr, KFD_FENCE_COMPLETED); /* should be timed out */ fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED, QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS); pm_release_ib(&dqm->packets); dqm->active_runlist = false; out: if (lock) mutex_unlock(&dqm->lock); return retval; } static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock) { int retval; BUG_ON(!dqm); if (lock) mutex_lock(&dqm->lock); retval = destroy_queues_cpsch(dqm, false); if (retval != 0) { pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption"); goto out; } if (dqm->queue_count <= 0 || dqm->processes_count <= 0) { retval = 0; goto out; } if (dqm->active_runlist) { retval = 0; goto out; } retval = pm_send_runlist(&dqm->packets, &dqm->queues); if (retval != 0) { pr_err("kfd: failed to execute runlist"); goto out; } dqm->active_runlist = true; out: if (lock) mutex_unlock(&dqm->lock); return retval; } static int destroy_queue_cpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { int retval; struct mqd_manager *mqd; BUG_ON(!dqm || !qpd || !q); retval = 0; /* remove queue from list to prevent rescheduling after preemption */ mutex_lock(&dqm->lock); mqd = dqm->ops.get_mqd_manager(dqm, get_mqd_type_from_queue_type(q->properties.type)); if (!mqd) { retval = -ENOMEM; goto failed; } if (q->properties.type == KFD_QUEUE_TYPE_SDMA) dqm->sdma_queue_count--; list_del(&q->list); dqm->queue_count--; execute_queues_cpsch(dqm, false); mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); mutex_unlock(&dqm->lock); return 0; failed: mutex_unlock(&dqm->lock); return retval; } /* * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to * stay in user mode. */ #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL /* APE1 limit is inclusive and 64K aligned. */ #define APE1_LIMIT_ALIGNMENT 0xFFFF static bool set_cache_memory_policy(struct device_queue_manager *dqm, struct qcm_process_device *qpd, enum cache_policy default_policy, enum cache_policy alternate_policy, void __user *alternate_aperture_base, uint64_t alternate_aperture_size) { bool retval; pr_debug("kfd: In func %s\n", __func__); mutex_lock(&dqm->lock); if (alternate_aperture_size == 0) { /* base > limit disables APE1 */ qpd->sh_mem_ape1_base = 1; qpd->sh_mem_ape1_limit = 0; } else { /* * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, * SH_MEM_APE1_BASE[31:0], 0x0000 } * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } * Verify that the base and size parameters can be * represented in this format and convert them. * Additionally restrict APE1 to user-mode addresses. */ uint64_t base = (uintptr_t)alternate_aperture_base; uint64_t limit = base + alternate_aperture_size - 1; if (limit <= base) goto out; if ((base & APE1_FIXED_BITS_MASK) != 0) goto out; if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) goto out; qpd->sh_mem_ape1_base = base >> 16; qpd->sh_mem_ape1_limit = limit >> 16; } retval = dqm->ops_asic_specific.set_cache_memory_policy( dqm, qpd, default_policy, alternate_policy, alternate_aperture_base, alternate_aperture_size); if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) program_sh_mem_settings(dqm, qpd); pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", qpd->sh_mem_config, qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit); mutex_unlock(&dqm->lock); return retval; out: mutex_unlock(&dqm->lock); return false; } struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev) { struct device_queue_manager *dqm; BUG_ON(!dev); pr_debug("kfd: loading device queue manager\n"); dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL); if (!dqm) return NULL; dqm->dev = dev; switch (sched_policy) { case KFD_SCHED_POLICY_HWS: case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: /* initialize dqm for cp scheduling */ dqm->ops.create_queue = create_queue_cpsch; dqm->ops.initialize = initialize_cpsch; dqm->ops.start = start_cpsch; dqm->ops.stop = stop_cpsch; dqm->ops.destroy_queue = destroy_queue_cpsch; dqm->ops.update_queue = update_queue; dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch; dqm->ops.register_process = register_process_nocpsch; dqm->ops.unregister_process = unregister_process_nocpsch; dqm->ops.uninitialize = uninitialize_nocpsch; dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; dqm->ops.set_cache_memory_policy = set_cache_memory_policy; break; case KFD_SCHED_POLICY_NO_HWS: /* initialize dqm for no cp scheduling */ dqm->ops.start = start_nocpsch; dqm->ops.stop = stop_nocpsch; dqm->ops.create_queue = create_queue_nocpsch; dqm->ops.destroy_queue = destroy_queue_nocpsch; dqm->ops.update_queue = update_queue; dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch; dqm->ops.register_process = register_process_nocpsch; dqm->ops.unregister_process = unregister_process_nocpsch; dqm->ops.initialize = initialize_nocpsch; dqm->ops.uninitialize = uninitialize_nocpsch; dqm->ops.set_cache_memory_policy = set_cache_memory_policy; break; default: BUG(); break; } switch (dev->device_info->asic_family) { case CHIP_CARRIZO: device_queue_manager_init_vi(&dqm->ops_asic_specific); case CHIP_KAVERI: device_queue_manager_init_cik(&dqm->ops_asic_specific); } if (dqm->ops.initialize(dqm) != 0) { kfree(dqm); return NULL; } return dqm; } void device_queue_manager_uninit(struct device_queue_manager *dqm) { BUG_ON(!dqm); dqm->ops.uninitialize(dqm); kfree(dqm); }